
IEEE/ACM TRANSACTIONS ON NETWORKING 1

MDLdroid: a ChainSGD-reduce Approach to
Mobile Deep Learning for Personal Mobile Sensing

Yu Zhang ID , Student Member, IEEE, Tao Gu ID , Senior Member, IEEE, Member, ACM, and Xi Zhang ID

Abstract—Personal mobile sensing is fast permeating our daily
lives to enable activity monitoring, healthcare and rehabilitation.
Combined with deep learning, these applications have achieved
significant success in recent years. Different from conventional
cloud-based paradigms, running deep learning on devices offers
several advantages including data privacy preservation and low-
latency response for both model inference and update. Since data
collection is costly in reality, Google’s Federated Learning offers
not only complete data privacy but also better model robustness
based on data from multiple users. However, personal mobile
sensing applications are mostly user-specific and highly affected
by environment. As a result, continuous local changes may
seriously affect the performance of a global model generated by
Federated Learning. In addition, deploying Federated Learning
on a local server, e.g., edge server, may quickly reach the bottle-
neck due to resource limitation. Towards pushing deep learning
on devices, we present MDLdroid, a novel decentralized mobile
deep learning framework to enable resource-aware on-device
collaborative learning for personal mobile sensing applications.
To address resource limitation, we propose a ChainSGD-reduce
approach which includes a novel chain-directed Synchronous
Stochastic Gradient Descent algorithm to effectively reduce
overhead among multiple devices. We also design an agent-
based multi-goal reinforcement learning mechanism to balance
resources in a fair and efficient manner. Our evaluations show
that our model training on off-the-shelf mobile devices achieves
2x to 3.5x faster than single-device training, and 1.5x faster on
average than the existing master-slave approach.

Index Terms—Mobile deep learning, neural networks, dis-
tributed computing, resource allocation, reinforcement learning.

I. INTRODUCTION

W ITH the rapid development of mobile and wearable
devices, recent years have witnessed an explosion

of mobile sensing applications. These applications gain an
insight into people’s life based on rich personal sensing data,
e.g., understanding biological contexts in daily living [1],
recognizing activities in ambient assisted living areas [2], and
monitoring personal health in a smart home or hospital [3].
Machine learning has been commonly used to process sensing
data. However, traditional machine learning techniques require
manual and complex feature engineering. Deep Learning (DL)
has gained an increasing popularity due to its higher model
accuracy. Besides, its automated feature extraction capability
and the ability of scaling with data make it an ideal solution
for processing multi-modal sensing data [4]. It is advocated
that DL will be the next key enabler for advanced personal
mobile sensing [5].

Y. Zhang and X. Zhang are with the School of Computer Sci-
ence and IT, RMIT University, Melbourne, VIC 3000, Australia (E-mail:
zac.lhjzyzzoo@gmail.com; zaibuer@gmail.com).

T. Gu is with the Department of Computing, Macquarie University, NSW
2109, Australia (E-mail: tao.gu@mq.edu.au).

A successful DL application requires a huge amount of
data to train a model, in which large computation resources
will be involved. The commercial solution is to transfer data
from local to cloud, offloading heavy training workloads to
the cloud [6] or edge servers [7], and then downloading
the pre-trained models [5] for on-device inference. However,
personal sensing applications are intrinsically highly privacy-
sensitive [8], user-specific (i.e., different preferences or health
conditions) [2], low-latency interactive [9], and can be easily
affected by local scenario changes (i.e., long-term behav-
ior changes or ambient environment changes) [5], thus the
cloud-based approach may suffer from severe data privacy
concerns, compromised personalization, inferior model perfor-
mance without continual training, and unacceptable network
latency due to data transfer and model downloading [10].
Although transfer [11] and meta learning [12] can adapt
to user-specific models, they may still suffer from strong
domain-shift by sensing data dynamics and lack of related
source datasets or models. Mobile DL can effectively preserve
sensing data privacy (i.e., no data transfer), and enable quick
local model inference and update response for different on-
device learning purposes (i.e., training from scratch, continual
training or model adaptation) [4], [10], thus presenting a
promising direction for personal sensing applications.

Mobile Deep Learning Challenges Existing work [4]
reveals that mobile DL poses two challenges—resource con-
straint and insufficient sensing data (i.e., costly data collection
and labeling with various real-world conditions). Collaborative
deep learning, e.g., Google’s Federated Learning (FL) [13],
has been proposed to ensure model training efficiency and
robustness based on multiple users’ data [14]. Since FL
mainly relies on a central cloud or edge sever for intensive
global model aggregations (i.e., a large number of selected
users involved) during model training, several limitations arise
in the context of personal sensing applications, e.g., non-
independent and identically distributed (non-IID) personal
data problem [15], de-personalization issue and considerable
network latency [10], lower resistance to attacks and less
resource efficiency based on the intrinsic master-slave network
structure [16]–[18].

In contrast, applying a decentralized structure for mobile
DL can theoretically offer high attack resistance and reliable
fault tolerance [18]. Existing approaches propose a theoret-
ical decentralized structure based on a fixed directed graph
network such as Ring-Allreduce [19]. These approaches have
been applied in high-performance cloud environments where
resources are rich and stable. However, when applied to
mobile devices where their resources are scarce and dynamic,
the training process can easily suspend or crash due to the
low level of resources available. Our work is motivated by

https://orcid.org/0000-0003-1632-167X
https://orcid.org/0000-0002-1350-6639
https://orcid.org/0000-0002-8994-8185

IEEE/ACM TRANSACTIONS ON NETWORKING 2

collaborative DL, but we move towards local resource-aware
decentralized collaborative mobile DL without central server
support for personal sensing applications. Our approach aims
to mitigate resource overhead and reduce latency for efficient
model aggregations during training.

Decentralized Mobile Scheduling Since resources on
devices are constrained and heterogeneous (i.e., the Non-
stationary problem), the design of resource-aware scheduling
for efficient model aggregation can be extremely difficult in a
decentralized DL framework [20]. In addition, a collaborative
DL process typically yields large communication overhead
in model aggregation [21], energy balance among multiple
devices can be critical. A generic optimization algorithm [22]
can be applied to perform task scheduling, but the recent Multi-
agents Reinforcement Learning (MARL) approach [23] may
work better in such a non-stationary and multi-device sce-
nario. However, when applied to resource-constrained devices,
MARL-based scheduling may experience severe resource con-
flict which will affect or interrupt training.

Our Approach Aiming to push DL to mobile devices,
we present MDLdroid, a novel decentralized Mobile Deep
Learning framework to enable resource-aware on-device col-
laborative learning for personal mobile sensing applications.
MDLdroid targets to fully operate on multiple off-the-shelf
Android smartphones connected in a mesh network, and
achieve high training accuracy and reliable execution of the
state-of-the-art DL models.

In the previous version of MDLdroid (MDLdroid-v1), we
have addressed two major challenges.
• To address the challenge of resource constraint on device,

we propose a ChainSGD-reduce approach which essen-
tially uses a novel chain-directed Synchronous Stochastic
Gradient Descent (S-SGD) algorithm to effectively reduce
resource overhead among devices for training. The key idea
is to decentralize the S-SGD algorithm [24] running on
a single device to multiple devices with dynamic chain-
directed model aggregation. Specifically, each device runs a
descendant model for training in which model aggregation
task is managed by any two devices at a time to achieve
minimal-peak (i.e., minimum peak memory and communi-
cation) of resource overhead for each device.

• Due to the constrained and heterogeneous resource on
devices, a resource-aware scheduling is critical for efficient
model aggregation in a decentralized DL framework. To
this end, we propose a single agent-based scheduler based
on Reinforcement Learning (RL) in the ChainSGD-reduce
approach, named Chain-scheduler, aiming to self organize
scheduling tasks using dynamic information of on-device
resource. Chain-scheduler includes three unique techniques:
1) an effective reward function design to map each perceived
scheduling action to a reward, aiming to optimize the given
constraints; 2) a continuous environment learning strategy
to repeat learning if the scheduling environment is changed;
3) a Threshold-based Decaying Greedy-Exploration (TDGE)
strategy to further accelerate the RL learning process, aim-
ing to save on-device resources used for scheduling tasks.
In this work, we extend MDLdroid-v1 to MDLdroid-v2 by

significantly improving its overall performance in terms of

training accuracy and resource efficiency when scaling up the
network size.
• Training accuracy of ChainSGD may have a notable de-

crease when the network size increases in MDLdroid-v1,
yielding inferior model performance. Although largely in-
creasing training and model aggregation iterations may
recover the accuracy to the state-of-the-arts, the resource
overhead may easily arise beyond the capacity of devices. To
meet both resource-constraint and network scaling require-
ments, we propose a novel ChainSGD gradient-scale method
based on the L1 weight normalization analysis [25] to
ensure training accuracy and maintain model performance.

• Learning scalability of our Chain-scheduler may be limited
by network scaling in MDLdroid-v1, which may seriously
slow down the entire end-to-end training process (i.e.,
slow RL convergence by network scaling) leading to large
resource overhead on device. To address this issue, we
propose a momentum-based penalty function to dynamically
adapt the proposed scheduling reward threshold to make the
learning of the scheduler more resource-efficient.

• We comprehensively improve the system performance and
end-to-end experience from a number of key aspects, e.g.,
training speed-up on single device, fast peer-to-peer commu-
nication, scheduling scalability, efficient aggregation timeout
mechanism, and model attack defense.

To further explore the end-to-end performance of our system
in reality, we present a case study using a real-world ges-
ture recognition application. The results show that MDLdroid
achieves a reliable training accuracy with low resource over-
head.

Key contributions of this paper are summarized as follows.
• To the best of our knowledge, MDLdroid presents the

first decentralized mobile DL framework based on a mesh
network to enable resource-aware on-device collaborative
learning for personal mobile sensing applications (§III).

• We propose a novel ChainSGD-reduce approach, in par-
ticular a chain-directed S-SGD algorithm, to minimize the
resource overhead of model aggregation tasks in a decen-
tralized framework (§III-B).

