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ABSTRACT
The newly emerging event-based social networks (EBSNs)
extend social interaction from online to offline, providing an
appealing platform for people to organize and participate real-
world social events. In this paper, we investigate how to select
potential participants in EBSNs from an event host’s point of
view. We formulate the problem as mining influential and
preferable invitee set, considering from two complementary
aspects. The first aspect concerns users’ preference with re-
spect to the event. The second aspect is influence maximiza-
tion, which aims to influence the largest number of users to
participate the event. In particular, we propose a novel Credit
Distribution-User Influence Preference (CD-UIP) algorithm
to find the most influential and preferable followers as the in-
vitees. We collect a real-world dataset from a popular EBSNs
called “Douban Events”, and the experimental results on the
dataset demonstrate the proposed algorithm outperforms the
state-of-the-art prediction methods.
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INTRODUCTION AND RELATED WORK
The popularity of Event Based Social Networks (EBSNs)
such as Facebook Events1, Meetup2, and Douban Events3, has
created increasing opportunities for people to expand their
online interactions to physical interactions and participate in
1 www.facebook.com/events
2 www.meetup.com
3 beijing.douban.com

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
UbiComp ’15, September 7-11, 2015, Osaka, Japan.
Copyright 2015 c© ACM 978-1-4503-3574-4/15/09...$15.00.
http://dx.doi.org/10.1145/2750858.2805839

real-world events. Leveraging on these platforms, users now
can organize and participate a variety of real-world social
events (e.g., watching movie together, hosting a party, and
organizing a group travel) for socialization. Much work has
been done in EBSNs, and they mainly focus on analyzing the
characteristics of EBSNs when comparing to traditional so-
cial networks, such as network properties, community struc-
tures, and information flow [1, 2, 3]. There also have been
studies in building prediction and recommendation systems
for various events from a participant’s perspective [1, 4].

Our previous work presents an algorithm to predict activ-
ity attendance in EBSNs from a users point of view [5]. In
this paper, we are interested in how EBSNs facilitate organiz-
ing real-world social events from an event host’s perspective.
When organizing a social event, a host can simply invite all
her/his followers as potential participants, leveraging on EB-
SNs. However, not all the followers have the same degree
of interest in that event. If a follower continues receiving
uninterested event invitations, it may result in disconnecting
the follower’s relationship with the host. Hence, it is impor-
tant to take user preference and social influence into account
when inviting followers to participate events. So we propose
a novel approach to invite participants by discovering activ-
ity fans with strong social influence from large-scale online
social networks. We formulate this problem formally as min-
ing Influential Preferable Set (IPS). There have been a few
studies on team or group formation [6, 7, 8]. Though, these
works either focused on contact grouping in online commu-
nities or context-aware grouping in the physical world. None
of them consider about the IPS problem. The usage of data
that connects online/offline spaces for group formation is also
not studied.

To address IPS problem, we design a novel algorithm which
aims to find the most influential and preferable set of follow-
ers when organizing social events. It extends the credit dis-
tribution (CD) model [9] by combining both user preference
and influence maximization, and thus named as CD-UIP. In
CD-UIP, we introduce a method to assign influence credit,
in which followers will give influencers the credits for in-
fluencing them. We integrate both user influence and user
preference to achieve better assignment. To evaluate CD-UIP,
we crawled a large dataset from the Douban Events and con-
duct extensive experiments to evaluate the possibility of at-
tendance and an invitee set’s influence spread. In summary,
the contributions of this paper are as follows:
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Figure 1. An example of an activity on Douban Events with five key
elements: location, time, attendees, host, and content.

• To the best of our knowledge, this is the first work to dis-
cover the most influential and preferable set of followers in
EBSNs as invitees participating in real-world events.
• We formulate the problem as the IPS mining problem, and

develop a novel algorithm which combines user preference
and influence maximization leveraging on the basic credit
distribution model.
• By applying the proposed algorithm to a real-world dataset,

we demonstrate its effectiveness in discovering the most
influential and preferable invitee set. We compare our al-
gorithm with the state-of-the-art approaches [10], and the
results show CD-UIP achieves better performance.

PROBLEM STATEMENT AND SYSTEM OVERVIEW
We first give a brief description of the Douban dataset we
used. The problem and an overview of our system is then
presented.

