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Abstract—Mobile Deep Learning (MDL) has emerged as a privacy-preserving learning paradigm for mobile devices. This paradigm
offers unique features such as privacy preservation, continual learning and low-latency inference to the building of personal mobile
sensing applications. However, squeezing Deep Learning to mobile devices is extremely challenging due to resource constraint.
Traditional Deep Neural Networks (DNNs) are usually over-parametered, hence incurring huge resource overhead for on-device
learning. In this paper, we present a novel on-device deep learning framework named MDLdroidLite that transforms traditional DNNs
into resource-efficient model structures for on-device learning. To minimize resource overhead, we propose a novel Release-and-Inhibit
Control (RIC) approach based on Model Predictive Control theory to efficiently grow DNNs from tiny to backbone. We also design a
gate-based fast adaptation mechanism for channel-level knowledge transformation to quickly adapt new-born neurons with existing
neurons, enabling safe parameter adaptation and fast convergence for on-device training. Our evaluations show that MDLdroidLite
boosts on-device training on various PMS datasets with 28× to 50× less model parameters, 4× to 10× less floating number
operations than the state-of-the-art model structures while keeping the same accuracy level.

Index Terms—Mobile Deep Learning, Deep Neural Networks, Dynamic Optimization Control, Resource Constraint.
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1 INTRODUCTION

W ITH the rapid development of wearable and mobile
devices such as wristbands, EEG headsets, smart-

watches and smartphones, recent years have witnessed
rapid increase in the demand of Personal Mobile Sensing
(PMS) applications, ranging from activity recognition [1],
continual personal health monitoring [2], to private mental
contexts understanding [3]. Through these devices, PMS
applications are able to exploit rich contexts from personal
sensing data that may be privacy sensitive. Machine learn-
ing (ML) plays a vital role in interpreting and making
sense to sensor data. However, most of traditional machine
learning techniques require manual and heavy feature en-
gineering. Deep Learning (DL) offers automated feature
extraction capability, the ability of scaling with data, and su-
perior model generalization, hence has created tremendous
opportunities to achieve breakthroughs in a higher level of
accuracy and robustness [4].

A DL application works in two phases–training and
inference. Existing Deep Neural Networks (DNNs) require
heavy computation resources specially for training, beyond
the capability of wearable and mobile devices. As a result,
most of the solutions offload training workloads by trans-
mitting sensor data from devices to clouds [5] or edge
servers [6] and download pre-trained models [4] on de-
vices for inference. However, real-world PMS applications
have many intrinsic properties which create several open
questions [7], [8]. Firstly, sensor data in PMS applications
are highly privacy-sensitive as they contain motion and bi-
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ological contexts of an individual. Transferring personal
sensor data from devices to clouds or edge severs may raise
severe privacy concerns. Secondly, due to the dynamic na-
ture of sensor data, i.e., unreliable and brittle over time, PMS
applications are highly user-specific (i.e., personal preferences
or health conditions) and can be easily affected by local
scenario changes (i.e., long-term behavior changes, stationary-
to-movement changes or ambient environment condition
changes) [4], [7], hence continual training or adaptation is
crucial to maintain model generalization and robustness.
Thirdly, PMS applications such as gesture recognition [9]
and fall detection [1] require real-time responses, hence
low-latency in model inference is critical. Furthermore, since
sensor data are naturally less interpretable than images or
texts [4], collecting and labeling a large amount of sensor
data with diverse real-world scenarios may be impractical.
In fact, there is a lack of public available datasets and most
of sensor data collections are done privately for specific PMS
applications.

Existing approaches deploy pre-trained models (i.e.,
training done in clouds) for on-device inference to avoid
privacy violation [10], but these models may suffer from
performance issues when applied to different users in dif-
ferent environments due to the problem of ”one size fits all”.
Although transfer learning can be applied to user-specific
model adaptation, several real-world limitations exist [11]:
1) the transferred model performance may be inferior due
to domain-shift caused by target sensor data dynamics; 2) the
transfer process is limited to specific source models, which
may not be universally applied to different applications; 3)
the model adaptation is completed by transmitting user-
specific sensor data to clouds, which will violate privacy.

Mobile Deep Learning (MDL) has been recently ad-
vocated as an appealing on-device learning solution
for privacy-preserving PMS applications [8], [12]. MDL
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promises to offer unique features to enable strict privacy
preservation (i.e., zero data transmission), continual training
and low-latency inference on mobile devices. Thanks to data
augmentation techniques [13] which can easily augment
the collected user-specific sensor data to an adequate level
for real-world applications, hence as a universal solution,
a MDL framework with on-device training from scratch is
essential for PMS applications.

Most of the existing works study model inference on mo-
bile devices [10]. Few studies [14], [15] relate to on-device
training which is more challenging because the resources
required for training can easily go beyond the capacity of
commodity mobile devices. Google’s Federated Learning
(FL) [12] as a well-known MDL framework aims to enable
on-device training, but it is still at an early stage and the
performance is much limited by the resource constraint on
mobile devices. The resource overhead of on-device training
therefore seems to be the main obstacle, and the perfor-
mance of on-device training may be largely limited by the
resources on mobile devices. Study [16] reveals that, as
one of the underlying impediments, DNNs are originally
designed as complex structures involving millions of pa-
rameters surprisingly, resulting in huge memory footprints,
a large number of floating number operations (FLOPs), and
the risk of overfitting. In essence, existing studies focus
on training accuracy as the first priority yet less resource
consideration for training. The accuracy-first approach will
potentially result in resource-inefficient structures for mobile
devices. Besides, most of DNN structures rely on hand-
crafted model configuration with manual hyperparameter
tuning on specific datasets, hence this process can be very
costly and less dynamic when adapted to new datasets [17].

To reduce heavy model parameters in DNNs, model
pruning has been proposed to achieve a lightweight struc-
ture with less resources used [18]. Study [17] indicates that
a latest pruning technique can reduce 90% of the model
parameters and FLOPs with little accuracy drop. Although
pruning techniques have been successfully applied in mo-
bile scenarios, they mainly focus on pruning a pre-trained,
over-parameterized DNN (i.e., a full-sized model configura-
tion with redundancy) to a backbone structure (i.e., much
less resource overhead) for inference only, but not training
[18]. Besides, since a pruned structure may be potentially

over- ”fitted” and primarily fixed on stationary datasets,
the model is structurally limited to on-device continual
training, which may cause serious learning forgetting issue
to degrade model performance [16], [17], [19]. Moreover,
due to the lack of hardware or libraries for sparsification
support on off-the-shelf mobile devices, existing pruning-
pipelines may not lead to actual compression or resource
reduction [18]. The conventional training of DNNs initial-
izes with millions of parameters in the first place may easily
overwhelm the limited memory on mobile devices. We ask
a fundamental question why we train DNNs with large
redundant parameters from the beginning. This leads to our
intuition of training DNNs from tiny to backbone, i.e., small
to big, eliminating the pruning process. This new approach,
i.e., a ”growth” approach, may avoid heavy redundancy
in computation resources, hence potentially fits in mobile
devices.

Moving along this direction, Continuous Growth (CG)

has recently been proposed in several works [16], [20], [21]
that can continually search an efficient DNN structure
with less redundancy and adaptable to different datasets
and model configurations. CG combines both constructive
(e.g., adding neurons, channels or layers) and destructive
(i.e., pruning) structure learning. It starts training from a
small-sized model configuration, and grows continually to
reach the full size or the size bounded by a fixed resource
budget, then pruning its model size down for inference.
Although CG has not been shown its feasibility of train-
ing DNNs on mobile devices, the idea of growing DNNs
from a small size can be promisingly used to continually
build resource-efficient DNN structures for on-device train-
ing and inference. However, two critical challenges exist
when applying CG on mobile devices. Firstly, the growth
strategy in CG is simple and inefficient (e.g., linear or
near-exponential), hence it may still lead to a relatively
large or over-parameterized model. In addition, since CG
grows all layers of a model with the same growth rate,
the model structure may contain large redundancy between
layers. Although pruning may bring down the size, this
process is inefficient in practice and currently unsupported
on commodity mobile devices. Furthermore, CG controls
the growth by pre-setting a fixed resource threshold, i.e., re-
source budget, however it cannot handle dynamic resource
changes on mobile devices in reality.

Secondly, CG adopts knowledge transfer (KT) to fast
adapt new-borns (i.e., new added neurons, channels or
layers) by transferring existing learned parameters, which
effectively saves resources [22]. However, when applied
to resource-constrained devices, CG does not guarantee
training convergence during growth. The convergence rate
(i.e., training loss rate) is a nontrivial metric to indicate
the speed of training and a strong indicator to resource
usage on mobile devices. Hence, such slow convergence in
CG (Section §2) severely degrades the training performance
on commodity smartphones and leads to inevitable resource
overhead.

Our Approach To address the limitations of CG and
move towards MDL, in this paper we present MDL-
droidLite1, a novel on-device DL framework to sup-
port privacy-preserving PMS applications. MDLdroidLite is
able to fully operate DL on commodity smartphones for
both training and inference. This capability is essentially
achieved by our proposed dynamic fast-grow control to
transform traditional DNNs into resource-efficient model
structures running on mobile devices with negligible ex-
tra cost. In addition, given different datasets and DNN
configurations, MDLdroidLite can dynamically control the
growth of DNNs and train a dataset simultaneously in a
resource-efficient way (i.e., less model parameters, memory
footprints, FLOPs and fast new-borns adaptation).

Our challenges are two-fold. To optimize DNNs for mo-
bile devices, we propose a novel Release-and-Inhibit Control
(RIC) approach that efficiently manages the growth of DNN
model structure in layer-level (i.e., each layer can grow
independently). Different from CG [16], [20] that grows
DNNs inefficiently to overparameter and prunes later to
the backbone, our key idea is to manage the growth wisely

1. https://github.com/CPS-MDL/MDLdroidLite
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from tiny to backbone so that we can avoid large redun-
dant resource overhead. We specifically design a resource-
constrained controller, named RIC-grow, based on the Model
Predictive Control (MPC) theory, to manage the growth
of DNNs in a single trajectory. In addition, we propose a
layer-level, compete-decay growth model (§3.1.3) to predict
the optimal grow-value for each grow-step, which effi-
ciently assists the controller to make decisions (e.g., whether
growing or not and how many neurons). Conceptually, our
approach works similar to human brain’s hypothalamus
that produces Releasing and Inhibiting hormones to help
human body grow healthily [23]. Built upon RIC-enabled
DNNs, MDLdroidLite can facilitate efficient training and
inference on commodity smartphones with significantly-
reduced resource overhead.