• We design an agent-based multi-goal reinforcement learning
mechanism, Chain-scheduler, with an accelerated reward
function to manage and balance resources in a fair and
efficient manner (§III-C).

• We evaluate MDLdroid on off-the-shelf Android smart-
phones with a number of state-of-the-art DL models using
6 public personal mobile sensing datasets (§V). Results
indicate that MDLdroid accelerates training effectively, out-
performing the state-of-the-arts.
Implication Towards a mobile DL paradigm, MDLdroid

offers a resource-aware mobile collaborative DL framework
for privacy-preserving personal sensing applications, exploring
specific local sensing features and guaranteeing the perfor-
mance of DL models. Leveraging on-device collaborative
learning, people can directly build their models using a small
amount of data on smartphones, and easily exchange with their
friends or colleagues’ models to ensure a state-of-the-art model
performance without data privacy concerns. In practice, the
proposed ChainSGD-reduce approach can be widely applied in

IEEE/ACM TRANSACTIONS ON NETWORKING 3

Mobile/Edge
Agent

+ ++

1. Network scan
& building

2. Training local data
on device

3. Requesting
scheduling to agent

4. Sending models to
a remote for pair aggregation

5. Broadcasting aggregated model to devices

Fig. 1: MDLdroid Architecture and Workflow.

various learning scenarios (e.g., collaborative and distributed
learning models), especially for the resource heterogeneous
and constrained DL scenarios, and scale to network size. To
further extent, MDLdroid can be applied to other edge devices
(e.g., embedded and Internet of Things (IoT) devices) for
building collaborative edge intelligence and IoT applications.

II. MOTIVATION

To investigate the limitations of deploying mobile DL on de-
vice in current solutions, we conduct four preliminary studies
to discover the bottleneck of on-device collaborative learning,
which motivates our proposal. The results are summarized as
follows: 1) single-device training on off-the-shelf smartphone
is inefficient due to resource constraints; 2) the centralized
framework (e.g., FL [13]) has severe memory limitations for
master model aggregation on device; 3) the sequential model
aggregation (i.e., run-time memory usage is O(2)) on master
device can still cause considerable extra training time cost and
accuracy degradation; 4) severe resource conflict (i.e., memory
conflict between training and agent tasks) exists in on-device
MARL. Please refer to our conference paper [26] for the
details of these experiments.

III. MDLDROID FRAMEWORK

In this section, we detail the system architecture of MDL-
droid, and present the proposed ChainSGD-reduce approach.

A. System Architecture

Since the framework is designed to operate full-scale DL on
Android based on a mesh network, we employ Bluetooth Low
Energy (BLE), Bluetooth Socket (BS) in MDLdroid-v1 and
Wi-Fi Direct (WD) in MDLdroid-v2 to build the mesh network
due to accessibility and low energy consumption. In principle,
any on-device mesh-based protocol can be applied (§III-B).
Especially, MDLdroid can also reload a pre-trained model to
continually train with new local sensing data. In short, Fig. 1
presents a complete workflow of MDLdroid, where a mobile
agent (MA) can be deployed on either a mobile device or a
stationary edge server for task scheduling.

B. ChainSGD-reduce Approach

Collaborative learning relies on the distributed stochastic
gradient descent (SGD) algorithms [13], [27]. To achieve reli-
able training accuracy, a central server typically gathers local
gradient parameters ∆wk

i from all machines and aggregates
them to be global gradient parameters ∆w(k)(t) after each
training iteration. The central server then updates the local
parameters w(k)(t + 1) for all machines via an one-to-many
broadcasting:

∆w(k)(t) =
1

N

N∑
i=1

∆wk
i

w(k)(t+ 1) = wk(t)− η∆wk(t)

(1)

where w(k)(t) denotes the k(th) parameters at each training
iteration t, ∆wi denotes a local gradient parameter from the
ith machine, N is the number of machines and η is the learning
rate.

Asynchronous SGD vs. Synchronous SGD The distributed
SGD algorithms are mainly classified into two categories—
Asynchronous SGD (A-SGD) and S-SGD [24]. A-SGD can
be more communication efficient and runs with no strong
dependency among machines, but may suffer from an un-
certain training accuracy degradation issue due to its delay
model updating mechanism [28]. S-SGD representing in Eq.
(1), on the other hand, runs quite stable without this issue,
but the overall training time depends on the slowest machine
[24]. By given the resource-constrained training condition

on mobile device, S-SGD can effectively achieve a higher
accuracy and more reliable training performance than A-SGD,
which motivates S-SGD in our approach.

Chain-directed Synchronous SGD In a decentralized DL
framework, the relationship between training nodes and the
central node is decoupled. Therefore, the centralized model
aggregation can be separated into multiple descendant aggre-
gations by structural transformation. The existing work [29]
present decentralized SGD algorithms based on a fixed directed
network. We define a decentralized topology with a fixed
directed graph as (V,E), where V denotes a set of devices and
E represents a set of edges. When we have N training devices,
V = {1, 2, ..., N} and E ∈ RV×V . We define directed edges
as (i, j) ∈ E, which means device i can send its gradient
parameter to device j for model aggregation. The number of
device j’s neighbors is m, and the number of device j is
n, where m,n ∈ N . With these settings, we can transform
the centralized model aggregation (CentralSGD) in Eq. (1)
to the decentralized neighbor aggregation (NeighborSGD) as
follows.

∆w(k)(t) =
1

n

n∑
j=1

(∑m
i=1 ∆wk

i +m∆wk
j

2m

)
(2)

In NeighborSGD, each device j first receives all gradient
parameters

∑m
i=1 ∆wk

i

m from its m neighbors and aggregate with
its local gradient parameter. The global gradient parameters
will then be averaging of n device js at each training iter-
ation t. However, although the model aggregation is divided
by j descendant neighbor aggregations, the single device j
still requires to concurrently perform m model aggregations,
which may cause significant memory overhead revealed by

IEEE/ACM TRANSACTIONS ON NETWORKING 4

Master MA

Fig. 2: Model aggregation structure comparison: CentralSGD
vs. NeighborSGD vs. ChainSGD. (Wi

′ denotes the gradient
parameters of each device and the prime symbol denotes the
number of aggregation rounds.)

0 5 10 15 20

Epoch

0.6

0.8

1

A
c
c
u
ra

c
y
(%

)

NeighborSGD

CentralSGD

ChainSGD

(a) Training accuracy restore

0 5 10 15 20

Epoch

0

2

4

6

L
1
 W

e
ig

h
t
S

c
o
re

105 Training on Server
ChainSGD
ChainSGD-scaling

(b) Training accuracy remain

Fig. 3: Training accuracy preserving using ChainSGD.

our preliminary study. On the other hand, considering the
dynamicity of resources on device is uncertain during training,
the neighbor model aggregation based on the fixed directed
decentralized topology may cause distinct latency if device j
pauses the process due to low-resource condition.

To reduce memory overhead and latency, we propose a
ChainSGD-reduce approach with a mesh-based decentralized
topology. In this approach, m is constantly managed as one
for every neighbor aggregation to achieve a minimal-peak (i.e.,
minimal peak memory footprint and communication overhead
for each model aggregation) resource overhead for both de-
vices i and j. Our approach also includes an agent-based RL
Chain-scheduler to schedule the neighbor aggregation task as
a dynamic chain-directed graph in a resource-efficient way.

Compared to both CentralSGD and NeighborSGD, Fig. 2
demonstrates that the major differences of ChainSGD-reduce
are twofold: 1) the model aggregation is managed only with
one of neighbors at a time on each device for resource
overhead reduction (i.e., pair-wise model aggregation); 2) the
order of the aggregation tasks at each training iteration is
dynamically scheduled (i.e., dynamic topology enabled by
Chain-scheduler) depending on the real-time heterogeneous
resource conditions of devices (§III-C).

When ChainSGD-reduce is applied to NeighborSGD in Eq.
(2), one of our key observations is that the training accuracy
notably degrades comparing to that of CentralSGD. Fig. 3a
shows that the training accuracy of NeighborSGD using LeNet
on HAR is lower than that of CentralSGD by 3% when the
number of connected devices is 6 (i.e., N = 6). The accuracy
gap between NeighborSGD and CentralSGD becomes larger
with N increases. It is essentially because that the global
gradient parameters ∆w(k)(t) decompose through the model
aggregation process using NeighborSGD. To restore training
accuracy, we thus formulate ChainSGD as the following pair

aggregation function W (j, i).

W (j, i) =

∆wk
i =

θi∆w
k
i + θj∆w

k
j

θi + θj

θ
′

i = θi + θj θo = 1

(3)

where θ is a reversal parameter, and θ(t) represents the number
of devices for model aggregation at iteration t. θo denotes as
an initial value of the reversal parameter as default 1 on each
device before each model aggregation iteration. Specifically,
as the reversal parameter θ on each device records how many
devices are processed by pair aggregation in a iteration, the
pair-aggregated gradient parameters (e.g., both of the local
∆wk

i and remote ∆wk
j in Eq. (3)) can be easily reversed

to the sum of the gradient parameters by multiplying θi and
θj , respectively, before the current pair aggregation. In this
reversal way, the aggregated gradient parameters by W (j, i)
can be equally restored to CentralSGD, which can be simply
proved by mathematical induction. Once a pair aggregation
is done, the local θi will be updated with a remote θj as θ

′

i

for the next iteration. The global gradient parameters of each
iteration represented as ∆w(k)(t) are processed with N − 1
times of pair aggregations W (j, i) (e.g., N denotes the number
of connected devices), hence each model aggregation iteration
will be stopped to finalize the global gradient parameters
once the θ(t) reaches N . Besides, each pair of devices is
dynamically scheduled by Chain-scheduler (§III-C) to perform
the pair aggregation in each iteration. In our ChainSGD-reduce
protocol, the message for model aggregation requires both the
local gradient parameters ∆wk and the reversal parameter θ
encoded in a (∆wk, θ) packet.

