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ABSTRACT
Blood pressure (BP) measurement is an indispensable tool in diag-
nosing and treating many diseases such as cardiovascular failure
and stroke. Traditional direct measurement can be invasive, and
wearable-based methods may have limitations of discomfort and
inconvenience. Contact-free BP measurement has been recently
advocated as a promising alternative. In particular, Millimetre-wave
(mmWave) sensing has demonstrated its promising potential, how-
ever it is confronted with several challenges including noise and
vulnerability to human’s tiny motions which may occur intention-
ally and inevitably. In this paper, we propose mmBP, a contact-free
mmWave-based BP measurement system with high accuracy and
motion robustness. Due to the high frequency and short wave-
length, mmWave signals received in the time domain are dramati-
cally susceptible to ambient noise, and deteriorating signal quality.
To reduce noise, we propose a novel delay-Doppler domain feature
transformation method to exploit mmWave signal’s characteristics
and features in the delay-Doppler domain to significantly improve
signal quality for pulse waveform construction. We also propose a
temporal referential functional link adaptive filter leveraging on
the periodic and correlation characteristics of pulse waveform sig-
nals to alleviate the impact of human’s tiny motions. Extensive
experiment results achieved by the leave-one-out cross-validation
(LOOCV) method demonstrate that mmBP achieves the mean er-
rors of 0.87mmHg and 1.55mmHg for systolic blood pressure (SBP)
and diastolic blood pressure (DBP), respectively; and the standard
deviation errors of 5.01mmHg and 5.27mmHg for SBP and DBP,
respectively.
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1 INTRODUCTION
Blood pressure (BP), a periodic signal exerted by heartbeats, is one
of the most representative physiological signs of human beings. BP
is also a crucial indicator for physicians to diagnose cardiovascular
conditions and treat related diseases [26, 32]. A human’s blood pres-
sure goes up and down between the maximum blood pressure, i.e.,
systolic blood pressure (SBP), and the minimum pressure, i.e., dias-
tolic blood pressure (DBP), reflecting valuable information about
health condition [3, 65]. BP measurement has become significantly
important to our daily life, hence receiving particular interest from
both academia and industry.

Among a range of BP measurement methods developed over
decades, the "gold standard" is direct BP measurement using partic-
ular medical devices placed into the arterial line of subject [35, 56].
Although it achieves high accuracy, this method is invasive, caus-
ing pain or risk of infection [36]. Non-invasive BP measurement
has been advocated as a safe and convenient alternative, hence
attracting increasing attention. In such a context, BP measurement
can be accomplished by exploiting the property of physiological
characteristics. In particular, pulse wave has been widely used for
BP measurement as it essentially contains adequate BP-related fea-
tures, e.g., peak value, minimum value, and first inflection [4]. With
pulse waveform analysis techniques, these features can be pro-
cessed to build an effective relationship between pulse waveform
and BP values, achieving successful BP measurements. Towards
this end, several BP measurement methods have been proposed to
capture pulse-related physiological signals, e.g., Photoplethysmog-
raphy (PPG) [10, 50], using dedicated devices such as wrist-watch or
finger/arm cuff. Despite promising, these contact-based BPmeasure-
ments have some shortcomings. First, their performance is highly
dependent on subject’s physical movements, ambient lighting con-
ditions or even skin tattoos. Second, users may feel uncomfortable
when carrying devices or even painful due to cuff inflation [41].

Contact-free BP measurement has been proposed recently lever-
aging on camera or wireless sensor [9, 29]. The camera-based BP
measurement utilizes the property of video/image data induced by
pulse motions such as the pulse motions at fingertip [60]. However,
its performance relies heavily on illumination conditions and mo-
tion changes. A small change in light or movement may degrade
accuracy dramatically. Wireless sensor-based methods leverage on
radio frequency signals to acquire skin or blood vessel displacement
caused by pulse wave transmission for BP measurement [6]. De-
spite the progress achieved, these systems may not achieve accurate
measurement as they cannot accurately capture tiny skin or vessel
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perturbations (i.e., less than 1mm) due to low operating frequency
and limited bandwidth [19].

Millimetre-wave (mmWave) sensing has been advocated as a
plausible solution for contact-free BP measurement. The high fre-
quency and large bandwidth of mmWave enable capturing tiny
variations caused by pulse activities [24, 25, 34, 49]. In particular,
with mmWave signal reflection received at the receiver side, one
can obtain the skin displacement. Since skin displacement is caused
by pulse motions, the characteristics of pulse movements can be
effectively captured and used for BP measurement [49]. However,
applying mmWave sensing for contact-free BP measurement is
not a trivial task and several fundamental challenges remain to be
addressed, which we summarize as follows.
Challenge 1: Reconstructing high-quality pulse waveform from
raw mmWave signals in the time domain is challenging. In such a
context, raw mmWave signals received from mmWave radar are
used to reflect the skin displacements caused by pulse wave activi-
ties. Due to their high frequency and short wavelength, mmWave
signals in the time domain are highly sensitive to noise [59]. As a
result, mmWave reflections received are usually buried under the
noise floor, i.e., interference and background noise from the envi-
ronment [51]. The signal characteristics may be distorted, making it
difficult to extract effective pulse-related features. Our preliminary
study in Section 2.1 shows that mmWave reflections received are
largely contaminated by noise. In this situation, it is extremely hard
to extract useful features from these signals for BP measurement,
leading to poor performance. Therefore, noise reduction is a critical
issue in mmWave-based BP measurement.

Many efforts have been devoted to noise reduction by leveraging
signal characteristics in the time domain or the frequency domain.
The matrix factorization is a time-domain based method commonly
applied for noise reduction, e.g., Non-Negative Matrix Factorization
(NMF) [33, 62]. The fundamental is to isolate clean signals from
noise by utilizing the property of the signal matrix. However, their
implementation is highly complex, and involves a slow convergence
process. Other time-domain based methods use principal compo-
nent analysis (PCA) [66, 67]. They typically choose a certain group
of principal components for signal reconstruction and noise reduc-
tion, however, selecting appropriate principal components can be
challenging. Apart from that, signal characteristics in the frequency
domain have also been investigated for noise reduction such as the
Butterworth filter. The key idea is to filter out unwanted signals
based on signal characteristics in the frequency domain [1, 40]. Al-
though this filter is easy to implement and reduces noise partially,
its performance is not satisfactory due to its fixed cut-off frequen-
cies. Our preliminary study in Section 2.1 demonstrates that these
methods can improve pulse waveform patterns partially, but the
outcomes are insufficient to construct accurate pulse signals. It is
difficult to extract useful features from noise-contaminated signals
in the time or frequency domain for successful BP measurement.

In this paper, we investigate novel features extracted from the
delay-Doppler (DD) domain to address the aforementioned chal-
lenge. The fundamental idea is to exploit the delays (due to signal
transmission time and distance) and Doppler shifts (due to tar-
get movement) in mmWave reflections for noise reduction. Since
mmWave reflections caused by pulse movements and noise have

different responses in terms of transmission time, distance or move-
ment speed, their delays and Doppler shifts can be considerably
different. It will then be feasible to separate the clean mmWave
reflections and noise using their corresponding properties in the
DD domain. Note that, some techniques, such as the range-Doppler
map, represent the distance-speed characteristics of objects, while
it does not consider signal property in the time domain that how-
ever is an essential factor for pulse waveform construction. Based
on the aforementioned, DD domain signal representation involves
not only distance-speed properties but also signal variations in the
time dimension. As a result, DD domain representation is able to
construct pulse waveforms more comprehensively. Therefore, in
this work, we transfer raw mmWave signals from the time domain
to the DD domain and then separate the clean mmWave reflections
with noise to significantly improve signal quality.
Challenge 2: Traditional mmWave-based methods are susceptible
to body motions due to the high operating frequency of mmWave
signals. A subject is usually required to keep stationary to avoid
large-scale motions during measurement, however, small-scale or
tiny motions (e.g., essential tremor and resting tremor) often occur
unintentionally [2, 15]. Specifically, essential tremor is a fairly com-
mon disorder, which often presents with hand postures [2]. Resting
tremor usually occurs when keeping limb stationary or relaxed [37].
Notably, tremor is more prevalent for elderly people, due to aging
or some chronic diseases such as Parkinson’s disease [57].