As aforementioned, slow convergence in CG is caused
by the large variance of neurons after each growth. MDL-
droidLite aims to minimize the variance for fast conver-
gence by adapting new-born neurons quickly with existing
neurons. To achieve, we design a gate-based fast adaptation
mechanism for channel-level knowledge transformation in
each layer, namely RIC-adaption pipeline. Different from
CG, RIC-adaption pipeline uses a variance optimization
function for efficient adaptation. Safe parameter adaptation
is achieved by two proposed techniques–three-step distance-
based selective parameter adaptation (DSPA) (§3.2.1) and
gate-based coordination unit (GCU) (§3.2.2). Systematically,
we first employ a cosine similarity-based parameter selec-
tion function to select a group of existing neurons that has
a small variance. Next, we apply a model weight scaling
function to scale down the selected parameters to new-born
neurons for preserving the current loss. We then use a layer-
to-layer mapping function to map new-born neurons of the
subsequent layer in the same way to maintain the prior-
subsequent layer shapes. Finally, we propose a momentum-
based optimization function to minimize and coordinate the
variance between the new-born and existing neurons using
GCU. In a nutshell, RIC-adaption pipeline allows a notable
fast convergence rate for each grow-step, hence speeding up
on-device training.

We fully implement MDLdroidLite using two DL li-
braries, and conduct comprehensive evaluations on three
off-the-shelf Android smartphones using 4 PMS datasets
and 2 standard image datasets. MDLdroidLite outperforms
existing parameter adaptation methods by speeding up
training convergence 2.84× to 4.88×. The backbone mod-
els in MDLdroidLite achieve parameter reduction by 28×
to 50×, FLOPs reduction by 4× to 10× over a full-sized
model on PMS datasets while keeping the same accuracy
level. In MDLdroidLite+, we notably improve the system
performance in terms of growth convergence stability and
resource-accuracy efficiency.

Our main contributions are summarized as follows.
• To the best of our knowledge, MDLdroidLite presents the

first on-device structure learning framework that enables
resource-efficient DNNs on off-the-shelf mobile devices,
capable of building the privacy-preserving PMS applica-
tions.

• We propose a novel Release-and-Inhibit Control (RIC)
approach, particularly a compete-decay model-based
resource-constrained controller to manage the efficient

growth of DNNs.
• We design a gate-based fast adaptation mechanism, i.e.,

RIC-adaption pipeline, to efficiently adapt new-born neu-
rons with existing neurons for fast convergence.

• We evaluate MDLdroidLite on Android smartphones with
a number of DNNs using real-world PMS datasets. Re-
sults indicate that MDLdroidLite makes DNN model
structure resource-efficient for on-device training and in-
ference, outperforming the state-of-the-arts.

Implication MDLdroidLite moves an important step
towards the promising MDL paradigm, and bridges the gap
between DL and PMS applications for mobile devices. With
on-device learning, MDLdroidLite will facilitate the build-
ing of a wide range of privacy-preserving PMS applications.
In addition, with continual learning, MDLdroidLite will
generate personalized models directly on smartphones, im-
proving interactivity efficiency with individuals. While this
paper primarily focuses on enabling DL on mobile devices
for PMS applications, to further extent, MDLdroidLite can
be applied to other embedded and Internet of Things (IoT)
devices for intelligent edge systems and IoT applications.

2 MOTIVATION

To discover the limitations of existing DL solutions for PMS
applications, we conduct four preliminary experiments for
on-device training and inference to motivate our proposal.
The results are summarized as follows.
• Training with full-sized DNNs is very costly on resource-

constrained smartphones, and may not be practical if no
efficient solutions introduced.

• Applying pre-trained models to PMS applications may
have severe poor performance. The underlying impedi-
ment is that the data from different users are naturally
heterogeneous in reality, e.g., non-independent and iden-
tically distributed (non-IID) personal data problem [24],
and the generalization of the pre-trained models may be
highly affected by this problem.

• Due to local scenario change (e.g., stationary-to-movement
change) in reality, new or unseen data may have severe
impact on the performance of existing models (e.g., pre-
trained models). To tackle the poor model performance,
continual on-device training may potentially work in PMS
applications.

• The existing CG solutions (i.e., NeST [16] and CGaP [20])
suffer from a notable slow convergence issue and incur
significant resource overhead, which may not be practical
for resource-constrained training on mobile devices.

Please refer to our conference paper [25] for the details of
these experiments.

3 MDLDROIDLITE FRAMEWORK

In this section, we present the system architecture of MDL-
droidLite shown in Fig. 1 and its workflow shown in Fig.
2. We also describe the proposed RIC approach in detail
including RIC-grow and RIC-adaption pipeline.

3.1 Release-and-Inhibit Control Approach
Conventionally, a DNN structure with specific dataset is
optimized manually by domain experts on the basis of trial-
and-error. Towards automatic DNN structure optimization,
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Neural Architecture Search (NAS) has been recently pro-
posed to utilize searching (i.e., evolutionary algorithm based
grid search [26]) and controlling (i.e., Reinforcement Learn-
ing (RL) based structure control [27]) approaches to achieve
efficient DNN structures. However, these approaches either
suffer from intractable searching space or heavy extra train-
ing of control models, leading to tremendous computational
cost [28], which are impractical for mobile devices.

MPC as a model-based control technique has been pro-
posed to intuitively optimize the dynamic system states (i.e.,
system’s future actions) with a set of control constraints
leveraging a finite-horizon formulation [29]. Due to the
nature of less computation required for model tuning in
MPC, yielding notable control performance, it has been
widely applied in autonomous vehicle and mobile robotic
domains to solve real-world control problems. Inspired
from constructive structure learning, our basic idea is to
introduce MPC-based dynamic growth control to transform
traditional DNNs into resource-efficient structures for on-
device learning.

Towards training T (·) a typical feed-forward DNN, the
underlying optimization problem is to minimize the batch
loss L measuring between the outputs transformed from
input data x and the given labels y (i.e., x, y ∈ D), as shown
below.

min
W,b
T (D, φ) =

1

m

m∑
i=1

L(Wᵀx + b, y), s.t.W, b ≥ 0 (1)

whereD and φ denote a given dataset and its full-sized model
configuration, respectively, and m represents the batch size.
Besides, both W as weights and b as bias are the model
parameters. For each hidden layer l = {li, i = 1, 2, ..., L+1}

TABLE 1: Model configuration specifications
DNNs Configuration (Type/Stride/Padding/BN) Tiny Structure
LeNet [30] Conv1/S1 ∈ [1, 20] → Pool/S2 →

Conv2/S1 ∈ [1, 50] → Pool/S2 → FC ∈
[1, 500]→ Output

[2-5-10-Output]

MobileNet [31] Conv1/S2 ∈ [1, 32] → ConvDW1/S1 ∈
[1, 32] → ConvP1/S1 ∈ [1, 64] →
ConvDW2/S2 ∈ [1, 64] → ConvP2/S1 ∈
[1, 128] → ConvDW3/S1 ∈ [1, 128] →
ConvP3/S1 ∈ [1, 256] → AvgPool →
Output

[3-6-12-25-
Output]

VGG-11 [32] Conv1/S1/P1/BN ∈ [1, 64] → Pool/S2 →
Conv2/S1/P1/BN ∈ [1, 128] →
Pool/S2 → Conv3/S1/P1/BN ∈
[1, 256] → Conv4/S1/P1/BN ∈ [1, 256] →
Pool/S2 → Conv5/S1/P1/BN ∈
[1, 512] → Conv6/S1/P1/BN ∈ [1, 512] →
Pool/S2→ Conv7/S1/P1/BN ∈ [1, 512]→
Conv8/S1/P1/BN ∈ [1, 512]→ Pool/S2→
Output

[6-12-25-25-50-
50-50-50-
Output]

(a) (b)

Fig. 3: (a) Correlation between loss reduction and structure
growth; (b) Non-linear correlation between structure growth
and growth score in a layer.

in the DNN, the input channel size as fan in and output
channel size as fan out of each layer l is defined as I l and Ol

in φ, respectively. Hence, the structure shape of l denotes
as I l × Ol × KH l × KW l in a convolution layer, and
I l × Ol in a fully-connected layer, where KH and KW
denote kernel height and kernel width, respectively. When
relating to resource usage, a large shape of l represents a
large number of model parameters, memory footprints and
FLOPs. In short, a DNN model structure is simply defined
as an array of Ol, e.g., array [20-50-500-10] represents a full-
sized LeNet as shown in Table 1.

To observe the correlation between loss minimization
and structure growth, we train a LeNet on MNIST with
reduced scales (e.g., 10%, 30%, 50%, 70%) of the full size
shown in Fig. 3a. The result in the zoom-in figure indicates
that the loss is monotonically decreased when the structure
size increases. Our observation is that the reduction rate of
loss gradually reduces as the structure size increases, even
the loss of 50%Size is nearly equal to that of Full Size,
resulting in the same level of accuracy. Intuitively, large
resources can be saved if the growth of model structure is
properly controlled to a ”fit” size without accuracy drop. To
this end, we propose a novel RIC approach to optimize the
DNN structure under resource constraints and speed up on-
device training in layer-level. Specifically, RIC includes two
components–RIC-grow which controls structure growth by
competing the growth values of release and inhibit decisions
(i.e., structure growing or structure staying respectively) in
each layer, and RIC-adaption pipeline which enables fast
training convergence after growth.

To formulate our problem, we define that Al =
0, 1, ..., Ol is a set of control actions representing the growth
number in Ol (i.e., the fan out of each layer in full-sized φ).
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The current fan out of each layer is denoted as o ∈ Ol, and
each action is denoted as a ∈ Al, where a is limited up
to o (i.e., maximum growth of double times o) for effective
parameter transfer adaptation. Especially, I is denoted as
inhibit decision if a = 0, andR is denoted as release decision
if a > 0. Also, we let θ denote a structure array of Ol, and π
denote a control action array ofAl. The growth step is defined
as t in a set of T = 1, 2, ..., N representing each training
epoch, where N is a given maximum epoch. Practically,
we optimize the structure θ at each grow-step t. Thus, our
growth control optimization is formulated as follows.

arg min
πt

min
W,b
T (D, θ◦), s.t. θ ∈ φ, πt ∈ RIC(t)

θ∗ = θ◦ +

N∑
t=1

πt, πt = [al1t , a
l2
t , ..., a

lL
t ], alt ∈ [0, olt]

(2)

whereRIC(·) denotes a dynamic control constraint model. In
formal terms, given a tiny structure θ◦ and a specific dataset
D on device, our main objective in Eq. 2 is to transform
the structure to a resource-efficient backbone structure θ∗

controlled by a set of growth control decisions πt (i.e., subject
to RIC(t)) through grow-step N along with the training
objective T (·) simultaneously. Since MDLdroidLite is an on-
device structure learning framework, we focus mainly on
controlling the growth of layers’ fan out Ol in a resource-
efficient way.

