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Abstract—Recognizing human activities from sensor readings has 

recently attracted much research interest in pervasive 

computing. This task is particularly challenging because human 

activities are often performed in not only a simple (i.e., 

sequential), but also a complex (i.e., interleaved and concurrent) 

manner in real life. In this paper, we propose a novel Emerging 

Patterns based approach to Sequential, Interleaved and 

Concurrent Activity Recognition (epSICAR). We exploit 

Emerging Patterns as powerful discriminators to differentiate 

activities. Different from other learning-based models built upon 

the training dataset for complex activities, we build our activity 

models by mining a set of Emerging Patterns from the sequential 

activity trace only and apply these models in recognizing 

sequential, interleaved and concurrent activities. We conduct our 

empirical studies in a real smart home, and the evaluation results 

demonstrate that with a time slice of 15 seconds, we achieve an 

accuracy of 90.96% for sequential activity, 87.98% for 

interleaved activity and 78.58% for concurrent activity. 

Keywords- activity recognition; emerging patterns; sequential, 

interleaved and concurrent activities; wireless sensor networks 

I.  INTRODUCTION 

With the advancement of wireless sensor network 
technology, recognizing human activities based on sensor 
readings has recently drawn much research interest from the 
pervasive computing community. Different from video-based 
activity recognition in computer vision, in this paradigm, there 
are typically different types of sensors deployed. These sensors 
may be wearable by a user or embedded in the environment. 
Sensor readings are then collected and interpreted to recognize 
various human activities. A typical application in healthcare is 
monitoring Activities of Daily Living (ADLs) [1] for the 
elderly and providing them with proactive assistance.  

In real life, people perform ADLs in not only a sequential 
manner (i.e., performing one ADL after another), but also an 
interleaved (i.e., switching between the steps of two or more 
ADLs) or concurrent manner (i.e., performing two or more 
ADLs simultaneously). Recognizing activities in such a 
complex situation has practical implication to real-life 
pervasive computing applications; hence, it attracts our 
research interest and motivates this work.  

Little work has been done in providing a unified solution to 
solve complex issues that arise in recognizing sequential, 

interleaved and concurrent activities. Activity recognition is 
typically viewed as a classification problem where many 
traditional machine learning techniques can be applied. 
Probabilistic-based models are popular due to its ability of 
handling noise and uncertainty in sensor readings. Some recent 
work showed that the variants of Conditional Random Field 
(CRF) [2-3] can be used to model interleaved and concurrent 
activities. However, these learning-based techniques require 
that a predicting instance (i.e., an interleaved or concurrent 
activity instance to be predicted) must have its model presented 
in the training dataset. Considering a great variety of ways in 
which daily activities can be interleaved and performed 
concurrently, the training dataset for learning such complex 
activity models has to be large enough. These solutions may 
lack flexibility in real-life deployment.  

In this paper, we formulate activity recognition as a pattern 
based classification problem, and propose a novel Emerging 
Patterns based approach to recognize sequential, interleaved 
and concurrent activities. We build our activity models based 
on Emerging Patterns (EPs) [4] – a type of knowledge pattern 
that describes significant changes between two classes of data. 
We mine a set of EPs for each sequential activity from the 
training dataset, and use the sets of EPs obtained to recognize 
not only simple (i.e., sequential), but also complex (i.e., 
interleaved and concurrent) activities. This approach does not 
require training for complex activities; and hence it has a great 
flexibility and applicability for real-life pervasive computing 
applications. We conduct a real-world activity trace collection 
done by four volunteers in a smart home environment, and our 
evaluation results demonstrate both the effectiveness and 
flexibility of our solution.  

In summary, the paper makes the following contributions.  

 We formulate activity recognition as a pattern based 
classification problem, and propose a novel Emerging 
Patterns based approach to recognize sequential, 
interleaved and concurrent activities in a unified 
solution. 

 We propose a novel trace segmentation algorithm 
based on feature relevance to segment the boundary of 
any two adjacent activities during the recognition 
process.  
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 We conduct a real-world trace collection using 
wireless sensors, evaluate our algorithm through 
comprehensive experiments and analyze our algorithm 
in detail.   

The rest of the paper is organized as follows. Section 2 
discusses related work. Section 3 describes our sensor setup for 
data collection and Section 4 gives the background on EPs. We 
then describe the mining of EPs in Section 5, and present our 
activity recognition algorithm in Section 6. Section 7 reports 
our empirical studies. Finally, Section 8 concludes the paper.  

II. RELATED WORK 

In pervasive computing, researchers are recently interested 
in recognizing activities using sensors. As sensor readings are 
usually noisy and activities are typically performed in a non-
deterministic fashion, probabilistic learning-based methods are 
appropriate and gain more popularity.  

