

 978-1-4244-3304-9/09/$25.00 ©2009 IEEE

epSICAR: An Emerging Patterns based Approach to

Sequential, Interleaved and Concurrent Activity Recognition

Tao Gu
a

, Zhanqing Wu
b
, Xianping Tao

b
, Hung Keng Pung

c
, Jian Lu

b

a
Institute for Infocomm Research, Singapore

b
State Key Laboratory for Novel Software Technology, Nanjing University, China

c
School of Computing, National University of Singapore, Singapore

tgu@i2r.a-star.edu.sg; wzq@ics.nju.edu.cn; txp@ics.nju.edu.cn; dcsphk@nus.edu.sg; lj@nju.edu.cn

Abstract—Recognizing human activities from sensor readings has

recently attracted much research interest in pervasive

computing. This task is particularly challenging because human

activities are often performed in not only a simple (i.e.,

sequential), but also a complex (i.e., interleaved and concurrent)

manner in real life. In this paper, we propose a novel Emerging

Patterns based approach to Sequential, Interleaved and

Concurrent Activity Recognition (epSICAR). We exploit

Emerging Patterns as powerful discriminators to differentiate

activities. Different from other learning-based models built upon

the training dataset for complex activities, we build our activity

models by mining a set of Emerging Patterns from the sequential

activity trace only and apply these models in recognizing

sequential, interleaved and concurrent activities. We conduct our

empirical studies in a real smart home, and the evaluation results

demonstrate that with a time slice of 15 seconds, we achieve an

accuracy of 90.96% for sequential activity, 87.98% for

interleaved activity and 78.58% for concurrent activity.

Keywords- activity recognition; emerging patterns; sequential,

interleaved and concurrent activities; wireless sensor networks

I. INTRODUCTION

With the advancement of wireless sensor network
technology, recognizing human activities based on sensor
readings has recently drawn much research interest from the
pervasive computing community. Different from video-based
activity recognition in computer vision, in this paradigm, there
are typically different types of sensors deployed. These sensors
may be wearable by a user or embedded in the environment.
Sensor readings are then collected and interpreted to recognize
various human activities. A typical application in healthcare is
monitoring Activities of Daily Living (ADLs) [1] for the
elderly and providing them with proactive assistance.

In real life, people perform ADLs in not only a sequential
manner (i.e., performing one ADL after another), but also an
interleaved (i.e., switching between the steps of two or more
ADLs) or concurrent manner (i.e., performing two or more
ADLs simultaneously). Recognizing activities in such a
complex situation has practical implication to real-life
pervasive computing applications; hence, it attracts our
research interest and motivates this work.

Little work has been done in providing a unified solution to
solve complex issues that arise in recognizing sequential,

interleaved and concurrent activities. Activity recognition is
typically viewed as a classification problem where many
traditional machine learning techniques can be applied.
Probabilistic-based models are popular due to its ability of
handling noise and uncertainty in sensor readings. Some recent
work showed that the variants of Conditional Random Field
(CRF) [2-3] can be used to model interleaved and concurrent
activities. However, these learning-based techniques require
that a predicting instance (i.e., an interleaved or concurrent
activity instance to be predicted) must have its model presented
in the training dataset. Considering a great variety of ways in
which daily activities can be interleaved and performed
concurrently, the training dataset for learning such complex
activity models has to be large enough. These solutions may
lack flexibility in real-life deployment.

In this paper, we formulate activity recognition as a pattern
based classification problem, and propose a novel Emerging
Patterns based approach to recognize sequential, interleaved
and concurrent activities. We build our activity models based
on Emerging Patterns (EPs) [4] – a type of knowledge pattern
that describes significant changes between two classes of data.
We mine a set of EPs for each sequential activity from the
training dataset, and use the sets of EPs obtained to recognize
not only simple (i.e., sequential), but also complex (i.e.,
interleaved and concurrent) activities. This approach does not
require training for complex activities; and hence it has a great
flexibility and applicability for real-life pervasive computing
applications. We conduct a real-world activity trace collection
done by four volunteers in a smart home environment, and our
evaluation results demonstrate both the effectiveness and
flexibility of our solution.

In summary, the paper makes the following contributions.

 We formulate activity recognition as a pattern based
classification problem, and propose a novel Emerging
Patterns based approach to recognize sequential,
interleaved and concurrent activities in a unified
solution.

 We propose a novel trace segmentation algorithm
based on feature relevance to segment the boundary of
any two adjacent activities during the recognition
process.

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 16:45:22 UTC from IEEE Xplore. Restrictions apply.

 We conduct a real-world trace collection using
wireless sensors, evaluate our algorithm through
comprehensive experiments and analyze our algorithm
in detail.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 describes our sensor setup for
data collection and Section 4 gives the background on EPs. We
then describe the mining of EPs in Section 5, and present our
activity recognition algorithm in Section 6. Section 7 reports
our empirical studies. Finally, Section 8 concludes the paper.

II. RELATED WORK

In pervasive computing, researchers are recently interested
in recognizing activities using sensors. As sensor readings are
usually noisy and activities are typically performed in a non-
deterministic fashion, probabilistic learning-based methods are
appropriate and gain more popularity.

Probabilistic-based models can be categorized into static
classification or temporal classification. In static classification,
sensor readings are first pre-processed into features, and then a
static classifier is applied to classify the activities. Typical
static classifiers include naïve Bayes used in [5-7], C4.5
decision trees used in [6-8], k-nearest neighbor (k-NN) used in
[6, 8-9], and support vector machine (SVM) used in [9].
Multiple binary classifiers [5, 7] can be exploited to recognize
interleaved and concurrent activities; however, this solution
may not work properly because many activities share common
features.