3.1.1 Resource-Constrained RIC-grow
In MDLdroidLite, the control constraint model RIC in Eq.
2 is defined as a Markov tuple (O, T,A, P,R), where the
fan out of each layer Ol and the grow-step T are discrete
state variables, P l is a stochastic state transition model, and
R is a resource-constrained reward function shown in Eq. 5.
The control model state s ∈ Sl is denoted as a pair of (t, o),
s◦ denotes the initial state at each grow-step, and s′ = (t′, o′)
denotes a future state transiting from the state s by control
action a, where o′ = o + a and t′ = t + 1. Given K as the
size of finite-horizon time window, RIC-grow optimizes the
control actions within the horizon area t → t + K at each
grow-step. As a result, the layer-level control decision value
function Vl(s) is formulated based on Bellman equation [33]
as:
Vl(s) = max

a∈{R,I}
[Bernoulli(pl, s, a, s′)(Rl(s, a, s′) + γVl(s′))] (3)

where γ denotes a value discount factor (e.g., 0.5 as default).
To reduce the computation cost of Vl(s), we employ a
Bernoulli(·) [34] as default transition model to randomly
dropout some actions during recursive optimization, where
pl is a pre-set probability for all actions (e.g., 0.5 as default).
Practically, RIC-grow makes each optimized control deci-
sion by solving max{Vl(s)|R,Vl(s)|I} to achieve the ”fit”
size for each layer, as shown in Algorithm 1.

In training process, RIC-grow is called after each training
iteration. The growth of each layer li ∈ L is individually
controlled by Vl(s) with a given time window size K and
a list of size o control actions, hence the time complexity
of RIC-grow is theoretically represented as O(LKo2). In
practice, as both time window size K and layer size L are
initialized as constant, the time complexity can be simplified
to O(n2). In addition, since applying Bernoulli(·) with a
0.5 dropout rate can effectively reduce the size of control

actions, the actual time complexity of RIC-grow will remain
as efficient for on-device learning.

3.1.2 Growth Cost Constraints
In the control decision value function, we consider two
typical resource constraints of DNNs, the number of model
parameters (i.e., size of neurons) and the number of FLOPs
for each layer, which may actually affect on-device memory
footprints, battery consumption, training time and infer-
ence latency. We associate a Flopsl(s) function [35] with
a Sizel(s) function to dynamic calculate the growth cost of
each layer representing Cl(s) shown as:

Cl(s) =(1− β)Flopsl(s) + βSizel(s) (4)

where β denotes a normalization coefficient between both
functions. Since the convolution layer mainly contributes
the number of FLOPs (e.g., 82.55% in a full-sized LeNet), and
the fully-connected layer has a larger parameter size (e.g.,
94.06% in a full-sized LeNet), we set β to 0.2 in convolution
layers and 0.8 in fully-connected layers to normalize the to-
tal growth cost. We hence propose the resource-constrained
reward function Rl(s, a, s′) formulated as a growth state-
value function Gl(s, a, s′) constrained by a related growth
state-cost function Cl(s, a, s′) formulated as:

Rl(s, a, s′) =
Gl(s, a, s′)

Cl(s, a, s′)
=

∣∣Gl(s)− Gl(s′)∣∣
Cl(s′)
Cl(s) + Pl

=

∣∣Gl(s)− Gl(s′)∣∣
1 + ηled(s

′,s◦)(
Cl(s′)
Cl(s) − 1)

(5)

where the growth state-value is calculated as a growth value
difference between states, in which the growth values are
predicted using a compete-decay growth model Gl(s) in Eq.
8. Also, the growth state-cost is extended as a scale of
the incremental cost between states using the growth cost
function Cl(s) in Eq. 4 with P l denoted as a penalty function
detailed in Section 3.1.5.

3.1.3 Compete-decay Growth Model
Since RIC-grow optimizes structure growth based on a
dynamic model-based MPC, the growth model Gl(s) in
Eq. 5 plays a vital role to ensure the resource-constrained
control performance. To build the structure growth model,
we first apply saliency metric analysis (e.g., L1/L2 weight
normalization) [36] to approximate the importance of dif-
ferent structure components (i.e., layers and channels), and
heuristically predicting the growth values after both release
and inhibit control actions. Since the saliency metric is
widely used in pruning tasks with fair performance [37],
it is an efficient way to track the dynamic changes of
layers and channels during the training optimization in Eq.
2. Different from the analysis of correlation between loss
and specific component removal in pruning, we mainly
analyze the direction of weights’ gradient changes for each
component through the loss reduction aiming to predict po-
tential structure growth values within a finite-horizon time
window. Based on L1 normalization of component weights
[36], we combine the weights’ gradients processed in Back-
propagation (BP) to compute dynamic saliency metric of
layers and channels, formulating as layer saliency score Sl
and channel saliency score CSli in Eq. 6, hence the direction
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vector of weights’ gradients changes is represented as a set
of saliency scores. To formulate the correlation between a set
of saliency score and loss reduction in each layer, we utilize
a cosine similarity function as Cosim(·) [38] to normalize
both vectors, marking as growth score GSl formulated as
GSl = Cosim(Sl1:n,L1:n).

Sl =

O∑
i=0

(CSli) =

O∑
i=0

(

I∑
j=0

KH∑
kh=0

KW∑
kw=0

∣∣∣∣∂L(Wᵀx + b, y)

∂Wl
Wl

∣∣∣∣) (6)

where n denotes a unit size of direction vector (e.g., 5 as
default).

To explore the correlation between structure growth and
the proposed growth score in each layer, we next present the
preliminary results using the five trained LeNets on MNIST.
In Fig. 3b, the growth scores of five layer structures not only
demonstrate as monotonic non-linear decay along with loss
reduction, marking as Decay-Stay (DS) (i.e., growth score
decay with structure staying), but also show a vertically
monotonic decay along with increase of the structure sizes.
Especially, the decay rate of growth scores vertically slows
down as layer structure size increases, which also represents
as monotonic non-linear decay about growth score, marking
as Decay-Grow (DG) (i.e., growth score decay with structure
growing). The results indicate that layer structure is able to
be individually controlled based on its dynamic growth score
to efficiently save resources. Conceptually, the red dash line
presents a potential structure growth path about growth
score by transiting growth state every 12-epoch. Based on
the observation, the way of using both non-linear decay (i.e.,
DS and DG) can empirically cover both horizontal and
vertical growth state transitions in RIC-grow, hence the
structure growth model can be theoretically proposed as a
composition of both non-linear models, named a compete-
decay growth model as Gl(s) = F(DSl(s), DGl(s)), helping
RIC-grow controller make each R|I decision by competing
the predicted growth values of Decay-Grow and Decay-Stay
in layer-level.

To solve both DSl(s) and DGl(s), we utilize a typical
decay exponential model Dl(x) = abx + c to represent,
where a ∈ (0, 100), b ∈ (0, 1), c ∈ (0, 10), and x denotes
a set of sample growth scores. Practically, we apply non-
linear regression by solving mean square error (MSE) [39] to
fit the proposed models in Eq. 7. Since RIC-grow collects
growth scores GSl of each layer at each grow-step, the
model parameters (i.e., a, b, and c) of DSl(s) can be con-
tinually tuned to ensure the performance. However, since
the structure is controlled as a single instance, the model
parameters of DGl(s) may not be able to converge due
to insufficient growth scores between state transition. For
this, we propose a Triplet Decay Array (TDA) formulated as
TDAl = [DSl(s(t, o−a2)), DSl(s(t, o−a1)), DSl(s(t, o))]
to record three latest DSl with the growth states transited
by release actions (i.e., two past states and current state with
different Ol), aiming to provide sufficient growth scores
between state transition to fitDGl(s) with minimal resource
cost. The composed formulations are shown as follows.

arg min
a,b,c

3∑
i=1

(DGl(s)− TDAl[i])2 (7)

Gl(s) =
[
DGlt(s) ... DGlt+K(s)

]
(8)

Release  Inhibit Predicted Decay-S Predicted Decay-G

Grow

Future

Past

TDA Window Decision Window Finite-horizon Area
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Fig. 4: RIC-grow control workflow in a layer.

where the model parameters of DGl(s) are tuned using
TDA. Practically, RIC-grow requires to take two release
actions at the beginning of training as warm-up to set-up
TDAl and DGl(s). As a result, the proposed compete-decay
growth model Gl(s) is composed of multiple DGl(s) within
the t + K time finite-horizon area. For each grow-step,
the outputs of Gl(s) can be represented as a growth value
matrix named G-table to contribute in control decision value
optimization in Eq. 3. Fig. 4 demonstrates the workflow of
RIC-grow using the proposed growth model in a layer. In
addition, both TDA and growth model are updated by the
latest growth scores as feedback to ensure the growth value
prediction performance, and TDA window moves to the
latest growth state before next control decision.

3.1.4 RIC Convergence
Since existing CG works [16], [20], [21] have proved the
training convergence (i.e., monotonic loss reduction guaran-
tee) during the DNN structure growth, our work is based
on the ground to offer a layer-level resource-constrained
growth control. For the idea of our RIC approach, keeping
inhibit represents a standard learning process (i.e., no struc-
ture growth) with a stable loss reduction, while performing
release achieves a faster loss reduction due to the structure
growth, but the decay rate of loss reduction monotonically
turns to small until nearly ”flat” when reaching a global
minimum (i.e., loss convergence). Besides, since the reduc-
tion of growth score GSl by both actions refers to the loss
reduction and performs as similar, the growth state-value
Gl(s, a, s′) in Eq. 5 also turns to converge along with the loss
convergence. Therefore, constrained by the growth state-cost
Cl(s, a, s′) in the reward function, the control decision value
function Vl(s) in Eq. 3 performs as convex and converges to
keeping inhibit (i.e., a = 0), as shown below.

Gl(s∗, a, s′)

Cl(s∗, a, s′)
+ γVl(s′) ≤ Gl(s∗, 0, s′) + γVl(s′), a ∈ [0, o] ∩ pl (9)

where s∗ denotes an optimized state (i.e., achieving a
resource-efficient backbone structure θ∗) when RIC is con-
verged.