Since ChainSGD-reduce offers a dynamic model aggrega-
tion process, multiple pair aggregation can be performed in
parallel based on resource conditions of devices within each
iteration to reduce latency showing in Fig. 2. In addition, Fig.
3a presents a pre-result that the training accuracy of ChainSGD
is consistent with that of CentralSGD with no accuracy drop.

As ChainSGD essentially requires the local gradient param-
eters ∆wk

i as input in Eq. 3 to offer a higher-level SGD
process for efficient model aggregations, most of gradient
descent optimization algorithms (i.e., classic or momentum-
based SGD optimizations) are compatible to output the ∆wk

i

in MDLdroid. In practice, we employ Adam optimizer [30]
as default to achieve a fast and stable learning convergence
performance.

ChainSGD Gradient-scale With the network size in-
creases, though ChainSGD in Eq. (3) performs an identical
training accuracy as CentralSGD, we observe that both ap-
proaches present a serious slow learning convergence rate (i.e.,
training loss rate) by the given training iterations compared
to training on server with a full-size dataset, resulting in a
severe training accuracy drops. Although we can practically
increase either the number of synchronization rounds (i.e.,
model aggregation rounds) or training iterations to reach the
same accuracy on server, it may lead to resource overhead
which is beyond the capacity of a device. To meet both
resource-constrained and scaling requirements, we propose a
ChainSGD gradient-scale to guarantee a fast convergence rate
in each model aggregation process.

IEEE/ACM TRANSACTIONS ON NETWORKING 5

To analyze the slow learning convergence issue in
ChainSGD, we apply L1 weight normalization analysis [25]
which is an effective way to monitor dynamic changes of
model parameters during training. In particular, we reveal that
the average decay rate of L1 weight score (i.e., the value of
model parameters by L1 normalization process) on each device
is much slower than that of training on server, shown in Fig.
3b based on a 6-device connected network by training LeNet
on HAR. With this observation, our key idea of gradient-
scale is to reinforce the decay of L1 weight score by scaling
down the model parameters after local gradient update in Eq.
(1) at each iteration. To calculate the gradient-scale at each
iteration, we first scale up θ(t) times by L1 weight score
of the global gradient parameters as θ(t)N1(∆wk(t)). We
then measure the absolute difference between the local L1
weight score as N1(wk

i (t)) and the scale-up global L1 weight
score, and define that the difference divided by the maximum
value between local and global L1 weight scores represents
the ”reinforced” gradient-scale. Fig. 3b presents the pre-result
that the decay rate of L1 weight score using the gradient-
scale can match with or even lower than that of training on
server, resulting in an identical or higher training accuracy
performance within the same training iterations. In short, we
formulate the ChainSGD gradient-scale as follows.

S(t) =

∣∣∣∣ N1(wk
i (t))− λ θ(t)N1(∆wk(t))

max(N1(wk
i (t)), θ(t)N1(∆wk(t)))

∣∣∣∣ (4)

where N1 represents as a L1 weight normalization function,
and λ denotes as a decay coefficient as default 0.95.

Fault-tolerant and Resource-aware Broadcasting MDL-
droid offers a fault-tolerant strategy to ensure the stability
for on-device training: 1) File cache: model parameters and
necessary records can be saved as files backup in run-time for
training recovery; 2) Training device fault: once a training
device is lost after the re-connection attempts, File cache
will be first preformed. Then MA (i.e., the mobile agent
deployed on device or edge server) will skip the device for
scheduling until reconnected. If re-connection is successful,
MA will require the device to send over the last model
parameters and iteration records. After that, MA will send
back the current iteration records for synchronization, and the
device will receive the global aggregated model parameters
until next iteration; 3) MA scheduling failure: if the training
devices cannot connect to MA to get scheduling paths for
model aggregation (i.e., MA may go down during run-time),
each device will continually communicate with each remote
device by the previous scheduling paths to complete model
aggregation. Once MA is reconnected, scheduling service will
be recovered without suspending the training process.

In ChainSGD-reduce, we employ a binomial-tree broadcast
algorithm [31] with a message forwarding function to reduce
the number of broadcast round from N to dlog2Ne. Please
refer to our conference paper [26] for the detailed design of
the resource-aware broadcasting.

Aggregation Timeout Mechanism Since ChainSGD-
reduce builds on S-SGD, the training process may experience
long latency for low-resource devices, e.g., the training on low-
resource devices (i.e., the conditions including low memory,
low battery or multi-process occupancy) will be temporarily

suspended and the state of the device in our system turns
to busy (Sbusy) until being free (Sfree) (§III-C). To avoid
the latency, we design a timeout mechanism for the pair
aggregation. For the busy devices, if the latency is larger than
a given fixed time window (e.g., we set 5mins as default), the
Chain-scheduler on MA will schedule to skip their gradient
parameters sync until next aggregation iteration. If the other
free devices complete all pair aggregations before the time
window, they will be managed as ”sleep” for saving resource
until reaching the time window.

Model Attack Defense Although a decentralized frame-
work is theoretically high attack-resistant and reliable fault-
tolerant [18], the security issues on both communication
and model aggregation may still be concerned in reality.
To improve overall security of MDLdroid, we apply MD5
to encrypt all messages by the communication component.
Besides, we employ the model poisoning check [17] before
each pair aggregation to prevent and defense model attacks. If
a remote model file is detected as poisoned, the local device
will skip the pair aggregation, and ask MA to schedule a new
remote to sync.

In summary, the ChainSGD-reduce algorithm is updated in
Algorithm 1 below.

ALGORITHM 1: ChainSGD-reduce Algorithm
1 Initialize parameters w0, number of iteration t, number of

connected devices N , training dataset Dtrain;
2 for All devices i ∈ N do
3 for t Iterations do
4 Train model on local dttrain ∈ Dtrain;
5 while true do
6 if Get an incoming message (∆wk

j , θj) then
7 Pair aggregation with local (∆wk

i , θi) in
Eq. (3);

8 if θ
′
i equals N then

9 Notice MA for broadcasting and Break;
10 else if Get a remote neighbor j scheduled by

MA using the agent-based RL model in
Algorithm 2 then

11 Send (∆wk
i , θi) to neighbor j and Break;

12 end
13 Get global (∆wk(t), θ(t)) via broadcasting;
14 Send ∆wk(t) if assigned a forwarding list by MA;
15 Calculate gradient scale S(t) in Eq. (4) ;
16 Update local

w
(k)
i (t+ 1) = S(t)(wk

i (t)− η∆wk(t));
17 end
18 end

C. Resource-aware Chain-scheduler

Since resources (e.g., memory footprint, CPU usage, and
battery consumption) on device are constrained strictly and
changed dynamically (i.e., the Non-stationary problem), a
device may be dynamically switched to busy state due to
other high priority tasks, leading to notable latency as train-
ing being suspended. Also, the energy balance is critical
due to the communication overhead caused by the intensive
model aggregations. Applying naive scheduling approaches
(e.g., using generic optimization algorithm [22]) may not be
able to handle such complex non-stationary and multi-device

IEEE/ACM TRANSACTIONS ON NETWORKING 6

11

Send model

�1 �3

�2 �4

�2 �4

�5

�1 �5

1
�1

1
�5

�5

2
�5

 Module Aggregation

�1 �2 �3 �4 �5 �6

2
�1

�6

1
�2 �6

�3

1
�3

1
�3

2
�3

1
�4

1
�4

2
�1

1
�2 �6

�6�3

3
�3

2
�1

1
�2

2
�5

1
�4

1
�6

Count for balance1

Round 3

Round 1

Round 2

Round 4

(a)

Training
Device MA

Report Resources Message
Request & Response Scheduling

Resource Condition Remain
Resource Condition Changes
Scheduler Re-training

(b)

Fig. 4: (a) Process of scheduling by busy condition; (b) State
transition diagram and re-training mechanism-v2.

scenario. To dynamically schedule model aggregation tasks
for the heterogeneous resource-efficiency design in MDLdroid,
we propose Chain-scheduler using an agent-based RL model
based on dynamic on-device resource conditions to enable a
resource-aware scheduling in our ChainSGD-reduce approach.

Due to the observation of the memory overhead using
MARL analyzed in our preliminary experiment, we design
a single agent-based RL mechanism in Chain-scheduler. The
agent task is separated into an individual device as the MA
which is responsible of resource-aware scheduling, and other
devices are mainly responsible of running training tasks. With
a mesh network, MA can globally monitor all training devices’
resource condition in real-time with low-energy cost, and
dynamically schedule model aggregation tasks for resource
efficiency and energy balance. Hence, we define two opti-
mal goals for Chain-scheduler, e.g., reducing training latency
caused by the busy devices, and balancing communication
overhead and battery consumption across the network.

Mathematically, Chain-scheduler deals with the following
constrained optimization function:

arg minN(T (t)) +N(E(t))

s.t.Mi ≤M Maxi, Bi ≤ B Maxi
(5)

where T and E denote training time and energy balance (i.e.,
energy variance for devices) across the network, respectively.
N(x) = (x−xmin)/(xmax−xmin) is a standard normalization
function to transform training time and energy balance to be
at the same scale. t is the time index which represents the
current training iteration. We denote M Max and B Max as
the maximum memory and maximum battery offered by each
of target devices (i.e., depending on different device specifica-
tions), respectively. Hence, our objective is to minimize both
training time and energy balance at each iteration t in Eq. 5
by scheduling to achieve resource-efficiency. Please refer to
our conference paper [26] for the detailed design of both T
and E.