Probabilistic-based models can be categorized into static 
classification or temporal classification. In static classification, 
sensor readings are first pre-processed into features, and then a 
static classifier is applied to classify the activities. Typical 
static classifiers include naïve Bayes used in [5-7], C4.5 
decision trees used in [6-8], k-nearest neighbor (k-NN) used in 
[6, 8-9], and support vector machine (SVM) used in [9]. 
Multiple binary classifiers [5, 7] can be exploited to recognize 
interleaved and concurrent activities; however, this solution 
may not work properly because many activities share common 
features.  

In temporal classification, state-space models are typically 
used to enable the inference of hidden states (i.e., activity 
labels) given the observations (i.e., sensor readings). We name 
a few examples here: Hidden Markov Model (HMM) used in 
[10-13], Dynamic Bayesian Network (DBN) used in [14-15] 
and CRF used in [16]. Recent work showed that SCCRF [3] – a 
variant of CRF – and IHMM [17] – a variant of HMM – can be 
used to model interleaved activities, and FCRF [2] – another 
variant of CRF – can be used to model concurrent activities. 
However, like other learning-based techniques, they require 
that a predicting instance must have its model presented in the 
training dataset. On one hand, this implies that the training 
dataset has to be large enough to build the complete models for 
interleaved and concurrent activities. Any partial model will 
result in a loss of recognition accuracy. On the other hand, in 
real life there exists a great variety of ways in which daily 
activities can be interleaved and performed concurrently. It 
may be not possible to construct a complete model by training. 
Hence, the flexibility and scalability of the solutions in [2-3, 
17] are limited.  

A different attempt to recognize activities is Time Series 
based classification, in which an activity is modeled as a 
sequence of discrete events [18]. Activities are recognized 
through discovering and matching the Motif which is defined 
as the subsequences with similar behavior appeared frequently 
in time-series data. However, this approach is sensitive to the 
order of the events as it rigidly models an activity sequence 
using its variable-length event subsequences over the entire 
continuum of their temporal scales. 

Our approach is fundamentally different from the above. 
The EPs based classifier model uses a set of multi-attribute 
tests for each class, while most previous classifiers consider 
only one test on one attribute at a time. Different from the Time 
Series based classifier concerning the mining of regularities, 
we mine the abnormal growth among classes. Our activity 
models are built upon the sequential activity instances only and 
will be applied to recognize interleaved and concurrent 
activities.  

III. OUR SENSOR SETUP 

We built a wireless sensor platform from off-the-shelf 
sensors to collect sensor information. Our sensor platform 
measures a user’s movement (i.e., left hand, right hand and 
body movements), user location, the living environment (i.e., 
temperature, humidity and light), and the human-object 
interaction (i.e., objects a user touches). 

   
                      (a)                     (c)                      (d) 

   
                            (e)                                     (f) 

Figure 1. (a) Wearable sensors consist of 2 RFID wristband readers and 

3 iMote2 sets, (b) iMote2 set, (c) RFID wristband reader, (d) servers, (e) 

HF RFID tags, and (f) HF RFID tagged objects.

Figures 1a, 1b and 1c illustrate our wearable sensors. A 
subject wears a Crossbow iMote2 set on each of his hands and 
his waist. Each iMote2 set (Figure 1b) consists of an IMote2 
IPR2400 processor/radio board and an ITS400 sensor board, 
capable of measuring the movement of a user’s hands and body 
(3-axis accelerometer), the temperature, humidity and light of 
the environment.  

A subject also wears an RFID wristband reader (Figure 1c) 
on each of his hands. The custom-built wristband incorporates 
a SkyeTek M1-mini RFID reader, a Crossbow Mica2Dot 
module and a rechargeable battery. The wristband is able to 
detect the presence of a tag within the range of 6 to 8 cm. HF 
RFID tags are attached to day-to-day objects such as cups, 
teaspoons and books in a smart home. Figure 1e shows three 
types of such tags we used and they operate on 13.56MHz. 
Figure 1f shows a screen shot of tagged objects in a kitchen. In 
addition, detecting user location is done in a simple way that an 
UHF RFID reader is located in each room to sense the 
proximity of a user wearing an UHF tag.  

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 16:45:22 UTC from IEEE Xplore.  Restrictions apply. 



When a subject performs daily activities, the sensor 
readings from the three iMote2 sets are transferred wirelessly 
to a local server (Figure 1d, left) which runs on a laptop PC 
with an iMote2 IPR2400 board connected through its USB 
port. When a subject handles a tagged object, the wristband 
scans the tag ID and sends it wirelessly to another server 
(Figure 1d, right) that can map the ID to an object name. This 
server runs on a Linux-based laptop PC with a MIB510CA 
serial interface board and a Mica2Dot module connected 
through its serial port. The sensor readings are recorded by the 
two servers separately, and will be merged into a single txt file 
as the activity trace. Our objective is to design an algorithm to 
recognize the activities in the activity trace. 

IV. EMERGING PATTERNS AND PRELIMINARIES 

We provide the background of EPs in this section. 
Discovery of powerful distinguishing features between datasets 
is an important objective in data mining. Emerging Pattern is a 
new type of knowledge pattern that describes significant 
changes (differences or trends) between two classes of data [4]. 
An EP is a set of items whose frequency changes significantly 
from one dataset to another. Like other patterns or rules 
composed of conjunctive combinations of elements, EPs can be 
easily understood and used directly. 