3.1.5 Dynamic Penalty Function
The penalty function P l in Eq. 5 can efficiently work to
reinforce constraints and avoid redundant growth. How-
ever, our previous penalty function is designed as a fixed
penalty regulator with manual set-up, which may not han-
dle dynamic growth scenarios well. Since growth values are
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dynamically predicted by the growth model Gl(s) in Eq.
8, our observation is that the error rate of the prediction
for next state s′ may exponentially increase along with the
increase of spatial distance between s′ and s◦ during finite-
horizon optimization, yielding sub-optimal control perfor-
mance and unstable growth convergence. To achieve a fair
control performance, we first design an exponential sub-
equation ed(s

′,s◦) to efficiently reinforce the growth cost
constraint, aiming to mitigate the effect of the error rate
shown in Eq. 5, where d(s′, s◦) denotes as the distance
between s′ and s◦, and ηl denotes as the penalty regulator to
enlarge or reduce penalty effect for each layer. To stabilize
growth convergence, we next extend penalty regulator ηl

to a momentum-based dynamic function in Eq. 10, aiming
to gradually enlarge the penalty effect for a stable growth
performance.

ηl(t+ 1) = ηl(t) + ξ ReLu(∆Gl(t− 1)−∆Gl(t)), η ∈ (0, 1] (10)

where ξ denotes a coefficient (e.g., 0.05 by default). The
increment of ηl represents the penalty effect enlargement.
Since growth acceleration (i.e., the gradient between prior and
current growth value gradients) is a fair metric to indicate
growth convergence performance, our intuition is that we
dynamically enlarge ηl along with the changes of the growth
acceleration, regulating the penalty effect to enhance conver-
gence. In Eq. 10, we define that once the growth acceleration
turns positive (i.e., the growth turns to converge), ηl will be
increased by the acceleration to enlarge the penalty effect
until being stable. We also apply a ReLu function to filter
the condition where the growth acceleration presents as
negative.

3.1.6 Reverse TDA Update
Since TDAl records three latest DSl to provide sufficient
growth gradients between state transition to fitDGl(s) in Eq.
7, it is critical to update TDAl to ensure the growth predica-
tion performance of growth model Gl(s). We discover some
limitations in our previous feedback update mechanism of
TDAl. After making growth decisions at the t iteration, the
states of all layers transit to the next t+1 iteration. We then
train the model with m batch data, and collect the latest
growth scores GSl

m(t + 1) as feedback to update TDAl, but
the states of the three DSl in TDAl still stay at t. Although
we can use GSl

m(t + 1) to update the third record DSl(t)
when taking a I decision or tune a new DSl(t + 1) when
taking a R decision, the prior two records may not be able
to update due to different fan out ol (i.e., different layer
structures). Through our experiments, we observe that the
state transition gradients may become larger over iterations
due to the lack of a complete TDAl update, leading to sub-
optimal growth convergence (i.e., the model may ”over”
grow). Alternatively, we can force to completely update all
records in TDAl by GSl

m(t + 1), but the result presents
that the gradients may be tuned smaller or even vanishing,
yielding insufficient growth to achieve a degraded accuracy.
To fully update TDAl and reserve the state transition gra-
dients, we propose a reverse TDA update mechanism based
on a gradient-scale function formulated as:

GSlm(t+ 1, õ) = min{
DSl(t+ 1, õ)

DGl(t+ 1, o)
,

GS
l
m(t, õ)

GS
l
m(t+ 1, o)

}GSlm(t+ 1, o)

(11)

where õ denotes the layer fan out in a prior record in
TDAl. Since we target to update prior records with different
fan out, the basic idea of the mechanism is: 1) the gradient-
scale function is used to ”transform” the latest growth scores
GSl

m(t+1, o) to fit a prior record using the predicted gradi-
ent scale at the t+1 iteration (i.e.,DSl(t+1, õ)/DGl(t+1, o));
2) the mechanism will reversely update the next prior record
using the function based on the transformed growth scores,
aiming to reserve the gradients between records in TDAl. In
addition, since both DSl(s) and DGl(s) are monotonically
non-linear decay, the mean of the transformed growth scores
should be less than that of the prior collected growth scores
as ground truth, hence the gradient-scale should be not
greater than the mean gradient scale between the prior and
latest collected growth scores (i.e., GS

l
m(t, õ)/GS

l
m(t+1, o)

as an upper bound). Thus, we define that the gradient-scale
is the minimum between the predicted and collected scale
in Eq. 11.

3.1.7 Layer-to-layer Growth Constraint
RIC-grow is designed to enable layer-level DNNs growth
control, and each layer based on its growth model Gl(s)
can individually grow in a resource-efficient way. Since run-
time low-latency is a critical efficiency metric of on-device
inference for real-world PMS applications, RIC-grow aims to
optimize DNN structure with minimal FLOPs to achieve an
efficient on-device inference. However, through our experi-
ments, we observe that the optimized structure may achieve
sub-optimal FLOPs performance due to the lack of layer-
to-layer growth constraint. Since the prior layer growth
will indirectly lead to the subsequent layer growth to keep
the layer-to-layer input shapes, individually calculating the
FLOPs of each prior layer growth as constraint may not be
able to represent that of the layer-to-layer growth, yielding
inferior growth performance and extra latency for on-device
inference. To optimize the DNN structure with minimal
FLOPs, we propose a layer-to-layer cost function on top of
layer-level growth control, which is formulated as:

arg max
πt
′

∑L
i=1 Gli (s)

Flops(θt+πt)
Flops(θt)

, s.t. πt = [al1t , a
l2
t , ..., a

lL
t ], a

li
t ∈ {a, 0} (12)

where θt denotes the current DNN structure, and πt denotes
an optimized set of all layer growth actions alit . Since the
layer-level growth control in Eq. 3 outputs a πt at each
iteration, we ”re-apply” the R|I decision for each action
alit (i.e., each action either holds to grow or drops to 0) to
rearrange πt as different growth action combinations. Our
objective is to find the ”best” combination πt

′ to fit the
cost function in Eq. 12 with the maximum decision value.
Since the sum of the all layers’ growth values is re-subject
to the layer-to-layer growth FLOPs, all ”best” combinations
through growth can eventually contribute to a resource-
efficient model structure with minimal FLOPs, resulting in
low-latency on-device inference.

3.2 RIC-adaption Pipeline
The aforementioned issue of slow training convergence may
incur considerable resource overhead on mobile devices. To
further understand this issue, we use the proposed channel
saliency score CSli in Eq. 6 to analyze the two existing
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(a) (b)

Fig. 5: Variance of neuron saliency scores in a layer after each
growth: (a) Spiking and enlarged variance using CGaP; (b)
Large variance in channel-level using NeST.

CG methods and compare them with the full-sized model.
Fig. 5a shows that the score variance using CGaP [20],
representing as the shadow area on the line, is much larger
than training a full-sized model around each growth mark,
and the mean of the scores is way larger than that of the
full-sized model especially at early-middle time stages.

One of our key observations reveals that the variance
of channel saliency scores in each layer presents a notable
effect of enlargement on both CG methods. Also, the channel
saliency scores of CGaP continually demonstrate the strong
spiking issue throughout the model growth, resulting in the
degraded spiking loss. Such unsafe loss reduction leads to
a serious accuracy drop after each growth. Similarly, Fig.
5b presents a detailed channel saliency score comparison
after each growth using NeST [16]. The results indicate
that the new-born channels of each growth perform much
less importance, leading to large score variance between
channels. Theoretically, the increased risk of large variance
between channels in CG methods has a strong impact to
the distribution of model parameters, and makes the model
highly sensitive to input, resulting in unstable loss reduction
(i.e., spiking loss) and poor model generalization (i.e., accu-
racy drop) to slow down the convergence rate [38], [40].
Thus, the existing KT adaptation approaches in CG largely
increases the risk of large variance in channel-level, yielding
unsafe parameter adaptation and slow training convergence
under resource-constrained conditions.

Batch Normalization (BN) [41] has been widely applied
in various DNN structures to speed up training, but it may
not work well on resource-constrained mobile devices. To
evaluate resource efficiency of BN on mobile devices, we
train both MobileNet on HAR and VGG-11 on CIFAR-10
with different batch size conditions. Our observation is that
applying BN on device causes extra resource overhead for
both training and inference, and accuracy highly relies on
the batch size, e.g., 93.01% with batch-32 but 96.09% with
batch-64 using MobileNet on HAR. Although BN works
well on large-scale VGG-11, it may not be resource-efficient
to small-scale MobileNet, e.g., MobileNet on HAR can still
achieve a fair accuracy on 95.55% without using BN.

To address the aforementioned issues and achieve re-
source efficiency for KT adaptation, we propose RIC-
adaption pipeline with two unique techniques–three-step
distance-based selective parameter adaptation (DSPA) and
Gate-based Coordination Unit (GCU). Our basic idea is to
first safely adapt existing-to-new (i.e., transferring existing
parameters to new-born parameters) in growth, and then

(b)
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Fig. 6: RIC-adaption pipeline in channel-level: (a) Layer-to-
layer parameter selection, scale and mapping; (b) Existing-
to-new channel coordination in a layer.

gradually coordinate the variance of existing-to-new within
the next training epoch.

3.2.1 Three-step Selective Parameter Adaptation
To safely adapt existing-to-new without accuracy drop
in each growth, we propose three parameter adaptation
methods–parameter selection, scale, and mapping between
prior-subsequent layer. Firstly, we select the number of
existing channels Wl

Select with a small variance and mean
of saliency scores, and prepare to transfer them to new-born
channels. Secondly, we propose a safe parameter scale func-
tion formulated in Eq. 13 to preserve the current loss reduc-
tion without accuracy drop. Combining with the parameter
selection, the parameters of new-born channels Wl

New can
be transferred by Eq. 14, where N denotes a small amount
of noise initialized by a uniform distribution U , and µ sets as
1. Thirdly, we map selected channel indexes in prior layer to
subsequent layer to select the related channels, and transfer
using the same way in Eq. 14 in subsequent layer.

Scalel =

√
Il Std(Wl

Ex)
√

3
(13)

Wl
New =

Wl
Select

Scalel
+N l, N ∈ U [−µ, µ],Wl

Select ∈Wl
Ex (14)

where Wl
Ex denotes the parameters of existing channels.

As a result, Fig. 6a illustrates the workflow of these three
methods. Please refer to our conference paper [25] for the
detailed design of the three-step DSPA.