Multi-goal Reward Function We employ a DQN model
[32] in MA to learn the scheduling environment based on
the optimization function in Eq. (5). In our protocol, all
train devices are required to continually report their resource
condition to MA. We select five essential resource parameters

including: free memory (i.e., remaining memory), battery (i.e.,
remaining battery), in-use (i.e., whether if under intensive use
condition), charge (i.e., whether if charging), cpu (i.e., current
CPU), to identify whether the device is in busy (Sbusy) or free
(Sfree). Next, we present the design of the Chain-scheduler
structure:
• State: We design five states for Chain-scheduler to make

crucial scheduling decisions based on our protocol. s =
{st, i = 1, 2, ..., T} represents as a set of devices’
states, where t denotes the learning step. States =
(Sfree, Sbusy, Ssend, Sget, Sdone), where Ssend denotes that
the device is sending model parameters, and Sget represents
the device is getting model parameters. Specifically, the state
of devices can be only defined as one of the five states at any
learning step. Fig. 4b illustrates the transition relationship
of these states.

• Action: We define a = {ai, i = 1, 2, ..., N}, where N
denotes the number of devices. Each action a represents
one of devices selected by the scheduler to ”interact” (i.e.,
sending model gradient parameters for pair aggregation)
with other devices in the scheduling environment (i.e.,
multiple devices connected in a decentralized framework),
and the state of each device will transfer to the next after
acting each action.

• Reward: r = {rt, t = 1, 2, ..., T} is defined by the reward
function r(st, a, st+1) in Eq. (6). Each action acted by the
scheduler will achieve a reward value from the environment,
and the scheduler uses the achieved reward values by
different actions to optimize the ”best” scheduling policy.
With these settings, we summarize the design of reward

function based on a three-stage mechanism aiming to solve
the optimization function in Eq. (5): 1) we design a decaying
penalty function ρ + tρ/2(N − 1) aiming to set Sbusy as
the lowest priority to reduce training latency from concurrent
perspective; 2) we design a penalty function α − βnagg and
an incentive function α+ βnagg for efficient energy balance,
where nagg records the count of Sfree → Sget; 3) we design
a termination function to efficiently stop the learning if invalid
action is selected or the learning step exceeds limits. For
the detailed design of the reward model, please refer to our
conference paper [26]. In summary, we present our reward
function as follows.

r(t) =

α− βnagg Sfree → Sget

α+ βnagg Sfree → Ssend

ρ+ tρ/2(N − 1) Sbusy

−1 Exceeds limits
−1 Select invalid action
1 Completed

(6)

where α, β and ρ denote initial reward, initial busy penalty
and battery cost per aggregation, respectively. nagg denotes
the times of pair aggregations. By default, we set α to −0.04,
β to 0.1 and ρ to −0.8. Fig. 4a presents the learning process
of Chain-scheduler.

Accelerated Reward Function To further accelerate the
RL learning process, we propose a threshold-based decaying
greedy-exploration (TDGE) strategy which extends the exist-
ing decaying greedy-exploration (DGE) strategy [33]. One key
observation from our empirical study is that more exploration

IEEE/ACM TRANSACTIONS ON NETWORKING 7

0 20 40 60 80 100 120 140
Epoch

0

20

40

60
Ex

pl
or

e-
Co

un
t DGE-Fast DGE-Slow

Fig. 5: RL training speed comparison by using different
exploration rate.

achieves more learning time reduction. Fig. 5 shows DGE-
Fast (using 2x exploration rate) completes earlier than DGE-
Slow. Our intuition is to ensure the model to fully explore
in the beginning until the reward reaches the given threshold,
then switching the exploration to exploitation starting epsilon
decaying from the predefined value, aiming to accelerate the
learning process. Specifically, since the reward function is
designed to optimize both latency and battery balance at the
same time by Eq. (5), the threshold is approximately defined
as the sum of each optimal reward value. The estimated reward
value of optimal battery balance is defined as f(N), where the
estimated reward value of optimal latency is defined as g(N),
both shown in Eq. (8). Following this, we define the threshold
TR(N) by separating the calculation of the optimal reward
into two functions in Eq. (9), which imitates an architecture
in defining optimization function of Chain-scheduler.

f(N) =

{
β(N mod 2) + f(bN/2c) N > 1

0 N = 0 & 1
(7)

g(N) = β log2N (8)

TR(N) = f(N) + g(N)− Φ (9)
where Φ denotes a fixed offset value as default 0.1.

Learning Scalability With the increase of connected de-
vices, the proposed accelerated learning process may reach
its performance limit for fast learning in practice. Through
our experiments, we observe that RL has a notable slow
convergence when scaling up devices. Since TDGE manages
the exploration-to-exploitation control by the fixed threshold
in Eq. (9), the model may fail to reach the threshold (e.g.,
threshold is relatively large) to switch to exploitation in time
by the scale-up condition, leading to slow convergence. To
improve learning scalability, we propose to dynamically adapt
the threshold to best-fit with the learning process. Technically,
we extend the fixed offset value Φ in Eq. (9) to a momentum-
based penalty function formulated as follows.

Φ(t+ 1) = gΦ(t) + (1− g)ReLu(r(t)− r(t− 1)) (10)
where g denotes as a momentum coefficient by default 0.95,
and we set Φ(0) to 0 in the beginning of learning. Besides,
we employ a ReLu function to ensure Φ(t) positive aiming
to decay the threshold. In addition, the increment of Φ(t) is
dynamically calculated by the growth gradient of the latest two
reward values. Leveraging the penalty function, the threshold
can be gradually decayed to not only effectively control the
model exploration, but also efficiently enable switching to
exploitation in an earlier time to achieve the fast convergence
for scalability. In our evaluation, we mark this penalty-based
exploration strategy as TDGE-v2.

Efficient Continuous Environment Learning As analyzed
in the motivation section, the Non-Stationary scenario has
a negative impact on the performance of the RL model.
To address this, we design a repeating environment learning
mechanism to mitigate the impact in MDLdroid-v1, including
three re-learning conditions. However, the previous mecha-
nism remains two major limitations. Firstly, since the RL
learning process can be easily restarted by any resource
condition changes on devices, the mechanism may be sensitive
to the environment with high-frequent re-learning, resulting
in considerable resource overhead. To wisely manage the
re-learning, we simplify two conditions in MDLdroid-v2.
Especially, in terms of the second condition shown in Fig. 4b,
Chain-scheduler will only perform the re-learning once nearly
the end of each training iteration if the environment changes,
and dynamically manage to finish within the slot. Secondly,
training Chain-scheduler from scratch to adapt different envi-
ronments may be costly especially for initialization. To achieve
resource efficiency, we simulate to train Chain-scheduler with
a number of different scheduling environments in advance,
and deploy a pre-trained RL model in practice to make the
learning process more efficient than the previous version.

In summary, the Chain-scheduler algorithm is updated in
Algorithm 2.

ALGORITHM 2: Chain-scheduler Algorithm
1 Initialize target network weights θ, action-value function Q,

experience memory D, state s, scheduling list L(s), epsilon
ε = 1.0, εnew = 0.3, decay rate δ = 0.02, threshold TR in
Eq. (9), penalty coefficient Φ in Eq. (10);

2 while Epoch < maxEpoch do
3 for t← 1 to maxStep do
4 if random(0,1) < ε then
5 Randomly explore an action from

validAction();
6 else
7 Take action a with ε-greedy policy based on

arg maxat
Q(L(st), at; θ);

8 end
9 Get st+1 and rt by acting the action in environment

using Eq. (6);
10 Set st+1 = st and Lt+1 = L(st+1);
11 Store state transition (Lt, at, rt, Lt+1) in D;
12 Randomly sample and label a batch of state

transitions from D;
13 Fit target network for scheduling policy learning;
14 if st+1 is terminated then
15 if reward > TR then
16 ε← εnew and mark the epsilon decaying as

open;
17 else
18 update Φ in Eq. (10) and TR in Eq. (9);
19 end
20 break;
21 end
22 end
23 update ε by decaying δ if open;
24 end

IV. SYSTEM IMPLEMENTATION

We implement MDLdroid based on an open-source DL
library (i.e., DL4J). In particular, we essentially modify DL4J
to enable the proposed ChainSGD-reduce approach on device.

IEEE/ACM TRANSACTIONS ON NETWORKING 8

(a) User model input (b) Training execution screenshot

Fig. 6: Experiment screenshot.

We also tailor our implementation for execution on Android
smartphone. We employ 9 off-the-shelf Android smartphones
detailed in Table III and a laptop running Linux (e.g., Ubuntu
19.04). Fig. 6 presents the experiment screenshots.

We further improve the system performance and end-to-end
experience in MDLdroid-v2.

Training Speedup Our analysis shows that reading data
from CSV files in MDLdroid-v1 seriously slows down training
on single device. Since the input data of training represents as
a multi-dimensional array and using CSV file can only save
the data as 2D array, we develop an array shape converter to
intensively transform the shape of each batch input data during
loading data process, in which leads to a notable latency.
To speed up training, we save all datasets to NPY files in
MDLdroid-v2 since NPY file can save data in a buffered multi-
dimensional array to efficiently improve the reading data and
training speed. Besides, due to the nature of NPY file format,
the size of all datasets has largely reduced by over 50% on
average without losing accuracy, which is updated in Table I.

Fast Communication For accessibility and low-energy, in
MDLdroid-v1 we use BLE and BS to build a mesh network.
Due to the low-energy nature of BLE, the continual resource
monitoring messages costs little, but the speed of sending
model gradient parameters for pair aggregation presents a
major slow-down. To provide a fast communication for model
aggregation, we deploy Wi-Fi Direct (WD) on Android in
MDLdroid-v2.

Scheduling Scalability In MDLdroid-v1, we select one
smartphone as MA to run Chain-scheduler separately. With
the network size rising up, the MA may reach the maximum
resource threshold of the smartphone due to the dynamic
continual environment learning. To improve scheduling scala-
bility, in MDLdroid-v2 we deploy the MA on a Liunx-based
resourceful edge server. In addition, we offer two options to
allow the MA either run on device or edge server depending on
different usage scenarios (e.g., on device for outdoor activity,
and on edge server for indoor use).