We first give some preliminary definitions. Suppose that a 
dataset D consists of many instances. An instance contains a set 
of items (i.e., an itemset), where an item is an attribute-value 
pair. The support of an itemset X, suppD(X), is countD(X)/|D|, 
where countD(X) is the number of instances in D containing X. 
A pattern is frequent if its support is no less than a predefined 
minimum support threshold. Unlike frequent patterns, 
Emerging Patterns are concerned with two classes of data. 

Definition 1: Given two different classes of datasets D1 and D2, 
the growth rate of an itemset X from D1 to D2 is defined as 
GrowthRate(X) =  

otherwise
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EPs are those itemsets with large growth rates from D1 to 
D2.  

Definition 2: Given a growth rate threshold   > 1, an itemset X 
is said to be a  -Emerging Pattern (or simply EP) from a 
background dataset D1 to a target dataset D2 if GrowthRate(X) 
   . 

An EP with high support in its target class and low support 
in the contrasting class can be seen as a strong signal indicating 
the class of a test instance containing it.  

Example 1. Consider the following training dataset with two 
classes, P and N (this is an encoding of the Saturday morning 
activity example from [22]). 

P N 

{ 2,6,7,10 } { 3,5,7,10 } { 3,4,8,10 } 

{ 2,4,8,9 } { 1,4,8,10 } { 3,5,8,10 } 

{ 1,5,8,9 } { 2,5,7,9 } { 2,6,8,10 } 

{ 1,6,7,10 } { 1,6,7,9 } 

{ 3,4,8,9 } { 1,5,7,10 }  

{ 3,5,7,9 } 

Then {1, 9} is an EP from class P to class N with a growth 

rate 5
9 ; it is also a  -EP for any 1<   ! 5

9 .  

V. MINING EMERGING PATTERNS FROM THE SEQUENTIAL 

ACTIVITY TRACE 

A. Problem Statement  

We formulate the problem of sequential, interleaved and 
concurrent activity recognition as follows. Given a training 
dataset that consists of an observation sequence for sequential 
activities only (i.e., formally, a training dataset O consists of T 
observations, O = {o1, o2, … , oT}, associated with sequential 
activity labels {SA1, SA2, … , SAm}, where there are m 
sequential activities), our objective is to train a model that can 
assign each new observation with the correct activity label(s) 
and segment the new activity trace.  

B. Data Preprocessing 

Before we introduce the mining of EPs, we need to select 
appropriate sensor features and discretize their readings. We 
convert the sensor readings to a series of observation vectors 
where each observation vector consists of 15 features as shown 
below.  

o = [accel_body_x, accel_body_y, accel_body_z, accel_right_x, 
accel_right_y, accel_right_z, accel_left_x, accel_left_y, accel_left_z, 
temperature, humidity, light, location, left_object, right_object] 

We compute each observation vector in a fixed time 
interval which is set to one second in our experiments. 
Corresponding to the type of sensors, these features have two 
types of values. For an RFID reading, we use the object name 
(e.g., cup, toothpaste, etc.) as its feature value. Since a subject 
is unlikely to touch two or more objects in a one-second 
interval when performing activities, we choose the first object 
for each RFID wristband reader in such an interval. If no RFID 
reading is observed or in the presence of a corrupted tag ID, a 
null value will be given. For numeric sensor readings, we take 
the average of all the readings in this interval as the feature 
value. When the sensor readings are not observed in the 
interval due to sensor errors, we use the value from the 
previous interval, where we assume the states of a subject and 
the environment will not be changed in such a short interval. 

We then transform these observation vectors into feature 
vectors. A feature vector consists of many feature items, where 
a feature item refers to a feature-value pair in which a feature 
can be numeric or nominal. We denote a numeric feature as 
numfeaturei. Suppose its range is [x, y] and an interval [a, b] (or 
in other forms, (a, b], [a, b), or (a, b)) is contained in [x, y]. We 
call numfeaturei@[a, b] a numeric feature item, meaning that 
the value of numfeaturei is limited inclusively between a and b. 
We denote a nominal attribute as nomfeaturej. Suppose its 
range is {v1, v2, … , vn}, we call nomfeaturej@vk a nominal 
feature item, meaning that the value of nomfeaturej is vk.  

To discretize numeric features, we use the entropy-based 
discretization method [19] which partitions a range of 
continuous values into a number of disjoint intervals such that 
the entropy of the partition is minimal.  

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 16:45:22 UTC from IEEE Xplore.  Restrictions apply. 



The discretization method partitions 12 numeric feature 
values into a total of 267 disjoint intervals. Then we can 
directly combine the feature name and its interval into a 
numeric feature item. For example, accel_body_x@(-737.5~-
614.5] is one such example in our training dataset. For nominal 
feature, the feature name and its value are combined as a 
nominal feature item. For the left_object and right_object 
features, we merge them into one feature by computing 

left_object right_object without losing any essential objects 

during the user-object interaction due to user’s handedness. For 
example, a nominal feature item can be object@cup or 
location@bathroom. Based on our current sensor setup, we 
have a total of 354 feature items. They are indexed by a simple 
encoding scheme and will be used as inputs to the EPs mining 
process described in the next section.  