In temporal classification, state-space models are typically
used to enable the inference of hidden states (i.e., activity
labels) given the observations (i.e., sensor readings). We name
a few examples here: Hidden Markov Model (HMM) used in
[10-13], Dynamic Bayesian Network (DBN) used in [14-15]
and CRF used in [16]. Recent work showed that SCCRF [3] – a
variant of CRF – and IHMM [17] – a variant of HMM – can be
used to model interleaved activities, and FCRF [2] – another
variant of CRF – can be used to model concurrent activities.
However, like other learning-based techniques, they require
that a predicting instance must have its model presented in the
training dataset. On one hand, this implies that the training
dataset has to be large enough to build the complete models for
interleaved and concurrent activities. Any partial model will
result in a loss of recognition accuracy. On the other hand, in
real life there exists a great variety of ways in which daily
activities can be interleaved and performed concurrently. It
may be not possible to construct a complete model by training.
Hence, the flexibility and scalability of the solutions in [2-3,
17] are limited.

A different attempt to recognize activities is Time Series
based classification, in which an activity is modeled as a
sequence of discrete events [18]. Activities are recognized
through discovering and matching the Motif which is defined
as the subsequences with similar behavior appeared frequently
in time-series data. However, this approach is sensitive to the
order of the events as it rigidly models an activity sequence
using its variable-length event subsequences over the entire
continuum of their temporal scales.

Our approach is fundamentally different from the above.
The EPs based classifier model uses a set of multi-attribute
tests for each class, while most previous classifiers consider
only one test on one attribute at a time. Different from the Time
Series based classifier concerning the mining of regularities,
we mine the abnormal growth among classes. Our activity
models are built upon the sequential activity instances only and
will be applied to recognize interleaved and concurrent
activities.

III. OUR SENSOR SETUP

We built a wireless sensor platform from off-the-shelf
sensors to collect sensor information. Our sensor platform
measures a user’s movement (i.e., left hand, right hand and
body movements), user location, the living environment (i.e.,
temperature, humidity and light), and the human-object
interaction (i.e., objects a user touches).

 (a) (c) (d)

 (e) (f)

Figure 1. (a) Wearable sensors consist of 2 RFID wristband readers and

3 iMote2 sets, (b) iMote2 set, (c) RFID wristband reader, (d) servers, (e)

HF RFID tags, and (f) HF RFID tagged objects.

Figures 1a, 1b and 1c illustrate our wearable sensors. A
subject wears a Crossbow iMote2 set on each of his hands and
his waist. Each iMote2 set (Figure 1b) consists of an IMote2
IPR2400 processor/radio board and an ITS400 sensor board,
capable of measuring the movement of a user’s hands and body
(3-axis accelerometer), the temperature, humidity and light of
the environment.

A subject also wears an RFID wristband reader (Figure 1c)
on each of his hands. The custom-built wristband incorporates
a SkyeTek M1-mini RFID reader, a Crossbow Mica2Dot
module and a rechargeable battery. The wristband is able to
detect the presence of a tag within the range of 6 to 8 cm. HF
RFID tags are attached to day-to-day objects such as cups,
teaspoons and books in a smart home. Figure 1e shows three
types of such tags we used and they operate on 13.56MHz.
Figure 1f shows a screen shot of tagged objects in a kitchen. In
addition, detecting user location is done in a simple way that an
UHF RFID reader is located in each room to sense the
proximity of a user wearing an UHF tag.

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 16:45:22 UTC from IEEE Xplore. Restrictions apply.

When a subject performs daily activities, the sensor
readings from the three iMote2 sets are transferred wirelessly
to a local server (Figure 1d, left) which runs on a laptop PC
with an iMote2 IPR2400 board connected through its USB
port. When a subject handles a tagged object, the wristband
scans the tag ID and sends it wirelessly to another server
(Figure 1d, right) that can map the ID to an object name. This
server runs on a Linux-based laptop PC with a MIB510CA
serial interface board and a Mica2Dot module connected
through its serial port. The sensor readings are recorded by the
two servers separately, and will be merged into a single txt file
as the activity trace. Our objective is to design an algorithm to
recognize the activities in the activity trace.

IV. EMERGING PATTERNS AND PRELIMINARIES

We provide the background of EPs in this section.
Discovery of powerful distinguishing features between datasets
is an important objective in data mining. Emerging Pattern is a
new type of knowledge pattern that describes significant
changes (differences or trends) between two classes of data [4].
An EP is a set of items whose frequency changes significantly
from one dataset to another. Like other patterns or rules
composed of conjunctive combinations of elements, EPs can be
easily understood and used directly.

We first give some preliminary definitions. Suppose that a
dataset D consists of many instances. An instance contains a set
of items (i.e., an itemset), where an item is an attribute-value
pair. The support of an itemset X, suppD(X), is countD(X)/|D|,
where countD(X) is the number of instances in D containing X.
A pattern is frequent if its support is no less than a predefined
minimum support threshold. Unlike frequent patterns,
Emerging Patterns are concerned with two classes of data.

Definition 1: Given two different classes of datasets D1 and D2,
the growth rate of an itemset X from D1 to D2 is defined as
GrowthRate(X) =

otherwise

XsuppandXsuppif

XsuppandXsuppif

21

21

1

2
(X)supp

(X)supp

0)(0)(

0)(0)(0

!"

""

#
#
$

##
%

&

'

EPs are those itemsets with large growth rates from D1 to
D2.

Definition 2: Given a growth rate threshold > 1, an itemset X
is said to be a -Emerging Pattern (or simply EP) from a
background dataset D1 to a target dataset D2 if GrowthRate(X)
 .