3.2.2 Gate-based Coordination Unit
To coordinate the variance of existing-to-new after growth,
we design GCU as a separate matrix followed up each layer
shown in Fig. 6b to enable fast convergence and speed up
training. In Eq. 6, the channel saliency score consists of
channel weights and gradients, therefore we decompose the
variance of the scores coordination into two tasks–weight
variance reduction and gradient based variance coordina-
tion. To handle weight variance reduction, we apply meta
gate as weight regulators (i.e., MetalEx and MetalNew) to
gradually reduce the weight variance between existing and
new-born channels in forward pass. Besides, we employ RI
gate as a gradient regulator (i.e.,RI lEx andRI lNew) to perform
gradient based variance coordination. We first design the
coordination objective function as minRIl

∣∣∣CSlEx − CS
l
New

∣∣∣.
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We next propose a momentum function in Eq. 15, where m is
batch size, to improve the minimization as fast and stable. In
practice, both RI lEx and RI lNew are dynamically optimized
to minimize the objective function using Eq. 16 within the
current training epoch, resulting a stable gradient descent
with fast training convergence.

Vl(m) = λVl(m− 1) + (1− λ)(CSli(m)− CSli(m− 1)) (15)

RIl(m+ 1) = RIl(m) + α̂Vl(m), RIl ∈ [
1

2Scalel
, 2Scalel] (16)

where α̂ denotes a signed unit vector, and λ denotes a
momentum coefficient (e.g., 0.95 by default). Please refer to
our conference paper [25] for the detailed design of GCU.

In short, the RIC algorithm is illustrated in Algorithm 1.

Algorithm 1 RIC Approach Algorithm
1: Initialize: training dataset D, the number of training iteration N ,

the size of finite-horizon time window K
2: procedure RIC-GROW(D, N , K)
3: θ ← Build a tiny model θ◦ or re-load an existing model
4: while Training iteration t < N do
5: for Batch iteration m do
6: Call RIC-GATE(m ∈ D, θ, List Scale) to train a batch
7: List GS ← Collect all layers’ growth scores
8: for Layer li ∈ L do
9: if TDAl warm-up then

10: Reverse update TDAl using List GS by Eq. 11
11: Update the growth model Gl(s) by Eq. 7 and 8
12: πt ← optimized growth action alit by Eq. 3
13: Update the penalty regulator ηl by Eq. 10
14: if πt 6= ∅ then
15: πt ← optimized layer-to-layer growth by Eq. 12
16: else
17: πt ← a set of small growth-unit for warm-up
18: Call RIC-ADAPTION(θ, πt) to model growth;
19: Save resource-efficient model θ∗ for on-device inference
20: procedure RIC-GATE(m ∈ D, θ, List Scale)
21: for Layer li ∈ L do
22: Calculate feature maps xl by Forward pass
23: if li growth then
24: xl ←Metal xl then uniformly decay MetalEx
25: Calculate the loss L
26: for Reverse layer li ∈ L do
27: Calculate gradients gl by BP
28: if li growth then
29: Minimize variance using RIlEx and RIlNew by Eq. 16
30: procedure RIC-ADAPTION(θ, πt)
31: for Layer li ∈ L do
32: if alit ∈ πt > 0 then
33: Select alit existing channels ”close” to the lowest CSli
34: Calculate Scalel by Eq. 13 and List Scale← Scalel

35: Transfer to Wl
New by Eq. 14 and Wl

Ex ←Wl
Ex/Scale

l

36: Map to subsequent layer and transfer by Eq. 14

4 EVALUATION

In this section, we first describe the implementation of MDL-
droidLite. We then design three sets of experiments to com-
prehensively evaluate the performance of MDLdroidLite on
several commodity smartphones using a range of datasets.
The first set evaluates the performance of RIC-adaption
pipeline compared with existing parameter transfer adap-
tation baselines. The second set compares the performance
of MDLdroidLite with existing CG and search methods,
also evaluates the improvements of MDLdroidLite+. The
third set examines the resource-accuracy efficiency of MDL-
droidLite+ in real-world use scenarios.

Fig. 7: MDLdroidLite screenshot: (a) Smartwatch gesture
input and on-device inference; (b) On-device training.

TABLE 2: PMS & Image dataset specifications
Datasets Type Task Class Sample Rate #-C #-H×W #-KH×W #-TR #-TE
sEMG [43] EMG GR 6 14695 50Hz 8 1×100 1×12 41.3MB 10.3MB
MHEALTH [44] IMU HBM 9 3255 50Hz 23 1×100 1×12 41.9MB 18MB
HAR [45] IMU ADLs 6 10299 50Hz 9 1×128 1×14 67.8MB 27.2MB
FinDroidHR [9] IMU&HR GR 6 2520 100Hz 7 1×150 1×14 15.6MB 2.6MB
MNIST [30] IMG IR 10 70000 NA 1 28×28 5×5 15MB 2.5MB
CIFAR-10 [46] IMG IR 10 60000 NA 3 32×32 3×3 113MB 23MB

4.1 MDLdroidLite Implementation

We implement MDLdroidLite based on two DL libraries–
DL4J version 1.0.0-SNAPSHOT and PyTorch version 1.4.0.
Specifically, we modify the source code of training flow
and building DNN structure for both DL libraries. We ap-
ply our implementation on three off-the-shelf smartphones
purchased in the past four years shown in Table 3. To
simplify the usage scenario of MDLdroidLite with differ-
ent model configurations, we implement the RIC approach
as a separate layer. After loading a model configuration,
MDLdroidLite will easily add a RIC layer between each
hidden layer (i.e., convolution layer and fully-connected
layer) and subsequent BN or ReLU layer to enable both RIC-
grow and RIC-adaption pipeline. To demonstrate the use of
MDLdroidLite in real-world PMS applications and evaluate
its end-to-end performance, we develop an application to
recognize hand gestures using smartwatch based on the
work done in [9]. In practice, MDLdroidLite applies an
early stop strategy [42] that can stop the training early if no
more higher resource-accuracy trade-off within an N-epoch
countdown to avoid the risk of overfitting and redundant
training.

4.2 Experimental Set-up

To evaluate MDLdroidLite, we select four PMS datasets
(three public and one self-collected) and two well-known
image datasets representing image recognition (IR) for
standardized effectiveness tests in Table 2. The four PMS
datasets are selected for various PMS applications, e.g.,
activity for daily living (ADLs) recognition, health behavior
monitoring (HBM), and gesture recognition (GR). We use
three off-the-shelf smartphones with different resource ca-
pacities shown in Table 3 to evaluate the resource efficiency

TABLE 3: Mobile device specifications
Device Year ROM RAM CPU Battery OS
Huawei nova 6 SE 2019 128GB 8GB Kirin 810 4200mAh Android 10
Google Pixel 2 XL 2017 64GB 4GB Snapdragon 835 3520mAh Android 8.1.0
Google Pixel 2016 32GB 4GB Snapdragon 821 2770mAh Android 8.1.0
Samsung Gear S3 2016 4GB 768MB Exynos 7 Dual 7270 380mAh Tizen 4.0.0.4
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of MDLdroidLite in reality, in which the screen battery drain
is excluded in the results.
DNNs Selection In principle, the proposed RIC approach
can be applied to optimize any DNN structures on devices.
To fairly evaluate the performance of resource-accuracy ef-
ficiency, we employ three well-known DNN structures from
small- to large-scale (i.e., LeNet, MobileNet and VGG-11),
detailed in Table 1. In particular, since MobileNet employs
a set of depthwise separable convolutions (i.e., ConvDW
and ConvP in Table 1), it intrinsically achieves much less
computational complexity (i.e., FLOPs) comparing to nor-
mal DNNs, hence applying MobileNet is widely popular on
mobile devices for resource-efficient purpose. Also, recent
study [47] employs MobileNet to solve sensing tasks on
mobile devices, achieving a fair resource-accuracy perfor-
mance. Practically, we scale down the layer number of a
standard MobileNet to fit sensor data.
Hyper-parameters We select Adam [48] as the default
stochastic gradient descent optimization, and set a fixed
learning rate to 0.0005. We set batch size with 64 for PMS
datasets, and 100 for image datasets. The model parameters
and noise are randomly initialized following a uniform
distribution in [−1, 1]. We also apply a 2-epoch countdown
early stop strategy [42]. Practically, we set each tiny struc-
ture as 10% of full-sized convolution layer and 2% of full-
sized fully-connected layer shown in Table 1. We report top-
1 accuracy throughout the evaluation.

4.3 RIC-adaption Pipeline Performance
We first evaluate the performance of RIC-adaption pipeline
in terms of the variance of existing-to-new minimization, safe
parameter adaptation, fast convergence rate, and time-to-
accuracy efficiency.
Baselines We select three state-of-the-art parameter adapta-
tion methods in CG as our baselines.
• NeST-bridge [16] uses a bridging-gradient transformation

function to adapt new-born parameters in fully-connected
layers, and utilizes trial-and-error to randomly generate
parameters in convolution layers (e.g., we set 10 trails per
growth).

• CGaP-select [20] uses a saliency-based selective param-
eter adaptation method, transferring new-born parame-
ters by picking up existing parameters with the highest
saliency scores.

• Net2WiderNet [21] is based on a standard random dupli-
cation function with a safe compensation scale design for
existing-to-new.

For a standardized effectiveness comparison, we employ
a LeNet on MNIST to evaluate RIC-adaption pipeline run-
ning on a Pixel 2XL smartphone without constant power
charging. Our experiments run with the same growth rate
of 0.6 (i.e., 60% per growth) and the same growth phase (i.e.,
every 3-epoch growth) of CGaP-select to reach the full size.
We run each experiment 5 times, and train each model with
30-epoch.

We conduct four experiments to compare RIC-adaption
pipeline with the above baselines. The overall results
present that RIC-adaption pipeline guarantees a safe pa-
rameter adaptation and outperforms the baselines with a
minimized variance of existing-to-new in the growth. In

addition, RIC-adaption pipeline achieves fast convergence
by minimizing the channel-level variance during model
growth, which speeds up on-device training convergence
by 2.84× to 4.88× over the baselines. Please refer to our
conference paper [25] for the detailed results about these
experiments.

4.4 MDLdroidLite Performance
We now examine the performance of MDLdroidLite in terms
of growth control fine-tuning, on-device time-to-accuracy
structure efficiency, and on-device DL resource reduction
using a range of datasets. To evaluate the improvement of
MDLdroidLite+, we conduct several on-device experiments,
including growth convergence stability, time horizon fine-
tuning, and resource-accuracy run-time performance.
Baselines We select two state-of-the-art CG methods, one
simplified NAS and one state-of-the-art pruning approaches
as our baselines.
• NeST [16] is a linear growth approach. The model struc-

ture continually grows with a fixed phase until reaching
the full size.

• CGaP [20] presents an exponential growth using a fixed
growth rate. It also involves a simple pre-setting resource
budget in growth.

• S-search [49] is a simplified NAS approach using Evolu-
tionary algorithm with randomly parameter initialization.
It performs a single-path search to select a candidate with
the highest accuracy from a small amount of population.