The Douban dataset
The dataset is collected from Douban Events, which is a pop-
ular event-based social network in China. It allows people to
advertise, search and participate in real-world events. Fig. 1
shows the main elements of an activity in Douban Events. A
host user can post and share an activity in Douban Events.
The details of a posted activity include its time, address, host
name, and content. Other people can view the shared ac-
tivity and the users who have already expressed their inter-
est to attend the activity (e.g., existing attendees), based on
which they can decide whether to participate in this activity.
In Douban Events, users could follow each other and see the
activities that their followers attend. On the other hand, users
could influence their followers by recommending or showing
the activities they attend.

Problem Statement
Assuming there is a new activity a. H(a) represents the host
and F (a) denotes the followers ofH(a). The social graph re-
lated to a is denoted as G(a) = (U,E), where U correspond-
ing to users and directed edges E means social ties between
users. The event attendance log is L(User,Activity, T ime),
where a tuple (u, a, t) ∈ L indicates that user u attended ac-
tivity a at time t. To solve the IPS problem, we first con-
sider the u’s preference to activity a, Prefu(a), which can
be extracted from u’ historical attendance behavior (denoted
by Au, and Au = {a1, a2, ...}) based on content, context,
and social relationship. Then, we consider social influence in
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Figure 2. The overall framework

F (a), which is related to the notion of propagation. A prop-
agation exists from user u to v if they are socially linked, and
u attends a before v. Nin(u, a) = {v|(v, u) ∈ E(a)} de-
notes the set of potential influencers of u for participating a.
So our problem is to select preferable and influential follow-
ers as the invitee set IS to maximize the expected number of
participants, which is denoted by σm(S).

System Overview
As Fig.2 shows, our framework has three components: the
user preference component (left), the social influence com-
ponent (right), and the CD-UIP model component (bottom).

Preference Modeling Component. We first extract features
towards each activity from three aspects: content preference,
spatio-temporal context, and social relationship with the host.
We then propose a multi-factor (MF) model using logistic re-
gression to evaluate the contribution of each feature. Based
on the result, we can compute the similarity between each
pair of events and get the complete preference of the target
user to a specific event.

Social Influence Component. The second component mod-
els the followers’ social influence, and it is the key compo-
nent in our framework. This is related to influence maximiza-
tion which aims for attracting a large number of participants.
To achieve this, we introduce the influence credit distribution
model, in which each follower gives an influence credit to the
influencer for influencing them to participate in the activity.

CD-UIP Model. To incorporate user preference and social
influence into our system, we propose the CD-UIP in the in-
vitee set selection component. Specifically, we reassign the
direct credit in the CD model from four main aspects: 1) in-
fluence decays over time in an exponential fashion; 2)some
users are more influenceable than others; 3) users’ prefer-
ences to the activity; 4) the number of potential influencers.

COMPUTING USER PREFERENCE
The previous work has proposed SVD-MFN to better predict
a target user’s attendance [5]. It is based on the extraction and
usage of three macro features from Douban. (1) The content
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preference feature describes user preference to a Douban ac-
tivity through its category, title, and description. The Latent
Dirichlet Allocation (LDA) method is used for content sim-
ilarity measurement. (2) The spatio-temporal feature char-
acterizes the spatial proximity and temporal context similar-
ity of activities. (3) The social relationship feature defines
two types of social relationships between a user and the host,
including the following relationship and preferring relation-
ship (how many times a user has attended the host’s events).
The three features are fused as Sim(a, ai) with a sum of their
weighted values, which describes the similarity between an
upcoming activity a and a past event ai for target user u. Fi-
nally, the users preference value to an event can be formulated
as: Prefu (a) =

∑
ai∈Au

Simu (a, ai)/|Au|.

INFLUENCE MAXIMIZATION
The influence maximization problem aims to find a set of
users which maximize the expected spread of influence in the
social network. Previous studies mainly focused on two prop-
agation models: the Independent Cascade (IC) model and the
Linear Threshold (LT) model. However, these two models
may not work well in our system. First, the time complexity
caused by the edge learning and Monte Carlo (MC) simula-
tion can be quite high. Second, the accuracy could be very
low as the existing models did not fully utilize a user’s his-
tory attendance logs. So we use both the IC and LT models
as the baseline for our comparison study.

