
66 PERVASIVEcomputing Published by the IEEE CS and IEEE ComSoc � 1536-1268/04/$20.00 © 2004 IEEE

C O N T E X T - A W A R E  C O M P U T I N G

C O N T E X T- AWA R E  C O M P U T I N G

Toward an OSGi-Based
Infrastructure for 
Context-Aware Applications

E
merging pervasive computing solu-
tions provide “anytime, anywhere”
computing by decoupling users from
devices and viewing applications as
entities that perform tasks on users’

behalf.1 Context-aware systems provide mecha-
nisms for developing applications that are aware
of their contexts and able to adapt to changing
contexts seamlessly. A context-aware application
uses an entity’s context to modify its behavior to
best meet the user’s needs in that context. Such
applications can be used in various application
domains, such as smart homes. A smart home

uses networked sensors, de-
vices, and appliances to build
an intelligent environment in
which many features in the
home are automated and where
devices and services seamlessly
cooperate to support household
tasks. For example, in a smart-
home environment, a context-

aware application might alert a hospital if a per-
son’s blood pressure exceeds a certain threshold,
or remind a family member to take medicine
according to a doctor’s e-prescription.

Context-aware computing has attracted much
attention from researchers in recent years, and
several context-aware systems have been devel-
oped to demonstrate the technology’s usefulness.

However, building context-aware applications is
still complex and time-consuming due to inade-
quate infrastructure support.2 In this article, we
propose a context-aware infrastructure for build-
ing and rapidly prototyping such applications in
a smart-home environment.

Our architecture
Before we can build a context-aware infra-

structure, we must first establish a formal con-
text model. Previous systems often presented con-
text information as text strings or modeled it as
software objects. We propose an ontology-based
context model that leverages Semantic Web tech-
nology and OWL (Web Ontology Language).3

OWL is an ontology markup language that
enables context sharing and context reasoning.

Based on our context model, we also propose
a service-oriented context-aware middleware
(SOCAM) architecture, including a set of indepen-
dent services that perform context discovery,
acquisition, and interpretation. SOCAM’s key fea-
ture is its ability to reason about various contexts.
Through the reasoning process, high-level con-
texts can be derived from low-level ones, and
implicit contexts from explicit ones. With these
service components, we can build context-aware
services easily by accessing various types of con-
texts with different levels of complexity.

The Open Service Gateway Initiative, or OSGi

Applications and services must adapt to changing contexts in dynamic
environments. This OSGi-based infrastructure manages context-aware
services reliably and securely and efficiently supports context acquisition,
discovery, and reasoning. A formal, ontology-based context model enables
semantic context representation, reasoning, and knowledge sharing.

Tao Gu and Hung Keng Pung
National University of Singapore

Da Qing Zhang
Institute for Infocomm Research

Authorized licensed use limited to: RMIT University Library. Downloaded on January 09,2021 at 15:57:07 UTC from IEEE Xplore.  Restrictions apply. 



(www.osgi.org), is an emergent open
architecture that lets us deploy a large
array of wide-area-network services to
local networks such as smart homes
and automobiles. It offers the follow-
ing benefits:

• Platform independence. OSGi specifi-
cations can be implemented on differ-
ent types of hardware devices and oper-
ating systems because they’re based 
on Java.

• Various levels of system security, allow-
ing digital signing of downloaded ser-
vices and object access control. 

• Hosting of multiple services from dif-
ferent providers on a single gateway
platform.

• Support for multiple home-networking
technologies.

OSGi defines a lightweight framework
for delivering and executing service-
oriented applications. Its management
functionalities include installing, activat-
ing, deactivating, updating, and removing
services. Developing SOCAM on top of the
service-oriented OSGi open standard can
provide a robust and potentially interop-
erable infrastructure for building, provi-
sioning, and managing context-aware ser-
vices in smart homes and beyond.

Context modeling 
In the artificial intelligence literature,

an ontology is a formal, explicit descrip-
tion of concepts in a particular domain
of discourse. It provides a vocabulary for
representing domain knowledge and for
describing specific situations in a domain.
An ontology-based approach for context
modeling lets us describe contexts seman-
tically and share common understanding
of the structure of contexts among users,
devices, and services. This model’s main
benefit is that it enables a formal analy-
sis of the domain knowledge, such as per-
forming context reasoning using first-
order logic. 

We use OWL to describe our context
ontologies because it’s more expressive
than other ontology languages (see the
“Related Work” sidebar for informa-
tion on other research).4 For example,
OWL supports cardinality constraints
whereas RDF (Resource Description
Framework) Schema does not. OWL
has three sublanguages:3

• OWL Lite, designed for easy imple-
mentation, gives users a functional sub-
set that gets them started using OWL.

