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Abstract—Energy balance is a critical issue in wireless sensor
networks. Several mixed data transmission (MDT) schemes have
been proposed to achieve energy balance. However, most existing
works are lack of theoretical study, especially understanding
the relationship between network-wide energy balancing and
lifetime optimization. In this paper, we conduct comprehensive
theoretical analysis to the two-level based MDT scheme when
applying to network-wide energy balancing, and eventually to
maximize the network lifetime. We propose a novel network
model, named energy balance area (EBA), and formally analyze
its characteristics under the two-level based MDT scheme. To
maximize the network lifetime, we convert the transmission
probability allocation problem in the MDT scheme into an
EBA partitioning (EBA-PT) problem, which is shown to be NP-
hard. We then propose a heuristic approximation algorithm to
determine the optimal configuration of EBAs, which is proven
in this paper to be the key for maximizing the network lifetime.
In this way, we obtain a near-optimal result. Our experimental
studies show that network lifetime can be further improved as
compared the hop-by-hop and the two-level based MDT schemes.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) have been widely used
in a variety of applications. Since sensor nodes are usually
powered by battery, how to effectively utilize the batter power
of each sensor node so that the network lifetime can be
maximized is a critical issue in WSNs. It has been revealed that
communication is a dominant factor of energy consumption
in WSNs. Therefore, the design of an energy-efficient data
transmission scheme is crucial to prolong the network lifetime.

A sensor node typically has a limited transmission range,
and data packets are usually transmitted to the sink node
via multihops [8]. The convergent traffic pattern of WSNs
leads to the early death of the nodes lying closest to the
sink, which would disable the entire network. To alleviate the
energy overuse of the nodes near the sink, recent research
works suggest a joint power control and routing technique
[4] [5]. The basic idea is that if the transmission range of
a node can be increased properly, we may skip those nodes
which previously have heavier loads. The joint power control
and routing technique has been used in several mixed data
transmission (MDT) schemes [7]-[9]. In these schemes, a
node is assumed to have adjustable transmission power levels.
To achieve energy balance, a probability (i.e., transmission

probability) is assigned to each transmission power level.
When transmitting data packets, sensor nodes randomly se-
lect their transmission power with corresponding transmission
probabilities. However, it is a non-trivial task to determine the
transmission probability for each sensor node, which is critical
to the system performance. If the corresponding transmission
probability is set too small, it may not effectively alleviate
the loads of bottleneck nodes. On the other hand, if the
transmission probability is set too large, those further-away
nodes may become the new bottlenecks, which may result in
a shorter network lifetime. Therefore, it is really a challenge
to allocate a proper transmission probability for each node
to optimize the network lifetime, which is formulated as the
transmission probability allocation (TPA) problem.

There have been several studies on the MDT schemes in
WSNs [7] [8], which provide some insights into the TPA
problem. However, all of these studies have an explicit as-
sumption that all sensor nodes can directly reach the sink
in one hop, which is impossible, if not impractical, for real
applications since the range of a network will be limited by the
transmission range of sensor nodes. Having a more realistic
assumption, Jarry et al. [10] proposes a two-level based MDT
scheme, which enables each node to probabilistically switch
its transmission range between the one-hop and two-hop dis-
tance. An algorithm is proposed to compute the transmission
probability for each node. The energy consumption of sensor
nodes achieves balance in some way, however no evidence in
their paper shows that how the network lifetime is maximized.
Moreover, a more recent study [11] shows that the two-
level based MDT scheme achieves energy balance only if
the network range is less than a certain threshold, which
significantly limits the scheme when applying to network-wide
energy balance. The understanding of network-wide energy
balance is lack of theoretical study; it is still an open issue.

In this paper, we conduct comprehensive theoretical analysis
to understand how the two-level based MDT scheme achieves
network-wide energy balance in wireless sensor networks, so
as to maximize the network lifetime. While most of the MDT
schemes adopt a slice network model which divides the entire
network area into n slices, we show mathematically that the
slice model under the two-level based MDT scheme is not able
to achieve network-wide energy balance. Leveraging the slice
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model as a basis, we propose a novel network model named
energy balance area (EBA). Each EBA consists of one or more
slices, and our goal is to achieve energy balance within EBAs
such that the network lifetime can be maximized. We then
formally model and analyze the characteristics of the two-
level based MDT scheme within a single EBA. Through our
analysis, we reveal that there exists an upper bound for the size
of an EBA (termed as energy balance bound) such that by de-
termining a proper size for each EBA, the network lifetime can
be maximized. We conduct theoretical analysis on the energy
balance bound, and eventually we convert the original TPA
problem into an EBA partitioning (EBA-PT) problem, which
is shown to be NP-hard. We propose a heuristic approximation
algorithm to determine the optimal configuration of EBAs.
Through our experimental evaluation, we demonstrate that our
approach improves the network lifetime by 29.5% and 4.2%,
respectively, as compared with the hop-by-hop approach and
the two-level based MDT scheme proposed in [10].

