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a b s t r a c t

Future pervasive computing applications are envisioned to adapt the applications’
behaviors by utilizing various contexts of an environment and its users. Such context
information may often be ambiguous and also heterogeneous, which make the delivery
of unambiguous context information to real applications extremely challenging. Thus, a
significant challenge facing the development of realistic and deployable context-aware
services for pervasive computing applications is the ability to deal with these ambiguous
contexts. In this paper, we propose a resource optimized quality assured contextmediation
framework based on efficient context-aware data fusion and semantic-based context
delivery. In this framework, contexts are first fused by an active fusion technique based
on Dynamic Bayesian Networks and ontology, and further mediated using a composable
ontological rule-basedmodel with the involvement of users or application developers. The
fused context data are then organized into an ontology-based semantic network together
with the associated ontologies in order to facilitate efficient context delivery. Experimental
results using SunSPOT and other sensors demonstrate the promise of this approach.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Emerging pervasive computing technologies transform the way we live today by embedding computation in our
surrounding environments. To reduce user distraction and allow users to focus on their tasks, pervasive computing
applications must be aware of the context in which they run. These applications should be able to learn and dynamically
adapt their behaviors to the current context such as the current state of the user, the physical environment and the
computational environment, so that the user can focus on her/his current activity [1]. To achieve this, both users and
applications need to acquire andmanage their context information ‘‘anywhere and anytime’’. Hence, a fundamental problem
for building pervasive computing applications will be how to minimize the ambiguity of context information – context
fusion and deliver the information to thousands of diverse applications – context delivery, while scaling to a large number
of sources, users and applications.
In reality, sensed and derived contexts are often heterogeneous and ambiguous. For example, a user location can be

sensed using active badges, video cameras or even pressure sensors in the floor. All of these sensors have some degree of
ambiguity in the data they sense. The ambiguity may become worse when deriving high-level contexts (i.e., user activity)
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Fig. 1. Overview of our proposed framework.

from sensor outputs. This fundamental problem can be challenging from the following two aspects. Firstly, the data collected
from multiple sensors always associated with an inherent ambiguity and the situation is often dynamic and unfolds over
time. Though the sensing technology is becomingmore ubiquitous and accurate, the interpretation of sensed data as context
is still imperfect. Themapping from sensors’ output to context information can be complicated due to the complex situation
of an environment. We need a dynamic model to reflect changes, capture the beliefs of the current events, and predict the
evolution of different situations. An adaptive system is therefore needed so that it cannot only systematically handle raw
sensory data of different modalities, but also more importantly, reason over time to reduce context ambiguity during the
interpretation of the situation. Secondly, the underlying context delivery mechanism can be critical due to the dynamic
characteristics of context information and the diversity of computational environments. In such environments, context data
stored in a context provider may be changed rapidly and context providers may leave or join the network frequently.
Aiming to address this fundamental problem, this paper proposes a framework to support both context fusion and context

delivery for pervasive computing applications. We propose an active context fusion technique based on Dynamic Bayesian
Networks (DBN). This technique is able to fuse ambiguous contexts, resolve conflicts in information overlap and ensure
the conformance to the application’s Quality of Context (QoC) bound [2,3]. This layered and modularized fusion technique
adopts a space-based context model [4] in which context information is represented by different hierarchies. The space-
based context model will then be associated with ontologies and contexts can be further mediated using a composable
rule-based mediation subsystem with the involvement of users or application developers. For context delivery, we explore
the semantics of context data in the form of context ontologies and organize context data semantically into clusters in a
semantic network. This way, context information can be stored and retrieved according to their semantics, and context
delivery can be more efficient in the presence of dynamic contexts. Fig. 1 gives an overview of our framework.
In summary, this paper makes the following contributions:
• We state an optimization problem using a generic QoC function to determine the optimal set of sensors that satisfy the
specified quality of context at a minimum communication cost.
• We propose an active context fusion technique based on DBN for fusing multimodal fragments of sensor data, and a
composable rule-based mediation model to infer the situation space based on a hierarchy of contexts.
• We propose an efficient context delivery technique where context data can be stored and retrieved according to their
semantics by combining our fusion model with context ontologies.
• We perform our experiments using a combination of simulation traces and real data collected from SunSPOT sensor.
The experimental results demonstrate that our framework is capable of reducing the sensor overhead (communication
cost) while ensuring the acceptable context accuracy, predicting a user’s situation, organizing and delivering contexts
semantically.

The rest of the paper is organized as follows. Section 2discusses relatedworkwith an example scenario. Section 3presents
the context model and QoC. Section 4 describes the active context fusion model based on DBN and ontology. A rule-based
model has also been discussed in Section 4. We present semantic context delivery in Section 5. The performance of our
proposed system is evaluated and the results are presented in Section 6. Finally, Section 7 concludes the paper.

2. Related work

Dey [5] proposed a toolkit which enables the integration of context data into applications and supports context-aware
applications. The context fusion is based on simple name transformation and its context delivery assumes the priori
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knowledge about the presence of a widget or a context broker. Dey extended his work with the distributed mediation
of ambiguous contexts that allow the user to correct ambiguity in sensed input [6]. Multimodal Maps [7], a map-based
application for travel planning addresses ambiguity by using multimodal fusion to combine different inputs and then
prompt the user for more information to remove the remaining ambiguity as much as possible. Remembrance Agent [8]
uses context to retrieve information relevant to the user and explicitly addresses ambiguity in its manual interface. Chen,
et al. [9] proposed a platform, named Solar, to support data fusion services and context dissemination to context-aware
applications. Their fusion mechanism is based on an operator graph model, in which context processing is specified by
application developers in terms of sources, sinks and channels. Solar also provides a policy driven data dissemination service
based on a multicast tree. However, their fusion mechanism does not consider different type of contexts, and building a
multicast tree may incur large overhead in the presence of node changes. Hong et al. [10] proposed Confab which includes a
flexible and distributed data store and a context specification language. The context storage consists of a logical context data
model which provides a logical representation of context information, and a physical data store where the context data is
actually stored. While our context delivery service shares the similar idea of distributed context storage of Confab in which
the context data is kept close towhere it was generated andwhere it is likely to be used, our emphasis is on how to provide a
scalable semantic delivery service for applications. Gaia [11] is an infrastructure supporting the construction of applications
for smart spaces. It consists of a set of core services for building distributed context-aware applications. Different from the
context service in Gaia, we focus on providing a semantic delivery service where context information can be shared in a
semantic manner. However, these systems do not consider a formal context fusion mechanism which can fuse high-level
contexts for different applications so that the common module for fusing context can be viewed as a shared and reusable
service.
Many efforts have beenmade to developmiddleware systems that can effectively support context-aware applications in