To overcome the shortcomings, Goyal et al. [9] proposed a
totally different model to directly mine the available log of
past attendance propagation traces. The basic idea is: When a
user v attends an activity a before u, the direct influence credit
γv,u(a), means the influence credit given to v for influencing
u to participate in activity a. Influence credit also distribute
transitively backwards in the propagation graph G(a) such
that not only u gives credit to the users v ∈ Nin(u, a), but
also they in turn pass on the credit to their predecessors in
G(a) and so on. The related definitions are as follows:

• The total credit given to v for influencing u on activity a :
Γv,u(a) =

∑
w∈Nin(u,a)

Γv,w(a) · γw,u(a) (1)

• The total credit given to a set of nodes S ⊆ U(a) for influ-
encing user u on activity a :

ΓS,u(a) =

{
1∑

w∈Nin(u,a)

ΓS,w(a) · γw,u(a)
if v ∈ S;
otherwise

(2)
• The total influence credit given to v by u for all activities

inAu, which obtained by taking the total credit over all the
activities and normalizing it by the number of Au:

κv,u =
1

Au

∑
a∈Au

Γv,u(a) (3)

• The total influence credit of S ⊆ U for activities in Au:
κS,u = 1

Au

∑
a∈Au

ΓS,u(a) (4)

• The influence spread σcd(S) as the total influence credit
given to S from the entire social network:

σcd(S) =
∑
u∈U

κS,u (5)

THE CD-UIP ALGORITHM

To combine user preference and influence maximization, we
reassign the direct credit γv,u(a) from four aspects: a) simi-
lar to human’s memory, influence decays over time; b) each
person’s influenceability is different due to their personality;
c) users’ preferences to the activity has a strong influence on
users’ attendance possibility; d) the number of potential in-
fluencers, which means the more potential influencers u has,
the less v influences u. Motivated by these ideas, we assign
direct credit as Eq. 6.
γv,u(a) =

infl(u)
Nin(u,a)

· exp
(
− t(u,a)−t(v,a)

τv,u(a)

)
· Prefu(a) · Prefv(a)

(6)
Here, τv,u(a) is the average time taken for activity a to prop-
agate from v to u. The exponential term in the equation
achieves the desired effect that influence decays over time.
Moreover, infl(u) denotes the user’s influenceability, that is,
how prone user u can be influenced by the social context [11].
Precisely, infl(u) is defined as a fraction of activities that u
has attended under the influence of at least one of its neigh-
bors; The value of infl(u) is normalized by Nin(u, a) to en-
sure that the sum of direct credits assigned to neighbors of u
for activity a is at most 1. Note that both infl(u) and τv,u(a)
are learnt from the training subset of L.
Algorithm 1 CD-UIP : Combine User Influence and Prefer-
ence based on the CD model.
Input: G; k%
Output: Invitee Set: IS(a) for each a ∈ A
1: SC← ∅; IS(a)← ∅, Q← ∅
2: for each v ∈ Parents(u) do
3: compute γv,u(a); UC[v][u][a]← UC[v][u][a] + γv,u(a)
4: end for
5: for each a ∈ A do
6: for each u ∈ U do
7: x.mg ← x.mg + UC[x][u][a]/|Au|; x.it← 0; add x to Q
8: while |IS(a)| < k%× |F (a)| do
9: x← pop(Q)

10: if x.it = |IS(a)| then
11: IS(a) ← IS(a) ∪ {x}; UC[v][u][a] ← UC[v][u][a] −

UC[v][x][a]× UC[x][u][a];
SC[u][a]← SC[u][a] +UC[x][u][a]× (1− SC[x][a]);

12: else
13: x.mg ← x.mg + x.mg × (1− SC[x][a]);
14: x.it← |IS(a)|; Reinsert x into Q and heapify;
15: end if
16: end while
17: end for
18: end for

We record Γv,u(a) into the data structure UC (User Cred-
its). Another data structure is SC (Set Credits), where each
SC[x][a] refers to the total credit given to the current invitee
set IS by a user x for an activity a, that is, ΓIS,x(a). In to-
tal, we apply the CD-UIP to select the invitee seed IS(a) by
Algorithm 1. The size of IS(a) is k% of F (a). After obtain-
ing γv,u, and UC(lines 2,3), we use greedy algorithm. The
algorithm also maintains a queueQ, where the entry of a user
x is stored in the form < x,mg, it > and mg represents the
marginal gain x and it represents the count of iteration(line
7). In each iteration, the top element x ofQ is analyzed (lines
8 and 9). If x is analyzed in the current iteration, it will be
the next seed user and the data structure UC and SC is up-
dated. If x.it < |IS(a)|, the marginal gain of x will be re-
computed(line 13). Then x.it is reset and x is re-inserted into
Q (line 14).