II. RELATED WORK

The joint power control and routing technique has been
extensively studied in the literature. The existing methods can
be roughly categorized into: hop-by-hop based and mixed data
transmission (MDT) schemes. To attain energy balance, the
hop-by-hop based schemes enable nodes to select the one-hop
transmission range based on their traffic loads [6]. Instead
of using a fixed one-hop transmission range, each node is
allowed to switch between certain ranges by MDT schemes.
Prior efforts [7] [8] [9] mainly focus on the TPA problem of a
specific MDT scheme, with which each node can transmit with
the one-hop distance or to the sink directly. In [7], the authors
propose an analytical model for the TPA problem and formally
derive the transmission probabilities. In [8] and [9], the TPA
problem is formulated as linear program models, which can be
solved by classical methods in a centralized manner. However,
these works fail to take the transmission range constraints of
sensor nodes into account, and thus cannot be applied in large
WSNs.

To overcome the transmission range constraints, Jarry et
al. [10] propose the two-level based MDT scheme. An algo-
rithm is proposed to compute the transmission probabilities.
However, no evidence shows that the network lifetime is
maximized. In [11], the authors investigate the energy balance
bounds of the two-level based MDT schemes in 1D networks.
Meanwhile, the lifetime performance is neglected. In this
work, we extend the analysis of [11], and further investigate
how to exploit the energy balance feature of the two-level
based MDT scheme to optimize the network lifetime.

III. SYSTEM MODEL AND ASSUMPTIONS

We consider an event detection WSN where the sensor
nodes are uniformly deployed. The network area is represented
as a concentric slice model, with the slice width of r (r equals
to the one-hop transmission range of sensor nodes). Figure 1
shows a network being divided into five slices, i.e., S1, S2,
· · · , S5. We denote the number of nodes in Si by Ni. Once
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Fig. 1. The network model

an event is detected by a node, a message will be created and
reported to the sink. Events are uniformly generated in the
network. We denote the data generating rate in Si by λi.

To complete the task of event reporting, we adopt the two-
level based MDT scheme [10]. As shown in Fig.1, once a
message arrives at a node, it will be transferred one slice or
two slices away. The probability of a message from Si being
transmitted to Si−1 is defined as the transmission probability
(pi) for the nodes in Si. Figure 1 shows a possible delivering
path of messages generated in S5. To enable the MDT scheme,
we assume that each node has two kinds of transmission range,
i.e. r1 and r2, with r2 = 2r1.

Since our focus is on the energy consumption of communi-
cations, we assume that the network employs a TDMA based
MAC protocol, with which the communication channel is free
of interference. Let c0 be the per-bit receiving energy, c1 and
c2 be the per-bit transmitting energy corresponding to r1 and
r2, respectively. The sink node has continuous power supply.
We assume that the energy consumption of nodes in the same
slice are well balanced (i.e., intra-slice balance), and denote
the whole energy budgets of all nodes in Si by Ei. Essentially,
the intra-slice energy balance [9] is orthogonal to our analysis
and beyond the scope of this paper.

IV. BALANCING THE ENERGY AMONG SLICES

This section addresses the energy balance issues of a single
EBA (i.e., Energy Balance Area). We first propose an analyt-
ical model to formally derive the transmission probabilities.
Then, by utilizing the unique structure of EBAs, we investigate
the energy balance bound and reveal the relations between
EBA parameters and network lifetime, which provides essen-
tial guidelines for lifetime optimization.