Real-world Personal Sensing Application To demonstrate
the end-to-end performance of MDLdroid in real-world ap-
plications, we apply MDLdroid in developing a privacy-
preserving application, FinDroidHR [9], for hand gestures
recognition. Fig. 7 shows the real locations of different users

23m

16m

Fig. 7: Illustration of real-world locations using MDLdroid.
TABLE I: Dataset Specifications

Datasets Type Task Subject Class Sample Rate #-C #-TR #-TE
sEMG [35] EMG GR 37 6 14695 50Hz 8 15 3
FinDroidHR [9] IMU&HR GR 8 6 2128 100Hz 7 13 3
MHEALTH [36] IMU HBM 10 9 3255 50Hz 23 40 18
UniMiB [37] IMU FDR 30 8 8430 50Hz 1 35 4
HAR [38] IMU ADLs 30 6 10299 50Hz 9 65 26
OPPORTUNITY [39] IMU ADLs 12 11 16837 50Hz 77 225 15
PAMAP2 [40] IMU ADLs 9 12 12397 100Hz 9 400 36

and the edge server running the MA. The result will be
presented in the next section.

V. EVALUATION

In this section, we design three sets of experiments to evalu-
ate MDLdroid extensively. We first evaluates the performance
of Chain-scheduler compared with existing model aggregation
scheduling approaches in distributed DL frameworks. We then
compare the performance of MDLdroid with Federated Learn-
ing (FL) [13] in structure level and explore optimized resource-
accuracy trade-off options (i.e., model aggregation frequency
and training iteration). Finally, we examine the training perfor-
mance of the improved ChainSGD in MDLdroid-v2 compared
with Gossip SGD (GoSGD) [34] in different data distribution
scenarios, the resource efficiency of MDLdroid-v2 compared
with different state-of-the-art DL models, and its end-to-end
performance in reality.

A. Evaluation Set-up and Methodology

To evaluate MDLdroid, we select 6 public personal mobile
sensing datasets and 1 self-collected dataset shown in Table
I. These datasets are typically used for building a variety of
personal mobile applications. We employ three state-of-the-
art DL models including LeNet, MobileNet, and TCN with
detailed model configurations shown in Table II. Practically,

TABLE II: Model configuration specifications

Models Configuration (Type/Stride/Padding/Dilation)
LeNet [41] Conv1/S1/PSame ∈ [1, 36] → Pool/S2 →

Conv2/S1/PSame ∈ [1, 72] → Pool/S2 → FC ∈ [1, 300] →
Output

MobileNet [42] Conv1/S2 ∈ [1, 32] → ConvDW1/S1 ∈ [1, 32] →
ConvP1/S1 ∈ [1, 64] → ConvDW2/S2 ∈ [1, 64] →
ConvP2/S1 ∈ [1, 128] → ConvDW3/S1 ∈ [1, 128] →
ConvP3/S1 ∈ [1, 256]→ AvgPool→ Output

TCN [43] ConvC1/S1/D1 ∈ [1, 36] → ConvC2/S1/D1 ∈ [1, 36] →
ConvC3/S1/D2 ∈ [1, 36] → ConvC4/S1/D2 ∈ [1, 36] →
AvgPool→ Output

TABLE III: Mobile device specifications
Device ROM RAM CPU Battery OS
OnePlus 6 128GB 8GB Snapdragon 845 3300mAh Android 8.1.0
Pixel 2 XL 64GB 4GB Snapdragon 835 3520mAh Android 8.1.0
Huawei Honor 8 32GB 4GB HiSilicon Kirin 950 3000mAh Android 8.0.0
Samsung Gear S3 4GB 768MB Exynos 7 Dual 7270 380mAh Tizen 4.0.0.4

IEEE/ACM TRANSACTIONS ON NETWORKING 9

we scale down the layers of the standard MobileNet and TCN
to fit sensor data.

We conduct all evaluations in an indoor environment. For
performance evaluation, the participating smartphones are
placed in proximity with a range from 1m to 5m for any twos
shown in Fig. 6b. For evaluation in a real-world application,
all participating users are located in a workplace with a size of
23m x 16m shown in Fig. 7. To evaluate battery consumption,
we discharge all smartphones. Before each experiment, we
charge the battery of smartphones full to ensure that each
experiment is in the same initial battery condition. In addition,
we keep training computational and communication costs
identical (i.e., the same system architecture) as fair comparison
for all baselines.

For evaluation, we set up both IID and non-IID data
distribution scenarios [15]. In IID, we randomly distribute
each dataset equally among all the devices to fairly test the
resource-efficiency performance of MDLdroid. In non-IID, we
first separate each dataset by subject ID, and then randomly
select a number of subject’s dataset to match the size of
devices (i.e., each device keeping each subject’s data), aiming
to compare the training performance of MDLdroid with the
baselines. For each scenario, we pre-load a given sub-dataset
to each device in advance to simplify our evaluation.

Hyper-parameters We choose Adam [30] as the default
SGD optimization with a fixed learning rate of 0.001, and
set the batch size to 16. For all DL models, the parameters
and noise are randomly initialized by a uniform distribution in
[−1, 1]. We report top-1 accuracy throughout the evaluation.

B. Performance of Chain-scheduler

We first compare our TDGE approach with the baselines,
i.e., DGE and the threshold-based greedy-exploration (TGE)
(i.e., the exploration only relies on the given threshold without
decaying) approaches (§III-C), and evaluate the performance
of the exploration strategy when training Chain-scheduler.
Secondly, we select two existing resource-agnostic sched-
ulers (i.e., Tree-scheduler [44] and Ring-scheduler [19]) in
distributed DL frameworks as the baselines to evaluate the
performance of Chain-scheduler. Thirdly, we evaluate the
improvements of TDGE-v2 and Pre-TDGE-v2 (i.e., using pre-
trained RL model by TDGE-v2) compared to TDGE in terms
of resource-efficiency and scalability on an edge server.

For fair benchmarking, we simulate resource dynamicity
in reality for each device in MDLdroid. Specifically, we
randomly allocate resources for each training device while
assuring a maximum of 50% of the devices being in busy
state. To evaluate our re-learning mechanism, we randomly
modify the resource state of some devices being busy or free
to emulate the conditions mentioned in Fig. 4b. We run each
experiment 50 times and report the performance and resource
usage presented in the following sections.

1) Exploration Strategy and Scheduling Performance:
To fully examine the performance of our TDGE approach
and Chain-scheduler, we conduct three experiments which the
results are summarized as follows: 1) our TDGE outperforms
TGE and DGE in training time, and accelerates the process

3 4 5 6 7 8 9
Devices

0

20

40

60

Ti
m

e(
se

c)

TDGE
TDGE-v2
Pre-TDGE-v2

(a) Training time

3 4 5 6 7 8 9 10 11 12 13 14 15 16
Devices and Nodes

0

50

100

150

200

250

Ti
m

e(
se

c)

TDGE-v2 on Mobile
TDGE-v2 on Edge
Pre-TDGE-v2 on Edge

(b) Training on mobile vs. edge

Fig. 8: Chain-scheduler training comparison using TDGE-v2.

3 4 5 6 7 8 9
Devices

0

500

Ti
m

e(
se

c)

TDGE TDGE-v2 Pre-TDGE-v2

(a) Time reduction

3 4 5 6 7 8 9
Devices

0

50

Ba
tte

ry
(m

Ah
)

TDGE TDGE-v2 Pre-TDGE-v2

(b) Battery reduction

Fig. 9: Re-learning using TDGE-v2.

of Chain-scheduler training; 2) the TDGE outperforms DGE
under an intensive re-learning scenario (i.e., randomly 15 times
re-learning during 20 Epoch training iterations) in resource-
efficiency; 3) Chain-scheduler outperforms Tree-scheduler and
Ring-scheduler, achieving the best trade-off between training
time and energy variance. Please refer to our conference paper
[26] for the detailed results about these experiments.

2) Efficient Exploration Strategy: In this experiment,
we investigate whether applying TDGE-v2 to train Chain-
scheduler performs a faster learning convergence than using
TDGE when the network size increases. We also evaluate
whether using Pre-TDGE-v2 to avoid learning from scratch
can further reduce the learning time compared to both TDGE-
v2 and TDGE. Fig. 8a clearly shows that both TDGE-v2 and
Pre-TDGE-v2 outperform TDGE with less training time. With
the network size increases, the training time of TDGE-v2 and
Pre-TDGE-v2 is largely reduced by 1.5x and 2.9x on average
over that of TDGE, respectively. Since we apply Pre-TDGE-
v2 to avoid learning the environment from scratch, the training
time is significantly further reduced to make Chain-scheduler
much more efficient.

3) Performance in Resource-efficient Re-learning: In this
experiment, we continue to evaluate the resource-efficiency
(i.e., training time and battery consumption) of different
exploration strategies under the same intensive re-learning
scenario. Fig. 9a indicates that both training time and battery
consumption of TDGE-v2 and Pre-TDGE-v2 are notably less
than that of TDGE. Besides, compared to TDGE-v2, Pre-
TDGE-v2 saves both time and battery by 2x on average. The
result also shows that the battery consumption of training
Chain-scheduler is minor (e.g., the maximum battery of TDGE
with 9 devices is 77 mAh out of 3520 mAh), but the training
time is long. Thus, applying Pre-TDGE-v2 to train Chain-
scheduler is more practical with much less training time even
under such intensive scenario.

4) Learning Scalability on Mobile vs. Edge: We now eval-
uate the learning scalability performance of Chain-scheduler
running on edge server vs. device. Due to the availability of

IEEE/ACM TRANSACTIONS ON NETWORKING 10

smartphones in our lab, we report the testbed result with 9
smartphones, and the simulation result with 16 nodes. Fig. 8b
demonstrates that running on the edge server achieves with less
training time (e.g., 2.6x less on average). When the network
size increases (e.g., larger than 9 nodes), the training time of
TDGE-v2 on the edge shows a notably increase, and the time
cost may easily beyond the limitation of running on device
in practice. However, applying Pre-TDGE-v2 on the edge
effectively reduces the training time by 2x on average. Thus,
moving Chain-scheduler to the edge server can practically
reduce the risk of the resource bottleneck on device when
the network size goes large, and Pre-TDGE-v2 can essentially
improve the performance of learning scalability.