• Pruning [37] is applied as an effectiveness baseline to
compare the resource efficiency of MDLdroidLite. It is
used for pruning a pre-trained model outside of smart-
phones to achieve a backbone structure with a fair accu-
racy.

• Full Size represents a conventional way of training DNNs
with a full-sized model configuration shown in Table 1.

For benchmarking, we train MobileNet on three PMS
datasets (e.g., HAR, MHEALTH, and sEMG), LeNet on
HAR, and LeNet on MNIST, respectively, on a Pixel 2XL
smartphone without constant charging to compare the per-
formance of MDLdroidLite with the baselines. Due to the
lack of pruning support on off-the-shelf smartphones, the
comparison of the structure growth performance is done on
NeST and CGaP. To ensure the efficiency performance of
S-search on device, we implement it as a linear candidate
selection (i.e., maximum two candidates are simultaneously
active in memory) to avoid intensive memory use. For each
experiment, we start training on a fully-charged smartphone
and record its actual battery consumption throughout the
experiment.

4.4.1 Growth Control Fine-tuning
In this experiment, we evaluate the growth control perfor-
mance of MDLdroidLite with five different sizes of time
horizon (TH) (e.g., from TH-1 to TH-5) in terms of the
accuracy-to-FLOPs efficiency and the control resource over-
head (e.g., time and battery consumption). The results show
that different TH sizes may lead to a better resource-efficient
DNN structure (e.g., TH-4 for LeNet on MNIST), but the
control resource overhead may increase as the size of TH in-
creases. Practically, the size of TH should be safely managed
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in a small range to assist dynamic control depends on actual
resource budgets. Please refer to our conference paper [25]
for the detailed results about this experiment.

4.4.2 On-device Time-to-accuracy Structure Efficiency
We continue evaluating the time-to-accuracy performance
of MDLdroidLite by comparing to the baselines. We employ
LeNet on both HAR and MNIST to measure the differences
of using the same model with different datasets. We run
each experiment 5 times. When 2-epoch countdown early
stopping is applied, training will be stopped as soon as the
accuracy is achieved. The results present that MDLdroidLite
achieves a superior time-to-accuracy efficiency over the
baselines, e.g., training LeNet on HAR in MDLdroidLite
outperforms the baselines by 2.9×, 2.4×, 3.13× and 4.6×
faster over CGaP [20], NeST [16], S-search [49] and a full-
sized model, respectively. Please refer to our conference
paper [25] for the detailed results about this experiment.

4.4.3 On-device DL Resource Reduction
In this experiment, we quantify on-device resource reduc-
tion. The results show that MDLdroidLite achieves signif-
icant resource reduction on both model FLOPs and pa-
rameters, e.g., the ”grow” LeNet on MNIST reduces model
parameters and FLOPs by 12× and 2.65×, respectively, over
a full-sized model. We further measure the specific resource
reduction, and the results present that the backbone models
in MDLdroidLite achieves the lowest memory footprints
and battery consumption, comparing to the baselines. Please
refer to our conference paper [25] for the detailed results
about this experiment.

4.4.4 Growth Convergence Stability
In this experiment, we evaluate the growth convergence
stability of MDLdroidLite+ marked as V2 to quantify the
improvements, comparing to MDLdroidLite marked as V1.
Since we use fixed penalty regulators by manual set-up in
V1, the growth convergence usually performs as unstable
and sensitive to different set-ups. To evaluate the effective-
ness of the proposed dynamic penalty function in V2, We
apply 4 different penalty regulators (e.g., from 0.1 to 0.4) to
train each model 4 times up to the same accuracy level to
examine the differences between V1 and V2. Fig. 8 reports
a layer-level resource breakdown (e.g., FLOPs and model
size). The results present that V2 achieves a notable resource
reduction especially in convolution layers of both models,
e.g., 2.6× and 2.24× FLOPs reduction on average in layer-
1 of both models, respectively. Also, V2 performs a more
stable growth convergence than V1 indicated by the range
of error bars, e.g., Fig. 8a shows that the standard devia-
tion of both FLOPs and model size on V2 is significantly
reduced by 5.14× and 5.15× over that on V1 in layer-2,
respectively. In short, MDLdroidLite+ outperforms MDL-
droidLite to achieve better growth convergence stability,
and we henceforth set the penalty regulator to 0.4 as default.

4.4.5 Time Horizon Fine-tuning
Since we propose both dynamic penalty and layer-to-layer
cost functions in MDLdroidLite+ to further optimize re-
source efficiency, we next re-evaluate whether the modifi-
cations affect the performance of the growth control fine-
tuning. We hence re-apply the five different TH sizes to

(a) LeNet on MNIST (b) MobileNet on HAR

Fig. 8: Growth convergence stability of MDLdroidLite+.

(a) LeNet on MNIST (b) MobileNet on HAR

Fig. 9: Time horizon fine-tuning for MDLdroidLite+.

evaluate accuracy-to-FLOPs efficiency in MDLdroidLite+.
Fig. 9 reports that using TH-4 on LeNet and TH-3 on
MobileNet still achieve the best growth results, e.g., using
TH-4 on LeNet in MDLdroidLite+ achieves the best accu-
racy of 99.06% but with 3.1× FLOPs reduction comparing
to that in MDLdroidLite. The results demonstrate that the
modifications improve the growth resource efficiency with
little impact on the TH fine-tuning. Thus, we consistently
use the same TH settings in MDLdroidLite+.

4.4.6 Resource-accuracy Run-time Performance
We now examine both time-to-accuracy and time-to-FLOPs
improvements of MDLdroidLite+ using a range of datasets
in run-time. We fairly train different models on different
datasets to achieve their best accuracy, and record the
run-time resource changes during the growth. To examine
whether the early stopping affects the learning performance
of MDLdroidLite+, we apply a baseline without early stop-
ping applied throughout the training (i.e., 20-epoch as a
default completion), marked as MDLdroidLite+ Nostop.
In addition, to investigate the training performance of
MDLdroidLite+ comparing to that of using the optimized
structure (i.e., the output of the RIC pipeline) for training
from scratch, we assume to define a baseline that trains the
acquired resource-efficient models from scratch without us-
ing the proposed pipeline, marked as MDLdroidLite+ Opt.
Time-to-FLOPs Run-time Performance Fig. 10 shows the
run-time time-to-FLOPs performance on four datasets. From
the results, we obverse that MDLdroidLite+ achieves a
considerable FLOPs and training time reduction over MDL-
droidLite, e.g., MobileNet on HAR in MDLdroidLite+ re-
duces FLOPs and training time by 2.06× and 1.36× over
that in MDLdroidLite, respectively, achieving an accuracy
of 95.22%. In addition, the time-to-FLOPs line of MDL-
droidLite+ presents a faster growth convergence (i.e., the
line becomes stable earlier) than that of MDLdroidLite.
Furthermore, the results show that MDLdroidLite+ Nos-
top achieves an identical (e.g., remaining as 0.24M and
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(a) LeNet on HAR (b) LeNet on MNIST (c) MobileNet on HAR (d) MobileNet on MHEALTH (e) MobileNet on sEMG

Fig. 10: Time-to-FLOPs run-time performance of MDLdroidLite+.

(a) MobileNet on HAR (b) LeNet on MNIST

Fig. 11: Time-to-accuracy performance of MDLdroidLite+.

0.13M FLOPs for both LeNet and MobileNet on HAR,
respectively) or slightly higher FLOPs (e.g., 1.03× higher
for LeNet on MNIST) comparing to MDLdroidLite+, but
the training time of MDLdroidLite+ Nostop is indeed
slower. Hence, applying early stopping has a minor effect
to the structure learning performance of MDLdroidLite+
while effectively saving training time in reality. By com-
parison with MDLdroidLite+ Opt, the results present that
MDLdroidLite+ runs slightly slower to achieve the best
accuracy on all PMS datasets, e.g., 77.74s, 28.41s, and
61.75s slower than MDLdroidLite+ Opt for MobileNet on
HAR, MHEALTH, and sEMG, respectively. Since larger
sized models (e.g., optimized models) may achieve a
faster training convergence throughout the training, training
these models from scratch may perform a better resource-
accuracy efficiency performance than training the seed mod-
els by the proposed pipeline. Interestingly, we observe that
MDLdroidLite+ trains faster than MDLdroidLite+ Opt for
LeNet on MNIST (e.g., 5.48 mins faster), in which RIC-
adaption pipeline in MDLdroidLite+ may effectively con-
tribute to a fast training convergence during the growth.

Time-to-accuracy Run-time Performance We continue
to examine the time-to-accuracy performance of MDL-
droidLite+. We re-employ both MobileNet on HAR and
LeNet on MNIST, and manage each training 5 times
with 2-epoch countdown early stopping applied. Fig. 11a
shows that training MobileNet on HAR in MDLdroidLite+
achieves the best result, e.g., takes 497.67s to achieve an
accuracy of 95.22% on average, speeds up training by 1.36×
over that in MDLdroidLite. Similarly, Fig. 11b reports that
LeNet on MNIST in MDLdroidLite+ takes 25.67 mins to
reach an equivalent accuracy of 99.04% on average, which
is 1.3× faster than that in MDLdroidLite. In addition,
from the results, we observe that MDLdroidLite+ Nostop
performs a lower accuracy for both models comapring to
MDLdroidLite+, e.g., achieves a 0.68% and 0.08% accuracy
drop on average for both MobileNet on HAR and LeNet
on MNIST, respectively. Thus, applying early stopping in

MDLdroidLite+ can efficiently terminate on-device train-
ing in time without accuracy drop. Furthermore, since
MDLdroidLite+ Opt runs faster than MDLdroidLite+ on
PMS datasets, MDLdroidLite+ achieves a slightly lower
accuracy when MDLdroidLite+ Opt completes (e.g., 0.24%
lower on average for MobileNet on HAR). However, when
MDLdroidLite+ completes, the achieved accuracy is even
higher than that in MDLdroidLite+ Opt (e.g., 0.07% higher
on average for MobileNet on HAR). Besides, the results
demonstrate that LeNet on MNIST in MDLdroidLite+ takes
less training time to reach the same accuracy as that in
MDLdroidLite+ Opt with no drop. Thus, the proposed
pipeline not only efficiently optimizes DNN structures on
devices, but also guarantees a fair accuracy performance.

This experiment demonstrates that the improved design
in MDLdroidLite+ further optimizes model structure (i.e.,
less resource overhead) with an equivalent or higher accu-
racy.

4.5 Real-world Use Scenarios
We next evaluate the resource-accuracy efficiency of MDL-
droidLite+ in different use scenarios using a range of
datasets and different DNN models on commodity smart-
phones.