It is worth noting that even though these tremors result in only
small distance variations between mmWave radar and subject, they
induce considerable influence on the performance of contact-free
mmWave BP measurement. Specifically, a tiny motion will interact
nonlinearly with the desired signal, leading to severe nonlinear
distortion on signal property. For instance, for a mmWave signal
operating at 75GHz, a less than 1 mm change in distance may result
in a 𝜋 distortion in phase information, corrupting the fundamental
characteristics of pulse-related signals [23]. Our preliminary study
in Section 2.2 shows that even though a normal 61 years old adult
keeps stationary, tiny motion occurs, leading to a considerable
negative impact on mmWave signals. Consequently, we cannot
extract proper features, resulting in pulse waveform construction
failure.

To tackle this challenge, numerous efforts have been made to
investigate the motion-reduction problem. Signal decomposition al-
gorithms (e.g., Wavelet [45], Empirical Mode Decomposition (EMD)
[46] and independent component analysis (ICA) [31]) have been
proposed to effectively decompose the received signal into several
sub-components, with the purpose of separating the interference
caused by motions and the clean signals. However, selecting ap-
propriate decomposition parameters can be extremely challenging
to ensure performance. Moreover, decomposition can only reduce
motion to a certain degree, and the residual motion will still have
a negative influence on the clean signals [63]. Deep learning (DL)
techniques (e.g., deep contrastive learning and variational encoder-
decoder network [11, 69]) have recently been proposed to mitigate
motion impact. However, these techniques typically require large
training samples and frequent re-trainingwhich limit their potential
for real-world deployment. Apart from the above, nonlinear adap-
tive filter (NLAF) has the capability to address nonlinear motion
and has demonstrated its effectiveness in speech signal processing
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(a) Raw mmWave reflections
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(b) Processed by PCA
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(c) Processed by Butterworth filter
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(d) Processed by NMF

Figure 1: Preliminary results – raw mmWave reflections pro-
cessed by different noise reduction methods

[38]. However, NLAF may not be directly applied in mmWave-
based BP measurement as it requires the actual pulse waveform as
a reference signal which is not available due to the lack of prior
knowledge of noise or pulse signals. An attempt [28] has been made
to produce a reference signal by using the delayed information of
received data, however, the performance of motion reduction is not
satisfactory due to the high correlation between artificial signal
and raw pulse data [39]. Therefore, despite promising, mitigating
the impact of tiny motion on pulse construction using NLAF in
mmWave-based BP measurement is still an open research problem.
To tackle this problem, we propose a novel method to generate an
effective reference signal and exploit the property of NLAF for BP
measurement. The fundamental idea is that pulse morphology is
a type of periodical repeat with high correlations over the time
period. Even though each repeat may vary slightly over time, the
overall pattern is stable. However, the tendency and the correlation
property may no longer hold when tiny motions occur. This gives
us an opportunity to generate a reference signal which is highly
correlated with the clean pulse waveform but uncorrelated with the
interference induced by tiny motions. With this reference signal,
NLAF can be used to effectively reduce the impact of tiny motion
on pulse waveform signals.
Our Approach: To address the aforementioned challenges, in this
paper we propose mmBP, a contact-freemmWave-based system
for safe, high-accurate and motion-robust BPmeasurement. mmBP
performs in the following three steps. First, use an off-the-shelf
mmWave radar (i.e., Texas Instruments, TI IWR1843 BOOST) to
capture the variations of mmWave reflections caused by pulse ac-
tivities. Next, we transfer the mmWave signals received from the
time domain to the DD domain, then extract the representative
DD-domain pulse-related information and filter out noise based
on the fact that noise and pulse signals have different properties
in the DD domain. In the third step, we propose a novel motion

compensation scheme to address the influence of tiny motion on
BP measurement leveraging on the property of NLAF. As afore-
mentioned, NLAF cannot be directly applied to mmWave-based
BP measurement due to the lack of reference signal. To solve this
issue, we propose a novel method to generate an effective reference
signal for NLAF, then apply compensation to reduce the impact of
tiny motions. We perform extensive experiments to validate the
effectiveness of mmBP with the dataset collected from 25 normal
subjects (11 females and 14 males), aged from 23 to 61 years old.
Our major contributions are summarized as follows.

• We propose a novel BP measurement system leveraging on
mmWave signal characteristics and representative features
in the DD domain. mmBP is fully contact-free and does not
require wearing any devices. mmBP is capable of achieving
high accuracy and being robust to tiny motions, hence it is
promising for potential real-world deployment.

• We propose a novel delay-Doppler domain feature trans-
formation (DDFT) to extract representative features from
the DD domain for pulse waveform construction, compared
to the time domain or the frequency domain as commonly
used in existing measurement methods. To the best of our
knowledge, this is the first to leverage DD domain features
to estimate BP values. DDFT is able to enhance the quality
of pulse waveform and reduce noise influence.

• We propose a temporal referential functional link adaptive
filter (TR-FLAF) to alleviate the impact of tiny motion on
pulse waveform construction. For reliable filtering perfor-
mance, we propose the temporal reference signal extraction
(TRSE) algorithm to generate the reference signal for non-
linear adaptive filter by exploiting the periodic property and
correlation character of the pulse signals. We then apply
compensation to reduce the impact of motion on pulse in-
formation extraction, thereby improving the performance of
BP measurement.

• We conduct extensive experiments to evaluate the perfor-
mance of mmBP under various scenarios and settings. Re-
sults show thatmmBP achieves themean errors of 0.87mmHg
and 1.55mmHg for SBP and DBP, respectively; and the stan-
dard deviation errors of 5.01mmHg and 5.27mmHg for SBP
and DBP, respectively.

2 PRELIMINARY STUDY
To investigate the feasibility of mmWave sensing in contact-free
BP measurement, in this section, we conduct a preliminary study
using an off-the-shelf mmWave radar (TI IWR1843 BOOST). Table
1 shows the device configuration in detail.

2.1 mmWave reflections in the time or
frequency domain

In this study, we ask a subject (36 years old male adult) to sit on a
chair and place his hand and wrist on a desk. We place a mmWave
radar on the desk, 5cm above the subject’s wrist. The subject is
required to keep stationary during data collection. The mmWave
radar emits Frequency-Modulated Continuous-Wave (FMCW) sig-
nals and receives the mmWave signals reflected from the skin.
The signal variations capturing subtle skin displacements caused
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Figure 2: Preliminary results – raw mmWave signals with
tiny motion processed by motion reduction methods

by pulse activities can be obtained by extracting pulse waveform
features from mmWave signal reflections to achieve BP measure-
ment. Fig. 1(a) depicts raw mmWave reflections received in the
time domain. We observe that these mmWave signals are largely
contaminated by noise, i.e., they are buried into noise. In this regard,
it is difficult to extract proper features for successful BP measure-
ment. Therefore, suppressing and reducing noise is a critical task in
mmWave-based BP measurement. Much research efforts have been
made for noise reduction from the time and frequency domains such
as Butterworth (BW) filter [1], PCA [67], and NMF [62]. Fig. 1(b)
to Fig. 1(d) show the mmWave reflections processed by PCA, BW
filter and NMF-based methods, respectively. As can be observed,
for each noise reduction method, the waveform pattern is improved
and presents some periodic features compared to raw time-domain
signals. However, these periodic variations present coarse informa-
tion about pulse motions, which is insufficient for accurate pulse
waveform construction. Hence, using noise-contaminated time- or
frequency-domain features may not be possible to achieve reliable
BP measurement.