C. Performance of MDLdroid

To give a comprehensive evaluation for the performance
of MDLdroid, we first compare MDLdroid with the FL [13]
(i.e., a master-slave structure) in structure level from training
accuracy and resource used perspectives. Besides, we choose a
server-based approach to further ensure the training accuracy
to be reliable. we next explore the optimized resource-accuracy
trade-off options of MDLdroid.

1) MDLdroid vs. FL: We compare the performance of
MDLdroid vs. FL from three perspectives, e.g., peak-memory
overhead (i.e., initial memory footprint by loading libraries
is excluded), training time, and network energy balance, and
the summarized results present that MDLdroid achieves low-
memory footprint, faster training, and better energy balance
comparing to FL. Besides, since MDLdroid requires a training
device to periodically report its resource condition via a
compressed tiny BLE message (i.e., the size is less than 20K),
the actual battery consumption of reporting resources is much
smaller than that of sending model parameters via BS or WD,
e.g., each device roughly drains 15 mAh out of 3600 mAh for
the BLE messages by training PAMA2 with 20 Epoch in a
network with 9 devices. Please refer to our conference paper
[26] for the complete results of this experiment.

2) Trade-off between Resource and Accuracy: Both model
aggregation frequency (i.e., periodic aggregation [45]) and
training iteration Epoch can significantly impact the bal-
ance between resource and accuracy. We evaluate the trade-
off between resource and accuracy from three aspects, e.g.,
training accuracy by a given threshold, battery consumption
by maximum battery, and training time, using LeNet on all
datasets in Table I. The summarized results show that the 1-
E20 (i.e., 1 model aggregation sync after each iteration—20
training iterations) as the optimized resource-accuracy option
to achieve the best performance. Please refer to our conference
paper [26] for detailed results.

D. Improvement in MDLdroid-v2

We design seven experiments as follows to fully evaluate
the resource-efficiency improvements in MDLdroid-v2. We
also compare the improved ChainSGD with GoSGD [34]
(i.e., a state-of-the-art decentralized A-SGD approach) in both
IID and non-IID scenarios. In particular, GoSGD-B originally

uses a Bernoulli function to manage the model aggrega-
tion frequency, and GoSGD keeps using the same optimized
frequency option (i.e., 1-E20) as ChainSGD in this set of
evaluation. In practice, GoSGD-B may have fewer model
aggregations (i.e., depending on the batch size) comparing to
GoSGD by our settings. We then conduct a real-world case
study to examine the end-to-end performance of MDLdroid-
v2.

1) Training Accuracy Guarantee: As aforementioned, the
training accuracy may present a notably drop when the net-
work size increases. In this experiment, we evaluate whether
ChainSGD gradient-scale can guarantee fast training conver-
gence to keep the same accuracy level when network scales in
the IID scenario. We train LeNet on all datasets in a network
size up to 9 devices using 4 approaches, respectively. Since
both GoSGD and GoSGD-B are A-SGD approach, the output
models on different devices will be naturally different. For
a fair comparison, we refer to [34] to finally process an
averaged model, and evaluate on the same test dataset after
each training. Fig. 10 clearly shows that the training accuracy
on all datasets in MDLdroid-v2 keeps the same accuracy level
without a major drop, e.g., accuracy on each dataset is higher
than the red dash line as the given threshold, while the other
approaches have a notably accuracy drop when network scales.
In particular, the accuracy on sEMG and OPPORTUNITY in
a network with 9 devices dramatically increases by 41.16%
and 69.54%, respectively, compared to MDLdroid-v1. The
proposed ChainSGD gradient-scale approach therefore guar-
antees the training accuracy and improves the scalability of
MDLdroid.

2) Training in Non-IID: In MDLdroid, multiple users’
data will be more likely to be distributed as in a non-IID sce-
nario in reality. In this experiment, we continually investigate
whether MDLdroid-v2 can achieve a better training perfor-
mance than the baselines in a non-IID scenario. We select three
datasets with subject ID (e.g., HAR, sEMG, and MHEALTH)
in Table I using LeNet. We run each training 5 times in a
network size ranged from 2 to 9 devices, and randomly select
the number of subject’s datasets in each training. We also test
each device individually. Fig. 11 presents that MDLdroid-v2
achieves a higher training accuracy on average comparing to
the baselines, especially sEMG. Taking a closer look at the
training performance in a network with 9 devices, Fig. 12
shows that MDLdroid-v2 outperforms the baselines with a
larger median of accuracy at 20-Epoch on all datasets, e.g.,
92.3%, 74.8%, and 87.9% on HAR, sEMG, and MHEALTH,
respectively. We hence conclude that MDLdroid-v2 achieves
a superior training performance on average over the baselines
in non-IID.

3) Out-of-sync Condition: Since we design an efficient
timeout mechanism (§III-B) to skip the delayed devices in
network if in case, these out-of-sync devices may easily
affect training accuracy due to missing the gradient parameter
aggregation. In this experiment, we evaluate whether gradient-
scale can keep the same training accuracy on the out-of-sync
condition (i.e., the worst condition which the selected devices
are lost throughout the training). We train LeNet on HAR,
and assume the worst case that the out-of-sync devices ranged

IEEE/ACM TRANSACTIONS ON NETWORKING 11

HAR sEMG UniMiB PAMAP2 MHEALTH OPPORTUNITY

2 4 6 8
Devices

80

85

90

95

Ac
cu

ra
cy

(%
)

MDLdroid-v1
MDLdroid-v2
GoSGD
GoSGD-B

2 4 6 8
Devices

0

50

100

MDLdroid-v1
MDLdroid-v2
GoSGD
GoSGD-B

2 4 6 8
Devices

80

90

100

MDLdroid-v1
MDLdroid-v2
GoSGD
GoSGD-B

2 4 6 8
Devices

80

90

100

MDLdroid-v1
MDLdroid-v2
GoSGD
GoSGD-B

2 4 6 8
Devices

60

80

100 MDLdroid-v1
MDLdroid-v2
GoSGD
GoSGD-B

2 4 6 8
Devices

0

50

100

MDLdroid-v1
MDLdroid-v2
GoSGD
GoSGD-B

Fig. 10: Training accuracy preserving using ChainSGD-scaling by network scaling.

2 3 4 5 6 7 8 9
Devices

75

80

85

90

Ac
cu

ra
cy

(%
)

HAR

2 3 4 5 6 7 8 9
Devices

50

60

70

80
sEMG

2 3 4 5 6 7 8 9
Devices

80

85

90 MHEALTH
MDLdroid-v1 GoSGD GoSGD-B MDLdroid-v2

Fig. 11: Non-IID accuracy comparison by network scaling.

1-Epoch 5-Epoch 15-Epoch 20-Epoch40
50
60
70
80
90

100

Ac
cu

ra
cy

(%
)

HAR
1-Epoch 5-Epoch 15-Epoch 20-Epoch

30

45

60

75

90

sEMG
1-Epoch 5-Epoch 15-Epoch 20-Epoch

45
60
75
90

MHEALTH

MDLdroid-v1 GoSGD GoSGD-B MDLdroid-v2

Fig. 12: Non-IID training performance comparison. (Black
line in the box represents median; dot represents mean; box
represents 25% and 75% percentiles.)

from 1 to 7 (i.e., at least 2 devices alive) do not perform any
pair aggregation throughout the entire training process. Based
on this, Fig. 13a presents that the training accuracy of both
v1 and v2 progressively decreases with the number of out-
of-sync devices increases. However, v2 still outperforms v1
with a higher accuracy in each case. Especially, v2 remains
the accuracy by 91.21% with 4 out of 7 devices missing
their contributions (i.e., 57% out-of-sync rate). As a result, the
gradient-scale in v2 keeps the training accuracy with a minimal
drop on the worse condition. In addition, since our system
enables the re-connection mechanism to each device (§III-B),
the impact of the out-of-sync condition can be practically
mitigated if the devices are able to re-connect to continually
sync with peers during the training.

4) Training Speedup: Since we improve the way of read-
ing input data on device, we now evaluate the actual training
speed improvement of MDLdroid-v2. Fig. 14a presents a

2 4 6
Out-of-sync Devices

75

80

85

90

95

Ac
cu

ra
cy

(%
)

MDLdroid-v1
MDLdroid-v2

(a) Out-of-sync condition (b) Real-world model performance

Fig. 13: Training accuracy performance in both out-of-sync
and real-world use conditions.

(a) Training Time Breakdown (b) Run-time memory footprint

Fig. 14: Time reduction and run-time memory comparison.

training time breakdown for every single batch training using
LeNet on HAR. Comparing to MDLdroid-v1, the reading
time on average is significantly reduced by 270x, even it is
slightly faster than reading on a server, e.g., reading a batch
with 16 rows of HAR data takes only 4ms on Pixel 2XL.
Besides, both on-device Forward (i.e., Forward Pass) and BP
(i.e., Backpropagation) remain the same time with MDLdroid-
v1, but are slower by 9.6x and 13.6x, respectively, than on a
server. The results shows that MDLdroid-v2 greatly speeds up
training on device.

5) Communication Resource Reduction: We now evaluate
the communication resource reduction (i.e., time and battery)
in MDLdroid-v2. In particular, we use three different DL
models with a different size depending on datasets to fully
evaluate the communication resource difference between v1
(i.e., using BS) and v2. Both Fig. 15a and 15b show that
v2 outperforms v1 with less communication time and battery
on all DL models, e.g., the time and battery of v2 using
LeNet on HAR are reduced by 8.1x and 5.2x on average,
respectively, over that of v1. Interestingly, the time of v2
using both MobileNet and TCN shows a minor reduction.
This is because the model size of both DL models are much
smaller than that of LeNet (e.g., the size of MobileNet on
HAR is 210K while LeNet is 3.5MB), the communication
time hence has no major difference. However, the battery
using both lightweight models in v2 are still largely reduced
compared to that of v1. The result shows that applying WD
in MDLdroid-v2 can practically reduce the communication
resource, and using lightweight DL models on device can
achieve less resource usage.