• OWL Full contains all the OWL
language constructs and provides a
free and unconstrained use of RDF
constructs.

• OWL DL (Description Logic) supports
the same set of OWL language con-
structs as in OWL Full but places a
number of constraints on their use.

In our model, we represent contexts
in first-order predicate calculus. The
basic model has the form Predicate(subject,
value), in which

• subject ∈ S*: the set of subject names (for
example, a person, location, or object)

• Predicate ∈ V*: the set of predicate names
(for example, is located in or has status)

• value ∈ O*: the set of all values of sub-
jects in S* (for example, living room, open,
close, or empty)

To illustrate,

• Location(John, bathroom) means that John is
located in the bathroom.

• Temperature(kitchen, 120) means that the
temperature in the kitchen is 120º F.

• Status(door, open) means that the door is
open.

We can extend the basic model to form a
complex context or a set of contexts by
combining the predicate and Boolean alge-
bra (union, intersection, and complement).
For example, we can represent three fam-
ily members’ food preferences as

FoodPreference(familyMembers, foodItems) →
FoodPreference(John, FoodList_1) ∨
FoodPreference(Alice, FoodList_2) ∨
FoodPreference(Tom, FoodList_3).

An ontology represents our context
model’s structure. The ontology is de-
scribed in OWL as a collection of RDF
triples, each statement being in the form
of (subject, predicate, object), where subject and
object are the ontology’s objects or indi-
viduals and predicate is a property relation
defined by the ontology.

There’s a great variety of context infor-
mation. Context includes any informa-
tion that can be used to characterize the
situation of an entity, which can be a per-
son, place, or physical or computational
object (such as a person’s name, role, cur-
rent location, or a room’s temperature) in
any domain.5 Because it’s difficult to cen-
trally manage and process a large amount
of context knowledge in pervasive com-
puting environments, we adopted a hier-
archical approach, dividing our context
ontologies into a common high-level
ontology and domain-specific ontologies.
The high-level ontology captures general
information about the physical world in
pervasive computing environments.
Domain-specific ontologies define the

OCTOBER–DECEMBER 2004 PERVASIVEcomputing 67

The OSGi open architecture lets us deploy 

a large array of wide-area-network services 

to local networks such as smart homes 

and automobiles.

Authorized licensed use limited to: RMIT University Library. Downloaded on January 09,2021 at 15:57:07 UTC from IEEE Xplore.  Restrictions apply. 



details of general concepts and their
properties in each subdomain, such as
the home, office, or vehicle subdomain.
Separating the domains significantly
reduces the amount of context knowl-
edge and relieves the burden of context
processing. 

The high-level ontology defines the
basic concepts of person, location, com-
putational entity, and activity, as Figure 1
shows. The class ContextEntity provides an
entry point of reference for declaring the
upper ontology. One instance of ContextEntity
exists for each distinct user, agent, or ser-
vice. Each instance of ContextEntity presents
a set of descendant classes: Person, Location,
CompEntity, and Activity. The details of these
basic concepts are defined in the domain-
specific ontologies, which can vary from
one domain to another. We have defined
all the descendant classes of these basic
classes, and an associated set of proper-
ties and relationships, for a smart-home
environment.6

The SOCAM architecture 
We designed SOCAM, which is based

on our context model, to enable rapid
prototyping of context-aware applica-
tions (see Figure 2). SOCAM converts var-
ious physical spaces where contexts are
acquired into a semantic space where
context-aware applications can share
and access them easily. It consists of the
following components:

• Context providers abstract useful con-
texts from heterogeneous sources,
external or internal, and convert them
to OWL representations so that other
service components can share and
reuse them.

• The context interpreter provides logic
reasoning services to process context
information.

• The context database stores context
ontologies and past contexts for a par-
ticular subdomain. Each domain has
one logic context database.

• Context-aware applications use dif-
ferent levels of contexts and adapt the
way they behave according to the cur-
rent context.

• The service-locating service (SLS)

provides a mechanism so that con-
text providers and the context inter-
preter can advertise their presence
and users and applications can locate
these services.

SOCAM components are designed as
independent service components that
can be distributed over heterogeneous
networks and can interact with each
other. All SOCAM components are imple-
mented in Java, so they are independent
of underlying system platforms. For
communication between various dis-
tributed components in SOCAM, we use
Java RMI, which lets distributed objects
invoke each other’s methods. The re-
quirement for running a SOCAM compo-
nent is simply to have a Java Virtual
Machine implementation. Because many
pervasive devices are becoming Java
enabled, our SOCAM middleware should
have fewer deployment issues.