2.2 mmWave reflections with tiny motions
Human’s tiny motions may occur unintentionally and inevitably
induce severe influence on mmWave signals. This may result in
poor pulse waveform construction, dramatically degrading perfor-
mance. In Fig. 2(a), we demonstrate the impact of tiny motions
on mmWave signals. In this figure, a subject (61 years old female
adult) is asked to keep stationary to avoid movements, and measure
the raw mmWave reflections received from the same mmWave
radar. It is obvious that tiny motion still occurs and causes dramatic
nonlinear influence on mmWave reflections. This makes it impossi-
ble to extract effective features from mmWave signals for proper
pulse waveform construction. Therefore, reducing the impact of
tiny motions is of importance to successful BP measurement.

Motion reduction has attracted particular research attention
in recent years. Several methods have been proposed, e.g., ICA

Raw mmWave
Signals

DD-domain Feature
Transformation

Wigner Transform

SFFT Transform

Motion Compensation

Temporal Reference
Signal Extraction

Functional Expansion

Block

Adaptive

Filter

Feature Extraction

Estimator

mmWave Radar BP Estimation

Figure 3: Key processing steps in mmBP

[31], EMD [46] and NLAF [28], to reduce the impact of motions
for clean signals. Fig. 2(b)-Fig. 2(d) depict the mmWave signals
(with tiny motions) processed by ICA [31], EMD [46] and NLAF
[28], respectively. As can be observed, for each method, the signal
pattern is improved to a certain degree, implying that the impact of
tiny motion is reduced. However, processed signals are still largely
contaminated by tiny motions, making it impossible to construct
accurate pulse waveforms. Therefore, reducing the impact of tiny
motions on mmWave signals plays an essential role in reliable BP
measurement.

3 DESIGN OF MMBP
In this section, we present our design of mmBP. As depicted in Fig.
3, mmBP measures BP values via the following four steps: mmWave
Reflection Capturing, DD Domain Feature Transformation (DDFT),
Motion Compensation, and BP Estimation. We first present an
overview of mmBP, then describe each step in detail.
mmWave Reflection Capturing: The first step captures the ar-
terial pulse signal based on received mmWave reflections. Due to
the high frequency and large bandwidth, mmWave signal can ef-
fectively reflect skin displacement caused by pulse motions, which
is essential for pulse waveform construction. Since pulse signal
(e.g., waveform) contains adequate BP-related information, it can
be processed to measure BP values and track their variations.
DD Domain Feature Transformation: This step transforms the
pulse signal obtained in the former step from the time domain to
the DD domain for noise reduction. Since the desire pulse signals
and noise have different delay and Doppler responses, it is possible
to retain the desired signals and reduce noise influence in the DD
domain, thereby enhancing pulse waveform construction.
Motion Compensation: This step removes the impact of tiny mo-
tions on pulse waveform construction. To achieve this, we propose
a temporal referential functional link adaptive filter (TR-FLAF) to
mitigate nonlinear influence induced by tiny motions. In particular,
we propose a temporal reference signal extraction (TRSE) algo-
rithm to generate the reference signal for the adaptive filter, hence
achieving reliable filtering performance.
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BP Estimation: The final step first extracts six distinguishable DD
features from the pulse waveform, which represent unique proper-
ties of BP activities. Then, we feed these features into a regression
model to find the effective relationship between the extracted fea-
tures and BP values, achieving a successful BP measurement.

3.1 mmWave Reflection Capturing
In the first step, we extract pulse information from mmWave signal
reflections. We use a commercial-grade mmWave radar, i.e., TI
IWR1843 BOOST. The device transmits FMCW signals toward a
subject’s wrist and receives reflected signals. The pulse waveform
can then be extracted from signal reflections. Let 𝑥 (𝑡) stand for the
transmitted FMCW signal, which is

𝑥 (𝑡) = 𝐴𝑇 𝑒 𝑗 (2𝜋 𝑓𝑐𝑡+𝜋
𝐵
𝑇
𝑡2 ) , (1)

where 𝐴𝑇 is the amplitude of the transmitted FMCW signal, 𝑓𝑐
stands for the central frequency, 𝐵 denotes the system bandwidth,
and 𝑇 represents the chirp period. The received signal can be then
obtained by

𝑦 (𝑡) = 𝐴𝑅𝑒 𝑗 (2𝜋 𝑓𝑐 (𝑡−𝑡𝑑 )+𝜋
𝐵
𝑇
(𝑡−𝑡𝑑 )2 ) , (2)

where 𝑡𝑑 is the delay between the transmitted signal and the re-
ceived signal, and𝐴𝑅 stands for the amplitude of the received signal.
The value of 𝐴𝑅 is determined by not only the reflected energy of
the skin surface but also the distance between the mmWave radar
and the skin surface of the subject’s wrist. The beat signal 𝑠 (𝑡),
which contains the pulse information, can be obtained by mixing
𝑥 (𝑡) and 𝑦 (𝑡) as follows.

𝑠 (𝑡) = 𝑥 (𝑡)𝑦 (𝑡) ≈ 𝐴(𝑡)𝑒 𝑗 (2𝜋 𝑓𝑑 (𝑡 )𝑡+𝜙 (𝑡 ) ) ,

𝐴(𝑡) = 𝐴𝑇𝐴𝑅, 𝑓𝑑 (𝑡) =
2𝐵𝑑 (𝑡)
𝑐𝑇

, 𝜙 (𝑡) = 4𝜋𝑑 (𝑡)
𝜆

, (3)

where 𝐴(𝑡), 𝑓𝑑 (𝑡) and 𝜙 (𝑡) denote the amplitude, frequency and
phase of the beat signal, respectively. 𝑑 (𝑡) is the distance between
the mmWave radar and the skin surface of wrist. 𝑐 represents the
speed of light. 𝜆 is the wavelength of mmWave signal.

The pulse variation will result in the displacement of the skin
surface, leading to changes of𝑑 (𝑡). It is noteworthy that although all
components of 𝑠 (𝑡) (i.e.,𝐴(𝑡), 𝑓𝑑 (𝑡) and 𝜙 (𝑡)) can be used to extract
the pulse waveform, phase information 𝜙 (𝑡) is more suitable for
small-scale vibration detection [34]. Thus, in this paper, we treat
𝜙 (𝑡) as the original source signal to extract pulse features for BP
measurement.

3.2 Delay-Doppler Domain Feature
Transformation

Although phase signal𝜙 (𝑡) can reflect the skin displacement caused
by pulse movements, it is extremely challenging to utilize 𝜙 (𝑡)
directly for BP measurement. This is because phase signal 𝜙 (𝑡)
obtained is usually contaminated by noise from environment. This
will result in a low signal-to-noise ratio (SNR), implying that pulse
waveform is overwhelmed by noise. Some signal processing tech-
niques (e.g., filter and signal decomposition) [33, 62, 66, 67] can
partially improve the quality of time-domain phase signal, but the
improvement may not be sufficient for constructing a fine-grained
pulse waveform.

Recall in Fig. 1(a), there is no clear variation pattern in the origi-
nal time-domain phase signal. Thus, it is very hard to extract pulse
waveform using the time-domain data alone. Fig. 1(b) to Fig. 1(d)
show the phase signals processed by PCA, BWfilter and NMF-based
methods, respectively. It is clear that all these three methods can
improve the quality of phase signals to a certain degree, and peri-
odic variations in the frequency domain can be captured which are
related to pulse signals. However, these variations are too coarse
to effectively reflect the essential features of pulse motions. Conse-
quently, it is very difficult to construct a complete pulse waveform
using time-domain signals.