6) Memory Footprint of DL Models: Memory footprint
on device is a critical resource index. We now evaluate the
performance of run-time memory footprint (i.e., including the
initial memory footprint) based on three different DL models.
Fig. 14b presents that the run-time memory footprint of LeNet
on different dataets is notably larger than that of MobileNet
and TCN, e.g., the LeNet on PAMA2 is larger by 1.6x than

IEEE/ACM TRANSACTIONS ON NETWORKING 12

(a) Communication time (b) Communication battery

Fig. 15: Communication resource reduction comparison.
TABLE IV: Training Accuracy Comparison

Datasets State-of-the-art Server FL-Best MDL-Best MDL-Trade-off MDL-Best-v2
HAR 96% [38] 93.8% 92.7% 92.5% 90.0% 94.64
PAMAP2 90%+ [40] 97.6% 94.7% 95.2% 90.7% 99.71
MHEALTH 90% [36] 92.3% 91.0% 90.2% 85.4% 96.49
UniMiB 85% [38] 96.1% 93.3% 93.6% 91.5% 99.75
sEMG 88% [35] 89.2% 86.3% 85.8% 84.6% 91.74
OPPO 85% [39] 88.6% 87.5% 86.9% 84.7% 90.91

MobileNet on PAMA2. The result shows that using lightweight
DL models on device can achieve a smaller run-time memory
footprint.

7) Resource-accuracy Performance in MDLdroid-v2: In
this experiment, we present a comprehensive result to highlight
the improved resource-accuracy performance in MDLdroid-v2
in terms of training accuracy, battery consumption and training
time using different DL models on all datasets in a network
size up to 9 devices.

Training Accuracy Fig. 16 indicates that the training
accuracy in v1 decreases with the network size, while v2 has a
stable accuracy. Interestingly, the LeNet on HAR, UniMiB and
PAMA2 of v2 in the multi-device condition even achieves a
higher accuracy than training on a single smartphone. Overall,
both MobileNet and TCN outperforms LeNet with a higher
training accuracy. In conclusion, MDLdroid-v2 guarantees the
training accuracy on device and achieves a higher accuracy
when the network scales up.

Battery Consumption and Time Both Fig. 17 and Fig. 18
demonstrate that the overall battery consumption and training
time are massively reduced in MDLdroid-v2 as the speed
of both training and communication is notably increased.
Specifically, compared to v1, the end-to-end training time in v2
using LeNet, MobileNet and TCN is significantly reduced by
6x, 5.5x and 4.4x on average, respectively. Also, the battery
consumption of each smartphone using the three models is
largely reduced by 3x, 3.6x and 2.9x on average, respectively.
In particular, applying MobileNet on different datasets with
different network size achieves less battery cost and time spent
among all DL models on smartphone.

As a result, Table IV summarizes the comparison result of
training accuracy, and MDLdroid achieves the best results. In
particular, MDLdroid-v2 not only achieves higher accuracy
over the baselines, but also significantly reduces end-to-end
latency in terms of training task, model aggregation commu-
nication, and scheduling learning in practice.

8) Real-world Performance of MDLdroid: To evaluate
the end-to-end performance of MDLdroid-v2 in reality, we
conduct a real-world case study based on FindroidHR in a
workplace (§IV). Since FindroidHR employs personal heart
rate and motion sensing data, each user’s data have to be
kept on smartphone for privacy-preserving. Also, the data

distribution based on different users naturally represents as a
non-IID scenario. In addition, due to the costly data collection,
each user’s data may not be sufficient to ensure the model
performance.

In this study, we invite 8 subjects and assign a smartphone
and a smartwatch shown in Table III to each of them, and Fig.
7 shows their specific locations. Besides, each of them is asked
to collect and label a small amount of gesture data (i.e., 36 per
class) using the smartwatch, in which the specification is listed
in Table I, then transmitting individual data to each smartphone
for training. We employ MobileNet in Table II as the default
DL model. We train both individual model (i.e., training only
with the small amount of individual data on device) and
MDLdroid model via local collaborative learning. Fig. 13a
demonstrates that they achieve an average accuracy of 62.75%
due to insufficient individual data, while the MDLdroid model
achieves a high accuracy of 99.75% on average. Besides,
the actual resource cost for training the MDLdroid model is
summarized as: the end-to-end time is 154.8s less than 3mins,
the battery consumption of each smartphone on average is
only around 1.18 mAh, and the run-time memory of training
component on average is 187MB.

VI. DISCUSSION

Model Structure and Complexity MDLdroid aims for a
universal on-device collaborative learning framework, hence
practically it works for any DL models. Since different DL
models result in a large difference of resource cost through
our evaluation, the model complexity may strongly affect
the actual resource usage on device. In practice, the latest
large-sized models (i.e., with heavy model parameters and
large number of layers) can work for high accuracy, but will
take a large amount of resources, e.g., LeNet on HAR has
17x more model parameters and 24.5x more computational
complexity than MobileNet on HAR, which performs notably
less efficient for on-device training in our evaluation. Since
resource efficiency is critical in the sensing domain, applying
lightweight models or on-device model structure optimization
[46] may work more efficiently to avoid overfitting. We plan

to further optimize the model structure in our future work.
Efficient Compression Communication Applying the lat-

est quantization or compression techniques for large-sized gra-
dient parameters updates can significantly reduce communica-
tion latency and efficiently save resources in a network [47].
Since we essentially employ lightweight models for training
resource efficiency, the existing compressed techniques may
not work efficiently on lightweight models and will introduce
more processing overhead, but can be applied to further deal
with the scalability of MDLdroid.

Security Improvement Since security in a decentralized
network is critical, we apply a number of improvements for
model attack defense in MDLdroid (§III-B), e.g., the model
poisoning check, encrypted messages and models, aiming to
offer a secure mobile collaborative DL framework without
privacy considerations. Study [16] reports a security concern
in FL that the personal data may be simulated by the latest
generative adversarial learning techniques if the target model

IEEE/ACM TRANSACTIONS ON NETWORKING 13

1-dev 3-dev 6-dev 9-dev
HAR

88

90

92

94

Ac
cu

ra
cy

(%
)

1-dev 3-dev 6-dev 9-dev
sEMG

40

50

60

70

80

90

1-dev 3-dev 6-dev 9-dev
UniMiB

84

87

90

93

96

99

1-dev 3-dev 6-dev 9-dev
PAMAP2

90

92

94

96

98

100

1-dev 3-dev 6-dev 9-dev
MHEALTH

70
75
80
85
90
95

100

1-dev 3-dev 6-dev 9-dev
OPPORTUNITY

30

45

60

75

90
LeNet-v1 LeNet-v2 MobileNet-v1 MobileNet-v2 TCN-v1 TCN-v2

Fig. 16: Training accuracy based on different models.

1-dev 3-dev 6-dev 9-dev
HAR

0.0

0.4

0.8

1.2

1.6

2.0

Ba
tte

ry
(m

Ah
)

×103

1-dev 3-dev 6-dev 9-dev
sEMG

0

1

2

3

4

5
×102

1-dev 3-dev 6-dev 9-dev
UniMiB

0.0
0.5
1.0

1.5
2.0
2.5

×103

1-dev 3-dev 6-dev 9-dev
PAMAP2

0.0

1.5

3.0

4.5

6.0

7.5
×103

1-dev 3-dev 6-dev 9-dev
MHEALTH

0.0

1.5

3.0

4.5

6.0

7.5
×102

1-dev 3-dev 6-dev 9-dev
OPPORTUNITY

0.0
0.6
1.2
1.8
2.4
3.0

×103

LeNet-v1 LeNet-v2 MobileNet-v1 MobileNet-v2 TCN-v1 TCN-v2

Fig. 17: Training battery consumption based on different models.

1-dev 3-dev 6-dev 9-dev
HAR

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e(
s)

×104

1-dev 3-dev 6-dev 9-dev
sEMG

0.0

0.4

0.8

1.2

1.6

2.0 ×103

1-dev 3-dev 6-dev 9-dev
UniMiB

0.00
0.25
0.50
0.75
1.00
1.25

×104

1-dev 3-dev 6-dev 9-dev
PAMAP2

0.0

1.5

3.0

4.5

6.0
×104

1-dev 3-dev 6-dev 9-dev
MHEALTH

0.0

1.5

3.0

4.5

6.0 ×103

1-dev 3-dev 6-dev 9-dev
OPPORTUNITY

0.0

0.6

1.2

1.8

2.4

3.0 ×104

LeNet-v1 LeNet-v2 MobileNet-v1 MobileNet-v2 TCN-v1 TCN-v2

Fig. 18: Training time based on different models.

on server is leaking by malicious attacks. The leakage may
be difficult to track if the central server cannot identify the
deliberate attacker. In MDLdroid, as the peers are validated
and exposed to each other based on a decentralized network,
identifying the attacker may be more practical. We also plan
to further improve the system security in our future work.

VII. RELATED WORK

Decentralized Deep Learning For decentralized frame-
work, the existing work [29] proposes a theoretical model
based on a fixed directed graph to offer a decentralized SGD
algorithm to exchange model gradient parameters with its
one-hop neighbors. However, if the relationship between the
device and its one-hop neighbor is one-to-many, the device still
suffers huge resource overhead which is similar to the master
device case. On the other hand, as the underlying topology is
a fixed graph, it cannot properly be performed in a real-time
condition with resource dynamicity. By contrast, MDLdroid
presents a dynamic chain-directed SGD algorithm based on a
mesh network with a Chain-scheduler that enables a resource-
aware model aggregation process to minimize training latency
and reduce training resource overhead.

Resource-aware Mobile Deep Learning Most of existing
works about resource-aware mobile DL mainly focus on

inference tasks. NestDNN [48] proposes a multi-tenant frame-
work that can enable a resource-aware on-device to efficiently
execute inference tasks for mobile vision applications. Besides,
MCDNN [48] presents a framework that can execute multiple
mobile vision applications based on cloud-based inference
solution. In MDLdroid, we fully implement and execute both
DL training and inference tasks on devices.