An EP with high support in its target class and low support
in the contrasting class can be seen as a strong signal indicating
the class of a test instance containing it.

Example 1. Consider the following training dataset with two
classes, P and N (this is an encoding of the Saturday morning
activity example from [22]).

P N

{ 2,6,7,10 } { 3,5,7,10 } { 3,4,8,10 }

{ 2,4,8,9 } { 1,4,8,10 } { 3,5,8,10 }

{ 1,5,8,9 } { 2,5,7,9 } { 2,6,8,10 }

{ 1,6,7,10 } { 1,6,7,9 }

{ 3,4,8,9 } { 1,5,7,10 }

{ 3,5,7,9 }

Then {1, 9} is an EP from class P to class N with a growth

rate 5
9 ; it is also a -EP for any 1< ! 5

9 .

V. MINING EMERGING PATTERNS FROM THE SEQUENTIAL

ACTIVITY TRACE

A. Problem Statement

We formulate the problem of sequential, interleaved and
concurrent activity recognition as follows. Given a training
dataset that consists of an observation sequence for sequential
activities only (i.e., formally, a training dataset O consists of T
observations, O = {o1, o2, … , oT}, associated with sequential
activity labels {SA1, SA2, … , SAm}, where there are m
sequential activities), our objective is to train a model that can
assign each new observation with the correct activity label(s)
and segment the new activity trace.

B. Data Preprocessing

Before we introduce the mining of EPs, we need to select
appropriate sensor features and discretize their readings. We
convert the sensor readings to a series of observation vectors
where each observation vector consists of 15 features as shown
below.

o = [accel_body_x, accel_body_y, accel_body_z, accel_right_x,
accel_right_y, accel_right_z, accel_left_x, accel_left_y, accel_left_z,
temperature, humidity, light, location, left_object, right_object]

We compute each observation vector in a fixed time
interval which is set to one second in our experiments.
Corresponding to the type of sensors, these features have two
types of values. For an RFID reading, we use the object name
(e.g., cup, toothpaste, etc.) as its feature value. Since a subject
is unlikely to touch two or more objects in a one-second
interval when performing activities, we choose the first object
for each RFID wristband reader in such an interval. If no RFID
reading is observed or in the presence of a corrupted tag ID, a
null value will be given. For numeric sensor readings, we take
the average of all the readings in this interval as the feature
value. When the sensor readings are not observed in the
interval due to sensor errors, we use the value from the
previous interval, where we assume the states of a subject and
the environment will not be changed in such a short interval.

We then transform these observation vectors into feature
vectors. A feature vector consists of many feature items, where
a feature item refers to a feature-value pair in which a feature
can be numeric or nominal. We denote a numeric feature as
numfeaturei. Suppose its range is [x, y] and an interval [a, b] (or
in other forms, (a, b], [a, b), or (a, b)) is contained in [x, y]. We
call numfeaturei@[a, b] a numeric feature item, meaning that
the value of numfeaturei is limited inclusively between a and b.
We denote a nominal attribute as nomfeaturej. Suppose its
range is {v1, v2, … , vn}, we call nomfeaturej@vk a nominal
feature item, meaning that the value of nomfeaturej is vk.

To discretize numeric features, we use the entropy-based
discretization method [19] which partitions a range of
continuous values into a number of disjoint intervals such that
the entropy of the partition is minimal.

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 16:45:22 UTC from IEEE Xplore. Restrictions apply.

The discretization method partitions 12 numeric feature
values into a total of 267 disjoint intervals. Then we can
directly combine the feature name and its interval into a
numeric feature item. For example, accel_body_x@(-737.5~-
614.5] is one such example in our training dataset. For nominal
feature, the feature name and its value are combined as a
nominal feature item. For the left_object and right_object
features, we merge them into one feature by computing

left_object right_object without losing any essential objects

during the user-object interaction due to user’s handedness. For
example, a nominal feature item can be object@cup or
location@bathroom. Based on our current sensor setup, we
have a total of 354 feature items. They are indexed by a simple
encoding scheme and will be used as inputs to the EPs mining
process described in the next section.

C. Mining Emerging Patterns

In our training dataset, each observation is assigned with an
activity label(s). We first identify the instances for each
sequential activity in the training dataset. An instance here
refers to a union of all the observations that belong to a
sequential activity during a continuous period of time.

For each sequential activity, denoted as SAi, we mine a set
of EPs to contrast its instances,

iSAD , against all other activity

instances '
iSAD , where '

iSAD =D -
iSAD and D is the entire

sequential activity dataset. We refer
iSAEP as the EPs of SAi.

We discover the EPs by an efficient algorithm described in
[20]. After computation, we get m sets of EPs, one set per
sequential activity. Table 1 presents an example of the top 8
EPs of the cleaning a dining table activity. Column 1 shows
the EPs. For example, the EP “object@cleanser, object@plate,
object@wash_cloth, location@kitchen” has a support of
95.24% and a growth rate of ". It has an intuitive meaning that
cleanser, plate and wash_cloth are the common objects which
are involved in this activity, and this activity usually occurs in
the kitchen. In fact, one of the advantages of EPs is easy to
understand. Another interesting phenomenon is that the EPs
“object@bowl, accel_left_z@(-684.5~-453.5], light@(24.5-
28.5], object@plate, location@kitchen” has a support of
66.67% only, where “accel_left_z” stands for the acceleration
data of a subject’s left hand in the z-axis. This probably can be
explained that there exist some variances of the left hand
movement when a subject performed this activity.