To overcome the above challenge, we propose DDFT to extract
effective features and construct pulse signals for effective BP mea-
surement. Unlike existing methods that use time-domain phase
signals for BP measurement, DDFT extracts distinguishable fea-
tures from the DD domain. The key idea is that, on the one hand,
the pulse signals are concentrated on certain resource grids in the
DD domain. On the other hand, noise signals are mainly distributed
in other resource grids due to their different DD properties from the
pulse signals. In this regard, it is easy to separate pulse information
and the interfering data, bringing two major attractive advantages.
First, the variation of pulse signal is significantly enhanced, which
is beneficial for fine-grained pulse representation. Second, noise
can be considerably alleviated, resulting in a higher SNR.

Let 𝜁 stand for the phase noise in the time-domain, which is
modelled as an additive white Gaussian noise (AWGN) with zero
mean and variance 𝜎2

𝜁
. Thus, the received phase signal 𝜙 (𝑡) can be

expressed as

𝜙 (𝑡) = 𝜙𝑝 (𝑡) + 𝜁 (𝑡), (4)

where 𝜙𝑝 (𝑡) denotes the actual phase signal. Let 𝑃𝑠 be the power
of 𝜙𝑝 , then SNR in the time-domain is defined as SNR𝑇 =

𝑃𝑠
𝜎2
𝜁

.

Given the above time-domain signals, the DD domain pulse data
can be extracted via the following two steps. First, we perform the
Wigner transform operation to map 𝜙 (𝑡) from the time domain to
the time-frequency (TF) domain, which can be expressed as

𝑅 [𝑛,𝑚] =
∫

𝑔∗ (𝑡 − 𝑛𝑇 )𝜙 (𝑡)𝑒− 𝑗2𝜋𝑚Δ𝑓 (𝑡−𝑛𝑇 )𝑑𝑡, (5)

where 𝑔 (𝑡 − 𝑛𝑇 ) 𝑒− 𝑗2𝜋𝑚Δ𝑓 (𝑡−𝑛𝑇 ) stands for the receiving filter
which aims to sample 𝑅 [𝑛,𝑚] from 𝜙 (𝑡). 𝑛 ∈ {0, . . . , 𝑁 − 1} and
𝑚 ∈ {0, . . . , 𝑀 − 1} denote time and frequency indices, respectively.

In the next step, 𝑅 [𝑛,𝑚] is converted into the DD domain signal,
𝑟 [𝑘, 𝑙], using symplectic finite Fourier transform (SFFT) [20], which
is

Λ [𝑘, 𝑙] = 1
√
𝑁𝑀

𝑁−1∑︁
𝑛=0

𝑀−1∑︁
𝑚=0

𝑅 [𝑛,𝑚] 𝑒− 𝑗2𝜋
(
𝑘𝑛
𝑁

− 𝑙𝑚
𝑀

)
, (6)

where 𝑘 ∈ {0, . . . , 𝐾−1} and 𝑙 ∈ {0, . . . , 𝐿−1} stand for Doppler and
delay indices, respectively. Fig. 4 illustrates the phase representation
in the DD domain processed by DDFT, from which it is obvious that
the variation pattern (in the right subfigure) is significantly clearer
and closer to pulse waveform, compared to signals illustrated in
Fig. 1(a)-Fig. 1(d). In other words, a better pulse waveform can
be constructed using the output from DDFT, due to the following
reason. As can be observed, pulse signals are distributed in a certain
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Figure 4: Pulse morphology in the DD domain processed by
DDFT

area in the DD domain because of its unique delay and Doppler
properties. Consequently, the power of pulse signals mainly focuses
on that area. On the other hand, noise signals distribute all grids
in the DD domain. Under this situation, we select the row of Λ
whose Doppler shift matches that of the pulse waveform and use it
as DD-domain feature signal for further processing. Let 𝑟 denote
the selected DD-domain feature signal, which can be expressed
as 𝑟 = 𝜙𝑝 + 𝜁 , where 𝜙𝑝 stands for the selected phase signal in
DD-domain and its power 𝑃𝑠 is approximate to 𝑃𝑠 . 𝜁 represents the
noise of the selected row, which follows the AWGN distribution
with zero mean and variance 𝜎𝜁 2. In this regard, SNR of the selected

row is defined as SNR𝐷𝐷 =
𝑃𝑠

𝜎𝜁
2 . Since 𝜎𝜁 2 is much smaller than 𝜎2

𝜁

and 𝑃𝑠 is close to 𝑃𝑠 , SNR𝐷𝐷 is much larger than SNR𝑇 =
𝑃𝑠
𝜎2
𝜁

. This

can effectively reduce the impact of noise and other interference
on pulse waveform construction as well as reduce complexity.

3.3 Motion Compensation
In reality, the performance of BPmeasurement may be vulnerable to
subject’s tiny motions such as unconscious finger or hand trembles.
These tiny motions may occur inevitably, especially for the elderly
or people with chronic diseases. Tiny movements induce nonlinear
interference to pulse signals in the DD domain, as shown in Fig. 5.
As a result, it is impossible to construct a reliable pulse waveform
using these contaminated DD-domain signals, leading to failure in
BP measurement. Therefore, it is vital to address the impact of tiny
motions on DD-domain signals for successful BP measurement.

Traditional motion reduction methods such as linear filters may
not perform well as expected. This is because they concentrate
on cancellation of linear noise, while the noise of tiny motions is
nonlinear. Apart from that, nonlinear adaptive filter may poten-
tially clean contaminated signals and has demonstrated its effec-
tiveness in speech signal processing [17]. However, it is hard to
apply nonlinear adaptive filter directly to this work as it requires
prior information (i.e., reference signal) which is inaccessible for
mmWave-based BP measurement due to no prior knowledge about
noise or the desired signals. One way to achieve the reference signal
is to minus the received signal from the corresponding delay data,
but the quality of the output signal (i.e., reference signal) is not
sufficient to achieve reliable filtering performance.
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Figure 5: Pulse morphology in the DD domain with tiny mo-
tions
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In this section, we present a temporal referential functional link
adaptive filter (TR-FLAF) to filter out the nonlinear impact caused by
tinymotions to enhance the desired signal and construct an accurate
pulse waveform. Note that, the performance of traditional FLAF is
heavily dependent on the reference signal, which is not available
for our work. To address this issue, we propose a temporal reference
signal extraction (TRSE) algorithm to generate reference signals.
This algorithm essentially searches and extracts uncontaminated
signals from mmWave reflections by leveraging the periodic and
correlated properties of pulse movements. Then, the extracted data
can be treated as the reference signal.

The structure of TR-FLAF is demonstrated in Fig. 6, TR-FLAF
operates in three major steps: 1) temporal reference signal c is
generated based on the pulse representation in DD domain 𝑟 (𝑛); 2)
functional expansion of c generates 𝐿 samples of expanded input
v(𝑛); and 3) the output of adaptive filter, 𝑔(𝑛), is produced. To
achieve estimated value, 𝑟 (𝑛), the coefficient of the filter is updated
adaptively by utilizing error signal 𝑒 (𝑛).

3.3.1 Temporal Reference Signal Extraction. This step generates
temporal reference signals for the nonlinear adaptive filter. As
demonstrated in Fig. 5, the pulse morphology without motion is
composed of periodical repeats within the time period. Even though
each repeat changes slightly over time, the overall tendency is stable.
By contrast, the pulse morphology becomes patternless when tiny
motions occur. Moreover, we provide a heatmap of the correlation
matrix of 𝑟 (𝑛) to further analyze the impact of tinymotions on pulse
movements, as illustrated in Fig. 7. The color change from blue to
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yellow denotes that the correlation turns from low to high. In this
figure, segments A and B correspond to the cases without and with
tiny motions, respectively. It is obvious that segment A has higher
correlation values with other segments compared to segment B.
This is because segments for the case without tiny motions share
similar patterns, thereby having high correlation values. On the
contrary, segment B is contaminated by tiny motions, destroying
the correlation characteristic with other segments. Therefore, we
can determine the reference signal for TR-FLAF, drawing support
from the correlation values of segments.