C. Mining Emerging Patterns 

In our training dataset, each observation is assigned with an 
activity label(s). We first identify the instances for each 
sequential activity in the training dataset. An instance here 
refers to a union of all the observations that belong to a 
sequential activity during a continuous period of time. 

For each sequential activity, denoted as SAi, we mine a set 
of EPs to contrast its instances,

iSAD , against all other activity 

instances '
iSAD  , where '

iSAD =D -
iSAD  and D is the entire 

sequential activity dataset. We refer 
iSAEP as the EPs of SAi. 

We discover the EPs by an efficient algorithm described in 
[20]. After computation, we get m sets of EPs, one set per 
sequential activity. Table 1 presents an example of the top 8 
EPs of the cleaning a dining table activity. Column 1 shows 
the EPs. For example, the EP “object@cleanser, object@plate, 
object@wash_cloth, location@kitchen” has a support of 
95.24% and a growth rate of ". It has an intuitive meaning that 
cleanser, plate and wash_cloth are the common objects which 
are involved in this activity, and this activity usually occurs in 
the kitchen. In fact, one of the advantages of EPs is easy to 
understand. Another interesting phenomenon is that the EPs 
“object@bowl, accel_left_z@(-684.5~-453.5], light@(24.5-
28.5], object@plate,  location@kitchen” has a support of 
66.67% only, where “accel_left_z” stands for the acceleration 
data of a subject’s left hand in the z-axis. This probably can be 
explained that there exist some variances of the left hand 
movement when a subject performed this activity. 

TABLE I. A SUBSET OF EPS FOR THE CLEANING A DINING TABLE ACTIVITY 

EPs
Support 

(%) 
Growth 

rate

location@kitchen, object@plate  100 " 

object@dining_table, object@plate  95.24 365.7 

object@cleanser, object@plate, object@wash_cloth, 

location@kitchen 
95.24 " 

object@light_power_switch, object@plate, 

location@kitchen 
95.24 " 

object@wash_cloth, object@bowl, object@plate, 

object@cleanser, location@kitchen  
90.48 " 

object@spoon, object@plate, object@bowl, 

object@dining_table, location@kitchen 
80.95 " 

object@bowl, accel_body_x@(-155.25--52.25], 66.67 256 

light@(24.5-28.5], object@plate 

object@bowl, accel_left_z@(-684.5~-453.5], 

light@(24.5-28.5], object@plate,  location@kitchen 
66.67 " 

VI. THE epSICAR ALGORITHM  

We first give an overview of our proposed activity 
recognition algorithm, as illustrated in Figure 2. Given a new 
observation sequence from time t = 0 to T, our algorithm aims 
to assign the correct activity label(s) to each observation. At 
time t, for each activity Ai, we first obtain a test instance 

iALttS (~ by computing the union of all the observations from t to 

iALt ( using a slide window
iAL which is the average length of 

all the instances of Ai. We compute the score for Ai based on a 
score function, and obtain an activity label Aprevious that yields 
the highest score. The same process is repeated to obtain 
another activity label Acurrent that yields the highest score in the 
next slide window. We then apply our trace segmentation 
algorithm to detect and adjust the boundary between Aprevious 

and Acurrent. Finally, we compute the score again and assign the 

label Acandidate, yielding the highest score, to 
iALttS (~ . The above 

process is repeated until the end of the sequence, i.e., t = T.  

 

Figure 2. Flow chart of the epSICAR algorithm 

 
We design the score function based on three types of 

scores: EP score, slide-window coverage score and activity-
correlation score. In the remaining of this section, we first 
describe the score function for sequential activity, followed by 
the score computation for interleaved and concurrent activities. 
We then describe our epSICAR algorithm in detail. 
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A. The Score Function for Sequential Activity 

1) EP Score  
A single EP can sharply differentiate the class membership 

of a fraction of the test instance 
iSALttS (~ which contains the EP. 

To make use of each set of EP to achieve good overall 
accuracy, we combine the strength of EPs based on the 
aggregation method described in [21]. The aggregated score of 

iSALttS (~
for SAi is defined as follows. 

)(),(_
,

~

~
1)(_

)(_
XsuppSSAscoreaggregated

i

iSA
iSALtt

iSA SA

EPXSX

Ltti
Xrategrowth

Xrategrowth
)" *

+,
(

(
(

where )( Xsupp
iSA is the support of X in SAi, and growth_rate(X) 

is )(Xsupp
iSA  divided by the X’s support in non-SAi classes. 

The EP scores of each activity are then “normalized” by 
dividing them using the median of the scores of the training 
instances of that activity. Finally, the EP score is defined as 
follows. 