A. Deriving the transmission probability

An Energy Balance Area (EBA) is composed by m (m ≥ 2)
adjacent slices, i.e., S1, S2, · · · , Sm, as shown in Fig.2a. Let
Fs and Ft denote the incoming and outgoing traffic of the
EBA. Clearly, Ft = Fs+

∑m
i=1 λi. Note that only a fraction of

Fs flows into Sm, we denote such fraction by ρs. Accordingly,
the fraction of Ft flows into the next slice of S1 is denoted by
ρt (0 ≤ ρs, ρt ≤ 1). We assume that the parameters m, ρt and
ρs of an EBA are available. Let gi and hi be the average rates
of traffic from Si to Si−1 and Si−2, respectively (see Fig.2b).
With fi standing for the receiving traffic rate of Si, we have

fi = gi+1 + hi+2, i = 1, 2, · · · ,m− 2 (1)
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(a) The EBA model
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Fig. 2. Illustration of an energy balance area (EBA)

Specifically, fm = ρsFs and fm−1 = (1 − ρs)Fs. For
uniformity of notation, we write f0 = ρtFt.

The flow-conservation constraint in Si can be described as

fi + λi = gi + hi, i = 1, 2, · · · ,m (2)

By combining (1) and (2) to eliminate hi, along with elemen-
tary manipulations, we obtain

gi = fi + fi−1 − Ft +
i∑

k=1

λk, i = 1, 2, · · · ,m (3)

Hence, once fi’s are obtained, the transmission probability can
be calculated with pi = gi

fi+λi
. Next, we derive the expression

of fi by utilizing the constraint of energy balance:
E1

e1
=
E2

e2
= · · · = Em

em
= T (4)

where, T signifies the common lifetime of slices in the EBA,
ei is the energy consumption rate of Si, which is written as

ei = c0 · fi + c1 · gi + c2 · (fi + λi − gi)

Then, substituting (3) into this expression, we have

ei = ai + φi (5)

where, ai = (c0+c1)fi−(c2−c1)fi−1 and φi = (c2−c1)(Ft−∑i
k=1 λk) + c2λi. We note that φi is a constant depends on i,

and the variables, fi and fi−1, are only contained in ai. Then,
once ai is determined, fi can be obtained with

fi =
1

c0 + c1

i∑
k=1

(
ak · αi−k

)
+ αi · ρtFt (6)

where, α = c2−c1
c1+c0

. Since ai = (c0 + c1)fi − (c2 − c1)fi−1,
By adding the m ai’s together in a delicate way, we can get

1

c0 + c1

m∑
k=1

(
ak · αm−k

)
= ρsFs − αmρtFt (7)

Recall the mathematical relation that ab = c
d = m·a+n·c

m·b+n·d . By
applying it to Eq. (4), we have

T =
1

c0+c1

∑m
k=1

(
Ek · αm−k

)
1

c0+c1

∑m
k=1 (ek · αm−k)

Since ek = ak + φk, the denominator can be written as

1

c0 + c1

m∑
k=1

(
ak · αm−k

)
+

1

c0 + c1

m∑
k=1

(
φk · αm−k

)
Substituting (7) into the above expression, we can finally get

T =

∑m
k=1

(
Ek · αm−k

)
(c0 + c1)(ρsFs − αmρtFt) +

∑m
k=1 (φk · αm−k)

(8)
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(a) A single-slice EBA
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Fig. 3. Illustration of a single-slice EBA

As all the parameters contained in (8) are available, T is
essentially a constant. Once T is derived, ei, as well as ai, can
be determined accordingly. Finally, we can get fi, gi (with Eqs.
(6) and (3)), and obtain the transmission probability (pi).

B. Determining the energy balance bound

This section studies the performance limit of MDT schemes
on energy balance. We name such limit as energy balance
bound, which is expressed as the maximum size of an EBA.

As an EBA is composed by adjacent slices that are expected
to have the identical lifetime. A single slice naturally forms an
EBA. To derive the energy balance bound, the basic idea is as
follows. We initially consider each slice as an individual EBA.
If we can tune the marginal parameters, i.e., ρs and ρt, of two
neighbor EBAs in such a way that their lifetimes finally reach
the same level, then, as a result, the size of the original EBA
is increased by one. We call this operation an EBA expanding.
If we proceed in such a way, the EBA can finally expand from
a single slice to its maximal size, and thus the energy balance
bound is obtained.

To this end, it is important to begin by analyzing the single-
slice EBA (see Fig.3). Noting that the traffics received by Si−1
are from either Si, the single-slice EBA, or Si+1, we have

ρtFt = (ρsFs + λi) · pi + (1− ρs)Fs
As 0 ≤ pi ≤ 1, substituting in the above equation, we get

max(0, 1− Ft
Fs
ρt) ≤ ρs ≤ 1 (9)

It essentially gives the minimum value of ρs. Using the same
methods in Section IV-A, we can derive the lifetime of a
single-slice EBA. Due to page limit, we omit the process. Our
results reveal that the expression of the lifetime of a single-
slice EBA is a special case of (8) when m = 1.