To achieve this, DD-domain feature signal 𝑟 is divided into 𝐼 seg-
ments 𝑐1, . . . , 𝑐𝐼 . 𝐼 is calculated by two critical factors: the segment
length and the overlapping region between adjacent segments. The
segment length is set such that the duration is larger than one pulse
period but less than two pulse periods. This can guarantee that
each segment captures the overall property of pulse morphology
with reduced complexity. The overlapping region enables the infor-
mation to be shared between segments. Consequently, the impact
of 𝐼 on BP measurement performance depends on the joint impact
of segment length and overlapping region. In this paper, the values
of segment length and overlapping region are empirically set to
500ms and 100ms, respectively.

Then the correlation matrix can be obtained by
Γ(𝑖, 𝑗) = cor(𝑐𝑖 , 𝑐 𝑗 ), (7)

where cor(.) stands for the correlation operation. For the 𝑖th row
of Γ, 𝛼 (𝑖) is calculated which is the number of elements higher
than a threshold. Note that, the threshold is specific to system
configuration, i.e., the segment length and the overlapping region
between adjacent segments. So, its value does not change with
different subjects. In this paper, the threshold is empirically set to
0.86. Then, the index with the largest value of 𝛼 can be achieved by

𝐼𝑚𝑎𝑥 = arg max
𝑖∈[1,𝐼 ]

(𝛼 (𝑖)) . (8)

Consequently, 𝑐𝐼𝑚𝑎𝑥
is selected as the reference signal. Note

that, since instant pulse representations are different from time to
time, the values of 𝐼𝑚𝑎𝑥 and 𝑐𝐼𝑚𝑎𝑥

vary over time. In this regard,
𝑐𝐼𝑚𝑎𝑥

has to be calculated temporally for each BP measurement. For
simplicity, 𝑐 will be used to indicate 𝑐𝐼𝑚𝑎𝑥

for the rest of this paper.

3.3.2 Functional Expansion Block. The objective of functional ex-
pansion block (FEB) is to enhance the quality of input signal, and
FEB is composed of several functions obeying the universal ap-
proximation constraints [14]. A variety of expansion models can be

employed including tensor, power series expansion and trigonome-
try expansion. In this paper, we use trigonometric expansion due
to its computational efficiency and the concise representation of
nonlinear functions [44].

For the 𝑛th iteration, the input vector c contains𝐾 input samples
𝑐 and can be written as

c = [𝑐 (𝑛), 𝑐 (𝑛 − 1), . . . , 𝑐 (𝑛 − 𝐾 + 1)]𝑇 , (9)

where 𝑐 is the reference signal obtained in Section 3.3.1.
Given the above equation, we can obtain expanded input v(𝑛)

with 𝐿 elements based on trigonometric function expansion. Each
element of v(𝑛) corresponds to input sample 𝑐 (𝑛), which can be
expressed as

𝑣 𝑗 (𝑐 (𝑛)) =

𝑐 (𝑛), 𝑗 = 0
sin(𝑞𝜋𝑐 (𝑛)), 𝑗 = 2𝑞 − 1
cos(𝑞𝜋𝑐 (𝑛), 𝑗 = 2𝑞

(10)

where 𝑞 = 1, 2, . . . , 𝑄 depicts the expansion index, and 𝑄 stands for
the expansion order. 𝑗 = 0, 1, . . . , 𝐿− 1 stands for the functional link
index.

3.3.3 Coefficient Adaptation. Upon obtaining v(𝑛), the next step
is to find out the coefficients of TR-FLAF, w, which is defined as

w(𝑛) = [𝑤0 (𝑛),𝑤1 (𝑛), . . . ,𝑤𝐿−1 (𝑛)]𝑇 . (11)

The approximation of the nonlinear model can be achieved by
minimizing error signal, 𝑒 (𝑛), given by

𝑒 (𝑛) = 𝑟 (𝑛) − 𝑔(𝑛) = 𝑟 (𝑛) −w𝑇 (𝑛)v(𝑛) . (12)

To achieve a proper coefficient vector w, one possible way is to
apply adaptive methods satisfying the gradient descent rule [52].
In this paper, we use the adaptive method obeying the stochastic
gradient rule to adjust the filter coefficients. The weight is updated
as

w(𝑛 + 1) = w(𝑛) + 𝜂v(𝑛)
v𝑇 (𝑛)w(𝑛)

, (13)

where 𝜂 is the step size.
Fig. 8 shows the pulse representation processed by TR-FLAF. We

observe from this figure that the impact of tiny motion on pulse
waveform is significantly reduced. The variation pattern of pulse
morphology is considerably clearer, compared to that of contami-
nated signal with red color. Therefore, the quality of pulse signals
is enhanced, contributing to reliable BP measurement.

3.4 Blood Pressure Estimation
In this step, we extract six representative features from the pulse
waveform in the DD domain. Then, we feed these DD domain
features into the regression model for accurate BP measurement.

3.4.1 DD domain feature extraction. A complete list of extracted
features in the DD domain are shown as follows.
Maximumpeak (MP): MP is the highest point of a pulse waveform
in the DD domain, which corresponds to SBP.
First inflection point (FIP): FIP is the first inflection point of a
pulse signal in the DD domain, which is related to DBP.
Maximum to minimum ratio (MMR): MMR is measured as
the ratio of the maximum to minimum signal values of a pulse



SenSys ’22, November 6–9, 2022, Boston, MA, USA Z. Shi, T. Gu, Y. Zhang and X. Zhang

waveform in the DD domain, which reflects the changing intensity
of that pulse period.
Maximum to inflection ratio (MIR): MIR is defined as the ratio
of the maximum to the first inflection signal values of a pulse
waveform in the DD domain, corresponding to wave reflections on
arteries.
Peak-to-peak interval (PPI): PPI is a measure of the peak-to-peak
interval of the pulse waveform in the DD domain, which can be
used to represent a complete pulse waveform.
Expectation and variance: Expectation is the average value of a
pulse waveform in the DD domain, and the variance is the amount
of variability around the expectation. Both reflect the statistical
features of pulse signals.

Based on the above, it is clear that these six features can com-
prehensively reflect the key characteristics of the pulse waveform,
which is essential to realize reliable BP estimation. Note that, se-
lecting extra features may result in an improved BP measurement,
but it comes with more process complexity.

3.4.2 Regression methods. The features extracted from the former
step are then fed into the regression model for BP measurement.
Specifically, we train the regression model to build an effective
relation between the extracted features and BP values. Due to the
nonlinear relationship between the extracted features and BP, the
linear regression models fail to provide acceptable results. Conse-
quently, we consider nonlinear regressionmodels alone in this work.
In the following section, we separately discuss 3 widely adopted
regression models:
Support VectorMachine (SVM): SVM is one of the machine learn-
ing structures, which is based on statistical learning theory [13].
SVM can be used to make nonlinear decisions drawing support
from the nonlinear kernels. Note that, it is also able to avoid lo-
cal minima because of the attractive property: the structural risk
minimization. With proper training, SVM can perform strong noise
tolerance, contributing to reliable estimation results. In the training
stage, the radial basis function is used as a kernel, and the size of
the kernel cache is 300MB. The tolerance for stopping is set as 10−3.
Decision Tree (DT): DT builds models relying on a tree structure
that consists of many decision branches and nodes. The final de-
cision is made by considering the decisions from each node and
branch. DT is straightforward for understanding and interpretation,
but it may fall into an over-complex structure, increasing training
complexity and lowering estimation performance. In the training
stage, the strategy used to choose the split at each node is set as
"best", mean squared error is used as the criterion, and themaximum
depth of the tree is 3.
Random Forest (RF): RF, a type of ensemble learning method,
achieves the final estimation by averaging estimations from all
available decision trees. Each tree is trained using the subset ran-
domly selected from training data so as to achieve small bias and
low estimation variance. Many libraries, e.g., the Scikit-learn library,
can be used for the training process. However, RF usually requires
large memory for storing the data. For training stage, the number
of trees in the forest is 500, and the maximum depth of each tree is
3. The mean squared error is used as the criterion.