)(_

),(_
),(_

~

~

i

Ltti

Ltti
SAscorebase

SSAscoreaggregated
SSAscoreep iSA

iSA

(

( "                 

where )(_ iSAscorebase is the median of the values of 

),(_ ~
iSALtti SSAscoreaggregated (

in the training data. 

Example 2. For an instance S = {1, 3, 4, 6, 7, 8, 10, 11} in SAi 
which contains 4 EPs: ({1, 3}, 100%, "), ({2, 3}, 95%, 150), 
({1, 2, 3, 8}, 81%, "), ({1, 7}, 62%, 80). The differentiating 
power of the 4 EPs is computed as 1.0, 0.95, 0.81, 0.62 
respectively, then its aggregated_score(SAi, S) = 3.38. The 
aggregated scores of SAi for all its training instances are 2.76, 
3.38, 3.56, 3.66, 3.85, 3.85, 4.12, and the median is 3.66. 
Finally, we obtain ep_score(SAi, S) = 0.92. 

2) Slide-window Coverage score 

The EP score, ep_score(SAi, 
iSALttS (~ ), provides a 

measurement on the fraction of 
iSAEP (i.e., the discriminating 

features of SAi) that is contained in the test instance 
iSALttS (~ . 

However, 
iSALttS (~  may contain other observations that do not 

belong to SAi. We introduce the Slide-Window Coverage score 
(i.e., coverage score for short) to describe a fraction of 

irrelevant observations to SAi which are contained in
iSALttS (~ .  

i  SAL

 

Figure 3. Illustration of Slide-window coverage 

 
Figure 3 illustrates this concept. The bars in the figure 

represent the feature vectors computed from the observations. 
The feature vectors from time t are labeled with the ground 
truth SAi, followed by SAj. The black bars represent a subset of 

iSAEP , while the gray bars represent a subset of
jSAEP . During 

the prediction step, a slide window
iSAL is applied to get 

instance
iSALttS (~ . In this example, although 

iSALttS (~  includes the 

fractions of 
iSAEP , it covers some observations of its adjacent 

activity SAj as well. Therefore, we introduce the coverage score 
to measure the fraction of irrelevant observations in a slide 
window. The lower the percentage of irrelevant observations 
covered; the larger the coverage score obtained.  

We denote coverage_score(SAi, 
iSALttS (~
) as the coverage 

score of instance
iSALttS (~
for SAi. This score is computed based 

on relevance(SAi, fp), where a feature vector fp contained in
iSAL . 

Recall that a feature vector is a set of feature items. We first 

compute relevance(SAi, itemh) for each itemh + fp, we then 
aggregate their scores to compute relevance(SAi, fp). 

We compute relevance(SAi, itemh) based on the following 
equation.

*
++

("
iSAh

i

EPXXitem

SAihhi Xsupp  ) SA| P(item  itemSArelevance
,

)(),(     

where the probability P(itemh | SAi) is obtained from the 

training data, and *
++

iSAh

i

EPXXitem

SA Xsupp
,

)(  indicates more weights 

given to an item which appears in 
iSAEP . 

We now aggregate the values of relevance(SAi, itemh) for 

all itemh + fp. The aggregation can be simply done 

using *
+ kh fitem

hi itemSArelevance ),( . Then the normalized 

relevance(SAi, fp) is computed as follows. 

)(_

),(_
,

i

pi

pi
SArelevancebase

fSArelevanceunnorm
)fSArelevance( "   

where unnorm_relevance(SAi, fp)= *
+ ph fitem

hi itemSArelevance ),( , and 

base_relevance(SAi) be the median of the values of 
unnorm_relevance(SAi, fp) in the training data. 

Finally, ),(_ ~
iSALtti SSAscoreagecover ( can be computed by 

averaging all the relevance(SAi, fp) as follows.  

*
+

"(

iSALpi

iSA

f

pi

SA

Ltti fSArelevance
L

SSAcorecoverage_s ),(
1

),( ~
 

3) Activity-correlation score 
Human activities are usually performed in a non-

deterministic fashion. However, there exist some correlations 
between them, i.e., when SAj has been performed, the 
probability of SAi being performed. For example, in a daily 
routine, a user usually brushes his teeth, followed by washing 
his face; cleans the dining table after eating his meal.   

We use condition probability to model correlations between 
activities. We define the activity-correlation score of SAi as 
P(SAi | SAj), which is the conditional probability of SAi given 
SAj. We can easily obtain the activity-correlation scores for all 
activities from the training dataset. Note that the initial value is 
set to zero, i.e., P(SAi | NULL) = 0.  
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B. The Score Function for Interleaved and Concurrent 

Activities 

We now describe how to compute the scores of interleaved 
or concurrent activities. We set the number of single activities 
involved in interleaved or concurrent activities to two for 
illustration although, in theory, it can be more than two. 