To derive the energy balance bound, we need to first analyze
the prerequisites for EBA expanding.

1) Prerequisites: The energy balance bound is supposed to
be obtained by incrementally expanding an EBA. However,
such a method works only if a) the lifetime of two neighbor
EBAs could eventually reach the same level by adjusting ρs
or ρt, and b) the tuning of ρs, or ρt, would not break the
energy-balanceness of the original EBAs. Prerequisite a) will
be analyzed afterward. Here, to testify the certainty of b), we
provide the following theorem.

Theorem 1: In an arbitrary EBA, let ρ0 be the minimum ρs
that ensures 0 ≤ pi ≤ 1 for all slices, then the energy balance
would always be attained while ρs increases from ρ0 to 1.

The proof is omitted due to the limited space. We briefly
demonstrate the correctness of Theorem 1 as follows. By Eqs.
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Fig. 5. A snapshot of the EBA expanding

(6) and (8), we can get that both fi and gi are the increasing
functions of ρs. As pi = gi

fi+λi
, and ρ0 is the minimum ρs

that satisfies pi ≥ 0, we have pi ≥ 0 while ρ0 ≤ ρs ≤ 1. In
addition, from Eq. (3), we can get that pi ≤ 1 always holds.
Therefore, increasing ρs keeps the energy-balanceness.

Now, let us turn to prerequisite a). Consider one step of the
EBA expanding process (see Fig.5). The starting slice and the
EBA started from this slice are referred to as the anchor slice
and anchor EBA, respectively. Let ρs,m, ρs,m+1 and Fs,m,
Fs,m+1 denote the ρs and Fs parameters of the current anchor
EBA and its following single-slice EBA (Sk). ρm and ρm+1

correspond to the minimum value of ρs,m and ρs,m+1. Denote
the lifetime of the anchor EBA and Sk by Ta and Tk. We
consider how Ta and Tk would vary, had ρs,m been increased
from ρm to 1. Note that when ρs,m = 1, Ta < Tk (using (8),
we focus on the lifetime of Sk−1 and Sk and obtain Tk−1 < Tk
when ρs,m = 1; we note Tk−1 = Ta). Based on the relations
between Ta and Tk when ρs,m = ρm, there are two cases:
• if Ta > Tk when ρs,m = ρm, as shown in Fig.4a, Ta and
Tk would reach the same level if we tune ρs,m to ρ∗m.

• if Ta < Tk when ρs,m = ρm (see Fig.4b), the situation
becomes complex and we discuss it in detail below.

If Ta < Tk when ρs,m = ρm, simply tuning ρs,m cannot
make Ta and Tk equal. In addition, we need to reduce Tk
by increasing ρs,m+1 (see Fig.4b). If the minimum Tk is
smaller than Ta, then the anchor EBA can be expanded as
above. Otherwise, the EBA can not be expanded any more.
To summarize, we have proved Lemma 1.

Lemma 1: The anchor EBA can be expanded to the next
slice only if Ta ≥ Tk when ρs,m = ρm and ρs,m+1 = 1.

Therefore, in order to decide whether an EBA expanding
operation can be conducted, we need to first obtain ρm, the
minimum value of ρs,m. In what follows, we show that such a
task can be accomplished while we incrementally expand the
anchor EBA to approach the energy balance bound.

2) EBA expanding: The EBA expanding is conducted by
increasing ρs,m from ρm to a certain value, say ρ∗m, so

Algorithm 1 The energy balance bound determining algorithm
Input: Ft, ρt at the anchor slice, and the network size n.
Output: The energy balance bound (m0), and

{ρm}, the minimum of ρs,m for all m = 1, · · · ,m0.
1: Let m = 1, and calculate ρ1 by ρ1 = f(ρt).
2: while m ≤ n do
3: Let ρs,m = ρm, and calculate Ta by Ta = Ta(ρm).
4: Let T1 = Tk(ρm, 1), T2 = Tk(ρm, f(ρm)).
5: if Ta < T1 then
6: Break out of the loop. {Obtain the EB bound.}
7: else if Ta ≤ T2 then
8: Obtain ρ̄m+1 by solving Tk(ρm, ρ̄m+1) = Ta(ρm).
9: Set ρm+1 to be ρ̄m+1.