Table 1: Configuration of mmWave radar

Parameters Values Parameters Values
Starting Frequency 77Ghz Bandwidth 4GHz

RX Gain 50 dB Idle Time 10 𝜇𝑠
Chirp Cycle Time 50 𝜇𝑠 Chiprs/Frame 128
Frame Periodicity 50 ms Samples/Chirp 256
ADC sample rate 8000K Frequency slop 80 MHz/𝜇s

4 PERFORMANCE EVALUATION
We now move to evaluate mmBP with a series of experiments. We
first describe the experimental set-up and performance metrics,
we then evaluate and benchmark mmBP with two BP standards,
i.e., the AAMI standard [53] and the BHS standard [43]. We also
evaluate the effectiveness of two proposed algorithms in improving
the robustness of mmBP. Finally, we compare mmBP with state-of-
the-art techniques. Note that we conduct the experiments using
the “subject-level split" with the leave-one-out cross-validation
(LOOCV) method.

4.1 Experimental Set-up and Metrics
We implement mmBP using a commercial-grade mmWave radar,
i.e., TI IWR1843 BOOST with one transmitting (TX) antenna and
four receiving (RX) antennas. The detailed configuration of the
radar is given in Table 1. We use TI DCA1000 board to collect raw
mmWave signals, and process mmWave signals using a desktop PC
with an i7 9750 CPU and 16GB RAM.

We conduct all the experiments in a quiet room at a comfort-
able room temperature of 20 − 22 Celsius degree. We recruit 25
participants (11 females and 14 males), weighted between 48 and
91kg, aged from 23 to 61 years old (17 subjects aged 23 − 40 years
old and 8 subjects aged 41 − 61 years old). They are university stu-
dents, professions, and retirees. All of them have no health issues or
chronic diseases. Data collection has been approved by the Human
Research Ethics Committee of our institute. The experiment setup
is shown in Fig. 9, in which the subject is asked to sit on the chair
with back support, make a fist, place his/her wrist and hand on the
desk (purlicue facing up). A mmWave radar is set up at a very short
distance (5 cm) above the subject’s wrist on the desk. Moreover, sub-
jects are asked to remove any accessories (i.e., bracelets or watches)
before experiments. These operations can reduce the multipath im-
pact and improve signal quality. For each data collection, a subject
is required to keep still for 25s. There is a 10min break between
two collections. We perform data collection on different days and
times, and collect a total number of 100 samples for each subject.
To obtain the ground truth, we use an FDA-approved, arm-cuff
BP measurement device (Omron HEM-7121 [42]), and the subject
is asked to wear the arm-cuff at the heart level for accurate data
acquisition.

To evaluate BPmeasurement performance, we adopt threewidely-
used metrics, i.e., Mean Error (ME), Standard Deviation of mean er-
ror (STD), and Pearson’s Correlation Coefficient (PCC). They are 𝜇 =∑𝐽

𝑗=1 (𝑏 𝑗−𝑏 𝑗 )
𝐽

, 𝜎 =

√︂∑𝐽

𝑗=1 (𝑏 𝑗−𝑏 𝑗−𝜇 )
𝐽

, 𝑃 =

∑𝐽

𝑗=1 (𝑏 𝑗−𝜖 ) (𝑏 𝑗−𝜅 )√︃∑𝐽

𝑗=1 (𝑏 𝑗−𝜖 )2
√︃∑𝐽

𝑗=1 (𝑏 𝑗−𝜅 )2
,

where 𝜇, 𝜎, 𝑃 denote ME, STD and PCC, respectively. 𝑏 𝑗 denotes



mmBP: Contact-free Millimetre-wave Radar based Approach to Blood Pressure Measurement SenSys ’22, November 6–9, 2022, Boston, MA, USA

mmWave

radar

Omron-

HEM 7121 TI IWR1843BOOST

TI DCA1000EVM

Figure 9: Experiment setup to compare mmBP with Omron
device

Table 2: Performance comparison of mmBP with the AAMI
standard

Method Type ME
(mmHg)

STD
(mmHg)

AAMI SBP
DBP ≤ 5 ≤ 8

mmBP-SVM SBP
DBP

1.25
1.94

5.31
5.33

mmBP-DT SBP
DBP

1.11
1.72

5.48
5.55

mmBP-RF SBP
DBP

0.87
1.55

5.01
5.27

the estimated BP values and 𝑏 𝑗 denotes the ground truth. 𝜖 is the
mean of estimated BP value. 𝐽 denotes the total number of samples,
and 𝜅 is the mean of the ground truth BP value.

4.2 Overall Performance
To examine the performance of mmBP, Table 2 compares the accu-
racy of mmBP using different regression models and the acceptable
measurement errors standardized by the Association for the Ad-
vancement of Medical Instruments (AAMI) [53]. From this table, we
observe that mmBP with each regression model achieves a much
smaller error for both SBP and DBP than the error boundaries regu-
larized by the AAMI1. To further verify measurement performance,
Table 3 compares the accuracy of mmBP and the requirement de-
fined in the BHS standard [43], and both SBP and DBP results
reach Grade A, demonstrating that mmBP achieves high-accuracy
estimation.

We then present the Bland-Altman plots of estimated SBP and
DBP for mmBP with different regression models (i.e., SVM, RF, and
DT), as illustrated in Fig. 10. Specifically, mmBP-SVM, mmBP-RF
and mmBP-DT indicate that mmBP uses SVM, RF, and DT as re-
gression models, respectively. The black and red lines denote ME
and the limits of agreement (LOA, defined as ME±1.96×STD), re-
spectively. We observe that among these regression models, mmBP
with RF achieves the best performance. Specifically, more than 95%
data of mmBP-RF is within the area of LOA, demonstrating highly

1Note that, we use AAMI as an accuracy metric to weigh the measurement results of
mmBP based on the dataset collected in this paper.

Table 3: Performance comparison of mmBP with the BHS
standard

Method Type ≤5
mmHg

≤ 10
mmHg

≤ 15
mmHg

BHS
Grade A
Grade B
Grade C

60%
50%
40%

85%
75%
65%

95%
90%
85%

mmBP-SVM SBP
DBP

60.2%
65.9%

86.8%
93.7%

95.5%
99%

mmBP-DT SBP
DBP

67.9%
59.6%

86.1%
81.3%

96.2%
93.6%

mmBP-RF SBP
DBP

68.1%
61.4%

87.7%
90.1%

99.3%
99.2%

acceptable measurement results. Moreover, mmBP-RF obtains much
smaller errors than the other two methods, e.g., ME and STD of
SBP at 0.87mmHg and 5.01mmHg, respectively, and ME and STD
of DBP are 1.55mmHg and 5.27mmHg, respectively.

To further validate mmBP, we compare PCC of SBP and DBP
estimated by mmBP with the ground truth in Fig.11. As shown in
this figure, mmBP (with each regression model) achieves a high
correlation (at least 0.78) for both SBP and DBP. In other words,
the estimated SBP and DBP are highly close to the correspond-
ing ground truth values, verifying the effectiveness of mmBP in
measurement accuracy.