We denote CAi as both interleaved activities (i.e., CAi is 
represented as SAa & SAb in this case) and concurrent activities 
(i.e., CAi is represented as SAa + SAb in this case), where SAa 
and SAb are involved in. We define the slide-window length 

iCAL of CAi as 
aSAL +

bSAL , and use 
iCAL to get the test 

instance
iCALttS (~

. Since an instance of CAi containing both 

aSAEP and 
bSAEP (i.e., some of the steps that belong to SAa and 

SAb respectively are interleaved or overlapped), we compute 
the EP score of CAi as follows. 

)],(_),(_[
2

1
),(_ ~~~

iCAiCAiCA LttbLttaLtti SSAscoreepSSAscoreepSCAscoreep ((( ("

When computing the coverage score of CAi, we choose the 
higher score from ),( pa fSArelevance and ),( pb fSArelevance  

since CAi contains both the observations of SAa and SAb in 

iCALttS (~
. The rationale behind this is that a feature vector fp, 

which belongs to an activity usually, has a higher relevance to 
this activity. Hence, we have 

)),(),,(max(),( pbpapi fSArelevancefSArelevancefCArelevance "  

Then the coverage score of CAi can be computed as follows. 

*
+

"(

iCALpi

iCA

f

pi

CA

Ltti fCArelevance
L

SCAcorecoverage_s ),(
1

),( ~

 

The computation of activity-correlation score for 
interleaved and concurrent activities can be quite complex. 
There are three situations: a sequential activity followed by 
interleaved or concurrent activities, interleaved or concurrent 
activities followed by a sequential activity, and interleaved or 
concurrent activities followed by other interleaved or 
concurrent activities. Given the rationale that a higher 
condition probability implies a stronger activity correlation, we 
choose the maximum value of all possible condition 
probabilities for all these cases. To illustrate, given CAj, where 
CAi = SAa & SAb or CAi = SAa + SAb, the activity-correlation 
score of CAi, where CAj = SAc & SAd or CAj = SAc + SAd, can 
be computed as follows. 

))|(),|(),|(),|(max()|( dbcbdacaji SASAPSASAPSASAPSASAPCACAP "
 

The computation of P(SAi | CAj) and P(CAi | SAj) follows 
the same method. 

C. Total Score 

In summary, the computation of the total score is defined 
as follows.  

Definition 3: Given a time t, and an activity Aj which ends at t, 
for each activity Ai , a test instance 

iALttS (~
is obtained from t to 

t+
iAL , the score function of Ai is then defined as follows. 
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where c1, c2 and c3 are the coefficients. The coefficient 
represents the importance of an individual score, and its value 
implies different meanings. For example, if c1 is high, it 
implies that the activities always follow certain patterns well. A 
higher c2 implies that all the instances of the activity are 
performed in a constant duration whereas a lower c2 implies 
that the variance of the instances can be large. If c3 is high, it 
implies that there exist strong correlations among the activities 
performed. These weights reflect the activity habit of a subject.  

D. Recognizing Activity using a Slide Window  

Algorithm 1: The Slide-window based Recognition Algorithm 

Input:    feature vector of length Lmax: F = {ft, ft+1, ft+2, ... , 
maxLtf (

}, 

               where prediction starts at time t, 

       predicted activity Aj in the previous slide window. 

Output: the activity label starts from time t  

1:        foreach activity Ai ,  i = 1, 2, … , m2  do  

2:               get instance 
iALttS (~ =  

iALt

tp

pf

(

"

; 

3:               compute score(Ai, Aj, 
iALttS (~ ); 

4:        end for 

5:               return Ai with the highest score; 

We now can apply the score function to recognize the 
activity label in the test instance obtained using a slide window 
method. Given m sequential activities, the number of 
interleaved and concurrent activities can be computed by m(m-
1). Then the total number of activities is m2. We define Lmax as 
max{

kAL }, where k = 1, 2, …, m2. A straightforward method is 

to test each activity label using its corresponding slide window 
and the one with the highest score wins out. Algorithm 1 
describes this approach. 

E. The Trace Segmentation Algorithm 

The simple slide-window based algorithm presented in 
Algorithm 1 can be applied recursively to recognize activities 
in a given activity trace. However, it has a shortcoming. Since 

the slide window length 
iAL of each activity is an 

approximation of the actual length, the segmentation may not 
be accurate. Moreover, any error in one segment may affect the 
recognition of the subsequent trace. This error may accumulate 
and affect the recognition accuracy seriously.  

To overcome this limitation, we propose our trace 
segmentation algorithm as presented in Algorithm 2. We first 
obtain two predicted activity labels (e.g., Aj followed by Ai) 
based on Algorithm 1. The task of our segmentation algorithm 
is to determine the boundary between Aj and Ai accurately so 
that the next slide window can be applied from this boundary.  

Intuitively, given an activity instance, its feature vectors 
obtained by pre-processing its observations usually have a 
higher relevance to this activity than all other activities. 
Furthermore, the relevance of its feature vectors in the same 
activity instance does not vary significantly as compared to the 
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relevance of two feature vectors belonging to two different 
activities. Based on these heuristics, we introduce our trace 
segmentation algorithm as described in Algorithm 2. This 
algorithm makes use of the weight difference, i.e., Relative 
Weight (RW), of each feature vector between the two adjacent 
activities. 