4.5.1 Continual Training Scenarios
In this experiment, we evaluate the resource-accuracy ef-
ficiency of MDLdroidLite+ in continual training scenar-
ios. Since MDLdroidLite+ aims for a universal resource-
constrained approach towards MDL, it not only works for
training from scratch, but also can be applied to continually
train a pre-trained model to recover the model accuracy and
robustness in the wild. Although existing transfer learning
with Pruning (TP) may be strongly limited to build pre-
trained models for PMS applications (e.g., strong domain-
shift, lack of related source model or public dataset), we
specifically prepare the pre-trained models by TP outside
of smartphones as baselines in this experiment. We con-
duct this experiment in two real-world continual training
scenarios [50]–domain-incremental (i.e., input-distribution
changes due to sensor data dynamics) and class-incremental
(i.e., learning new classes over time) scenarios. In both
scenarios, we perform two-stage training, e.g., stage-1 and
2 represent the conditions before and after the increments,
respectively. Specially, we apply MDLdroidLite+ on top
of TP (e.g., TP+RIC) in stage-2 to evaluate the recovery
performance for the learning forgetting issue [19].
Domain-incremental Scenario Since we re-apply the
stationary-to-movement change in Section 2 as a domain-
incremental scenario (i.e., sensor data change from indoor
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(a)  (b) 

Fig. 12: Resource-accuracy performance of MDLdroidLite+.
(a) FinDroidHR in domain-incremental scenario; (b) MNIST
in class-incremental scenario.

sitting to outdoor running), we first train both LeNet and
MobileNet on the indoor sitting data by TP, MDLdroidLite+,
and full-sized model to achieve the state-of-the-art accuracy
(e.g., 98.19% and 98.34% on average, respectively) in stage-
1. We next add the outdoor running data as a ”domain”
increment to continually train the models in stage-2. Fig.
12a presents the results of stage-2. Although both models
by TP achieve the lowest FLOPs (i.e., structure fixed as
minimal in stage-1), the accuracy notably decreases due to
learning new running data, e.g., 14.72% and 10.98% drop,
respectively, comparing to full-sized models. The results
using MDLdroidLite+ show that not only the accuracy of
both models remains at the same level after re-learning, but
also the FLOPs of both models is managed much smaller
than that of full-sized models. Due to the structure growth
of MDLdroidLite+, though the FLOPs of both models by
TP+RIC increase in a small amount, the accuracy is recov-
ered and even higher than that of MDLdroidLite+.
Class-incremental Scenario We next select 5 out of 10
classes of MNIST to train LeNet in stage-1, and then add the
rest of 5 classes for continual training in stage-2 to set up
a class-incremental scenario. In Fig. 12b, we achieve similar
results as above that the accuracy by TP drops by 10.14%
with the minimal FLOPs, but it is recovered back to 99.06%
using MDLdroidLite+ (e.g., FLOPs increases by 1.36M in
stage-2) without learning forgetting.

Through both real-world continual training scenarios,
we obverse that TP is limited to continually learn new
data or classes due to the fixed structure, hence it causes
the learning forgetting issue to degrade model accuracy
and robustness in the wild. This experiment demonstrates
MDLdroidLite+ is capable to remain or recover the on-
device model performance in continual training scenarios.

4.5.2 Real-world Application Performance
To evaluate the real-world performance of MDLdroidLite,
we develop a hand gesture recognition application shown
in Fig. 7a, and apply MobileNet for resource-efficient pur-
pose in this experiment. We first ask the subject to collect
a training dataset that contains 6 gestures and 120 data
instances per gesture. Annotation is done manually using
the application on smartwatch. We then apply three data
augmentation techniques [13] to augment data on device: 1)
adding noise is to randomly add noise generated by the IID
(i.e., independent and identically distributed) distribution
to original sensor data; 2) drift is to drift the value of sensor
data from its original values randomly and smoothly; 3) pool

is to reduce the temporal resolution of sensor data while
keeping the length.

For the updated results in MobileNet on Pixel 2XL,
the backbone model in MDLdroidLite+ achieves a slightly
higher accuracy of 98.63% with 1.9× less parameters, and
1.59× less FLOPs than that in MDLdroidLite. In addition,
the training time, battery consumption, and batch latency
of the backbone model in MDLdroidLite+ are reduced
by 1.24×, 1.27×, and 1.18×, respectively. Thus, this case
study shows that MDLdroidLite+ further boosts on-device
training and inference with the resource-efficient backbone
model for real-world PMS applications.

To compare the performance of MDLdroidLite with the
conventional ML methods on the collected dataset, we
employ both SVM and Random Forest with a fully hand-
crafted feature engineering [9] as baselines. We also select
17 out of 182 features to improve the classification perfor-
mance for both ML methods. Since the conventional ML
methods require a hand-crafted training process outside
of devices, we may not be able to compare the run-time
on-device training performance with MDLdroidLite, hence
we evaluate the training accuracy as the metric. From the
results, we observe that both ML methods achieve the
inferior accuracy comparing to MDLdroidLite, e.g., 94.24%
using SVM and 90.6% using Random Forest. Thus, DL-
based methods not only ideally work for on-device learning
towards the promising MDL paradigm due to the auto-
mated feature extraction capability, but also present superior
accuracy performance to fit for real-world sensing tasks.

4.5.3 On-device Resource-accuracy Efficiency

We now summarize the resource-accuracy efficiency re-
sults of both MDLdroidLite and MDLdroidLite+ on three
smartphones, in terms of parameters, FLOPs, memory, time,
battery, and batch latency (B-latency). The experiments are
done using small- to large-scale model configuration (i.e.,
LeNet, MobileNet and VGG-11) on all six datasets.

For the results in LeNet on PMS datasets, the backbone
models in MDLdroidLite achieve 28× to 50× on parameters
reduction, 4× to 10× FLOPs reduction, 1.83× to 4.96×
speedup on average over the full-sized model. Comparing
to MDLdroidLite, the backbone models in MDLdroidLite+
reduce parameters from 1.42× to 1.73× and FLOPs from
1.23× to 3.17× with no accuracy drop, e.g., the structure of
the backbone model on HAR turns down to [5-13-25-6] with
a higher accuracy of 94.97%. For the results in MobileNet on
PMS datasets, the parameters, FLOPs, and training time of
the backbone models in MDLdroidLite are reduced by 4×
to 7×, 2× to 7×, and 1.27× to 1.56× over the full-sized
model, respectively. In addition, the backbone models in
MDLdroidLite+ achieve further improvement over MDL-
droidLite, i.e., parameters reduction from 1.9× to 2.21×,
FLOPs reduction from 1.57× to 2.42×, and training time
reduction from 1.24× to 2.35×. Since training a large-scale
VGG-11 on device is quite costly, it cannot achieve a fair
accuracy due to battery drain. However, a backbone VGG-
11 in MDLdroidLite can safely achieve an accuracy of 75%+
with 1328mAh battery consumption. In MDLdroidLite+, the
backbone VGG-11 on CIFAR-10 achieves a higher accuracy
of 76.14% with less battery consumption on the Pixel 2XL.
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TABLE 4: On-device resource-efficient study using LeNet.

Dataset Method Accuracy Parameter FLOPs Memory Pixel 2XL Pixel Nova 6SE StructureTime Battery B-latency Time Battery B-latency Time Battery B-latency

sEMG

Full Size [1] 87.8% 394.82K 2.0M 165M 208s 57mAh 164ms 290s 79mAh 210ms 310s 85mAh 166ms [20-50-500-6]
S-search [49] 86.03% 177.52K 1.22M 161M 142s 39mAh 131ms 197s 54mAh 168ms 211s 58mAh 132ms [16-42-261-6]
MDLdroidLite 86.47% 14.59K 0.5M 148M 92s 25mAh 114ms 128s 35mAh 146ms 137s 37mAh 115ms [12-24-25-6]
MDLdroidLite+ 87.46% 9.7K 0.34M 139M 77s 21mAh 110ms 107s 29mAh 141ms 114s 31mAh 111ms [10-15-28-6]
Pruning [37] 87.08% 41.01K 0.94M 152M - - 118ms - - 151ms - - 119ms [17-38-52-6]

HAR

Full Size [1] 94.6% 570K 2.9M 175M 298s 119mAh 154ms 415s 166mAh 197ms 444s 178mAh 156ms [20-50-500-6]
S-search [49] 95.13% 153K 1.8M 168M 203s 81mAh 135ms 283s 113mAh 173ms 302s 121mAh 136ms [18-45-140-6]
MDLdroidLite 94.46% 15.38K 0.52M 148M 65s 26mAh 114ms 90s 36mAh 146ms 96s 39mAh 115ms [10-16-33-6]
MDLdroidLite+ 94.97% 8.89K 0.24M 140M 50s 20mAh 107ms 70s 28mAh 137ms 75s 30mAh 108ms [5-13-25-6]
Pruning [37] 94.9% 24.72K 0.66M 152M - - 122ms - - 156ms - - 123ms [12-18-50-6]

MHEALTH

Full Size [1] 96.11% 401.52K 2.74M 197M 78s 23mAh 171ms 109s 32mAh 219ms 116s 34mAh 173ms [20-50-500-11]
S-search [49] 95.7% 84.49K 1.76M 187M 163s 47mAh 142ms 227s 66mAh 182ms 243s 70mAh 143ms [18-40-112-11]
MDLdroidLite 95.19% 9.68K 0.5M 168M 72s 21mAh 126ms 101s 29mAh 161ms 108s 31mAh 127ms [7-15-25-11]
MDLdroidLite+ 95.5% 6.83K 0.34M 155M 66s 19mAh 111ms 92s 27mAh 142ms 98s 28mAh 112ms [5-11-25-11]
Pruning [37] 94.67% 21.5K 0.63M 179M - - 128ms - - 164ms - - 129ms [8-22-48-11]

FinDroidHR

Full Size [1] 98.89% 694.26K 3.38M 183M 55s 19mAh 133ms 76s 27mAh 170ms 81s 28mAh 134ms [20-50-500-6]
S-search [49] 98.61% 175.85K 1.76M 158M 61s 21mAh 117ms 85s 30mAh 150ms 91s 32mAh 118ms [15-46-132-6]
MDLdroidLite 98.01% 17.56K 0.27M 151M 30s 10mAh 105ms 42s 15mAh 134ms 44s 16mAh 106ms [5-15-39-6]
MDLdroidLite+ 98.61% 10.63K 0.22M 146M 18s 6mAh 104ms 25s 9mAh 133ms 26s 9mAh 105ms [5-11-31-6]
Pruning [37] 98.05% 18.86K 0.65M 152M - - 111ms - - 142ms - - 112ms [12-18-30-6]

MNIST

Full Size [1] 99.08% 431.08K 4.9M 256M 49mins 1095mAh 280ms 68mins 1524mAh 358ms 73mins 1629mAh 283ms [20-50-500-10]
S-search [49] 98.95% 219.71K 3.9M 242M 154mins 2819mAh 205ms 214mins 3923mAh 262ms 228mins 4195mAh 207ms [20-45-269-10]
MDLdroidLite 99.06% 38.06K 1.84M 197M 33mins 765mAh 166ms 47mins 1065mAh 212ms 50mins 1138mAh 168ms [13-33-50-10]
MDLdroidLite+ 99.04% 20.96K 0.58M 176M 26mins 571mAh 142ms 36mins 795mAh 182ms 38mins 850mAh 143ms [5-25-43-10]
Pruning [37] 99.01% 35.8K 2.04M 188M - - 168ms - - 215ms - - 170ms [16-29-50-10]

TABLE 5: On-device resource-efficient study using MobileNet.