Context providers
Context providers provide context

abstraction to separate low-level sensing

68 PERVASIVEcomputing www.computer.org/pervasive

C O N T E X T - A W A R E  C O M P U T I N G

owl:ClassHome-domain ontology rdfs:subClassOf owl:Property

Th
e 

co
m

m
on

 h
ig

h-
le

ve
l o

nt
ol

og
y

Do
m

ai
n-

sp
ec

ifi
c 

on
to

lo
gi

es

Device Location Person

Application

Network

Agent

Service

Network

Agent

CompEntity Activity

IndoorSpace

ScheduledActivity

OutdoorSpace

...
...

......

ContextEntity

use

locatedIn

locatedIn

en
ga

ge
dI

n

locatedIn

...

DeducedActivity

own

Vehicle-domain ontology

Figure 1. Class hierarchy diagram for our context ontologies.

Authorized licensed use limited to: RMIT University Library. Downloaded on January 09,2021 at 15:57:07 UTC from IEEE Xplore.  Restrictions apply. 



OCTOBER–DECEMBER 2004 PERVASIVEcomputing 69

implementations from high-level context
manipulation. Each context provider
registers with the SLS in order to be dis-
covered by others. 

External context providers obtain con-
texts from external sources—for exam-
ple, a weather information server might
provide weather information on a par-
ticular place, or a location server might
provide a person’s outdoor location
information. Internal context providers
acquire contexts directly from ubiquitous
sensors located in a subdomain (such as
radio frequency identification-based loca-
tion sensors in a smart home).

We deployed various sensors in our
prototype system, including location sen-
sors, lighting sensors, microphones, and
video cameras. The advancement of
video analysis technology gives us an
opportunity to explore complex contexts
such as human behaviors. We leveraged
our video surveillance system to perform
object tracking and human behavior
analysis so as to provide a person’s behav-
ior and posture context. The system can
collect raw video data and transform
them into high-level descriptions of
events. For example,

Event: “A person lies down on the bed”
Event: “A person falls down”

We’ve designed a set of procedures and
APIs to support both context query and
context event subscription. Users and ser-
vices can either issue a query for a par-
ticular context of interest or subscribe to
a context event from a context provider.
When an event is triggered, the system
returns the particular context to the sub-
scriber in the form of OWL expressions,
as the following example shows:

<socam:Person rdf:about=“John”>
<socam:hasPosture rdf:resource=

“http://lucan.ddns.comp.nus.edu.sg/
octopus/posture#LIEDOWN”/>

</socam:Person>

Context interpreter
The context interpreter is also a con-

text provider, as it provides high-level
contexts by interpreting low-level con-
texts. It consists of a context reasoner
and a context knowledge base.

The context reasoner provides deduced
contexts based on direct contexts, re-
solves context conflicts, and maintains
knowledge base consistency. To support
various kinds of reasoning tasks, we can
specify different inference rules, preload
them into the appropriate logic reason-
ers, and then incorporate the reasoners
into the context interpreter.

The context knowledge base provides
a set of APIs for other service compo-
nents to query, add, delete, or modify
context knowledge. The knowledge base
contains

• TBox information, which is the con-
text ontology in a subdomain (that is,
a smart home)

• ABox information, which consists of
the instances of the context ontology

• Defined context instances, which users
prespecify

• Sensed context instances, which are
directly acquired from various context
providers

We preload the first three items into the
context knowledge base during system
initiation; the system loads the fourth
during runtime. To ensure freshness in

the context knowledge base, we deploy
an event-triggering mechanism to
enable the system to update particular
context instances. Different informa-
tion requires different updating fre-
quency. For example, defined context
instances might require updating every
month or year, whereas sensed context
instances might need more frequent
updating due to the highly dynamic
nature of sensed data.

We adopted a rule-based approach
based on first-order logic for reasoning
about contexts. SOCAM currently sup-
ports two kinds of reasoning: ontology
reasoning and user-defined rule-based
reasoning.

Ontology reasoning. Our ontology’s rea-
soning mechanism supports RDF Schema
and OWL Lite. The reasoner supports all
the RDF Schema specifications described
by the RDF Core Working Group. The
OWL reasoning system supports con-
structs for describing properties and
classes, including relationships between
classes (for example, disjointness); car-
dinality (for example, exactly one);
equality; characteristics of properties
(for example, symmetry); and enumer-
ated classes. The RDF Schema rule sets
are needed to perform RDF Schema
reasoning—for example,

(?a rdfs:subClassOf ?b), (?b rdfs:subClassOf ?c) →
(?a rdfs:subClassOf ?c)

Context reasoner
Context

databaseContext knowledge base

Co
nt

ex
t i

nt
er

pr
et

er

Service-locating service

Context-aware application Context-aware application

External context provider Internal context provider

Data flow
Control and
signaling flow

Figure 2. Overview of the SOCAM architecture.