Algorithm 2: The Trace Segmentation Algorithm 

Input:   feature vector of length 
jAL +

i
AL : F = {

jALtf - , ... , 
iALtf ( },       

              where t is the existing boundary, 

              predicted activity Aj followed by Ai based on Algorithm 1. 

Output: the boundary between Aj and Ai 

1:     foreach p from t-
jAL to t+

i
AL   do  

2:           RW[p] = relevance(Aj, fp) - relevance(Ai, fp) ; 

3:     end for 

4:     foreach p from t-
jAL to t+

i
AL   do 

5:           upperSum = sum of all RWs from t-
jAL  to p ; 

6:           lowerSum = sum of all RWs from p to t+
i

AL ; 

7:           GAIN[p] = upperSum – lowerSum ; 

8:     end for 

9:           boundary = p such that GAIN[p] is maximum ; 

10:   return boundary; 

VII. EMPIRICAL STUDIES 

We now move to evaluate our proposed algorithm. We 
conducted our own trace collection in a complex, real-world 
situation. In this section, we first describe our experimental 
setup and metric, then present and discuss the results obtained 
from a series of experiments. 

A. Experimental Setup and Metric 

 

Figure 4. (a) StarHome – a real smart home, (b) a video snapshot shows 

that a subject is performing an activity in the kitchen, (c) another video 

snapshot shows that a subject is performing an activity in the living room. 

 
Trace collection was done in StarHome – a real smart home 

built by our organization – as shown in Figure 4a. We deployed 
our sensor platform and tagged over 100 objects. We randomly 
selected 26 activities out of common ADLs as summarized in 
Table 2. We then chose 15 interleaved activities and 16 
concurrent activities, e.g., using computer and using phone 
(“23 & 20”, interleaved), brushing teeth while listening 
music/radio (“9 + 25”, concurrent), etc. The data were 
collected by four volunteers over a period of two weeks. Each 
day, each of them performed these activities at his choice in his 
own way. However, the duration of each activity is shorter as 
compared to the actual duration in his daily life in order to 
collect more instances. A sequence of trace was logged in the 
server. There was only one subject performing activities at any 
given time. Location information was recorded partially by 
hand due to the limitation of our indoor location system. One of 
the volunteers annotated the traces to establish the ground truth 

together with video recording. Figures 3b and 3c show two 
video snapshots in our data collection.  

TABLE II. SEQUENTIAL ACTIVITIES PERFORMED 

0 making coffee 13 ironing 

1 making tea 14 eating meal 

2 making oatmeal 15 drinking  

3 frying eggs 16 taking medication 

4 making a drink 17 cleaning a dining table 

5 applying makeup 18 vacuuming 

6 brushing hair 19 taking out trash 

7 shaving 20 using phone 

8 toileting 21 watching TV 

9 brushing teeth 22 watching DVD/movies 

10 washing hands 23 using computer 

11 washing face 24 reading book/magazine 

12 washing clothes 25 listening music/radio 

Table 3 shows a total number of 532 activity instances 

collected and a breakdown in the three types of activities.  

TABLE III. NUMBER OF INSTANCES COLLECTED 

Type of Activities Number of Instances 

sequential 422 

interleaved 44 

concurrent 66 

total 532 

We use ten-fold cross-validation for our evaluation and 
evaluate the performance of our algorithm using the time-slice 
accuracy which is a typical technique in time-series analysis. 
The time-slice accuracy represents the percentage of correctly 
labeled time slices. The length of time slice !t is set to 15 
seconds as our experiment shows different !t doest not affect 
the accuracy much. This time slice duration is short enough to 
provide precise measurements for most of activity recognition 
applications. The metric of the time-slice accuracy is defined as 
follows. We first denote LB as the label(s) in a time slice, 
where LB can be {SAi} in the case of sequential activity and LB 
can be {SAi, SAj} for interleaved or concurrent activities, SAi, 
SAj +(SA1, SA2, … , SAm). We denote LBG as the ground-truth 
label(s), and LBR as the predicted label(s). The time-slice 
accuracy can be defined as  

Slice_Accuracy = *
*

+

+

RGi

i

RGi

i

LBLBSA

SA

LBLBSA

SA

L

L

 

!

 

We now give a few examples to illustrate the time-slice 
accuracy. Given LBG = {9, 25}, if the predicted labels LBR = {9, 

25}, then Slice_Accuracy = 1 since 
RG

LBLB ! = 
RG

LBLB  . If 

LBR = {10}, then Slice_Accuracy = 0 since ."
RG

LBLB ! . If 

LBR = {9}, then Slice_Accuracy can be computed as 
259

9

LL

L

(
. 

The total time-slice accuracy is computed as follows. 