TABLE I. A SUBSET OF EPS FOR THE CLEANING A DINING TABLE ACTIVITY

EPs
Support

(%)
Growth

rate

location@kitchen, object@plate 100 "

object@dining_table, object@plate 95.24 365.7

object@cleanser, object@plate, object@wash_cloth,

location@kitchen
95.24 "

object@light_power_switch, object@plate,

location@kitchen
95.24 "

object@wash_cloth, object@bowl, object@plate,

object@cleanser, location@kitchen
90.48 "

object@spoon, object@plate, object@bowl,

object@dining_table, location@kitchen
80.95 "

object@bowl, accel_body_x@(-155.25--52.25], 66.67 256

light@(24.5-28.5], object@plate

object@bowl, accel_left_z@(-684.5~-453.5],

light@(24.5-28.5], object@plate, location@kitchen
66.67 "

VI. THE epSICAR ALGORITHM

We first give an overview of our proposed activity
recognition algorithm, as illustrated in Figure 2. Given a new
observation sequence from time t = 0 to T, our algorithm aims
to assign the correct activity label(s) to each observation. At
time t, for each activity Ai, we first obtain a test instance

iALttS (~ by computing the union of all the observations from t to

iALt (using a slide window
iAL which is the average length of

all the instances of Ai. We compute the score for Ai based on a
score function, and obtain an activity label Aprevious that yields
the highest score. The same process is repeated to obtain
another activity label Acurrent that yields the highest score in the
next slide window. We then apply our trace segmentation
algorithm to detect and adjust the boundary between Aprevious

and Acurrent. Finally, we compute the score again and assign the

label Acandidate, yielding the highest score, to
iALttS (~ . The above

process is repeated until the end of the sequence, i.e., t = T.

Figure 2. Flow chart of the epSICAR algorithm

We design the score function based on three types of

scores: EP score, slide-window coverage score and activity-
correlation score. In the remaining of this section, we first
describe the score function for sequential activity, followed by
the score computation for interleaved and concurrent activities.
We then describe our epSICAR algorithm in detail.

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 16:45:22 UTC from IEEE Xplore. Restrictions apply.

A. The Score Function for Sequential Activity

1) EP Score
A single EP can sharply differentiate the class membership

of a fraction of the test instance
iSALttS (~ which contains the EP.

To make use of each set of EP to achieve good overall
accuracy, we combine the strength of EPs based on the
aggregation method described in [21]. The aggregated score of

iSALttS (~
for SAi is defined as follows.

)(),(_
,

~

~
1)(_

)(_
XsuppSSAscoreaggregated

i

iSA
iSALtt

iSA SA

EPXSX

Ltti
Xrategrowth

Xrategrowth
)" *

+,
(

(
(

where)(Xsupp
iSA is the support of X in SAi, and growth_rate(X)

is)(Xsupp
iSA divided by the X’s support in non-SAi classes.

The EP scores of each activity are then “normalized” by
dividing them using the median of the scores of the training
instances of that activity. Finally, the EP score is defined as
follows.

)(_

),(_
),(_

~

~

i

Ltti

Ltti
SAscorebase

SSAscoreaggregated
SSAscoreep iSA

iSA

(

("

where)(_ iSAscorebase is the median of the values of

),(_ ~
iSALtti SSAscoreaggregated (

in the training data.

Example 2. For an instance S = {1, 3, 4, 6, 7, 8, 10, 11} in SAi
which contains 4 EPs: ({1, 3}, 100%, "), ({2, 3}, 95%, 150),
({1, 2, 3, 8}, 81%, "), ({1, 7}, 62%, 80). The differentiating
power of the 4 EPs is computed as 1.0, 0.95, 0.81, 0.62
respectively, then its aggregated_score(SAi, S) = 3.38. The
aggregated scores of SAi for all its training instances are 2.76,
3.38, 3.56, 3.66, 3.85, 3.85, 4.12, and the median is 3.66.
Finally, we obtain ep_score(SAi, S) = 0.92.

2) Slide-window Coverage score

The EP score, ep_score(SAi,
iSALttS (~), provides a

measurement on the fraction of
iSAEP (i.e., the discriminating

features of SAi) that is contained in the test instance
iSALttS (~ .

However,
iSALttS (~ may contain other observations that do not

belong to SAi. We introduce the Slide-Window Coverage score
(i.e., coverage score for short) to describe a fraction of

irrelevant observations to SAi which are contained in
iSALttS (~ .

i SAL

Figure 3. Illustration of Slide-window coverage

Figure 3 illustrates this concept. The bars in the figure

represent the feature vectors computed from the observations.
The feature vectors from time t are labeled with the ground
truth SAi, followed by SAj. The black bars represent a subset of

iSAEP , while the gray bars represent a subset of
jSAEP . During

the prediction step, a slide window
iSAL is applied to get

instance
iSALttS (~ . In this example, although

iSALttS (~ includes the

fractions of
iSAEP , it covers some observations of its adjacent

activity SAj as well. Therefore, we introduce the coverage score
to measure the fraction of irrelevant observations in a slide
window. The lower the percentage of irrelevant observations
covered; the larger the coverage score obtained.

We denote coverage_score(SAi,
iSALttS (~
) as the coverage

score of instance
iSALttS (~
for SAi. This score is computed based

on relevance(SAi, fp), where a feature vector fp contained in
iSAL .

Recall that a feature vector is a set of feature items. We first

compute relevance(SAi, itemh) for each itemh + fp, we then
aggregate their scores to compute relevance(SAi, fp).

We compute relevance(SAi, itemh) based on the following
equation.

*
++

("
iSAh

i

EPXXitem

SAihhi Xsupp) SA| P(item itemSArelevance
,

)(),(

where the probability P(itemh | SAi) is obtained from the

training data, and *
++

iSAh

i

EPXXitem

SA Xsupp
,

)(indicates more weights

given to an item which appears in
iSAEP .