Resource-aware Task Scheduling The latest works [21]
[23] propose to use a MARL based approach to solve task
scheduling based on distributed network, which achieves fair
performance. However, due to on-device resource limitation,
the MARL implementation cannot well perform with train-
ing task on device. In contrast, MDLdroid applies a single
agent-based DQN approach to deal with resource-aware task
scheduling.

VIII. CONCLUSION

Towards pushing DL on devices, in this paper, we present
MDLdroid, a novel decentralized mobile DL framework to
enable resource-aware on-device collaborative learning for
personal mobile sensing applications. MDLdroid achieves a
reliable state-of-the-art model training accuracy on multiple
off-the-shelf mobile devices. The key advantages of MDL-
droid include on-device mobile DL, high training accuracy,

IEEE/ACM TRANSACTIONS ON NETWORKING 14

low resource overhead, low latency for model inference and
update, and fair scalability.

ACKNOWLEDGMENT

This work is supported by Australian Research Coun-
cil (ARC) Discovery Project grants DP180103932 and
DP190101888.

REFERENCES

[1] E. L. Murnane et al., “Mobile manifestations of alertness: Connecting
biological rhythms with patterns of smartphone app use,” in MobileHCI
’16, 2016.

[2] J. V. Jeyakumar et al., “Sensehar: A robust virtual activity sensor for
smartphones and wearables,” in SenSys’19, 2019.

[3] R. Miotto et al., “Deep learning for healthcare: review, opportunities
and challenges,” Briefings in bioinformatics, 2017.

[4] J. Wang et al., “Deep learning towards mobile applications,” in
ICDCS’18, 2018.

[5] N. D. Lane and P. Georgiev, “Can deep learning revolutionize mobile
sensing?” in HotMobile ’15, 2015.

[6] Y. Tu et al., “Network-aware optimization of distributed learning for fog
computing,” ser. INFOCOM’20, 2020.

[7] E. Li, Z. Zhou, and X. Chen, “Edge intelligence: On-demand deep learn-
ing model co-inference with device-edge synergy,” in MECOMM’18,
2018.

[8] J. L. Kröger, P. R., and T. R. B., “Privacy implications of accelerometer
data: A review of possible inferences,” in ICCSP ’19, 2019.

[9] Y. Zhang et al., “Findroidhr: Smartwatch gesture input with optical
heartrate monitor,” IMWUT ’18, 2018.

[10] S. Dhar et al., “On-device machine learning: An algorithms and learning
theory perspective,” 2020.

[11] L. Zhang, “Transfer adaptation learning: A decade survey,” CoRR, 2019.
[12] W.-Y. Chen et al., “A closer look at few-shot classification,” in ICLR’19,

2019.
[13] K. A. Bonawitz et al., “Towards federated learning at scale: System

design,” in SysML ’19, 2019.
[14] D. Zhang et al., “A survey on collaborative deep learning and privacy-

preserving,” in DSC’18, 2018.
[15] W. Y. B. Lim et al., “Federated learning in mobile edge networks:

A comprehensive survey,” IEEE Communications Surveys & Tutorials,
2020.

[16] Z. Wang et al., “Beyond inferring class representatives: User-level
privacy leakage from federated learning,” ser. INFOCOM’19, 2019.

[17] A. N. Bhagoji et al., “Analyzing federated learning through an adver-
sarial lens,” in ICML’19, 2019.

[18] X. Lian et al., “Can decentralized algorithms outperform centralized
algorithms? a case study for decentralized parallel stochastic gradient
descent,” in NIPS’17, 2017.

[19] M. Li et al., “Scaling distributed machine learning with the parameter
server,” in OSDI’14, 2014.

[20] A. Aral, M. Erol-Kantarci, and I. Brandić, “Staleness control for edge
data analytics,” Proc. ACM Meas. Anal. Comput. Syst., 2020.

[21] D. ben noureddine, A. Gharbi, and S. Ahmed, “Multi-agent deep
reinforcement learning for task allocation in dynamic environment,” in
ICSOFT’17, 2017.

[22] J. Yang, H. Xu, and P. Jia, “Task scheduling for heterogeneous comput-
ing based on bayesian optimization algorithm,” in CIS’09, 2009.

[23] T. T. Nguyen, N. D. Nguyen, and S. Nahavandi, “Deep reinforcement
learning for multi-agent systems: A review of challenges, solutions and
applications,” CoRR, 2018.

[24] P. H. Jin et al., “How to scale distributed deep learning?” CoRR, 2016.
[25] K. Persand, A. Anderson, and D. Gregg, “Composition of saliency

metrics for channel pruning with a myopic oracle,” 2020.
[26] Y. Zhang, T. Gu, and X. Zhang, “Mdldroid: a chainsgd-reduce approach

to mobile deep learning for personal mobile sensing,” in IPSN ’20, 2020.
[27] S. Gupta, W. Zhang, and F. Wang, “Model accuracy and runtime tradeoff

in distributed deep learning: A systematic study,” in ICDM’16, 2016.
[28] K. Yu et al., “Layered SGD: A decentralized and synchronous SGD

algorithm for scalable deep neural network training,” CoRR, 2019.
[29] Z. Jiang et al., “Collaborative deep learning in fixed topology networks,”

in NIPS’17, 2017.
[30] S. Ruder, “An overview of gradient descent optimization algorithms,”

CoRR, 2016.

[31] T. Hoefler, C. Siebert, and W. Rehm, “A practically constant-time mpi
broadcast algorithm for large-scale infiniband clusters with multicast,”
in IPDPS’07, 2007.

[32] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing.” Nature, 2015.

[33] M. Tokic, “Adaptive ε-greedy exploration in reinforcement learning
based on value differences,” in KI 2010: Advances in Artificial Intel-
ligence, 2010.

[34] M. Blot et al., “Gossip training for deep learning,” ser. NIPS’16, 2016.
[35] S. Lobov et al., “Latent factors limiting the performance of semg-

interfaces,” Sensors, 2018.
[36] O. Banos et al., “mhealthdroid: A novel framework for agile develop-

ment of mobile health applications,” in Ambient Assisted Living and
Daily Activities, 2014.

[37] D. Micucci, M. Mobilio, and P. Napoletano, “Unimib shar: a new
dataset for human activity recognition using acceleration data from
smartphones,” CoRR, 2017.

[38] D. Anguita et al., “A public domain dataset for human activity recog-
nition using smartphones,” in ESANN’13, 2013.

[39] D. Roggen et al., “Collecting complex activity datasets in highly rich
networked sensor environments,” in INSS’10, 2010.

[40] A. Reiss and D. Stricker, “Introducing a new benchmarked dataset for
activity monitoring,” in ISWC’12, 2012.

[41] Y. Lecun et al., “Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE, 1998.

[42] A. G. Howard et al., “Mobilenets: Efficient convolutional neural net-
works for mobile vision applications,” CoRR, 2017.

[43] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,” CoRR,
2018.

[44] S. Shi et al., “A distributed synchronous SGD algorithm with global
top-k sparsification for low bandwidth networks,” CoRR, 2019.

[45] J. Wang and G. Joshi, “Adaptive communication strategies to achieve the
best error-runtime trade-off in local-update sgd,” ser. MLSys’19, 2019.

[46] Y. Zhang, T. Gu, and X. Zhang, “Mdldroidlite: a release-and-inhibit
control approach to resource-efficient deep neural networks on mobile
devices,” in Sensys’20, 2020.

[47] A. Koloskova, S. U. Stich, and M. Jaggi, “Decentralized stochastic
optimization and gossip algorithms with compressed communication,”
ser. ICML’19, 2019.

[48] B. Fang, X. Zeng, and M. Zhang, “Nestdnn: Resource-aware multi-
tenant on-device deep learning for continuous mobile vision,” in Mobi-
Com ’18, 2018.

Yu Zhang received the B.S. degree in Software
Engineering from Southwest University for Nation-
alities, China. He is currently pursuing the Ph.D.
degree in computer science at RMIT University,
Australia. His research interests include mobile com-
puting, on-device machine learning, wireless sensor
network, embedded systems, Internet of Things and
big data analytics.

Tao Gu is currently a Professor in Department
of Computing at Macquarie University, Australia.
His research interests include Internet of Things,
ubiquitous computing, mobile computing, embedded
AI, wireless sensor networks, and big data analytics.
He is currently serving as an Editor of IMWUT, an
Associate Editor of TMC and IoT-J. Please find out
more information at https://taogu.site.

Xi Zhang received the B.S. degree from the Beijing
Jiaotong University Haibin College of Computer
Science, China in 2014, the M.S. degree from
Monash University of Information Technology, Aus-
tralia in 2018, and He is currently pursuing the Ph.D.
degree of Computer Science in RMIT University,
Australia. His research interests include Internet of
Things, mobile computing and machine learning.

	Introduction
	Motivation
	MDLdroid FRAMEWORK
	System Architecture
	ChainSGD-reduce Approach
	Resource-aware Chain-scheduler

	System Implementation
	EVALUATION
	Evaluation Set-up and Methodology
	Performance of Chain-scheduler
	Exploration Strategy and Scheduling Performance
	Efficient Exploration Strategy
	Performance in Resource-efficient Re-learning
	Learning Scalability on Mobile vs. Edge

	Performance of MDLdroid
	MDLdroid vs. FL
	Trade-off between Resource and Accuracy

	Improvement in MDLdroid-v2
	Training Accuracy Guarantee
	Training in Non-IID
	Out-of-sync Condition
	Training Speedup
	Communication Resource Reduction
	Memory Footprint of DL Models
	Resource-accuracy Performance in MDLdroid-v2
	Real-world Performance of MDLdroid

	Discussion
	RELATED WORK
	CONCLUSION
	References
	Biographies
	Yu Zhang
	Tao Gu
	Xi Zhang