10: else
11: Obtain ρ∗m by solving Ta(ρ∗m) = Tk(ρ∗m, f(ρ∗m)).
12: Set ρm+1 to be f(ρ∗m).
13: end if
14: Let m = m+ 1. {Expand the size of the EBA by 1.}
15: end while
16: Set m0 to be m.
17: Output m0 and {ρm} as the results.

that Sk can be just combined into the anchor EBA and
ρs,m+1 = ρm+1. It is worth to note that, the minimum ρs
of the new anchor EBA, i.e., ρm+1, will be generated by such
an operation. Specifically, ρ∗m and ρm+1 are derived as below.

As ρ1 is given by (9), we attempt to find an approach to
calculate ρm+1 from ρm. Thus, we focus on the process of
expanding the anchor EBA from the size of m to m+ 1. Let
ρs,m = ρm. From (9), we have f(ρm) ≤ ρs,m+1 ≤ 1, where
f(ρm) = max(0, 1 − Fs,m

Fs,m+1
ρm). Denote the minimum and

maximum value of Tk by T1 and T2, respectively. According
to the relations between Ta and Tk when ρs,m = ρm, there are
three cases. (For clarity, we introduce Ta(ρ1), Tk(ρ1, ρ2) to
denote the value of Ta, Tk when ρs,m = ρ1 and ρs,m+1 = ρ2.)

Case A: If Ta < T1 (see Fig.4c), then, according to Lemma
1, we cannot expand the anchor EBA any more, which means
that m is the maximum size of the anchor EBA. Hence, the
obtained m is the energy balance bound.

Case B: If T1 ≤ Ta ≤ T2 (Fig.4d), then ρ∗m = ρm, ρm+1 =
ρ̄m+1, where ρ̄m+1 is obtained by solving Tk(ρm, ρ̄m+1) =
Ta(ρm).

We prove ρm+1 = ρ̄m+1 as below. If there exists another
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ρs,m, say ρ′m, satisfying T ′1 ≤ T ′a ≤ T ′2. Note that ρ′m >
ρm. By (8), we have T ′a < Ta. After the anchor EBA being
expanded, the lifetime of the EBA satisfies Tm+1 = Ta and
T ′m+1 = T ′a. Note that T ′m+1 < Tm+1, which, in turn, deduces
ρ̄′m+1 > ρ̄m+1. Therefore, ρm+1 = ρ̄m+1.

Case C: If Ta > T2, then ρm+1 = f(ρ∗m), and ρ∗m can be
obtained by solving Ta(ρ∗m) = Tk(ρ∗m, f(ρ∗m)).

The rationale behind can be described as follows. According
to (9), the spectrum of Tk keeps shifting upward while ρs,m
is increasing (see Fig.4e). Hence, by increasing the ρs,m,
we can gradually reach Case B and find the ρ∗m that makes
the lifetime of the anchor EBA equal to T2, i.e., Ta(ρ∗m) =
Tk(ρ∗m, f(ρ∗m)). Therefore, ρm+1 = f(ρ∗m).

Based upon this, we are able to calculate the ρm’s and the
energy balance bound in a single algorithm as below.

3) The algorithm: The energy balance bound determining
algorithm is presented as Algorithm 1, which produces m0, as
well as the minimum value of ρs,m for all m = 1, · · · ,m0.
The algorithm starts from a single-slice EBA (line 1), then
gradually expands the EBA size. Lines 2-15 correspond to one
single EBA expanding. It obtains the energy balance bound
in line 16 and outputs the results in line 17. Clearly, the
computational complexity of the algorithm is O(n).

V. OPTIMIZING THE NETWORK LIFETIME

The lifetime optimization problem is handled in this section.
We illustrate the NP-hardness of the problem, and propose a
heuristic approximation algorithm that can obtain near-optimal
solutions in polynomial time.

A. The EBA partitioning problem

Recall that, for each EBA, parameter ρs varies continuously
and the maximum lifetime is obtained when ρs is minimized.
Therefore, to optimize the network lifetime, we let ρs = ρm
and focus on how to determine the size of each EBA, which
is defined as the EBA partitioning (EBA-PT) problem.