We now aggregate the values of relevance(SAi, itemh) for

all itemh + fp. The aggregation can be simply done

using *
+ kh fitem

hi itemSArelevance),(. Then the normalized

relevance(SAi, fp) is computed as follows.

)(_

),(_
,

i

pi

pi
SArelevancebase

fSArelevanceunnorm
)fSArelevance("

where unnorm_relevance(SAi, fp)= *
+ ph fitem

hi itemSArelevance),(, and

base_relevance(SAi) be the median of the values of
unnorm_relevance(SAi, fp) in the training data.

Finally,),(_ ~
iSALtti SSAscoreagecover (can be computed by

averaging all the relevance(SAi, fp) as follows.

*
+

"(

iSALpi

iSA

f

pi

SA

Ltti fSArelevance
L

SSAcorecoverage_s),(
1

),(~

3) Activity-correlation score
Human activities are usually performed in a non-

deterministic fashion. However, there exist some correlations
between them, i.e., when SAj has been performed, the
probability of SAi being performed. For example, in a daily
routine, a user usually brushes his teeth, followed by washing
his face; cleans the dining table after eating his meal.

We use condition probability to model correlations between
activities. We define the activity-correlation score of SAi as
P(SAi | SAj), which is the conditional probability of SAi given
SAj. We can easily obtain the activity-correlation scores for all
activities from the training dataset. Note that the initial value is
set to zero, i.e., P(SAi | NULL) = 0.

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 16:45:22 UTC from IEEE Xplore. Restrictions apply.

B. The Score Function for Interleaved and Concurrent

Activities

We now describe how to compute the scores of interleaved
or concurrent activities. We set the number of single activities
involved in interleaved or concurrent activities to two for
illustration although, in theory, it can be more than two.

We denote CAi as both interleaved activities (i.e., CAi is
represented as SAa & SAb in this case) and concurrent activities
(i.e., CAi is represented as SAa + SAb in this case), where SAa
and SAb are involved in. We define the slide-window length

iCAL of CAi as
aSAL +

bSAL , and use
iCAL to get the test

instance
iCALttS (~

. Since an instance of CAi containing both

aSAEP and
bSAEP (i.e., some of the steps that belong to SAa and

SAb respectively are interleaved or overlapped), we compute
the EP score of CAi as follows.

)],(_),(_[
2

1
),(_ ~~~

iCAiCAiCA LttbLttaLtti SSAscoreepSSAscoreepSCAscoreep (((("

When computing the coverage score of CAi, we choose the
higher score from),(pa fSArelevance and),(pb fSArelevance

since CAi contains both the observations of SAa and SAb in

iCALttS (~
. The rationale behind this is that a feature vector fp,

which belongs to an activity usually, has a higher relevance to
this activity. Hence, we have

)),(),,(max(),(pbpapi fSArelevancefSArelevancefCArelevance "

Then the coverage score of CAi can be computed as follows.

*
+

"(

iCALpi

iCA

f

pi

CA

Ltti fCArelevance
L

SCAcorecoverage_s),(
1

),(~

The computation of activity-correlation score for
interleaved and concurrent activities can be quite complex.
There are three situations: a sequential activity followed by
interleaved or concurrent activities, interleaved or concurrent
activities followed by a sequential activity, and interleaved or
concurrent activities followed by other interleaved or
concurrent activities. Given the rationale that a higher
condition probability implies a stronger activity correlation, we
choose the maximum value of all possible condition
probabilities for all these cases. To illustrate, given CAj, where
CAi = SAa & SAb or CAi = SAa + SAb, the activity-correlation
score of CAi, where CAj = SAc & SAd or CAj = SAc + SAd, can
be computed as follows.

))|(),|(),|(),|(max()|(dbcbdacaji SASAPSASAPSASAPSASAPCACAP "

The computation of P(SAi | CAj) and P(CAi | SAj) follows
the same method.

C. Total Score

In summary, the computation of the total score is defined
as follows.

Definition 3: Given a time t, and an activity Aj which ends at t,
for each activity Ai , a test instance

iALttS (~
is obtained from t to

t+
iAL , the score function of Ai is then defined as follows.

)|(),(

),(_),,(

3~2

~1~

jiLtti

LttiLttji

AAPcSAcorecoverage_sc

SAscoreepcSAAscore

iA

iAiA

)()

()"

(

((

where c1, c2 and c3 are the coefficients. The coefficient
represents the importance of an individual score, and its value
implies different meanings. For example, if c1 is high, it
implies that the activities always follow certain patterns well. A
higher c2 implies that all the instances of the activity are
performed in a constant duration whereas a lower c2 implies
that the variance of the instances can be large. If c3 is high, it
implies that there exist strong correlations among the activities
performed. These weights reflect the activity habit of a subject.

D. Recognizing Activity using a Slide Window

Algorithm 1: The Slide-window based Recognition Algorithm

Input: feature vector of length Lmax: F = {ft, ft+1, ft+2, ... ,
maxLtf (

},

 where prediction starts at time t,

 predicted activity Aj in the previous slide window.

Output: the activity label starts from time t

1: foreach activity Ai , i = 1, 2, … , m2 do

2: get instance
iALttS (~ =

iALt

tp

pf

(

"

;

3: compute score(Ai, Aj,
iALttS (~);

4: end for

5: return Ai with the highest score;

We now can apply the score function to recognize the
activity label in the test instance obtained using a slide window
method. Given m sequential activities, the number of
interleaved and concurrent activities can be computed by m(m-
1). Then the total number of activities is m2. We define Lmax as
max{

kAL }, where k = 1, 2, …, m2. A straightforward method is

to test each activity label using its corresponding slide window
and the one with the highest score wins out. Algorithm 1
describes this approach.