the presence of resource constraints (e.g., sensor networks), also considering requirements for sensory data or information
fusion frommiddleware perspective. For example, DFuse [12] is a data fusion framework that facilitates transfer of different
areas of application-level information fusion into the network to save power. DFuse does this transfer dynamically by
determining the cost of network using cost functions. The tradeoff between communication overhead and the quality of
the reconstructed data was first studied in [13], which envisioned the effect of tolerance ranges on the relative frequency
of sink-initiated fetching vs. source-initiated proactive refreshes. The focus, however, is on snapshot queries and not on
continually satisfying the QoC bound of a long-standing subscription. The idea of exploiting temporal correlation across the
successive samples of individual sensors for reducing the communication overhead for snapshot queries is addressed in [14],
which used training data to parameterize a jointly-normal density function. While a precursor to our work, the focus there
was on meeting the QoC requirements for a class of aggregation queries, whereas our focus is on arbitrary relationships
between a context variable and its underlying sensor data. Adaptive middleware [15] has been proposed for context-aware
applications in smart homes. In this scheme, the middleware matches the QoC requirements with the available QoC of the
sensors. The application’sQoC requirements aremapped to autility functionusing theQoC attributes of the sensors available.
Similar to the adaptivemiddleware scheme, inMiLAN [16], quality of service (QoS) requirements of applications arematched
with the QoS provided by the sensor networks. However, in this scheme, the QoS requirements of the applications are some
predetermined numbers, which the applications should know in advance in addition to the quality associated with the
type of sensors it can use. In dynamic and pervasive computing environments, the number and types of sensors available
to the applications may vary. Therefore, it is impractical to include knowledge about all the different sensor nodes that
an application can potentially make use of. In addition, all these sensors come at various levels of cost and benefit to the
application. Dielmann et al. [17] proposed a statistical approach using DBN to infer the situation in a meeting scenario. They
used both a two-level hidden Markov model (HMM) and a multistream DBN, and demonstrated that the DBN architectures
are an improvement over a simple baseline HMM, with the multistream DBN with counter constraints producing an action
error rate of 6%. Brdiczka et al. [18] proposed both a deterministic approach based on Petri nets and a probabilistic one based
on HMM to represent abstract context in the situation model. Both approaches are well adapted for particular applications:
Petri nets for parallelism and HMM for erroneous or uncertain input. MidFusion [19] discovers and selects the best set of
sensors on behalf of applications (transparently), depending on the QoS guarantees and the cost of information acquisition.
They also provide a sensor selection algorithm to select the best set of sensors using the principles of BayesianNetworks (BN)
and Decision theories. Even though, the computation for all combinations of sensors requires only one set of BN inferencing
for all the sensors, the computational complexity is still exponential in terms of the number of sensors. Therefore, the best
sensor set selection approach is specifically suited to sensor networks hierarchically organized into groups or clusters of
sensors, with one sensor node designated as the interface to the services provided by these groups or clusters. Therefore we
investigate this cluster-based approach for semantic-based context delivery by considering the DBN-based context fusion
model as our baseline.

2.1. Example scenario

As an example, let us take the scenario of a home care patient after hospitalization for cardiac infarction. Although such
a patient should be guaranteed a good quality of life and wellness management services in an independent way, he/she still
needs to be in constant contact with an expert physician so that his/her cardiac activity (e.g., the heart rate and peripheral
blood pressure), body temperature and breathing frequency can be continuously monitored. However, the health condition



24 N. Roy et al. / Pervasive and Mobile Computing 6 (2010) 21–42

of a patient can only be partially evaluated throughhis vital signals andmust bemediated and integrated by other signals and
information coming both from personal characteristics (risk factors, degree of disease, age, sex, family history, psychological
features, etc.) and from the environmental context (e.g., whether in bed or mobile, by him/herself or in company, at work
or at home, the season and the temperature, etc.). The monitoring system should be able to deduce the context from the
available data to provide a feedback to the patient as well as notifying his status to somebody else, such as a relative, the
family doctor, or the hospital, depending on the degree of alert detected, and possibly adapting the level of service (i.e., the
intensity of the monitoring activity).
The above scenario requires the integration of patients’ vital signs monitored by different sensory medical devices, of

environmental data acquired by sensors located near the patient, of patient data available from the electronic medical
records stored by the hospital. Although the current technologies offer the necessary means to support this kind of health
care, in our opinion without a contextual realization that tailors the available data into usable information, the healthcare
applications will become practically unusable. Contextual information deals with information about the user environment
(e.g., location, activity) that enables this tailoring and reduces efforts required to develop healthcare applications.
Application scenarios of the type presented above give rise to several issues. The sensory devices constantly attached to

the patient produce huge streams of physiological data which must be collected and related to environmental conditions
and should be delivered to the proper healthcare providers according to their underlying semantics. To achieve this we need
a technique that can fuse acquired data with different modalities to infer the current context state (activity) and situation
space (behavior or sickness) associated with the monitored person and group data in semantic cluster for efficient context
delivery. Again the sensors should be light and portable to reduce their impact on the patient’s well-being and thus must be
constrained in terms of energy capacity. Consequently, the amount of information transmitted to the sensor fusionmediator
(the data aggregator) should be minimized in order to prolong its lifetime by selecting the structure of an optimal set of
sensors based on the QoC guarantees and cost of information acquisition.

3. Context model

Context-aware data fusion in the face of ambiguities is a challenging researchproblemas the data sent to the sensor fusion
mediator collected from a network of multiple sensors is often characterized with a high degree of complexity due to the
following challenges: (i) data is often acquired from sensors of differentmodalities andwith different degrees of uncertainty
and ambiguity, (ii) decisionsmust bemade quickly, and (iii) the situation as well as sensory observations always evolve over
time.We use the space-basedmodel as our underlying context model, which consists of context attribute, context state and
situation space. To facilitate our active fusion model, we extend the basic model with QoC attributes [29]. The extended
model incorporates various intuitions for context inference to achieve a better fusion result.

3.1. The basic model

The space-based context model defines the following concepts:

Definition 1 (Context Attribute). A context attribute, denoted by ai, is defined as any type of data that is used in the process of
inferring situations. A context attribute is often associated with sensors, virtual or physical, where the values of the sensor
readings denote the context attribute value at a given time t , denoted by ati . The body temperature ‘‘100

◦F’’ of a patient
measured by ith sensor at a given time t is an example of a context attribute.

Definition 2 (Context State). A context state describes the application’s current state in relation to a chosen context and is
denoted by a vector Si. It is a collection of N context attribute values that are used to represent a specific state of the system
at time t . Thus, a context state is denoted as Sti = (a

t
1, a

t
2, . . . , a

t
N). Suppose the body temperature is ‘‘100

◦F’’ and the location
is in ‘‘gym’’, then the context state of the patient is ‘‘doing physical exercise’’.