Authorized licensed use limited to: RMIT University Library. Downloaded on January 09,2021 at 15:57:07 UTC from IEEE Xplore.  Restrictions apply. 



User-defined rule-based reasoning. This
facility provides forward chaining, back-
ward chaining, and a hybrid execution
model. The forward-chaining rule engine
is based on the standard Rete algorithm.7

The backward-chaining rule engine uses
a logic-programming engine similar to
Prolog engines. A hybrid execution mode
performs reasoning by combining both
forward and backward chaining. The
examples in Figure 3 illustrate a partial
rule set based on the forward-chaining
rule engine.

Context-aware services
These applications use different levels

of context information, adapting the way
they behave according to the current con-
text. By querying the service registry pro-
vided by the SLS, context-aware services
can locate all the context providers that
provide interested contexts. To obtain con-
texts, a context-aware application either
queries a context provider or listens for
the events sent by a context provider.

A common way of developing con-
text-aware applications is to specify
actions in response to context changes
with respect to the corresponding con-

ditions and decision rules. In SOCAM,
application developers can predefine
rules and specify the methods to be
invoked when a condition becomes true.
All the rules are saved in a file and pre-
loaded into the context reasoner. Devel-
opers can also modify the rule file and
reload it during runtime. Table 1 gives
three examples of context-aware behav-
iors specified by a set of rules.

Service-locating service
The SLS lets users, agents, and appli-

cations locate different context providers.
The main features of the SLS mechanism
include scalability, adaptability, and mul-
tiple matching capabilities.8

The SLS supports wide-area discovery
of context providers, which might be
located in internal or external networks.
It tracks and adapts to changes that have
been induced by adding or removing
physical sensors or reconfiguring con-
texts. It also deploys a multiple match-
ing mechanism that enables context pro-
viders to advertise their supporting
contexts in different forms. A context
provider can use a service template or
OWL expressions to specify what kind

of contexts it provides. An application
that wishes to determine a context—for
example, John’s location context—will
send the query (locatedIn John ?x) to the SLS.
This service will first load the context
ontologies stored in the database and the
context instances advertised by different
context providers, and then apply seman-
tic matching to find out which context
provider provides this information. If it
finds a match, it sends the application the
reference to the context provider.

Infrastructure and 
design considerations

We are integrating SOCAM with the
OSGi service platform to build a reliable,
secure system that can deliver and man-
age context-aware services in a smart-
home environment. Here, we briefly
describe our OSGi-based context-aware
infrastructure and design considerations.

System infrastructure overview
The system infrastructure (see Figure

4) consists of the following entities:

• The OSGi-compliant residential gate-
way enables and manages communi-
cations to and from various local 
networks. A Java embedded server
connects both wide-area and local net-
works. Various types of networked
devices, electronics appliances, and
sensors can be attached to the resi-
dential gateway via different home
networking technologies. It also hosts
context-aware services that are down-
loaded from various context-aware
service providers.

• The Gateway operator manages and
maintains residential gateways and
their services. Its functionalities

70 PERVASIVEcomputing www.computer.org/pervasive

C O N T E X T - A W A R E  C O M P U T I N G

(?user rdf:type Elderly) ∧ (?user locatedIn Bedroom) ∧ (?user hasPosture LieDown) ∧ (Bedroom doorStatus Closed) ∧ (Bedroom lightLevel Low) 
→ (?user status Sleeping)

(?user rdf:type Elderly) ∧ (?user locatedIn ?room) ∧ (TV locatedIn ?room) ∧ (TV status On) → (?user status WatchingTV)
(?user rdf:type Person) ∧ (?user locatedIn Bathroom) ∧ (WaterHeater status On) ∧ (Bathroom doorStatus Closed) → (?user status Showering)

Figure 3. Examples of a partial rule set based on the forward-chaining rule engine.

TABLE 1
Rules for describing context-aware behaviors.

Application Rule

Healthcare If (John’s blood pressure exceeds the threshold) ∨
(John’s heartbeat is abnormal) ∨
(socam:temperature(John, greaterThan(101F)
Then alert hospital emergency department

Memory aid If socam:status(E-prescription, VALID) ∧ (socam:time(Local, XX:YY) matches the
time indicated in the E-prescription)
Then prompt to take medicines

Energy saving If (¬socam:locatedIn(John, Room) ∧ socam:hasLightinglevel(Room, HIGH)
Then turn off the light

Authorized licensed use limited to: RMIT University Library. Downloaded on January 09,2021 at 15:57:07 UTC from IEEE Xplore.  Restrictions apply. 



include monitoring the gateway to
detect malfunctions and security
attacks and installing services to and
removing services from the gateway.
It also serves as a service aggregator: it
gathers all the services that are allowed
to be loaded into the gateway and
ensures that they are mutually com-
patible and their resource require-
ments don’t conflict. 