E. The Trace Segmentation Algorithm

The simple slide-window based algorithm presented in
Algorithm 1 can be applied recursively to recognize activities
in a given activity trace. However, it has a shortcoming. Since

the slide window length
iAL of each activity is an

approximation of the actual length, the segmentation may not
be accurate. Moreover, any error in one segment may affect the
recognition of the subsequent trace. This error may accumulate
and affect the recognition accuracy seriously.

To overcome this limitation, we propose our trace
segmentation algorithm as presented in Algorithm 2. We first
obtain two predicted activity labels (e.g., Aj followed by Ai)
based on Algorithm 1. The task of our segmentation algorithm
is to determine the boundary between Aj and Ai accurately so
that the next slide window can be applied from this boundary.

Intuitively, given an activity instance, its feature vectors
obtained by pre-processing its observations usually have a
higher relevance to this activity than all other activities.
Furthermore, the relevance of its feature vectors in the same
activity instance does not vary significantly as compared to the

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 16:45:22 UTC from IEEE Xplore. Restrictions apply.

relevance of two feature vectors belonging to two different
activities. Based on these heuristics, we introduce our trace
segmentation algorithm as described in Algorithm 2. This
algorithm makes use of the weight difference, i.e., Relative
Weight (RW), of each feature vector between the two adjacent
activities.

Algorithm 2: The Trace Segmentation Algorithm

Input: feature vector of length
jAL +

i
AL : F = {

jALtf - , ... ,
iALtf (},

 where t is the existing boundary,

 predicted activity Aj followed by Ai based on Algorithm 1.

Output: the boundary between Aj and Ai

1: foreach p from t-
jAL to t+

i
AL do

2: RW[p] = relevance(Aj, fp) - relevance(Ai, fp) ;

3: end for

4: foreach p from t-
jAL to t+

i
AL do

5: upperSum = sum of all RWs from t-
jAL to p ;

6: lowerSum = sum of all RWs from p to t+
i

AL ;

7: GAIN[p] = upperSum – lowerSum ;

8: end for

9: boundary = p such that GAIN[p] is maximum ;

10: return boundary;

VII. EMPIRICAL STUDIES

We now move to evaluate our proposed algorithm. We
conducted our own trace collection in a complex, real-world
situation. In this section, we first describe our experimental
setup and metric, then present and discuss the results obtained
from a series of experiments.

A. Experimental Setup and Metric

Figure 4. (a) StarHome – a real smart home, (b) a video snapshot shows

that a subject is performing an activity in the kitchen, (c) another video

snapshot shows that a subject is performing an activity in the living room.

Trace collection was done in StarHome – a real smart home

built by our organization – as shown in Figure 4a. We deployed
our sensor platform and tagged over 100 objects. We randomly
selected 26 activities out of common ADLs as summarized in
Table 2. We then chose 15 interleaved activities and 16
concurrent activities, e.g., using computer and using phone
(“23 & 20”, interleaved), brushing teeth while listening
music/radio (“9 + 25”, concurrent), etc. The data were
collected by four volunteers over a period of two weeks. Each
day, each of them performed these activities at his choice in his
own way. However, the duration of each activity is shorter as
compared to the actual duration in his daily life in order to
collect more instances. A sequence of trace was logged in the
server. There was only one subject performing activities at any
given time. Location information was recorded partially by
hand due to the limitation of our indoor location system. One of
the volunteers annotated the traces to establish the ground truth

together with video recording. Figures 3b and 3c show two
video snapshots in our data collection.

TABLE II. SEQUENTIAL ACTIVITIES PERFORMED

0 making coffee 13 ironing

1 making tea 14 eating meal

2 making oatmeal 15 drinking

3 frying eggs 16 taking medication

4 making a drink 17 cleaning a dining table

5 applying makeup 18 vacuuming

6 brushing hair 19 taking out trash

7 shaving 20 using phone

8 toileting 21 watching TV

9 brushing teeth 22 watching DVD/movies

10 washing hands 23 using computer

11 washing face 24 reading book/magazine

12 washing clothes 25 listening music/radio

Table 3 shows a total number of 532 activity instances

collected and a breakdown in the three types of activities.

TABLE III. NUMBER OF INSTANCES COLLECTED

Type of Activities Number of Instances

sequential 422

interleaved 44

concurrent 66

total 532

We use ten-fold cross-validation for our evaluation and
evaluate the performance of our algorithm using the time-slice
accuracy which is a typical technique in time-series analysis.
The time-slice accuracy represents the percentage of correctly
labeled time slices. The length of time slice !t is set to 15
seconds as our experiment shows different !t doest not affect
the accuracy much. This time slice duration is short enough to
provide precise measurements for most of activity recognition
applications. The metric of the time-slice accuracy is defined as
follows. We first denote LB as the label(s) in a time slice,
where LB can be {SAi} in the case of sequential activity and LB
can be {SAi, SAj} for interleaved or concurrent activities, SAi,
SAj +(SA1, SA2, … , SAm). We denote LBG as the ground-truth
label(s), and LBR as the predicted label(s). The time-slice
accuracy can be defined as

Slice_Accuracy = *
*

+

+

RGi

i

RGi

i

LBLBSA

SA

LBLBSA

SA

L

L

!

We now give a few examples to illustrate the time-slice
accuracy. Given LBG = {9, 25}, if the predicted labels LBR = {9,

25}, then Slice_Accuracy = 1 since
RG

LBLB ! =
RG

LBLB . If

LBR = {10}, then Slice_Accuracy = 0 since ."
RG

LBLB ! . If

LBR = {9}, then Slice_Accuracy can be computed as
259

9

LL

L

(
.