Definition 3 (Situation Space). A situation space represents a real-life situation. It is a collection of ranges of attribute
values corresponding to some predefined situation (sickness, normal behavior) and denoted by a vector space Ri = (aR1,
aR2, . . . , a

R
M) (consisting ofM acceptable ranges R for these attributes). An acceptable range aRi is defined as a set of elements

V that satisfies a predicate P , i.e., aRi = V |P (V ). For example the context attribute body temperature can take values within
‘‘98 ◦F’’ to ‘‘100 ◦F’’ when the patient context state is ‘‘doing physical exercise’’ with predefined situation space ‘‘normal’’. But if
the context attribute body temperature takes values within this range ‘‘98 ◦F’’ to ‘‘100 ◦F’’when the patient context state is ‘‘lying
on the bed’’ then the situation space is ‘‘not normal’’. Again if we can use context attribute ‘‘PDA location’’ of a user to infer ‘‘user in
a meeting’’ situation, then the accepted region for this attribute might be the location information of the PDA such as ‘‘at home’’,
‘‘at office’’ or ‘‘at meeting room’’.
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3.2. Quality of context model

Despite recent development in sensing andnetwork technology, continuousmonitoring of individuals vital signs (e.g., the
heart rate and peripheral blood pressure, body temperature and respiratory rate) and environmental context (e.g., whether
in bed or mobile, by him/herself or in company, at work or at home, the season and the temperature, etc.) in normal setting
is still challenging due to the resource constrains of sensor networks.We define the Quality of Context (QoC) [20] as ametric
for minimizing resource usage (e.g., battery life, communication bandwidth) while maintaining a minimum quality of the
data received. QoC is essential to our model in choosing the best data values among the monitored ones for reporting a
specific type of context. For example, if the blood pressure of an inhabitant in a smart home monitoring environment lies
in between the predefined normal range (120/80 mm Hg), or frequency of getting up from the bed at night is (2–3 times)
then the sensor need not to report that value to the sensor fusion mediator again. But if the aggregated value computed at
the mediator is beyond the tolerance level of QoC (±10 mm Hg for BP or>5–6 times for Frequency), then the sensor needs
to report its samples back to the mediator.
We extend the basic model with QoC and relate the extendedmodel with some specific application scenarios. We define

properties, called QoC attributes that characterize the quality of the context data received. In context fusion, the sensor
fusion mediator ensures over the entire query lifetime that the aggregated value computed by it does not diverge from
the true reading by more than a specified ‘‘tolerance’’. The key is to have the mediator communicate a precision range or
interval to an individual sensor, with an idea that a sensor does not need to report its samples back to the mediator as long
as they fall into this specified range. Such tolerance is expressed in terms of the QoC metric, and is especially useful for
applications issuing aggregation queries. We assume that the information fusion issues an aggregation query with its QoC
specified by a precision range Q , this implies that the aggregate value computed at the mediator at any instant should be
accurate within Q .
Our objective is to evaluate the update cost of a sensory action A for a given task while ensuring the conformance to the

application’s QoC bound. Let us denote the update cost (in terms of communication overhead) asUj
i if indeed sensor Bi has

to report its sample value at time j to the mediator. Then, the objective is to minimize∑
i∈Bm

Ui(qi) (1)

where Ui denotes the expected average update (reporting) cost and explicitly indicates its dependence on the specified
precision interval qi (tolerance range). Intuitively, Ui is inversely proportional to qi, since the value of the reporting cost
would be high as the precision interval continues to shrink.
But this update cost also depends on the hop count hi, the length of the uplink path from sensor Bi to the mediator.

Accordingly, the update cost can be rewritten as:

minimize
∑
i∈Bm

Ui(qi, hi). (2)

If the underlying data samples evolve as a random-walk model, we haveUi ∝
hi
(q2i )
resulting in the following optimization

function:

minimize
∑
i∈Bm

hi
(q2i )

. (3)

For example, as shown in Fig. 2 with data from a respiratory sensor, we can capture the respiratory rate within a ±5
bound (say) 90% of the time (i.e., with 0.9 probability). In Fig. 2 each arc from a sensor to the context attribute is associated
with a function of three parameters: q (accuracy range of sensor data), Q (accuracy range of derived context attribute) and
℘ (fidelity of the context attribute being derived lying with the range Q ). Thus, the fidelity function is ℘ = f1(q1,Q ) for
sensor B1. In other words, given tolerances on q1 and Q , we can say how often (in an ergodic sense), the fused context
attribute estimation will lie within the true accuracy range±Q . Similarly, when we consider two sensors B1 and B2 jointly,
the fidelity function should be ℘ = f12(q1, q2,Q ). In this way, for m sensors, there are 2m − 1 (all possible combinations
except no sensors) functions f (·), indicating the relationship between context attribute, context fidelity and precision range.
Given these continuous functions, the ‘application’ now says that it needs a precision bound (on the context attribute) of Q́
with a fidelity of at least ℘́.
Then, the problem is:

Problem 1. Find the combination of q1, q2, . . . , qm that satisfies f1,...,m(q1, q2, . . . , qm, Q́ ) ≥ ℘́, and yet minimizes
∑
i∈Bm

hi/(qi)2.

Of course, in some cases, the context attribute value may be Boolean or binary. In this case, it may be hard to associate a
bound Q with the accuracy of the context. However, this is a special case — a model for the more general case is developed
here.
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Fig. 2. Subset of sensors with required QoC.

The problem of optimally computing the qi values can be represented by the Lagrangian:

minimize
∑
i∈Bm

hi
q2i
+ λ×

[
f1,...,m(q1, q2, . . . , qm, Q́ )− ℘́

]
. (4)

Finding an exact solution to Eq. (4), for any arbitrary f (·) is an NP-complete problem [21]. While a completely arbitrary
f (·) function requires a brute-force search, there are certain forms of f (·) that prove to be more tractable. In particular, a
particularly attractive case occurs when the ith sensor’s individual fidelity function is represented by the form

fS(i) = νi ∗ exp
−
q2i
ηi , (5)

where ηi and νi are sensitivity constants for sensor si. A larger value of ηi indicates a lower contribution from sensor si to the
inference of context state S. Moreover, for a selection ofm sensors, the resulting f (·) function has the form:

fS(m) = 1−
∏
i∈Bm

(1− fS(i)). (6)

We solve this by taking the Lagrangian optimization i.e, we solve for

minimize
∑
i∈Bm

hi
q2i
+ λ

[
1−

∏
i∈Bm

[
1−

(
νi ∗ exp

−
q2i
ηi

)]
− ℘́

]
(7)

and prove Lemma 1.

Lemma 1. The combination of q1, q2, . . . , qm which satisfies the fidelity function f1,...,m(q1, q2, . . . , qm, Q́ ) ≥ ℘́ and minimizes
the objective function in (3) is

h1 ∗ η1 ∗
(
1− ν1 ∗ exp

(
−
q21
η1

))
q41 ∗ ν1 ∗ exp

(
−q21
η1

) = · · · =

hm ∗ ηm ∗
(
1− νm ∗ exp

(
−
q2m
ηm

))
q4m ∗ νm ∗ exp

(
−q2m
ηm

) .