• Context-aware service providers offer
a set of context-aware services to home
users. Developers design a context-
aware application as a set of services
and combine them into bundles that
can be downloaded to the gateway.

The OSGi service platform
The OSGi service platform refers to

the software stack embedded in the
OSGi-compliant residential gateway (see
Figure 5). It provides a service-hosting
environment as well as a set of common
APIs to develop application bundles. It
specifies several basic services such as
configuration management, user man-
agement, permission administration,
device management, and HTTP service.
The SOCAM middleware components are
built on top of the OSGi framework to
facilitate context acquisition, discovery,
and interpretation. Each SOCAM compo-
nent can be constructed as an indepen-
dent bundle—that is, an SLS bundle, a

context interpreter bundle, and a con-
text provider bundle. 

The OSGi framework adopts the Java
2 security model. Many methods defined
by the APIs require the caller to have cer-
tain permissions; services may also have
specific permissions that provide finer-
grained control over the operations they
can perform. Each OSGi bundle is asso-
ciated with a Permission class. When a per-
mission must be verified, the checker cre-
ates an instance of the appropriate
Permission class and calls the SecurityManager
with this object. The gateway operator
must configure the gateway’s system pol-
icy to grant the required permissions to
bundles that are to be installed and run
in the gateway.9

Experiments and performance study
We identified the context interpreter as

a potential performance bottleneck, so
we evaluated its feasibility and runtime
performance (running on our residential
gateway with a 600-Mbyte processor
and 256 Mbytes of memory). We created
a home-domain ontology consisting of
197 classes and instances. The context
interpreter validated and parsed these
OWL expressions into RDF triples and
performed reasoning. It derived the right
context based on the user-defined rule set.
On average, it took about 1.7 seconds to
load and merge different OWL files con-

taining the context ontology and differ-
ent context instances. The average run-
time for the reasoning process was about
1.9 seconds, and the memory consump-
tion was about 16.6 Mbytes. The inter-
preter was able to answer queries for
derived contexts at an average rate of a
few milliseconds per query. 

We also conducted further perfor-
mance evaluations.10 Our results show
that logic reasoning is a computationally
intensive process and that it can become
a bottleneck when applied to pervasive
computing. However, it’s acceptable for
running non-hard-real-time context-
aware applications in the prototype envi-
ronment. The context interpreter per-

OCTOBER–DECEMBER 2004 PERVASIVEcomputing 71

OSGi-compliant
residential gateway

Gateway
operator

Internet
(wide-area network) Mobile devicesComputers

Consumer
electronics
appliancesContext-aware service providers

Home
network

Figure 4. Overview of the OSGi-based context-aware infrastructure.

SOCAM services

Driver
Operating system

Java Virtual Machine
OSGi framework

Ad
m

in

De
vi

ce
 m

an
ag

er

HT
TP

SL
S

Co
nt

ex
t i

nt
er

pr
et

er

Co
nt

ex
t p

ro
vi

de
r

Co
nt

ex
t-a

w
ar

e 
se

rv
ic

e

..
.

Driver Driver

Basic services

Figure 5. Software architecture for an
OSGi-compliant residential gateway.

Authorized licensed use limited to: RMIT University Library. Downloaded on January 09,2021 at 15:57:07 UTC from IEEE Xplore.  Restrictions apply. 



72 PERVASIVEcomputing www.computer.org/pervasive

C O N T E X T - A W A R E  C O M P U T I N G

formed fairly well when reasoning over
small-scale context knowledge. By tai-
loring the high-level context ontology
and domain-specific ontologies in our
context model, we can control the total
number of context classes and instances
used in a domain. By decoupling the con-
text-consuming process from the rea-
soning process, we can execute context-
aware services on resource constraint
devices and leave computationally inten-
sive reasoning tasks to resource-rich
devices such as residential gateways.

Developing context-aware
applications

We are currently developing a smart-
home prototype based on our proposed

context-aware infrastructure. The proto-
type consists of an OSGi-compliant res-
idential gateway, an AXIS 2100 net-
work camera, a media server, and
various sensors. Our residential gate-
way is built on an Intel Celeron 600
MHz processor and 256 Mbytes of
memory and runs the embedded Linux
(kernel 2.4.17) operating system and
the Prosyst mBedded server as the OSGi
service platform. It supports various
wired and wireless network connec-
tions—such as Asymmetric Digital Sub-
scriber Line, Ethernet, Home Phoneline
Networking Alliance, Powerline, Blue-
tooth, and IEEE 1394—so that PCs,
PDAs, network cameras, sensors, and
various other devices can connect to it.