The total time-slice accuracy is computed as follows.

Total_ Accuracy =
t

T

racySlice_Accu
t

T

/

*
/

1

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 16:45:22 UTC from IEEE Xplore. Restrictions apply.

B. Experiment 1: Accuracy Analysis

In this experiment, we evaluate the accuracies of different
types of activities. Table 4 shows the average accuracies of
sequential, interleaved and concurrent activities, respectively,
and the overall accuracy. Figure 5 shows the breakdown of the
types of activities in the ten datasets.

TABLE IV. OVERALL ACCURACY

Type of Activity Time-slice Accuracy

sequential 90.96%

interleaved 87.98%

concurrent 78.58%

total 88.11%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0 1 2 3 4 5 6 7 8 9
dataset

a
c
c
u
ra
c
y

sequential interleaved concurrent

Figure 5. Accuracy breakdown in the ten datasets

The accuracy of sequential activity is the highest among all

the three types. The accuracies of interleaved and concurrent
activities are lower; it probably can be explained as follows.
Firstly, we have four subjects, and they are instructed to
perform their activities in their own ways. Each subject may
perform his interleaved or concurrent activities in a different
manner. This difference does not influence the sequential
activity recognition much because the training process captures
the common characteristics of all the four subjects. However,
some of the specific characteristics of interleaved and
concurrent activities performed by different subjects may not
be captured by our model. Nevertheless, the result is
reasonably good, and we achieved our objective of building the
activity model to recognize all types of activities based on the
sequential activity training data only.

Second, the accuracy of concurrent activity is 9.4%, lower
than that of interleaved activity, while the accuracy of
interleaved activity is close to that of sequential activity. It is
probably due to the slide-window length. In our model, we

apply
iCAL =

aSAL +
bSAL to calculate the slide-window length

of CAi. This estimation seems to work well in the case of
interleaved activity because the observations of SAa and SAb do
not overlap each other. However, for concurrent activity, there
exists some overlapped steps between SAa and SAb, hence,

iCAL should be much shorter than
jSAL +

kSAL .

Another observation from Figure 5 is that the variances of
interleaved and concurrent activities are larger than that of
sequential activity in the ten datasets. This may be caused by

the imbalance of instances in our datasets. The number of
interleaved and concurrent activity instances is much smaller
than that of sequential activity instances as shown in Table 3.

C. Experiment 2: Model Analysis

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0 1 2 3 4 5 6 7 8 9

dataset

a
c
c
u
ra
c
y

EP score

EP score + coverage score

EP score + coverage score + activity-correlation score

Figure 6. Analysis of the score function

In this experiment, we evaluate and analyze the

effectiveness of different models in our algorithm. We first
evaluate the epSICAR algorithm with respect to our score
function. Figure 6 shows that the accuracies of the epSICAR
algorithm with EP score, EP score + coverage score, and EP
score + coverage score + activity-correlation score,
respectively. The figure suggests that epSICAR achieves an
accuracy of 66% on average with the EP score only,
demonstrating that the concept of EPs works effectively.
However, the effectiveness of the EP score is not as high as
expected and there exists some variations. We analyze this case
and suggest two reasons. First, the use of EPs in activity
recognition is leveraged on mining discriminating features. The
more discriminating features collected, the better EPs mined
and the better results obtained. Our current sensor platform
provides only limited types of sensors. More sensor features
can be developed, which we leave for our future work. Second,
we currently deploy a simple aggregation method to sum the
contribution of each set of EPs. We will further improve this
method in our future work. Figure 6 also suggests that, by
introducing the coverage score, the accuracy is improved
significantly by about 19% and the variance also decreases. We
also observe that the accuracy is further improved by about 3%
when adding in the activity-correlation score.

Next, we evaluate the effect of our segmentation algorithm.
Figure 7 shows the results for epSICAR with and without
segmentation, respectively. As expected, the epSICAR
algorithm with segmentation achieves a much better accuracy
(i.e., 25% improvement on average). This demonstrates that, on
one hand, a slide-window based method has a limitation in
truncating an activity instance with its correct length for
prediction; any error in one boundary detection may affect the
recognition of the subsequent trace. The errors may accumulate
and affect the recognition accuracy seriously. On the other
hand, our trace segmentation algorithm works well to segment
the two adjacent activities, and improves the accuracy
significantly.

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 16:45:22 UTC from IEEE Xplore. Restrictions apply.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0 1 2 3 4 5 6 7 8 9

dataset

a
c
c
u
ra
c
y

without segmentation with segmentation

Figure 7. Effect of the trace segmentation alrogithm

VIII. CONCLUSION

In this paper, we studied the problem of human activity
recognition based on sensor readings in a pervasive computing
environment. We deployed our sensor platform and conducted
a real-world trace collection done by four volunteers in a smart
home for two weeks. Our dataset contains comprehensive
activity instances for our study. We then investigated a
challenging problem of how we can apply a model, which can
be learnt from sequential activity instances only, in recognizing
both simple (i.e., sequential) and complex (i.e., interleaved and
concurrent) activities. We exploited EPs as powerful
discriminators to differentiate activities and proposed the
epSICAR algorithm. We conducted comprehensive evaluation
studies using our dataset and analyzed our algorithm in detail.
The results demonstrate both the effectiveness and flexibility of
our algorithm.

For our future work, we will further develop our sensor
platform to include more sensor features and fully explore the
discriminating power of EPs. We will also look into a better
method for aggregating the contribution of each set of EPs.