Given the fact that the size of an EBA varies from 1 to mi,0

(i.e., the energy balance bound) and the EBA lifetime also
varies accordingly. We can consider each EBA as an object of
the knapsack problem. Thus, the lifetime and size of an EBA
can be taken as the value and the weight of the corresponding
object, respectively. Let xi,j represent the EBA that starts from
Si with the size of j. Then, the EBA-PT problem can be
formulated as

max min
i=1,··· ,n

j=1,··· ,mi,0

{pi,j |xi,j = 1} (10)

s.t.
n∑
i=1

mi,0∑
j=1

j · xi,j = n (11)

mi,0∑
j=1

xi,j ≤ 1, i = 1, · · · , n (12)

xi,j = 0 or 1, i = 1, · · · , n; j = 1, · · · ,mi,0 (13)

where, pi,j represents the value of the object, i.e., the lifetime
of EBA xi,j , which can be calculated by Eq. (8). The constraint

N N
N 1

EBA 

1 2 m

AA1 A 1 A +1
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Fig. 6. Illustration of an EBA partitioning scheme

(11) states that the weight of all the selected objects should
exactly equal to the capacity of the knapsack. Constraints (12)
and (13) ensure that at most one object would be selected
from the group of EBAs with the same anchor slice. The
objective function (10) maximize the network lifetime which
is determined by the EBA with the shortest lifetime.

As we can see that the EBA-PT problem is actually modeled
as a multidimensional 0-1 knapsack problem (MKP). It is well
known that the MKP is NP-hard [12], which indicates that the
EBA-PT problem is also NP-hard. Therefore, it is difficult to
compute an optimal solution with polynomial time complexity;
we try to find an approximate solution instead.

B. Properties of the solution

In this section, we analyze the impact of EBA configurations
on network lifetime, which can give us some insights into the
algorithm design.

Given an EBA partitioning scheme, we denote the i’th EBA
by Ai. The parameters of Ai are denoted by ρs,i, ρt,i and mi.
ρmi

corresponds to the minimum value of ρs,i. In particular,
let Nk denote the sub-network from Ak to the last EBA. As
shown in Fig.6, Ak has divided the whole network area into
three sub-areas, namely, Ñk, Ak and Nk+1. For clarity, let Tk
be the lifetime of Ak, and Lk be the lifetime of Nk.

Consider two neighbor EBAs, Ai and Ai+1. While Ti >
Ti+1, recall Fig.4a, by increasing ρs,i, we can combine Ai
and Ai+1 into a new EBA. We call this operation an EBA
merging. Different from the EBA expanding in Section IV-B2,
EBA merging keeps the values of ρt,i, ρs,i+1, and does not
require Ai+1 to be a single-slice EBA. Specifically, if Ai+1

is the critical EBA, i.e., Ti+1 = min{Tj}, then the network
lifetime can be prolonged by the EBA merging. Furthermore,
we have Lemma 2.

Lemma 2: In the optimal solution of the EBA-PT problem,
the first EBA is, in the meanwhile, the critical EBA.

Proof: We prove this lemma by the reduction to absurdity.
If Ai, instead of A1, is the critical EBA, then Ti−1 > Ti
must hold. Thus, by merging Ai with Ai−1, we can further
improve the network lifetime, which means that the original
EBA partitioning scheme is actually not the optimal solution.
This is a contradiction.

The network lifetime is mainly determined by A1, and thus
the size of A1 need to be delicately selected. To derive the
optimal m1, we first assume that the optimal lifetime of N2,
denoted by L̂2 can be achieved. Noting that both the value
of L̂2 and T1 would be affected by m1, we explicitly denote
them by L̂2(m1) and T1(m1), respectively. Since 1 ≤ m1 ≤
m1,0, by Lemma 2, combined with the fact that T1 is a non-
increasing function of m1, we can obtain the optimal m∗1,
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where m∗1 = min{m1|T1(m1) < L̂2(m1)}.
Specifically, if m1,0 ≤ 2, then m∗1 = m1,0. We explain

the situation of m1,0 = 2 as follows. If the size of A1 is
set to 1, there are two cases: if T1 > T2, then, according to
Lemma 2, the network lifetime can be improved by merging
A1 and A2. Hence, we have m∗1 = 2. On the other hand, if
T1 < T2, since ρs,1 = ρ1, according to Section IV-B2, we
have T1(2) = T1(1). Therefore, m∗1 = 2 still holds. It also
indicates that if more than one slice are allowed in A1, then
setting m1 to 2, instead of 1, will yield a better lifetime.

To summarize, we can get the solution of the EBA-PT
problem by setting m1 = m∗1. Further, we have Theorem 2 that
captures the relation between the solution of EBA-PT problem
and L̂1, the optimal network lifetime.

Theorem 2: L̂1 is bounded by T1(m∗1) ≤ L̂1 < T1(m∗1−1),
where m∗1 = min{m1|T1(m1) < L̂2(m1)}.