Proof. The above expression follows immediately by taking partial derivatives of the Lagrangian in Eq. (7) and setting them
to 0 as shown below. In our case:

minimize
∑
i∈Bm

hi
q2i

subject to: 1−
∏
i∈Bm

[
1− νi ∗ exp

−
q2i
ηi

]
≥ ℘́. (8)

Taking log we can rearrange the constraint of Eq. (8), as

log(1− ℘́) ≥
∑
i∈Bm

log

(
1− νi ∗ exp

−
q2i
ηi

)
. (9)
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Fig. 3. Context-aware data fusion framework based on dynamic Bayesian networks.

Considering this, we form the Lagrangian constraint,

minimize
∑
i∈Bm

hi
q2i
+ λ

[
log(1− ℘́)−

∑
i∈Bm

log

(
1− νi ∗ exp

−
q2i
ηi

)]
. (10)

Taking the partial derivative of the Eq. (10) w.r.t qi and equating it to 0, we find

λ =
hi ∗ ηi ∗

(
1− νi ∗ exp

(
−
q2i
ηi

))
q4i ∗ νi ∗ exp

(
−q2i
ηi

) (11)

which proves the optimal choices of qi as stated in Lemma 1. �

This optimization problem helps us to chose the values of q1, q2, . . . , qm for a given a set of sensor m, such that we
minimize the total update cost while ensuring the required accuracy level is achieved.

4. Active context fusion

A characteristic of a sensor-rich smart healthcare environment is that it senses and reacts to context, information
sensed about the environment’s occupants and their daily activities, by providing context-aware services that facilitates
the occupants in their everyday actions. Here we develop an approach for sensor data fusion in context-aware healthcare
environment considering the underlying space-based context model and a set of intuitions it covers. In the case of context-
aware services, it is really difficult to get an accurate and well-defined context which we can classify as ‘unambiguous’
since the interpretation of sensed data as context is mostly imperfect and ambiguous. For example, a video camera system
which identifies the user posture based on the current position (sitting, standing, lying on the floor in distress) has a
different probability of correctness than using pressure sensors in furniture. The ambiguity problem becomes worse when
the application derives implicit higher-level context state (activity of the person) based upon those inputs. For example, an
application may infer that a person is lying in distress. However, there may be other explanation of this phenomenon such
as the person might be lying to perform normal exercises. Again these applications are often constrained by limited time
and resources, and thus require taking fast decisions. It implies that an effective fusion model should be active, purposive
and adaptive.
An active context fusion model involves several difficult issues: a query/task must be presented in the system and the

system must use this representation to operate in a goal-oriented manner. It must select the most informative context
attribute which maximize its solution towards our goal to predict the situation space. It also needs to evaluate the cost of a
sensory action for a given task towards the QoC bound of the application. We use a typical DBN-based data fusion algorithm
to develop a context-aware model which provides a mathematical framework to gather knowledge from sensor data. The
model performs context fusion in both top-down and bottom-up inference mechanisms. The top-down inference can be
used to predict the utility of a particular sensory action with respect to a goal at the top, e.g., for a given context state it will
fuse the most relevant context attribute. The bottom-up inference allows the integration of the context attributes from a
sensory action and updates each node about the context state in the network.

4.1. Dynamic Bayesian Network based model (DBN)

A DBN-based model, is presented in Fig. 3, consists of a situation space, context states, context attributes, a sensor fusion
mediator and network of information sensors [22].
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The selection of an information source (i.e., sensor) or the activation of a process to compute new information is simply
regarded as a set of actions available to the decision maker in decision theory. For example, the value of ‘‘location’’ attribute
can bemeasured by ultrasonic badges, RFID tags, video cameras or pressure sensors in the floor. In our case, the information
module needs to determine the next optimal context attributes and the corresponding sensory action such as triggering
ultrasonic badges or RFID tags or video cameras or pressure sensors. Selecting an action always has a consequence which
can be measured by the cost of information acquisition. If we can devise a cost measure to each possible consequence, this
can be used by the system to decide what action to perform, and what sensor to activate.
Let us assume that we have a situation space Ri to confirm using the sensory information sources B = {B1, . . . , Bm}

which is a set of measurements taken from sensors labeled from 1 to m as shown in Fig. 3. The context attribute which is
most relevant in our case should decrease the ambiguity of the situation space aRj the most; and we will select the one that
can direct the probabilities of the situation space to near one (formaximum) and zero (forminimum). LetVi be the ambiguity
reducing utility to the situation spaceRi. Then the expected value ofVi, given a context attribute ati from a sensor Bi, which
has K possible values, can be represented as

Vi =
K
max
i=0

N∑
j=0

[P(aRj |a
t
i )]
2
−

K
min
i=0

N∑
j=0

[P(aRj |a
t
i )]
2 (12)

where i ∈ {1, 2, . . . ,m} is a sensor tag which identifies the sensor that provides the context attribute. This context attribute
can be measured by propagating the possible outcome of an information source, i.e.,

P(aRj |a
t
i ) =

P(aRj , a
t
i )

P(ati )
. (13)

However, quantification of this conditional probability needs a detailed model depending upon the usage of different
types of sensors and their applications. Consider, for example, an audio sensor. Evaluating the benefit of using audio in
disambiguating whether a person is moaning in pain or singing, is really hard. It depends on how far the person is from the
microphone, which way the person is facing, the time of day (at night it is more quiet so sounds can be heard more clearly),
the state of other potentially interfering audio sources (such as air conditioning, TV, radio, refrigerator), etc. Computing the
disambiguating utility therefore, needs very detailedmodels of how the above factors affect the efficacy of the audio sensor.
Considering the information update cost from Eq. (2) and ambiguity reducing utility from Eq. (12), the overall utility can

be expressed as

Ui = αVi + (1− α)(1−Ui) (14)

where Ui is the update cost to acquire the information by the sensor with tag i with a knowledge of QoC bound, and α
denotes the balance coefficient between the ambiguity reduction and the cost of information acquisition. Eq. (14) represents
the contribution to ambiguity reduction and the cost associated with information retrieval to achieve the desired level of
confidence to the situation space. We can observe from Eq. (14) that the utility value of a context attribute ai increases
with the ambiguity reducing utility and decreases as the cost to acquire that attribute increases. So the most economically
efficient disambiguation sensor action A∗ can be chosen with the help of the following decision rule:

A∗ = argmax
A

∑
j

U(B, aRj )P(a
R
j |B) (15)

where B = {B1, . . . , Bm} is a set of measurements taken from sensors labeled from 1 to m at a particular point of time. By
incorporating the temporal dependence between the nodes as shown in Fig. 3, the probability distribution of the situation
space we want to achieve can be generally described as:

P(R, A) =
T−1∏
t=1

P(St |St−1)
T−1∏
t=1

P(Rt |Bt)P(R0) (16)

where T is the time boundary. This sensor action strategymust be recalculated at each time slice since the best action varies
with time. The ambiguous context mediation algorithm is presented in Fig. 4.