ACKNOWLEDGMENT

This work is funded by the Science and Engineering
Research Council of Singapore under the research grant SERC
0521210083, and partially supported by National Natural
Science Foundation of China under the research grants NSFC
60721002, NSFC 60736015. We thank all the reviewers for
their constructive comments.

REFERENCES

[1] S. Katz, A. B. Ford, R. W. Moskowitz, B. A. Jackson, and M. W. Jaffe.
Studies of Illness in the Aged. The Index of ADL: A Standardized
Measure of Biological and Psychological Function. Journal of the
American Medical Association, 185: 914-919, September 1963.

[2] Tsu-yu Wu, Chia-chun Lian, and Jane Yung-jen Hsu, “Joint recognition
of multiple concurrent activities using factorial conditional random
fields,” In Proceedings of AAAI Workshop on Plan, Activity, and Intent
Recognition, California, July 2007.

[3] Derek Hao Hu and Qiang Yang, “CIGAR: concurrent and interleaving
goal and activity recognition,” In Proceedings of the 23rd AAAI

Conference on Artificial Intelligence (AAAI 2008), Chicago, Illinois,
USA, 2008.

[4] Guozhu Dong and Jinyan Li, “Efficient mining of emerging patterns:
discovering trends and differences,” In Proc. 5th ACM SIGKDD Int’l
Conf. on Knowledge Discovery and Data Mining (KDD’99), pages 43–
52, San Diego, CA, USA, Aug 1999.

[5] E. Munguia Tapia, S. S. Intille, and K. Larson, “Activity recognition in
the home setting using simple and ubiquitous sensors,” In Proceedings
of PERVASIVE 2004, vol. LNCS 3001, pp. 158-175, 2004.

[6] L. Bao and S. S. Intille, “Activity recognition from user-annotated
acceleration data,” In Proceedings of PERVASIVE 2004, vol. LNCS
3001, pp. 1-17, 2004.

[7] B. Logan, J. Healey, M. Philipose, E. Munguia-Tapia, S. Intille, “A
long-term evaluation of sensing modalities for activity recognition,” In
Proceedings of Ubicomp 2007. Innsbruck, Austria, September 2007.

[8] C. Lombriser, N. B. Bharatula, D. Roggen, and G. Tröster, “On-Body
activity recognition in a dynamic sensor network,” In 2nd Int. Conf. on
Body Area Networks (BodyNets), 2007.

[9] Tâm Huynh, Ulf Blanke and Bernt Schiele, “Scalable recognition of
daily activities from wearable sensors,” 3rd International Symposium on
Location and Context-Awareness (LoCA), Germany, September 2007.

[10] D. Patterson, D. Fox, H. Kautz, M. Philipose, “Fine-Grained activity
recognition by aggregating abstract object usage,” Proceedings of ISWC
2005, Osaka, October 2005.

[11] S. Wang, W. Pentney, A.-M. Popescu, T. Choudhury, M. Philipose,
“Common sense based joint training of human activity recognizers,” In
Proceedings of IJCAI 2007. Hyderabad, January 2007.

[12] Jonathan Lester, Tanzeem Choudhury, and Gaetano Borriello, “A
practical approach to recognizing physical activities,” In Proceedings of
International Conference on Pervasive Computing, 2006.

[13] Jamie A. Ward, Paul Lukowicz, Gerhard Tro¨ ster, and Thad E. Starner,
“Activity recognition of assembly tasks using body-worn microphones
and accelerometers,” IEEE Trans. Pattern Analysis and Machine
Intelligence, Vol. 28, no. 10, October 2006.

[14] M. Philipose, K. P. Fishkin, M. Perkowitz, D. J. Patterson, D. Fox, H.
Kautz, and D. Hähnel, “Inferring activities from interactions with
objects,” IEEE Pervasive Computing, 3(4): 50-57, October 2004.

[15] Daniel Wilson and Chris Atkeson, “Simultaneous tracking and activity
recognition (STAR) using many anonymous, binary sensors,” In
proceedings of the third International Conference on Pervasive
Computing, pp 62-79, Munich, Germany, 2005.

[16] Douglas L. Vail, Manuela M. Veloso, and John D. Lafferty,
“Conditional random fields for activity recognition,” International
Conference on Autonomous Agents and Multi-agent Systems
(AAMAS), 2007.

[17] Joseph Modayil, Tongxin Bai, and Henry Kautz, “Improving the
recognition of interleaved activities,” Research note, in Proc. of the
Tenth International Conference on Ubiquitous Computing
(UBICOMP08), Seoul, South Korea, September 2008.

[18] R. Hamid, S. Maddi, A. Johnson, A. Bobick, I. Essa, C. Isbell, “A novel
sequence representation for unsupervised analysis of human
activities,” Artificial Intelligence Journal, 2008, in press.

[19] Fayyad, U. and Irani, K, “Multi-interval discretization of continuous-
valued attributes for classification learning,” In proceedings of 13th
International Joint Conference on Artificial Intelligence. San Francisco,
1993.

[20] Jinyan Li, Guimei Liu and Limsoon Wong, “Mining statistically
important equivalence classes and delta-discriminative emerging
patterns,” In the Proceedings of 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD 2007),
pages 430-439, San Jose, 2007.

[21] G. Dong, X. Zhang, L. Wong, and J. Li. CAEP: Classification by
Aggregating Emerging Patterns. In DS’99 (LNCS 1721), Japan, Dec.
1999.

[22] J. R. Quinlan. Induction of decision trees. In Machine Learning, Vol 1,
pages 81-106, 1986.

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 16:45:22 UTC from IEEE Xplore. Restrictions apply.