Proof: Note that in the EBA-PT problem, ρs,1 is con-
strained by ρs,1 = ρm1

. Recalling the process of expanding
A1 from the size of m∗1−1 to m∗1, ρs,1 increases from ρm∗1−1
to ρ∗m∗1−1

. If there exists a ρ′s,1, ρm1 < ρ′s,1 < ρ∗m1
, that

satisfies T1 < L̂2 when m1 = m∗1 − 1 and ρs,1 = ρ′s,1, then it
can yield a better result than T1(m∗1), according to the analysis
in Section IV-B. It happens when ρs,2 or m2 can be further
decreased. Thus, we have T1(m∗1) ≤ L̂1 < T1(m∗1 − 1).

Theorem 2 indicates that the solution of the EBA-PT prob-
lem is a good approximation to the optimal network lifetime.
Considering that the calculation of m∗1 depends on the optimal
lifetime of N2, i.e., L̂2, which is non-trivial to obtain, we
attempt to seek a heuristic-based approach to approximate the
optimal lifetime of Nk, without knowing L̂k+1.

Note that the merging of Ai and Ai+1 would increase the
size of Ai. However, as mi is upper-bounded by mi,0 (the
energy balance bound of Ai), the merging of Ai and Ai+1

will be blocked if we set mi = mi,0. Then we call Ai an EBA
blockage. In this case, according to Lemma 2, we can conclude
that Ai is the critical EBA of Ni. Thus, Li = Ti holds. Since
1 ≤ mi ≤ mi,0 and Ti is a non-increasing function of mi, we
have L̂i ≥ Ti(mi,0). Essentially, this gives the lower bound
for L̂i. Therefore, the optimal lifetime of Ni can be estimated
by the lifetime of Ai, if we set Ai as the EBA blockage.

By virtue of Theorem 2 and the notion of EBA blockage, we
can approximately solve the EBA-PT problem. Our algorithm
will be presented in the next section.

C. The approximation algorithm

As analyzed above, to get the approximate solution of the
EBA-PT problem, we can set A2 as the EBA blockage and
apply Theorem 2 to derive m∗1. As L̂2 is approximated by
T2(m2,0), the accuracy of L̂2 significantly affects the compu-
tation of m∗1. To improve the solution, we recursively apply
the above process to the sub-network N2, by setting A3 as the
EBA blockage. Intuitively, if we proceed as above, the solution
can be improved gradually. Therefore, in our approximation
algorithm, we generally set Ak as the EBA blockage and solve
the EBA-PT problem in a recursive manner.

Algorithm 2 The approximation algorithm (AOPT-k)
Input: The anchor slice Si and an integer k.
Output: The approximate optimal lifetime T ∗1 , and

{mj}, the size of A(k−k′+1)−j , j = 1, · · · , k − k′.
1: Calculate m1,0 by Algorithm 1.
2: if (m1,0 ≤ 2 or k == 0) then
3: Let k′ = k. {Setting the EBA blockage.}
4: return T ∗1 = T1(m1,0).
5: end if
6: for each m1 = 2, · · · ,m1,0 do
7: Recursively calculate L̂2 by Algorithm 2 with the input

parameters of Si+m1
and k − 1.

8: if (T1(m1) ≤ L̂2) then
9: Set m(k−k′) = m1. {The size of the current EBA.}

10: return T ∗1 = T1(m1).
11: end if
12: end for

The proposed algorithm, AOPT-k, is presented as Algorithm
2. It starts by calculating the energy balance bound (line 1),
and proceeds with recursions. Lines 2-5 correspond to the
endpoints of the recursion. In each step of the recursion (lines
6-12), the size of the corresponding EBA is determined.

After the algorithm is terminated, Ak−k′+1 should be set as
the EBA blockage. Since the EBA configuration after Ak−k′+1

does not affect the network lifetime, we simply set the EBA
size to the energy balance bound. The approximation ratio of
the algorithm is demonstrated by Proposition 1.