We’re also developing a simple dining
room application on top of SOCAM and
OSGi for demonstration purposes (see
Figure 6). The application plays music
and adjusts lighting conditions when
family members are having dinner in the
dining room.

First, we need to create a number of
context providers, such as an indoor
location provider that would track a
person’s location at room granularity
using RFID tags and transponders. We
store the high-level context ontology
and home-domain context ontology in
a database using MySQL, and we imple-
ment the context interpreter using the
Jena2 Semantic Web Toolkit (www.
hpl.hp.com/semweb/jena2.htm). The
ontology includes user contexts (such as
whether it’s a person’s birthday) for each
family member. Different context pro-
viders and the context interpreter are
registered with the SLS. An application
developer can then use the SLS to dis-
cover the services that are available in a
smart home, and subscribe to them if
desired.

In the dining room application, we
choose the indoor location provider to
determine whether a family member is
in the dining room, and we choose the
context interpreter to derive the room
activities (for example, dinner) based
on the number and identity of persons
in the dining room, current time, and
user context. We specify a set of meth-
ods for invocation within a set of con-
texts. When the context becomes true,
the application calls the associated
method. The contexts are specified in
a context configuration file as shown
in Figure 7.

In this application, different context
providers, the context interpreter, and
the SLS are packaged as OSGi bundles
and published as OSGi services. We use
Prosyst’s framework package (www.
prosyst.com/osgi.html) for editing and
managing bundles, managing users and

∃ ?person locatedIn(?person, DiningRoom)
PlayMusic(welcome_music);
socam:hasActivity(DiningRoom, Breakfast) ∨ socam:hasActivity(DiningRoom, Lunch)  ∨

socam:hasActivity(DiningRoom, Dinner)
PlayMusic();
AdjustLighting(setting_1);
socam:hasActivity(DiningRoom, BirthdayParty)
PlayMusic(birthday_song);
AdjustLighting(setting_2);

Figure 7. The context configuration file for our dining room application.

Service-locating-
service bundle

High-level ontology +
home-domain ontology

Dining-room-application
bundle

Context-interpreter
bundle

MP3
player

MySQL

Music-playing
service

Lighting-control
service

OS
Gi

-c
om

pl
ia

nt
 re

si
de

nt
ia

l g
at

ew
ay

Human-posture-
provider bundle

Indoor-location-
provider bundle

X10 control box

Room-temperature-
provider bundle

Network
camera

Thermo
sensor

RFID
tag

Figure 6. A dining room application.

Authorized licensed use limited to: RMIT University Library. Downloaded on January 09,2021 at 15:57:07 UTC from IEEE Xplore.  Restrictions apply. 



security, and so on. In this way, home
users can access these OSGi services.

W
e are developing several
context-aware applications
to demonstrate our design’s
feasibility. In the near

future, we’ll also look into other mecha-
nisms to reason about contexts and to
solve context conflicts. Probabilistic
logic, high-order logic, and Bayesian net-
works are promising techniques.

REFERENCES
1. K. Henricksen, J. Indulska, and A. Rako-

tonirainy, “Infrastructure for Pervasive
Computing: Challenges,” Proc. Informatik
01: Workshop on Pervasive Computing,
Univ. Vienna, 2001, pp. 214–222; www.
dstc.edu.au/m3/papers/Informatik2001.pdf.

2. G. Chen and D. Kotz, A Survey of Context-
Aware Mobile Computing Research, tech.
report TR2000-381, Dept. Computer Sci-
ence, Dartmouth College, 2000.

3. M.K. Smith, C. Welty, and D.L. McGuin-
ness, “OWL Web Ontology Language Ref-
erence,” World Wide Web Consortium

(W3C) recommendation, Feb. 2004; www.
w3.org/TR/owl-ref.

4. H. Chen and T. Finin, “An Ontology for a
Context Aware Pervasive Computing Envi-
ronment,” Proc. IJCAI Workshop on
Ontologies and Distributed Systems, IJCAI,
2003; www.cs.vu.nl/~heiner/IJCAI-03/
Papers/Chen.pdf.

5. G.D. Abowd et al., “Towards a Better
Understanding of Context and Context-
Awareness,” Proc. 1st Int’l Symp. Hand-
held and Ubiquitous Computing, Springer-
Verlag, 1999, pp. 304–307.

6. T. Gu et al., “An Ontology-based Context

OCTOBER–DECEMBER 2004 PERVASIVEcomputing 73

M any context-aware systems built in the past few years have

focused on specific applications.

In the Massachusetts Institute of Technology’s AIRE (Agent-

Based Intelligent Reactive Environments) project (www.ai.mit.edu/

projects/aire/projects.shtml#835), an intelligent room equipped

with computer vision and speech recognition systems was created

to experiment with different forms of natural, multimodal human-

computer interaction.