Dataset Method Accuracy Parameter FLOPs Memory Pixel 2XL Pixel Nova 6SE StructureTime Battery B-latency Time Battery B-latency Time Battery B-latency

sEMG

Full Size [1] 87.15% 50.31K 0.74M 161M 791s 265mAh 186ms 1148s 384mAh 322ms 886s 297mAh 212ms [32-64-128-256-6]
S-search [49] 84.23% 8.39K 0.34M 155M 1153s 386mAh 164ms 1671s 560mAh 284ms 1291s 432mAh 187ms [24-38-34-68-6]
MDLdroidLite 85.97% 7.56K 0.29M 145M 618s 207mAh 136ms 897s 300mAh 235ms 693s 232mAh 155ms [20-35-40-52-6]
MDLdroidLite+ 86.47% 3.75K 0.12M 127M 365s 122mAh 125ms 530s 177mAh 216ms 409s 137mAh 142ms [10-12-31-45-6]
Pruning [37] 85.1% 5.63K 0.22M 137M - - 133ms - - 230ms - - 152ms [18-17-38-47-6]

HAR

Full Size [1] 95.55% 51.72K 1.14M 171M 848s 305mAh 191ms 1230s 443mAh 330ms 950s 342mAh 218ms [32-64-128-256-6]
S-search [49] 95.24% 15.51K 0.49M 158M 868s 313mAh 173ms 1259s 453mAh 299ms 972s 350mAh 197ms [19-34-63-126-6]
MDLdroidLite 95.11% 7.37K 0.26M 149M 676s 243mAh 136ms 981s 353mAh 235ms 758s 273mAh 155ms [10-30-48-58-6]
MDLdroidLite+ 95.22% 3.33K 0.13M 120M 498s 179mAh 125ms 722s 260mAh 216ms 557s 201mAh 142ms [6-12-31-39-6]
Pruning [37] 95.72% 6.21K 0.2M 146M - - 136ms - - 235ms - - 155ms [9-16-35-86-6]

MHEALTH

Full Size [1] 97.86% 57.35K 1.26M 176M 364s 138mAh 175ms 528s 201mAh 303ms 408s 155mAh 200ms [32-64-128-256-11]
S-search [49] 97.64% 25.61K 0.78M 163M 582s 221mAh 167ms 844s 321mAh 289ms 652s 248mAh 190ms [23-41-77-153-11]
MDLdroidLite 97.85% 13.65K 0.66M 153M 313s 119mAh 150ms 454s 173mAh 260ms 351s 133mAh 171ms [20-48-51-53-11]
MDLdroidLite+ 97.94% 6.78K 0.42M 131M 133s 51mAh 124ms 194s 74mAh 215ms 149s 57mAh 141ms [15-17-23-39-11]
Pruning [37] 97.84% 13.15K 0.6M 150M - - 150ms - - 260ms - - 171ms [20-26-43-91-11]

FinDroidHR

Full Size [1] 99.16% 50.37K 1.41M 187M 155s 51mAh 248ms 224s 74mAh 429ms 173s 57mAh 283ms [32-64-128-256-6]
S-search [49] 98.61% 33.21K 1.03M 168M 119s 39mAh 225ms 173s 57mAh 389ms 134s 44mAh 256ms [28-52-101-202-6]
MDLdroidLite 98.61% 7.16K 0.27M 150M 99s 33mAh 167ms 144s 48mAh 289ms 111s 37mAh 190ms [10-20-61-54-6]
MDLdroidLite+ 98.63% 3.76K 0.17M 134M 80s 26mAh 141ms 116s 38mAh 244ms 90s 30mAh 161ms [8-14-35-41-6]
Pruning [37] 98.61% 6.46K 0.32M 148M - - 175ms - - 303ms - - 200ms [16-17-34-83-6]

TABLE 6: On-device resource-efficient study using VGG-11.

Dataset Method Accuracy Parameter FLOPs Memory Pixel 2XL Pixel Nova 6SE StructureTime Battery B-latency Time Battery B-latency Time Battery B-latency

CIFAR-10

Full Size 71.99% 9.23 M 306.42 M 650M 164mins 3316mAh 1971ms - - 3410ms 167mins 3382mAh 2247ms [64-128-256-256-512-512-512-512-10]
MDLdroidLite 74.9% 0.35M 19.52M 300M 68mins 1377mAh 445ms 80mins 1611mAh 770ms 69mins 1405mAh 507ms [18-37-77-77-86-86-86-86-10]
MDLdroidLite+ 76.14% 0.28M 11.96M 275M 56mins 1128mAh 344ms 65mins 1320mAh 595ms 57mins 1151mAh 392ms [15-30-49-49-86-86-86-86-10]
Pruning [37] 80.11% 0.44M 22.73M 310M - - 465ms - - 804ms - - 530ms [15-51-70-84-109-107-89-87-10]

Although pruning performs a better resource-accuracy ef-
ficiency on VGG-11, the pruning process takes nearly 5.4
hours on a laptop with a NVIDIA GeForce GTX 1080 Ti
GPU, which is impractical to run on smartphones. The
complete results are presented in Table 4 5 6, in which ”-
” denotes either no available on-device result or running
out of resource budget.

5 DISCUSSION AND FUTURE WORK

Task and Model Structure Complexity Traditional model
structure is usually made to be deep and large-scale to solve
the complex tasks (i.e., large size of inputs and number
of classes) for high accuracy purpose [17], [18], especially
in computer vision and image tasks. However, most of
real-world PMS applications require much smaller input
size (i.e., limited sampling rate up to 100Hz and channels
due to energy consumption on devices) and class number
than image tasks, which is naturally less task complexity.
In particular, to remain at the same task complexity level
with the selected PMS datasets, we select CIFAR-10 instead
of CIFAR-100 as a fair baseline. Hence, the high-accuracy
requirement in PMS applications is usually not placed at
the first priority. Instead, resource efficiency is more critical

in the sensing domain. To match the sensing task complex-
ity, lightweight or shallow models usually achieve better
resource-accuracy performance than large-scale models in
practice [47], [51], because they effectively avoid overfitting
issues. Although training large-scale models on device may
not be efficient enough, e.g., training VGG-11 on CIFAR-
10 in our evaluation, but MDLdroidLite moves the first
step, which opens numerous possibilities to advanced on-
device DL applications. We will extend the capability of
MDLdroidLite to support more state-of-the-art model con-
figurations in our future work.

Insufficient Training Data Data augmentation effectively
solves the problem of insufficient training data. However,
the problem may still exist in real-world PMS applica-
tions, especially at the bootstrapping stage. In this case,
MDLdroidLite can start with a pruned pre-trained model,
and continually fine-tune the model structure over time to
maintain the optimal performance. Alternatively, existing
MDL frameworks such as FL [12] and MDLdroid [8] can be
incorporated to perform collaborative learning leveraging
multiple users. Although MDLdroidLite may not currently
work with these frameworks due to the dynamic structure,
the challenge of heterogeneous model aggregation will be
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addressed in our future work.
Lifelong Learning Scenario With the capability of on-
device continual training in MDLdroidLite, lifelong learning
[22] can be achieved on devices. However, to address the
learning forgetting issue in lifelong learning scenarios, the
model structure of MDLdroidLite may eventually grow to
be large over time, leading to resource overhead on devices.
We may apply a maximum resource constraint threshold to
bound structure size, but it may fail to avoid the learning
forgetting due to constrained structure. We plan to address
this challenge in our future work.

6 RELATED WORK

Constructive Structure Adaptation A constructive ap-
proach is able to grow and expand DNNs from a small
structure. Recent works combine both constructive and de-
structive approaches into CG, but their efficiency seriously
relies on pruning. NeST [16] proposes a linear CG approach
by continually growing the layer width, but it is costly
due to the random trial-and-error used to grow channels in
convolution layers, and importantly a linear growth without
control yields inferior training performance. Similarly, CGaP
[20] shows a near-exponential growth with a saliency-based
selective KT function, but the growth strategy is arbitrary
and it could easily run into overparameter which can be
too expensive for on-device training. Different from these
works, MDLdroidLite follows the idea of structure growth
but wisely controls a single trajectory growth through
resource-constrained optimization to transform a traditional
DNN structure to a resource-efficient DNN for mobile de-
vices.
Knowledge Transfer Adaptation Existing CG methods en-
able fast parameter adaptation using KT but suffer from
slow convergence under resource-constrained conditions.
Net2net [21] proposes a standard random duplication func-
tion but with a safe compensation scale in each subsequent
layer for rapid knowledge transformation. NeST [16] de-
signs a bridging-gradient transformation function to help
the neurons growth in fully-connected layers, but the new-
born neurons identified as being inactive without coordina-
tion may present a weak contribution to slow down training.
Differently, CGaP [20] employs a saliency-based selective
duplication to achieve higher accuracy, but the training
loss presents a degraded spiking after each transformation,
hence the loss is notably unstable to yield inferior conver-
gence performance. In contrast, leveraging RIC-adaption
pipeline, MDLdroidLite not only safely adapts new-born
neurons using a three-step DSPA, but also designs a GCU
to minimize the variance between new-born and existing
neurons, resulting in fast convergence after each grow-step
to significantly speed up on-device training.

7 CONCLUSION

This paper presents a novel on-device structure learning
framework that enables resource-efficient DNNs on mobile
devices. MDLdroidLite is able to perform on-device train-
ing from scratch, continual learning to support personal-
ized, privacy-preserving PMS applications. Moreover, MDL-
droidLite achieves efficient on-device training and inference
performance for most of the state-of-the-art DNNs.
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[12] J. Konecný, H. B. McMahan, D. Ramage, and P. Richtárik, “Fed-
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