EXPERIMENTAL RESULTS
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Dataset Statistics
We use the Douban Events APIs to collect all the valid activi-
ties for 21 months (i.e., from January 2012 to October 2013).
Table 1 gives a brief summary about the dataset. Just as de-
scribed in the second section, we divide the data into three
types: the attendance history log, the details of activities, and
the social information. The attendance history log is repre-
sented as User-Activity pairs in the table. Each activity con-
tains various information including topic, title, time, address,
host, etc. We obtain the following relationship with hosts as
well as the relationship between users. The reason is that
users may be influenced by hosts’ invitation and their follow-
ers’ recommendation.

Time Interval 2012-01-01 to 2013-10-01
Number of Hosts 430

Number of Activities 2,191
Number of Users 4,600

Number of Following
Relationship with Hosts 11,831

Number of Following
Relationship between Users 142,487

Number of User-Activity Pairs 90,892
Table 1. Statistics of the Douban Events dataset

Accuracy of Spread Prediction
The objective of our work is to find the most influential invi-
tee set. It is similar to the goal of viral marketing [12]. To
trigger a large cascade of adoption of a new product or in-
novation, the viral marketing approach tries to first identify
a subset of most influenced people to adopt it [12]. We as-
sume that if we could accurately predict the influence spread
of a given seed set, then we can identify the most influential
user set according to the result of prediction. For example,
we could run our algorithm over the whole user set and make
a top-k selection for the best user set. Therefore, the exper-
iment purpose is transferred to test whether the spread pre-
diction method is effective. To determine which model (i.e.,
LT, IC, CD and CD-UIP) achieves the best accuracy in pre-
dicting the expected spread of node sets, we compute their
influence spread. For a given seed dataset S, we compute the
expected spread σ(S) predicted by each method and compare
it with the actual spread of S according to the ground truth.
The actual spread is the number of users who attend the ac-
tivity. Fig.3 reports the root mean squared error (RMSE) be-
tween the predicted and actual spread for the three algorithms
respectively. An interesting observation is that IC beats LT
when the actual spread is large, and LT performs better when
the actual spread is small. This is probably due to the fact
that both IC and LT models always tend to predict the spread
as very high [11]. The CD and CD-UIP models have sim-
ilar performance and outperform IC and LT for the whole
dataset. Because we determine the direct influence credit by
combining user influence and preference in CD-UIP model,
it reaches a lower RMSE than CD model, especially when the
actual spread larger than 100.

Influence Spread
For an activity host, the best algorithm is the one influences
the most number of participants (i.e., per activity influence).
So we use user preference (UP) and user influence (UI) as the
baseline to compare with CD-UIP algorithm (i.e., taking into
account both user preference and influence) on influence of

Figure 3. The RMSE of Predicted Spread vs. Actual Spread.

invitee sets. The influence is calculated as the actual num-
ber of participants influenced by the invitee set as shown in
Fig.4. It also shows the performance per participant invitee
and per invitee where per participant invitee represents the
average influence of participants in the invitee set. They all
means the influence of invitee we select, but invitee in the
former are actually attend activities. Obviously, the UI algo-
rithm performs the best for influence spread, and our CD-UIP
algorithm comes next. The UP algorithm performs poorly as
it does not consider social influence at all. Per invitee repre-
sents the average influence of the whole invitee set. The UI al-
gorithm becomes worse even than UP, and CD-UIP performs
the best (e.g., each invitee influences almost 10 participants).
The most important metric is the total influence set for each
activity (i.e., per activity). It represents how many users influ-
enced by the invitees become participants. From the figure,
we observe that there are 35.95 participants on average who
join the activity, compare to 11.24 by UI, and 15.24 by UP.
Overall, our CD-UIP algorithm outperforms the other two al-
gorithms.
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Figure 4. Influence spread.

CONCLUSION AND FUTURE WORK
This paper studies the problem of identifying the most influ-
ential and preferable set of invitees in EBSNs. Our work in-
tends to lay a foundation for understanding emerging EBSNs
and providing key insights to facilitate personalized event rec-
ommendation, marketing and targeted advertising. For our
future work, we plan to build a comprehensive recommenda-
tion system for EBSNs, which is able to suggest appropriate
events to users and recommend suitable invitee sets to the
host.
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