Hewlett-Packard’s Cooltown project proposed a Web-based sys-

tem for context awareness.1

Sumi Helal and his colleagues developed an indoor tracking sys-

tem and OSGi (Open Service Gateway Initiative) services by using

location context to assist elderly persons in a smart home.2

Using an object-oriented approach, the ContextToolkit provides

a programming toolkit and a number of reusable components to

support rapid prototyping of sensor-based context-aware applica-

tions.3 However, it doesn’t provide a common context model to

enable knowledge sharing and context reasoning.

Recent research has focused on providing context-aware infra-

structures that are built on a well-established, pervasive, reliable, and

publicly accessible set of technologies for context-aware systems. To

provide context abstraction, Jason Hong and colleagues took a data-

base-oriented approach for their Context Fabric infrastructure by

defining a Context Specification Language and a set of core services.4

However, using proprietary context languages might lead to a lack of

a common model and difficulty in sharing context.

Anand Ranganathan and colleagues developed a middleware

for context awareness, in which they represented context in

DAML+OIL.5

Harry Chen and colleagues proposed an agent-oriented Context

Broker Architecture infrastructure for semantic context representa-

tion, knowledge sharing, and privacy control.6

Our context-aware infrastructure is integrated with an OSGi plat-

form to support service delivery and provisioning, neither of which

has been addressed in the systems just listed. As in any network ser-

vice and application, security and privacy issues are also crucial for

a pervasive deployment of context-aware services and applications.

Existing security and privacy solutions for conventional appli-

cations and services are still evolving and are nowhere near matu-

rity; they’re unlikely to work well in context-aware pervasive com-

puting environments due to limitations in device capability and the

need for sensing and accessing privacy-sensitive context informa-

tion. Little work has been reported in this area. Our work so far is

also restricted to adapting OSGi’s existing security features for our

Service-Oriented Context-Aware Middleware (SOCAM).

REFERENCES

1. T. Kindberg and J. Barton, “A Web-based Nomadic Computing System,”
Computer Networks, vol. 35, no. 4, 2001, pp. 443–456.

2. S. Helal et al., “Enabling Location-Aware Pervasive Computing Applica-
tions for the Elderly,” Proc. 1st IEEE Pervasive Computing Conf., IEEE CS
Press, 2003, pp. 531–538.

3. A.K. Dey, D. Salber, and G.D. Abowd, “A Conceptual Framework and a
Toolkit for Supporting the Rapid Prototyping of Context-Aware Applica-
tions,” special issue on context-aware computing, Human-Computer
Interaction J., vol. 16, nos. 2–4, 2001, pp. 97–166.

4. J.I. Hong and J.A. Landay, “An Infrastructure Approach to Context-
Aware Computing,” Human-Computer Interaction, vol. 16, nos. 2–4,
2001, pp. 287–303. 

5. A. Ranganathan and R.H. Campbell, “A Middleware for Context-Aware
Agents in Ubiquitous Computing Environments,” ACM/IFIP/Usenix Int’l
Middleware Conf., Springer-Verlag, 2003.

6. H. Chen and T. Finin, “An Ontology for a Context Aware Pervasive
Computing Environment,” IJCAI Workshop on Ontologies and Distrib-
uted Systems, IJCAI, 2003; www.cs.vu.nl/~heiner/IJCAI-03/Papers/
Chen.pdf.

Related Work

Authorized licensed use limited to: RMIT University Library. Downloaded on January 09,2021 at 15:57:07 UTC from IEEE Xplore.  Restrictions apply. 



Model in Intelligent Environments,” Proc.
Communication Networks and Distributed
Systems Modeling and Simulation Conf., Soc.
for Modeling and Simulation Int’l, 2004.

7. C.L. Forgy, “RETE: A Fast Algorithm for
the Many Pattern/Many Object Pattern
Match Problem,” Artificial Intelligence, vol.
19, no. 1, 1982, pp. 17–37.

8. T. Gu, H.K. Pung, and J.K. Yao, “Towards
a Flexible Service Discovery,” to appear in J.
Network and Computer Applications, 2004.

9. L. Gong, “A Software Architecture for
Open Service Gateways,” IEEE Internet
Computing, vol. 5, no. 1, 2001, pp. 64–70.

10. T. Gu, H.K. Pung, and D.Q. Zhang, “A Ser-
vice-Oriented Middleware for Building Con-
text-Aware Services,” to appear in J. Net-
work and Computer Applications, 2004.

For more information on this or any other comput-
ing topic, please visit our Digital Library at www.
computer.org/publications/dlib.