4.2. Ontology-based fusion model

We present our context ontology for modeling context fusion in Fig. 5. We design our ontology in a hierarchical
manner from a top-level ontology to a domain-specific ontology. The upper ontology is a high-level reusable ontology
structure which captures general features of basic contextual entities. Domain-specific ontologies are a collection of
ontology set which define the details of general concepts and their features in each sub-domain. The context model is
structured around a set of abstract entities, each describing a physical or conceptual object including location, Person,
Computational Entity aswell as a set of abstract sub-classes. Each entity is associatedwith its context attributes (represented
in owl:DatatypeProperty) and relations with other entities (represented in owl:ObjectProperty). Another flexible OWL
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Fig. 4. Ambiguous Context Mediation Algorithm (ACMA).

Fig. 5. Context fusion upper ontology.

property (owl:subClassof) helps us to add new concepts in a hierarchical manner that are required in a specific domain
without any rigor. Fig. 6 presents a partial context ontology for a healthcare application. The abstract class ‘‘device’’ has
been classified into few sub-classes such as BSN, TV and Cell phone, and BSN has been sub-grouped into two different sub-
classes such as Ambient Sensor and Wearable Sensor. Context attributes (e.g., location, person, time, computational entity)
are most fundamental contexts for taking final decision about the executing situation. These contextual attributes not only
form the skeleton of the context state but also conglomerate with a base context state to derive a composite context state.
Our basic context model represents context attribute as Predicate (subject, value). We extend the basic model to derive a

context state or a set of context states by combining the Boolean Operator such as union, intersection, complement etc. We
also extend the basic context model to incorporate probabilistic information for representing uncertain contexts. It has the
form of Prob(Predicate(subject, value)), in which the probability measurement takes a value between 0 and 1. For example,
Prob(BodyTemperature(John, HIGH))= 0.9 means the probability that John’s body temperature is currently high is 0.9.
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Fig. 6. Context fusion lower ontology.

Table 1
User defined context state derivation rules.

Context state Reasoning rules

Doing physical exercise (?x LocatedIn Gym) ∧ (x BodyTemp HIGH) ∧ (x RespiratoryRate
HIGH)⇒ (?x contextstate exercise)

WatchingTV (?x LocatedIn LivingRoom) ∧ (TVSet LocatedIn LivingRoom) ∧
(TVSet status ON)⇒ (?x contextstate watchingTV)

Lying on the floor (?x LocatedIn Kitchen) ∧ (x posture lying) ∧ (ElectricOven status
ON)⇒ (?x contextstate lying on the floor)

Walking (?x LocatedIn Courtyard) ∧ (x motion ON) ∧ (House doorstatus
OPEN)⇒ (?x contextstate walking)

Going to restroom (?x LocatedIn Bathroom) ∧ (Flush status ON) ∧ (Bathroom
doorstatus CLOSED)⇒ (?x contextstate going to restroom)

Lying on the bed (?x LocatedIn Bedroom) ∧ (Bedroom lightlevel Low) ∧ (Bedroom
doorstatus CLOSED)⇒ (?x contextstate lying on the Bed)

Talking (?x LocatedIn LivingRoom) ∧ (y LocatedIn LivingRoom) ∧ (x
sound HIGH)⇒ (?x contextstate talking)

We apply Bayesian network to enable learning causal dependencies between various context events, and obtaining
probability distributions. In ourmodel, each node corresponds to a context event and directed arcs between nodes represent
causal relationships between the contexts. The uncertainty of the causal relationship is represented by the conditional

probability P(aRj |a
t
i ) =

P(aRj ,a
t
i )

P(ati )
. After getting this conditional probability, we are able to compute the probability distribution

of the BN. This DBN-basedmodel can lead to awell-defined context fusionmechanismwith the consideration of the inherent
ontology associatedwith different states.With thehelp of ontology,we canmakeuncertain context easily sharedbydifferent
applications and enable context fusion module to derive high-level composite context more accurately and timely. Context
attribute (CA) are the instance of the ontology and they can itself fuse to derive the context state (CS) or can be combined
with a base context state to derive the composite or high-level context state. Hence, we have, CA1 ∧ CA2 · · · ∧ CAn ⇒ CS i
and (CA1 ∧ CA2 · · · ∧ CAn) ∧ (CS1 ∧ CS2 · · · ∧ CSn) ⇒ CS i. The user defined context state derivation rules are shown in
Table 1. Context states are derived only with the help of the different context attributes. In Table 2, the context fusion rules
are defined from single/multiple context states and context attributes; to predict the situation space.
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Table 2
User defined context fusion rules.

Situation state Fusion rules (Derived from a single/multiple context state and context attribute)

Sickness (?x contextstate lying on the floor)∧ (x BodyTemp HIGH) ∧ (x RespiratoryRate
HIGH)⇒ (?x situationstate sick)

Behavior (?x contextstate walking) ∧ (currenttime status midnight)⇒ (?x situationstate
abnormal)

Behavior (?x contextstate restroom) ∧ (?x contextstate watchingTV)⇒ (?x situationstate
normal)

Sickness (?x contextstate going to restroom) ∧ (?x contextstate lying on the Bed)∧ (?x
leavingbed HIGH)⇒ (?x situationstate sick)

4.3. Rule-based mediation subsystem

In pervasive computing environments, the ambiguity of context may vary among different applications and users. If
we can directly involve applications and users to the model to mediate the current associated ambiguity with the context,
unambiguous context can be realized to some extent. An application can choose to ignore the ambiguity and take some
action (e.g., act on the most likely choice) or can use rule-based techniques to ask the end user about his/her actual intent.
We propose a rule-basedmediation subsystem as follows.We define the following rule format derived from active database
for identifying ambiguous contexts.
on 〈context attribute〉
if 〈context state〉
do 〈situation space〉
The basic idea is as follows. The evaluation of a situation should be done if a particular context state is true on capturing
some context attributes. Context attribute in our framework can be primitive (sensors in the smart home being activated)
or non-primitive (complex or composite) which are derived from some other attributes as well. For example, the primitive
ones can be location, time, etc and non-primitive ones can be body temperature, respiratory rate, blood pressure, etc. They
can also be instantaneous or durative. To illustrate, consider the following rules that can be used to actively monitor the
elderly person in the smart home [23].

Rule 1:
on Context Attribute (CA) : 〈?user hasBodyTemperature ‘VALUE1’〉, 〈?user hasRespiratoryRate ‘VALUE2’〉, 〈?user hasBlood-
Pressure ‘VALUE3’〉
if Context State (CS) : 〈?user hasActivity ‘EXERCISE’〉, 〈?user hasActivity ‘LIEDOWN’〉
do Situation Space (SS): 〈?user inSituation ‘SICKNESS’〉
Suppose using some specific sensors in an in-door smart home environment, we obtain the value of context attributes

such as body temperature, respiratory rate and blood pressure of a person. Now, if these measured values are higher
than a specified range, we can infer about the situation of the person by observing the context state. If the context state
is 〈?user hasActivity ‘EXERCISE’〉 – ‘‘doing physical exercise’’, the situation is normal; otherwise, if the context state is
〈?user hasActivity ‘LIEDOWN’〉 – ‘‘lying on the bed’’, the situation is abnormal.
Let us consider another rule where we consider the context attribute as time instant, time span and location of the

inhabitant in the home.