Total_ Accuracy = 
t

T

racySlice_Accu
t

T

/

*
/

1  
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B. Experiment 1: Accuracy Analysis 

In this experiment, we evaluate the accuracies of different 
types of activities. Table 4 shows the average accuracies of 
sequential, interleaved and concurrent activities, respectively, 
and the overall accuracy. Figure 5 shows the breakdown of the 
types of activities in the ten datasets.  

TABLE IV. OVERALL ACCURACY  

Type of Activity Time-slice Accuracy 

sequential 90.96% 

interleaved 87.98% 

concurrent 78.58% 

total 88.11% 
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Figure 5. Accuracy breakdown in the ten datasets 

 
The accuracy of sequential activity is the highest among all 

the three types. The accuracies of interleaved and concurrent 
activities are lower; it probably can be explained as follows. 
Firstly, we have four subjects, and they are instructed to 
perform their activities in their own ways. Each subject may 
perform his interleaved or concurrent activities in a different 
manner. This difference does not influence the sequential 
activity recognition much because the training process captures 
the common characteristics of all the four subjects. However, 
some of the specific characteristics of interleaved and 
concurrent activities performed by different subjects may not 
be captured by our model. Nevertheless, the result is 
reasonably good, and we achieved our objective of building the 
activity model to recognize all types of activities based on the 
sequential activity training data only.  

Second, the accuracy of concurrent activity is 9.4%, lower 
than that of interleaved activity, while the accuracy of 
interleaved activity is close to that of sequential activity. It is 
probably due to the slide-window length. In our model, we 

apply 
iCAL = 

aSAL +
bSAL to calculate the slide-window length 

of CAi. This estimation seems to work well in the case of 
interleaved activity because the observations of SAa and SAb do 
not overlap each other. However, for concurrent activity, there 
exists some overlapped steps between SAa and SAb, hence, 

iCAL should be much shorter than 
jSAL +

kSAL .  

Another observation from Figure 5 is that the variances of 
interleaved and concurrent activities are larger than that of 
sequential activity in the ten datasets. This may be caused by 

the imbalance of instances in our datasets. The number of 
interleaved and concurrent activity instances is much smaller 
than that of sequential activity instances as shown in Table 3. 

C. Experiment 2: Model Analysis 
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Figure 6. Analysis of the score function 

 
In this experiment, we evaluate and analyze the 

effectiveness of different models in our algorithm. We first 
evaluate the epSICAR algorithm with respect to our score 
function. Figure 6 shows that the accuracies of the epSICAR 
algorithm with EP score, EP score + coverage score, and EP 
score + coverage score + activity-correlation score, 
respectively. The figure suggests that epSICAR achieves an 
accuracy of 66% on average with the EP score only, 
demonstrating that the concept of EPs works effectively. 
However, the effectiveness of the EP score is not as high as 
expected and there exists some variations. We analyze this case 
and suggest two reasons. First, the use of EPs in activity 
recognition is leveraged on mining discriminating features. The 
more discriminating features collected, the better EPs mined 
and the better results obtained. Our current sensor platform 
provides only limited types of sensors. More sensor features 
can be developed, which we leave for our future work. Second, 
we currently deploy a simple aggregation method to sum the 
contribution of each set of EPs. We will further improve this 
method in our future work. Figure 6 also suggests that, by 
introducing the coverage score, the accuracy is improved 
significantly by about 19% and the variance also decreases. We 
also observe that the accuracy is further improved by about 3% 
when adding in the activity-correlation score.  

Next, we evaluate the effect of our segmentation algorithm. 
Figure 7 shows the results for epSICAR with and without 
segmentation, respectively. As expected, the epSICAR 
algorithm with segmentation achieves a much better accuracy 
(i.e., 25% improvement on average). This demonstrates that, on 
one hand, a slide-window based method has a limitation in 
truncating an activity instance with its correct length for 
prediction; any error in one boundary detection may affect the 
recognition of the subsequent trace. The errors may accumulate 
and affect the recognition accuracy seriously. On the other 
hand, our trace segmentation algorithm works well to segment 
the two adjacent activities, and improves the accuracy 
significantly.  
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Figure 7. Effect of the trace segmentation alrogithm 

 

VIII. CONCLUSION 

In this paper, we studied the problem of human activity 
recognition based on sensor readings in a pervasive computing 
environment. We deployed our sensor platform and conducted 
a real-world trace collection done by four volunteers in a smart 
home for two weeks. Our dataset contains comprehensive 
activity instances for our study. We then investigated a 
challenging problem of how we can apply a model, which can 
be learnt from sequential activity instances only, in recognizing 
both simple (i.e., sequential) and complex (i.e., interleaved and 
concurrent) activities. We exploited EPs as powerful 
discriminators to differentiate activities and proposed the 
epSICAR algorithm. We conducted comprehensive evaluation 
studies using our dataset and analyzed our algorithm in detail. 
The results demonstrate both the effectiveness and flexibility of 
our algorithm.  

For our future work, we will further develop our sensor 
platform to include more sensor features and fully explore the 
discriminating power of EPs. We will also look into a better 
method for aggregating the contribution of each set of EPs.  
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