74 PERVASIVEcomputing www.computer.org/pervasive

C O N T E X T - A W A R E  C O M P U T I N G

the AUTHORS

Tao Gu is a PhD candidate in the School of Computing at the National University of Singapore and at

the Institute for Infocomm Research (I2R), Singapore. His research interests include pervasive comput-

ing, context-aware systems, service discovery, and peer-to-peer systems. He received his MS in electrical

and electronics engineering from Nanyang Technological University. He is a member of the IEEE. Contact

him at gutao@comp.nus.edu.sg; www.comp.nus.edu.sg/~gutao.

Hung Keng Pung is an associate professor in the Department of Computer Science at the National

University of Singapore. He also heads the Network Systems and Services Laboratory and is a faculty

associate at the Institute of Infocomm Research (I2R) in Singapore. His research focuses on adaptive net-

work systems, protocol design and networking, quality of service, and mobile-commerce middleware.

He received his PhD in electronics from the University of Kent at Canterbury, UK. Contact him at

dcsphk@nus.edu.sg; www.comp.nus.edu.sg/~punghk.

Da Qing Zhang heads the Context-Aware Systems Department at the Institute for Infocomm Research
(I2R), Singapore, where he has been leading the effort in connected home and context-aware systems.
His research interests include pervasive computing, service-oriented computing, context-aware
systems, and home networking. He received his PhD from the University of Rome’s La Sapienza and the
University of L’Aquila, Italy. Contact him at daqing@i2r.a-star.edu.sg.

Mid Atlantic (product/recruitment)
Dawn Becker
Phone: +1 732 772 0160
Fax: +1 732 772 0161
Email: db.ieeemedia@ieee.org

New England (product)
Jody Estabrook
Phone: +1 978 244 0192
Fax: +1 978 244 0103
Email: je.ieeemedia@ieee.org

New England (recruitment)
Robert Zwick
Phone: +1 212 419 7765
Fax: +1 212 419 7570
Email: r.zwick@ieee.org

Connecticut (product)
Stan Greenfield
Phone: +1 203 938 2418
Fax: +1 203 938 3211
Email:  greenco@optonline.net

Midwest (product)
Dave Jones
Phone: +1 708 442 5633
Fax: +1 708 442 7620
Email: dj.ieeemedia@ieee.org

Will Hamilton
Phone: +1 269 381 2156
Fax: +1 269 381 2556
Email: wh.ieeemedia@ieee.org

Joe DiNardo
Phone: +1 440 248 2456
Fax: +1 440 248 2594
Email: jd.ieeemedia@ieee.org

Southeast (recruitment)
Sandy Brown
Phone: +1 714 821 8380 
Fax: +1 714 821 4010
Email:  sbrown@computer.org

Midwest/Southwest (recruitment)
Darcy Giovingo
Phone: +1 847 498-4520
Fax: +1 847 498-5911
Email: dg.ieeemedia@ieee.org

Southwest (product)
Josh Mayer
Phone: +1 972 423 5507
Fax: +1 972 423 6858
Email: josh.mayer@wageneckassociates.com

Northwest (product)
Peter D. Scott
Phone: +1 415 421-7950
Fax: +1 415 398-4156
Email:   peterd@pscottassoc.com

Southern CA (product)
Marshall Rubin
Phone: +1 818 888 2407
Fax: +1 818 888 4907
Email: mr.ieeemedia@ieee.org

Northwest/Southern CA (recruitment)
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@ieee.org

Southeast (product)
Bob Doran
Phone: +1 770 587 9421
Fax: +1 770 587 9501
Email: bd.ieeemedia@ieee.org

Japan
Sandy Brown
Phone: +1 714 821 8380 
Fax: +1 714 821 4010
Email:  sbrown@computer.org

Europe (product/recruitment) 
Hilary Turnbull
Phone: +44 1875 825700
Fax: +44 1875 825701
Email: impress@impressmedia.com

A D V E R T I S E R  /  P R O D U C T  I N D E X  O C T – D E C  2 0 0 4

Carnegie Mellon University 82

Elsevier 5

eMachine Shop 83

Hewlett-Packard 83

Samsung 82

Sony 82

Boldface denotes advertisements in this issue.

Advertising PersonnelAdvertiser                 Page Number

Marion Delaney
IEEE Media, Advertising Director
Phone: +1 212 419 7766
Fax: +1 212 419 7589
Email: md.ieeemedia@ieee.org
Marian Anderson
Advertising Coordinator
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: manderson@computer.org

Sandy Brown
IEEE Computer Society,
Business Development Manager
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: sb.ieeemedia@ieee.org

Advertising Sales Representatives

Authorized licensed use limited to: RMIT University Library. Downloaded on January 09,2021 at 15:57:07 UTC from IEEE Xplore.  Restrictions apply. 