Rule 2:
on CA: 〈?user time ‘6AM’〉, 〈?user locatedIn ‘BACKYARD’〉
if CS: 〈?user hasActivity ‘WALKING’〉
do SS: 〈?user inSituation ‘NORMAL’〉
If it is 6 am in the morning and the location of the person is at backyard where the context state is ‘‘walking’’, then we
can conclude that the behavior of the person is normal. But if it is 2 am in the morning and the location of the person is
outside the home where the context state is ‘‘sleeping’’, then we can conclude that the behavior of the person is not normal.
We can make different variants of this rule by considering different context attributes with a different context state. Thus
detecting that a person has been engaged in a specific activity for an unusual time may be an indicator of a health problem
or a potentially hazardous domiciliary situation.

5. Context delivery

Contexts output from our context fusionmodel are expected to be queried and utilized by various applications. Based on
our context ontologymodel, we organize a large number of context providers into a semantic overlay network. The network
groups semantically similar context data into a cluster to facilitate efficient routing. Each context provider maintains a local
repository which supports semantic context queries using an RDF-based query language such as RDQL [24].
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Fig. 7. Semantic network construction.

5.1. Context data mapping

To register context data to the network, we need to extract the semantics of context data so that each context provider
can be placed in an appropriate semantic cluster in the network. This is done bymapping context data to semantic cluster(s)
based on ontology and counting the number of triples corresponding to each semantic cluster.
To assist the mapping process, we denote the leaf concepts in the upper ontology shown in Fig. 5 as a set E = {Indoor,

Outdoor, Person, Service,Device, . . .}, and use them as semantic clusters. The mapping technique traces the hierarchy
of OWL classes in the upper ontology and maps RDF triples to their associated classes. We create two structures —
ClusterHierarchy and ClusterMap. We first map each triple to an OWL class using ClusterMap, and then map the triple
to an appropriate semantic cluster using ClusterHierarchy. Let SCnsub, SCnpred, SCnobj, where n = 1, 2, . . ., denote the
semantic clusters extracted from the subject, predicate and object of a triple respectively (Note: unknown subjects/objects
or variables aremapped to E). If the predicate of a triple is of type owl:ObjectProperty, we obtain the semantic clusters using
(SC1pred ∪ SC2pred ∪ · · · SCnpred) ∩ (SC1obj ∪ SC2obj ∪ · · · SCnobj). If the predicate of a triple is of type owl:DatatypeProperty,
we obtain the semantic clusters using (SC1sub ∪ SC2sub ∪ · · · SCnsub) ∩ (SC1pred ∪ SC2pred ∪ · · · SCnpred). For example, give
a triple—(Bedroom lightLevel 87), ‘‘Bedroom’’ is mapped to IndoorSpace, and ‘‘lightLevel’’ is mapped to both IndoorSpace
and OutdoorSpace. Hence, the tripe is mapped to IndoorSpace ∩ OutdoorSpace = IndoorSpace finally. We name the semantic
cluster corresponding to the highest triple count themajor semantic cluster. To achieve this, we create aHashMap and iterate
through all the triples of a context provider. Upon successful execution, we obtain a vector containing the semantic cluster
IDs corresponding to all its local context data. The first element in this vector indicates the ID of its major semantic cluster.
A context provider will then join its major semantic cluster and we will describe the joining process in the next section.

5.2. Building a semantic network

Weapply the principle of a smallworld networkmodel [25] and extend itwith clustering operations to build our semantic
network. After obtaining the semantics of its local data, nodes are organized in such a way that those have semantically
similar data (i.e., maps to the same leaf concepts in the upper ontology) are grouped together in a semantic cluster. As a
nodes data may correspond to multiple semantic clusters, a node joins its major semantic cluster and publishes the indices
of its data (i.e., reference pointer) to its minor semantic clusters.
Routing table construction: Each node builds its routing table by creating a set of local contacts in its own cluster, a short-range
contact in each of its neighboring clusters, and a small number of randomly chosen long-range contacts. The local contacts
and the short-range contacts are served for intra-cluster routing whereas the long-range contacts are used for inter-cluster
routing. Each newly joining node builds its routing table in the same way resulting in all the clusters being linked linearly
in a ring fashion. To illustrate, as shown in Fig. 7, Node 1 builds two local contacts (Nodes 2 and 3) in SC1, two short-range
contacts (Nodes 4 and 5) in SC0 and SC2, respectively, a long-range contact (Node 6) in SC5, and publishes its index to a
random node (Node 7) in SC3.
Grouping context data according to their major semantic clusters canminimize the cost of node joining, leaving and data

changes. A node will stay in its major semantic cluster as long as the majority of data does not change. However, keeping a
large number of nodes in a semantic cluster may result in a scalability issue. We design the follow clustering operations to
balance the load in each sub-clusters for better scalability.
Load balancing: When the number of nodes in a semantic cluster exceeds a certain size, cluster splitting occurs. Let M
represent the maximum cluster size. If the size of a cluster exceeds M , the cluster is split into two. Each node maintains
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Table 3
Calibrated accelerometer sample values for different context states.

Range (5–95th percentile) of tilt values (in degrees) Context state

85.21 to 83.33 Sitting
68.40 to 33.09 Walking
28.00 to−15.60 Running

a CurrentLoad which measures its current load in terms of the number of triples and data indices it stores. When node x
joins the network, it sends a join request message to an existing node, say y. If y falls into the same semantic cluster that
x wishes to join, x joins the cluster by connecting to y if its cluster size is below M; otherwise y will direct the request to a
node, say z, in the semantic cluster that x wishes to join, and x will connect to z if its cluster size does not exceed M . If the
cluster size exceeds M , node y or z (called an initial node) will initiate the splitting process. The initial node first obtains a
list of all the nodes in this cluster which is sorted according to their CurrentLoads. Then it assigns these nodes in the list to
the two sub-clusters alternatively. After splitting, we obtain two clusters with relatively equal load. The initial node is also
responsible for generating a new cluster ID for each of the two sub-clusters. To obtain a new cluster ID, each nodemaintains
a bit split pointer which indicates the next bit to be split in the n-bit binary string. Initially, the bit split pointer points to the
most significant bit of the n-bit string.When cluster splitting occurs, the bit pointed by the bit split pointer is split into 0 and
1 and move the pointer forwards to the next bit in the n-bit string. The same mechanism follows for the insertion of a new
semantic cluster. A semantic cluster can be split into a maximum number of 2n clusters. After splitting, a node updates its
cluster ID, the bit split pointer as well as its local contacts and short-range contacts. When the number of nodes in a cluster
falls below a threshold, cluster merging occurs. When node x leaves the network, it first checks whether its cluster size has
fallen below a thresholdMmin. If the current size is aboveMmin, x simply leaves the network by transferring its indices to a
randomly selected node in its cluster. Otherwise, this cluster needs to be merged into one of its neighboring clusters within
the same semantic cluster. The leaving node triggers cluster merging which is an inverse process of cluster splitting. If the
last node in a semantic cluster leaves, it initiates two messages to all the nodes in its two adjacent clusters informing them
to update their neighbor lists. Subsequently, the semantic cluster will be removed from the network.