From the above discussion, it is obvious that mmBP is capable
of accomplishing highly accurate BP measurement with various
regression models. In particular, mmBP with the RF model can
achieve better performance than the other two models, due to the
following reasons. First, RF includes a number of regression tree
learners, and each learner plays as a regression function indepen-
dently. The final output of RF is obtained by averaging outputs from
all individual trees. Second, RF is built with cross-validation capa-
bility with out-of-bag samples. Consequently, RF is able to reduce
the bias and overall variance of the model, improving estimation
performance [47]. Due to the space limitation, we report the re-
sult of mmBP with the RF regression model only in the remaining
sections.

4.3 Key Algorithm Performance
4.3.1 Effectiveness of DDFT. As declared in Section 3.2, raw mm-
Wave reflections in the time domain are usually buried into noise,
leading to low SNR. To address this problem, we propose DDFT
to reduce noise and improve mmWave signal quality by exploit-
ing unique characteristics and features in the DD domain. In this
section, we first evaluate DDFT in terms of SNR improvement,
followed by the impact on estimation accuracy.

Fig. 12 depicts the impact of the proposed DDFT and other three
up-to-date noise reduction methods on the SNR improvement, i.e.,
BW filter [1], PCA [67], and NMF [62]. We find that the SNR per-
formance of DDFT is considerably better than that of other three
methods, implying that DDFT is superior in SNR improvement. This
is probably because that DDFT extracts pulse-related information
in the DD domain, instead of the time or frequency domains used
in the existing methods. Since mmWave signals and noise show
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(b) SBP values, DT regression model
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(d) DBP values, RF regression model
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(e) DBP values, DT regression model
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Figure 10: Bland-Altman plots of SBP and DBP with different regression models
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(a) SBP values, RF regression model
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(b) SBP values, DT regression model
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(c) SBP values, SVM regression model

65 70 75 80 85 90 95 100

Groundtruth DBP (mmHg)

65

70

75

80

85

90

95

100

E
s
ti
m

a
te

d
 S

B
P

 (
m

m
H

g
)

P=0.84

(d) DBP values, RF regression model
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(e) DBP values, DT regression model
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(f) DBP values, SVM regression model

Figure 11: Pearson correlation coefficients of mmBP with various regression models

largely different features in the DD domain, it is possible to separate
noise from the clean data, resulting in a better SNR condition.

We further evaluate the impact of DDFT on estimation accu-
racy in Fig. 13. It is clear that the curve of DDFT is significantly

lower than that of other three methods. In other words, DDFT con-
tributes significantly to BP performance because it improves SNR
by reducing noise in the DD domain.
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Figure 12: Performance of SNR improvement with different
noise reduction methods

4.3.2 Effectiveness of TR-FLAF. We propose TR-FLAF to reduce
the impact of tiny motions on clean signals, which exploits the non-
linear adaptive filter using the effective reference signals generated
by TRSE. In this experiment, we evaluate the impact of TR-FLAF
on BP measurement.

Fig. 14 shows the impact of TR-FLAF on measurement accuracy.
Our preliminary study shows that the other two signal processing
schemes do not work well, and they hence have been used as the
baselines. Obviously, our TR-FLAF achieves a better result, e.g., ME
of 1.55 and STD of 5.27 for DBP. By contrast, ICA [31] obtains much
higher errors, i.e., 5.11 forME and 8.11 for STD for DBP, respectively.
For NLAF [28], its ME and STD are also higher than our mmBP,
i.e., 4.12 and 7.07, respectively. This may be due to the high-quality
reference signal generated by TR-FLAF which can effectively utilize
the property of a non-linear adaptive filter to mitigate the influence
of tiny motions on desired pulse-related signals. Moreover, NLAF
may not be directly applied in mmWave-based BP measurement as
it requires the actual pulse waveform as a reference signal which is
not available due to the lack of prior knowledge of noise or pulse
signals. Therefore, our TR-FLAF is significant in achieving reliable
BP measurement results.

4.4 Robustness Analysis
It is well known that the robustness of BP measurement is an
essential factor for real deployment. In this section, we evaluate
and analyze the robustness of mmBP under various parameter
settings and conditions.

4.4.1 Impact of measurement distance. The distance between mm-
Wave radar and the subject may affect the performance of mmBP,
mainly due to the multipath impact and noise. In this experiment,
we evaluatemeasurement accuracywith various distances, as shown
in Fig. 15. We consider six distances, and at each distance, we esti-
mate BP values using the model trained with 5cm dataset. As can
be observed, estimation error goes up with the distance. This is
because a longer distance may lead to more severe multipath impact
and noise. Consequently, it is harder to extract useful features with
an increased distance. Note that our recommended distance is 5cm
to reduce these negative impacts. This figure also verifies that the
estimation result with such a distance is highly accurate. Moreover,
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Figure 13: Impact of noise reduction methods on BP mea-
surement accuracy
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Figure 14: Impact of motion compensation methods on BP
measurement accuracy

it is clear that the estimation error of mmBP still meets the spec-
ification of AAMI boundary when the distance is up to 20cm. In
other words, mmBP achieves fairly reliable BP measurement with
the measurement distance up to 20cm, which is of significance to
practical deployment.

4.4.2 Impact of measurement time. In this experiment, we evaluate
the impact of measurement time which indicates the duration of
each BP measurement. Fig. 16 shows the measurement accuracy
with measurement time. As we observe, longer measurement time
results in better performance, i.e., smaller MEs for both SBP and
DBP. This is due to the fact that the more data we collect, the more
pulse waveform-based features we can exploit. Another interesting
observation is that the tendency of error performance becomes
flat after a threshold. Moreover, prolong measurement may make
subjects uncomfortable as they are required to remain stationary
during data collection. Hence, we set the measurement time as 25s
to trade off measurement accuracy and user experience.

4.5 Comparison against the state-of-the-arts
In this section, we compare mmBP with four baseline systems–
Blumio [34], SBPM [49], MMW [24] and CBPE [25], in terms of
estimation errors, comfort level, calibration, and motion robustness
based on the results reported in each of these systems.

First, as shown in Table 4, mmBP is superior to other four meth-
ods in terms of measurement accuracy. Specifically, mmBP achieves
a mean error of 0.87mmHg and 1.55mmHg for SBP and DBP, re-
spectively, which are dramatically smaller than other methods (i.e.,
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Figure 15: Performance of mmBP with different measure-
ment distances
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Figure 16: Performance of mmBP with different measure-
ment time

≥ 1.7 for SBP and ≥ 2.85 for DBP in Blumio). Moreover, mmBP out-
performs other methods in terms of STD, i.e., mmBP achieves a STD
of 5.01mmHg and 5.27mmHg for SBP and DBP, respectively, while
the best result reported in other works (i.e., in Blumio) is 5.59mmHg
and 5.57mmHg for SBP and DBP, respectively. It is noteworthy that
Blumio relies on calibration for BP measurement, which can be
seen as a “user-dependent" method and may incur more processing
complexity. Second, mmBP is highly robust against small-scale and
tiny human motions, which is essential for practical deployment,
while motion robustness in all other methods remains questionable.

Apart from the drawbacks in accuracy and robustness, the four
existing systems may suffer from other limitations. To be specific,
Blumio requires subject to wear a mmWave radar device on wrist
and secure it with a medical adhesive patch, which may not be
user-friendly for practical use. Moreover, the requirement of cali-
bration is another issue restricting its application potential. SBPM
focuses on SBP estimation only but no study reported for DBP.
Note that, DBP is also an essential factor for BP measurement, and
measuring DBP is more challenging than SBP. MMW and CBPE
report feasibility studies of BP measurement using mmWave radar.
Both studies demonstrate that cardiac movement can be used for

BP measurement due to the correlation between cardiac activities
and BP values, however, their studies are preliminary as they nei-
ther design any specific measurement methods nor report specific
measurement accuracy. mmBP presents a novel system design to
achieve high accuracy in a fully contactless and calibration-free
manner, and it is also highly robust to tiny motions.