Proposition 1: Denote the optimal network lifetime by L̂1.
Let di = Ti(m

∗
i −1)−Ti(m∗i ) and bi = Ti(1)−Ti(m∗i ). Then,

we have L̂1 < T ∗1 +
∑k−k′
i=1 di+bk−k′+1, where, T ∗i = Ti(m

∗
i ),

and m∗i is the size of Ai produced by Algorithm 2.
Proof: According to Algorithm 2, T ∗1 is produced if the

condition in line 8 holds. In fact, L̂2 is approximated by T ∗2 .
Hence, the above condition is essentially T1(m1) ≤ T ∗2 . We
have T1(m∗1) ≤ T ∗2 and T1(m∗1 − 1) > T ∗2 . Let εi = L̂i − T ∗i .
Then, T1(m∗1) + ε2 ≤ L̂2 and T1(m∗1 − 1) + ε2 > L̂2.

Therefore, there must exists a j ∈ {1, · · · ,m∗1 − 1} that
satisfies T1(j) ≤ L̂2. Consequently, L̂1 = T1(m̂1), where
m̂1 = min{j|T1(j) ≤ L̂2}. Thus, we have ε1 = L̂1 − T ∗1 ≤
L̂2 − T1(m∗1) < T1(m∗1 − 1) + ε2 − T1(m∗1). That is, ε1 <
d1 + ε2. Similarly, we can get ε2 < d2 + ε3. In general, we
have εi < di + εi+1. Thus, ε1 <

∑k−k′
i=1 di + εk−k′+1 <∑k−k′

i=1 di + bk−k′+1. This completes the proof.
We now analyze the computational complexity of the algo-

rithm. Since it executes at most k levels of the recursion, let
T (k) denote the worst-case time complexity, we have T (k) =
O(n) while k = 0; otherwise, T (k) = O(n) + nT (k − 1).
With some elementary manipulations, we can get that the
complexity of the entire algorithm is O(nk+1), where n is
the number of slices in the network.

VI. SIMULATION RESULTS

The performance of our algorithm is evaluated via OM-
NeT++ simulations. We conduct experiments in both 1D and
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(b) Zoom-in view of AOPT-1 vs. EBDT in Fig.7a
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(c) 2D networks

Fig. 7. Comparing the lifetime performance (network size is indicated by the number of slices, i.e., the maximum number of data transfer hops)

2D uniform networks. The communication parameters are set
according to [13]. We repeat each experiment for 50 times and
compute the average as the final results.

To the best of our knowledge, the only two-level based
MDT scheme is proposed in [10], which is referred to as
EBDT. We evaluate the lifetime performance of our algorithm
in comparison with the hop-by-hop scheme and the best result
of EBDT. The hop-by-hop scheme is used as a baseline. We set
k = 1 for our algorithm. The network lifetime is represented
by the number of reported events until the first node dies.

The results are shown in Fig.7. It can be seen that our
scheme substantially improves the network lifetime in both
1D and 2D networks. Compared with the hop-by-hop scheme,
the average lifetime gain of AOPT-1 is at least 1.9 times
in 1D networks, and 1.3 times in 2D networks. AOPT-1
also outperforms the EBDT. For a clear presentation, we
specifically compare AOPT-1 with EBDT in Fig.7b, where
the lifetime ratio between AOPT-1 (or EBDT) and the hop-
by-hop scheme is illustrated. Here, we only use the results
of 1D networks as an example (similar results are observed
in 2D networks). From Fig.7b, we can see that AOPT-1
makes a further 4.2% improvement upon the best result of
EBDT. Such an improvement is produced by optimally setting
the transmission probabilities for the two-level based MDT
scheme. This validates the effectiveness of our algorithm.

As expected, we can also see from Fig.7 that the lifetime
gain of both AOPT-1 and EBDT decreases while the network
size is increasing. The reason is as follows: Since the trans-
mission ranges are limited, while the network size, i.e., the
slice number, is large enough (for example, when n ≥ 12
in the 2D networks), data must be transmitted in a multi-hop
manner. In this case, the network lifetime is mainly determined
by the overwhelming traffic loads, and thus the contribution
of energy balance on prolonging network lifetime is limited.
Nevertheless, AOPT-1 still improves the lifetime by 29.5%, as
compared with the hop-by-hop scheme.

VII. CONCLUSIONS

In this paper, we investigate how to exploit the energy
balance feature of two-level based MDT schemes to optimize

network lifetime. We analyze the performance limits of the
scheme and reveal that energy balance can only be achieved
within local areas, i.e., Energy Balance Areas (EBAs). By uti-
lizing the unique structure of EBAs, we transform the lifetime
optimization problem into the EBA-PT problem, which is NP-
hard. We propose a heuristic based approximation algorithm to
solve the problem, which can produce near-optimal solution in
polynomial time. Simulation results indicate that the network
lifetime can be further improved by our algorithm.
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