Query routing: The query routing process involves two steps: inter-cluster routing and intra-cluster routing. Upon receiving
a query, node x first obtains the destination Semantic Cluster ID (denoted as D). This is done following the context data
mapping process. Then node x will check whether D falls into its own semantic cluster by comparing D against the most
significantm-bits of its ClusterID. If that is the case, xwill flood the query to all the local contacts and also forward the query
to its short-range contacts in its adjacent clusters corresponding to D. The forwarding processes are recursively carried out
until all the clusters corresponding to D have been covered and all nodes in each of the clusters are reached. If D falls into
neither node x’s own cluster nor its adjacent semantic cluster, xwill rely on its long-range contacts to route the query across
clusters. Each node maintains two long-range contacts, for example, we can partition a 2m semantic space where m = 3
into four by creating two long-range contacts: one pointing to the opposite semantic cluster and another pointing to the
semantic cluster located in a quarter of the ring space. Given the maximum cluster size M , the system can have a total of
M × 2m+n−1 nodes when Mmin = 1. Let Cx denote the cluster where x resides in and SCx denote the semantic cluster that
Cx corresponds to. SCx can be obtained by truncating Cx to m bits from the most significant bit. The two semantic clusters
SChalf and SCquarter that x’s long-range contacts point to are denoted as (SCx+2i) mod 2m, where i = m−1,m−2. To initiate
a search, x obtains D based on a query and checks which cluster range (partitioned by x’s long-range contacts) D falls into.
Then node x forwards the query to the closer semantic cluster through its long-range contact. If D is closer to SCx, node x
will forward the query across its adjacent cluster towards D.

6. Experimental components and evaluation

We use the SunSPOT [26] (Sun Small Programmable Object Technology) device for context sensing and mediation,
which is a small, wireless, battery powered experimental platform. Each free-range SunSPOT contains a processor, radio,
sensor board and battery; the base-station SunSPOT contains a processor and radio only. The SunSPOT uses a 32-bit ARM9
microprocessor running the Squawk VM and programmed in Java, supporting the IEEE 802.15.4 standard. In our context
sensing and performance evaluation we will use various built-in sensors available with SunSPOT sensor board.

6.1. Empirical determination of context estimates

We used the accelerometer to measure the tilt value of the SunSPOT (in degrees) when the monitored individual was
in three different context states: sitting, walking and running. From the collected samples, we computed the 5th and 95th
percentile of the tilt readings, corresponding to each state. Table 3 shows the resulting ranges in the accelerometer tilt
readings observed for each of the three states. The results indicate that there is an observable separation in the ranges of the
tilt values for the three different states. This suggests that the states can be distinguished reasonably accurately even under
moderate uncertainty in the sensor’s readings.
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Table 4
Light sensor values (lumen) for different context states.

Avg. range of light level (lumen) Context state

LightSensor.getValue()= 10 to 50 Turned on→ active
LightSensor.getValue()= 0 to 1 Turned off→ sleeping

Fig. 8. Communication overhead and QoC accuracy vs. Tolerance range using motion sensor.

Similarly, we also used the SunSPOT light sensor to measure the light level for different user contexts. Intuitively, low
values of ambient light intensity may be indicative of a ‘sleeping’ state, while higher values of light intensity are likely to
result when the individual is ‘active’. Table 4 shows the observed ranges for the light values for each of these two states. The
accuracy of context from the light sensor is, however, much lower, as users may often be inactive (e.g., sitting), even under
high illumination.

6.2. Measurement of quality of context accuracy and sensor overheads

To study the potential impact of varying the tolerance range on each sensor and the resulting tradeoff between the sensor
reporting overhead, we collected traces for the SunSPOT motion and light sensors for a single user who engaged in a mix
of three different activities (sitting, walking and running) for a total of ≈6 min (2000 samples at 5.5 Hz). We then used an
emulator to mimic the samples that a sensor would have reported, given the trace, for a given q, and compared the context
inferred from the values reported by the emulation against the ground truth. Fig. 8 shows the resulting plots for the ‘total
number of samples reported’ (an indicator of the reporting overhead) and the corresponding accuracy (defined as 1-error
rate) achieved, for different values of the tolerance range (qm) for the motion sensor. Fig. 9 plots the corresponding values
vs. the tolerance range (ql) for the light sensor.
As the figures demonstrate, there is, in general, a continuous drop in the reporting overhead and the context accuracy

as q increases. However, as seen in Fig. 8, a QoC accuracy of≈80% is achieved for a modestly large q value of 40. Moreover,
using this tolerance range reduces the reporting overhead dramatically by ≈85% (from 1953 → 248). This suggests that
it is indeed possible to achieve significant savings in bandwidth, if one is willing to tolerate marginal degradation in the
accuracy of the sensed context. A similar behavior is observed for the light sensor (q = 4 incurs a 5% loss in accuracy vs. a
≈65% reduction in reporting overhead). However, as the difference between the lumen ranges for Active vs. Sleeping is only
≈10 (Table 4), increasing q actually leads to a sharp fall in the accuracy.

6.3. The benefit of joint sensing

We also investigated how the use of readings jointly from both sensors affects the inferencing accuracy vs. tolerance
ranges. We consider the individual to be in a sitting, walking or running state whenever the motion sensor tilt values lie
within the corresponding range and the light sensor values indicate an active state. Fig. 10 uses a three-dimensional plot
to illustrate the observed inferencing accuracy when the tuple (qm, ql) is jointly varied. This confirms the QoC is now less
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Fig. 9. Communication overhead and QoC accuracy vs. Tolerance range using light sensor.

Fig. 10. QoC accuracy vs. Tolerance range using both motion and light sensor together.

susceptible to individual q variations. Fig. 11 confirms this benefit by plotting the QoC accuracy vs. q obtained using the
light sensor against that obtained by using both light and motion sensors (the q ranges of both being identical). Clearly, the
accuracy obtainable from the combination of the two sensors is much higher than that of a single sensor.