5 DISCUSSION AND FUTUREWORK
Evaluation on clinic setting: mmBP can achieve accurate and
robust BP measurement with the dataset collected from 25 normal
subjects. It demonstrates the effectiveness in everyday-use health
monitoring application for healthy users with normal BP ranges. To
improve usability, we will extend the evaluation of mmBP to clinic
settings, e.g., enriching diversity in measurement cases, enlarging
the size of dataset and expanding age groups.
Large-scale motions: mmBP uses a novel motion compensation
scheme (TF-FLAF) to reduce the impact of tiny motions (i.e., small
scale motions) on pulse waveform construction. In the current
study, subjects are required to keep stationary to avoid large-scale
movements during measurement. However, accommodating large-
scale motions can further improve the robustness. We will further
enhance the robustness of mmBP by handling large-scale motions
during measurement in our future work, and this can be potentially
achieved by exploiting the variations of mmWave signals (e.g.,
phase information) contained in different range bins [61].
Measurement posture and position: mmBP requires subject to
make a fist and place his/her hand andwrist on table (purlicue facing
up). Note that, the posture or the angle between wrist and table may
be slightly different for multiple measurements or subjects, which
is tolerable and has been included in the dataset. Moreover, mmBP
chooses the subject’s wrist for measurement, and measurement
position may affect performance due to the quality of mmWave
reflections received from different body positions. To improve us-
ability, we plan to evaluate different measurement positions such
as upper arm or neck by trading off accuracy and user experience
in our future work.

6 RELATEDWORK
In this section, we review existing BP measurement methods, high-
light their properties and compare the pros and cons.
Direct BP measurement is achieved by catheterization [18]. The
procedure is invasive as it is usually conducted in arterial line,
providing real-time and instantaneous BP values with heartbeat
[16]. Since this method can estimate BP directly and accurately, it
is regarded as the “gold standard" BP measurement. However, this
method can only be performed through medical intervention, and
a particular medical device (e.g., cannula needle) will be placed in
subject’s artery, causing discomfort and a risk of infection [30]. The
direct BPmeasurement is usually restricted to surgical interventions
in hospitals, thus it is not suitable for daily measurement at home.
Cuff-based BP measurement has received popularity as a viable,
non-invasive BP measurement method. The idea is to detect SBP
and DBP through the inflation and deflation of an inflatable cuff
carried on the arm or finger of subject. This method is commonly
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Table 4: Performance comparison of mmWave-based BP measurements

Method Blumio [34] SBPM [49] MMW [24] CBPE [25] mmBP
SBP ME± STD(mmHg) 1.70±5.59 2±N/A N/A N/A 0.87± 5.01
DBP ME± STD(mmHg) 2.85± 5.57 N/A N/A N/A 1.55± 5.27

Device Blumio sensor IWR-6843AOP MMW sensor MMW sensor IWR-1843
Comfort level Middle High High High High
Calibration Yes No No No No

Motion robustness Low Low Middle Middle High

used in clinical and home settings such as classical mercury or elec-
tronic sphygmomanometers [8, 12]. However, during measurement,
subject may feel uncomfortable or even painful when inflating cuff.
Wearable BP measurement typically uses wearable devices (e.g.,
wristwatch) [7, 22, 23, 58] which can be done continuously as long
as subject carries the device. Thomas et al. [58] propose a BP sensing
system using ECG and PPG to measure the proximal timing and
distal timing of the blood flows, respectively. Andrew et al. [7] use
an accelerometer to measure the proximal timing, and the distal
timing is obtained by PPG. Wrist-worn device has been proposed
in [21], and bioimpedance (BI) is used to determine pulse transit
time (PTT) for BP measurement. While promising, some challenges
remain unsolved. To name a few, the sensing performance of these
methods is very sensitive to device placement, i.e., a tiny mismatch
in placement may lead to dramatic performance degradation. In
addition, PPG-based methods are vulnerable to the interference
induced by ambient conditions or skin tattoos [5].
Video/Image based BPmeasurement has become prevalent in re-
cent years. Video/image captured by camera is processed to extract
effective features for BP measurement. In other words, the reaction
of lights (e.g., the absorption and reflection) on the interested re-
gion of human body is exploited to estimate BP values [48, 54, 55].
Sugita et al. [54] investigate video plethysmogram (VPG) collected
from the hand palm of subject. With VPG, an effective relationship
between the internal pressure and blood vessels can be built, achiev-
ing successful BP measurement. Secerbegovic et al. [48] use a digital
camera to extract VPG from the forehead of subject. The captured
VPG is then used to calculate PTT and ECG, achieving BP mea-
surement. Similarly, Sugita et al. [55] obtain VPG from the cheek
of subject, and apply PTT and VPG for BP measurement. Despite
their merits, camera-based methods have stringent requirements
on light conditions and may raise privacy concerns.
Radio frequency based BP measurement leverages the vari-
ations of radio frequency signals exerted by blood flows [27, 68].
Kim et al. [27] design an radio frequency based system to estimate
BP in a contact-free manner. A sensor system is placed in front of a
subject to collect and process UWB signals to extract key features
related to BP measurement. Zhao et al. [68] develop a Doppler radar
based BP measurement system. The system is placed 0.5m away
from subject for continuous wave (CW) collection and processing.
These systems enable contact-free BP measurement, however, their
performance may not be satisfactory in reality due to low frequency
and narrow bandwidth.
mmWave based BP measurement has been recently promis-
ing due to its higher frequency and wider bandwidth. mmWave
sensing is able to detect small variations of physiological signals

(less than 1mm) which are closely related to BP measurement (e.g.,
pulse waveform), hence BP measurement can be achieved using
extracted pulse information. Only a few works have investigated
this direction. Yamaoka et al. [64] conduct experimental study to
demonstrate that variations of mmWave signal power are related
to BP changes, but the specific relationship is yet to investigate.
Kawasaki et al. [24, 25] perform feasibility studies of mmWave-
based BP measurement, in which mmWave sensors are used to
extract time-domain features to estimate BP values. These solutions
are initial attempts to utilize the property of mmWave signals for
BP measurement, while they did not design any specific measure-
ment methods or report any specific measurement accuracy. With
the similar purpose, Shi et al. [49] investigate SBP estimation by
leveraging the property of mmWave reflection. However, they did
not take DBP estimation into consideration, which is a critical fac-
tor for reliable BP measurement and is usually more challenging
to achieve. Liao et al. [34] design a wearable mmWave system that
requires a mmWave sensor wrapped on subject’s wrist to receive
reflected mmWave signals. However, wrapping sensor on subject’s
wrist may cause discomfort. Another concern is that the subject is
required to provide the actual BP values for calibration, which is
not realistic in practical applications. Additionally, all the existing
mmWave based BP measurement methods are always sensitive to
ambient noise and tiny motions. Signal processing methods such
as filter or signal decomposition can partially address this problem,
however, residual noise and tiny motion still remain in mmWave
reflections, resulting in difficulty in pulse waveform construction.

7 CONCLUSION
This paper presents a novel contact-free mmWave-based BP mea-
surement system by exploiting effective features in the DD domain
to foster accurate, motion-robust and comfortable BP measurement.
We propose a novel method to reduce noise influence on pulse
waveform construction, by leveraging the property of mmWave sig-
nals in the DD domain. To address non-linear interference caused
by human’s tiny motions, we develop a novel motion compensa-
tion scheme in which an effective reference signal can be produced
based on the periodic and correlation characteristics of pulse sig-
nals. Extensive evaluations are conducted with a range of scenarios,
and results show that mmBP is able to achieve highly accurate and
motion-robust BP measurement. mmBP can be potentially deployed
in a wide range of day-to-day BP measurement scenarios.
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