6.4. Evaluation of ambiguous context mediation

We also conducted experiments to evaluate the performance of the proposed ambiguous context mediation framework
in a smart home health monitoring environment and report the results in this section. The ambiguous context mediation
algorithm (ACMA) given in Fig. 4 was applied during our evaluation. In our application, the goal is to determine a set
of sensors and the situation level (emergency or non-emergency) of a patient based on the most economically efficient
disambiguation sensor action. Let us assume the situation level has three states, high, medium and low. Fig. 12 represents a
snapshot of the Bayesian Network model for this application using Netica BN software [27]. In this figure we represent
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Fig. 11. Comparison of QoC accuracy improvement using multiple sensor.

Fig. 12. Bayesian network.

a situation space sickness and three context states — WatchingTV, Lying_in_Distress and Exercising. The conditional
probabilities of these context states are empirically derived using SunSPOT traces. The sensors selected by ACMA for this
application are Position_Sensor1, Body_Temp_Sensor2,Motion_Sensor3, Light_Sensor4 andVideo_Camera5.Weempirically
derived the conditional probabilities of the context attributes from the raw readings of the sensors, e.g., given the ground
truth of patient exercising, how many times did the Body_Temp_Sensor report a reading above the threshold value. These
conditional probability tables at a particular state of the application are all shown in Fig. 12.
From Fig. 13, we observe that the utility increases (reduces ambiguity) as the number of selected sensors increases for

different states of the application. The initial utility is calculated using Eq. (12) considering a single sensor. The maximum
utility values obtained by increasing sensor set size for three different states (different probability values). With different
balance coefficients, the best set of sensors for an application having multiple states is also different. This confirms that the
gain obtained by having more sensors exceeds the benefits of getting detailed information from each individual sensor in
accordance to our fusion model.
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Fig. 13. Best sensor set for different values of balance coefficient α.

Fig. 14. Situation prediction probability using passive and active fusion.

Next we experimentally analyze the performance of active (context-aware) and passive (non-context-aware) fusion to
illustrate how the proposed active fusion system basically works. The choice of which sensor to activate depends on the
expectedutility of each sensor. This repeats untilwe identify the situation typewith sufficient confidence.Weobserve during
our experiment that few sensors dominate in active fusion compared to the others. This repetition of sensors accelerates
the decision to be taken on situation space compared to the passive fusion as shown in Fig. 14. But sometimes it leads to
information redundancy if it repeats the same value of the attribute consecutively. However, itmay be beneficial for reducing
imprecision and increasing reliability.
Fig. 14 shows no significant performance difference by considering the acquisition cost. So the information redundancy

can be overcome by frequently alternating between the active sensors with almost the same performance gain. Fig. 15
represents the confidence of situation prediction for different specified QoC constraints. The confidence level achieves a
higher value for a rigidQoC constraint compared to a flexible system. Thoughwe achieved a better confidence level for a tight
QoC constraint, more uniformity is achieved for the loosely bound system. This observation confirms that the participation
of more sensors during the non-rigid QoC bound fusion process yields a more stable value though fails to achieve a higher
confidence gain. Next we examine the situation prediction when we selectively choose the different sensors using the
context mediation algorithm. Fig. 16 depicts the variation of situation prediction with different sets of context attributes
from different sensors. In the first scenario, all context attributes are fused following the specified algorithm according
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Fig. 15. Variation of situation prediction probability using QoC constraint.

Fig. 16. Variation of situation prediction probability using sensor values.

to their QoC specification. In the second scenario, values are only partially satisfied due to their inherent inaccuracy and
experimental settings. The fusion of selective context attributes yields better results compared to the non-selective one.
Through this evaluation we observed it is indeed possible to significantly reduce the sensors’ resource usage while

satisfying the application quality requirements in pervasive healthcare environments. It also attested the promise of context-
awaremulti-sensor fusion scheme for selecting amost economically efficient disambiguation action in a resource optimized
quality assured model.

6.5. Evaluation of context delivery

We conduct simulations to evaluate the efficiency of context delivery as it requires a large number of nodes. The
simulation is started by having a pre-existing node in the network generated in the AS model, and then performing a series
of join operations invoked by new coming nodes. If a semantic cluster exceeds the maximum size M , it will be split into
two and this operation may continue until the number of sub-clusters reaches 2n. After the network reaches a certain size, a
mixture of node joining and leaving are invoked to simulate the dynamic characteristic of the overlay network. We use the
following performance metrics:

• Search path length is the average number of hops traversed by a query to the destination.
• Search cost is the average number of query messages incurred during a search operation.
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• Maintenance cost is the average number of messages incurred when a node joins or leaves the network. It consists of the
costs of node joining and leaving, cluster splitting/merging and index publishing. We measured these costs in terms of
number of messages.

6.5.1. Search efficiency and overhead
The efficiency of executing a search request is captured in search path length during the search. In this experiment, we

evaluate the search effect and compare it with ContextBus [28]. We set up a network with m = 4 and varied the network
size from 210 to 213. We set n = 2 and 3 respectively, as a result a semantic cluster will be split into two when the size
exceeds N/25 and N/26 where N is the network size. Fig. 17 shows that our system effectively reduces the search path
length as compared to ContextBus.
We evaluate the averagemaintenance cost and show the result in Fig. 18. Themaintenance cost for ContextBus increases

rapidly when the number of semantic clusters grows. This is because the required number of outgoing degrees for a node
in ContextBus increases in proportion to the dimension. The maintenance cost in our system also increases with respect to
the dimension, but much more gradually. This confirms our design goal of reducing maintenance overheads.

6.5.2. Clustering effects
We evaluate the effect of clustering by varying the cluster size M from 20 to 210. We first evaluate the effect of cluster

size on search path length by setting a network of size N = 210. Hence all clusters are semantic clusters. Fig. 19 plots the
search path length in our system whenM increases from 20 to 210. The search path length across clusters increases while
the search path length within clusters decreases with larger cluster sizes (note that there are 210 clusters in the network
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when M = 1 and only one cluster when M = 210). This is because with a fixed network size, the total number of clusters
in our system decreases with larger cluster sizes.
With the same setting as in the previous experiment, we evaluated the search cost and its breakdown within clusters

and across clusters with various cluster sizes. From Fig. 20, we observe that the search cost in our system increases rapidly
from a point whereM = 16. This is due to the effect of blind flooding within a cluster.
We plot the cost of node joining/leaving and cluster splitting/merging over different cluster sizes in Fig. 21. As there are

lesser clusterswith larger cluster sizes, a new node requires a smaller number of hops to join the network. Therefore the cost
of joining/leaving decreases with respect toM . With a larger cluster size, cluster splitting andmerging occur less frequently,
resulting in a lower cluster splitting/merging cost.

7. Conclusion

This paper presents a framework which supports quality assured context fusion, semantic-based context delivery and
user-centric situation prediction for pervasive computing applications. The proposed active context fusion model is able
to selectively choose those information sources that are most informative with respect to the current context state while
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minimizing the associated costs (i.e., computational complexity, time and required resources) and satisfying the QoC bound
of an application. The context delivery model is able to perform intelligent clustering and delivery of context data according
to the semantics. A SunSPOT context sensing system is developed and subsequent experimental evaluation is done.
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