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This paper presents the design and implementation of the SpiderWalk system for circumstance-aware transportation activ-

ity detection using a novel contact vibration sensor. Different from existing systems that only report the type of activity,

our system detects not only the activity but also its circumstances (e.g., road surface, vehicle, and shoe types) to provide

better support for applications such as activity logging, location tracking, and smart persuasive applications. Inspired by

but different from existing audio-based context detection approaches using microphones, the SpiderWalk system is designed

and implemented using an ultra-sensitive, flexible contact vibration sensor which mimics the spiders’ sensory slit organs.

By sensing vibration patterns from the soles of shoes, the system can accurately detect transportation activities with rich

circumstance information while resisting undesirable external signals from other sources or speech that may cause the data

assignment and privacy preserving issues. Moreover, our system is implemented by reusing existing audio devices and can

be used by an unmodified smartphone, making it ready for large-scale deployments. Finally, a novel temporal and spatial

correlated classification approach is proposed to accurately detect the complex combinations of transportation activities and

circumstances based on the output of each individual classifiers. Experiments conducted on a real-world data set suggest our

system can accurately detect different transportation activities and their circumstances with an average detection accuracy

of 93.8% with resource overheads comparable to existing audio- and GPS-based systems.
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1 INTRODUCTION

Detecting users’ transportation activities has been an emerging field which can support many applications in-

cluding activity and energy expenditure estimation [2], crowd mobility analysis and prediction [12, 15], persua-

sive applications [1, 8], and etc. While existing work on transportation activity/mode detection mainly focuses
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(a) Pedestrians are using a new 

mud road not planned by the 

government to cross the lawn

(b) People walk on a brick 

‘bridge’  over a tarmacadam 

road after a heavy rain

Fig. 1. Circumstance information of transportation activities (road surface in this case) can help the government users to

improve their services. For (a), a brick pathway is needed to help people walking on the mud road; For (b), timely traffic

control and road management are required. (Pictures from the Internet.)

on the type of activity alone, this paper concerns the problem of detecting users’ transportation activities with

rich circumstance information (e.g., road surface, shoe, and vehicle types). Our work is motivated by the obser-

vation that even the routine transportation activities may have varying circumstances which provide important

information for both government and personal users. Government users such as the transportation management

departments can receive detailed and timely reports on transportation-related events by tracking peoples’ trans-

portation activities and circumstances to provide better services such as roadmanagement and traffic control. For

example, Fig. 1 illustrates two examples of how the circumstances of transportation activities can reveal impor-

tant information to improve government services which cannot be obtained with traditional techniques. Human

investigation may provide the same information but is slow and costly. For personal users, circumstance-aware

transportation activity detection can enable new applications with greatly improved performance and user ex-

perience. For an example of walking activity, walking in a room wearing dress shoes (pacing) and walking in the

woods wearing boots (hiking) may imply different energy expenditure models, and should be treated differently.

In addition, knowing what surface a user is walking on, e.g., a tarmacadam road or a brick sideway, is critical to

applications such as pedestrian safety monitoring [16]. In another example, by knowing that one is wearing high

heels, a smart persuasive application may suggest the user to rest constantly to prevent potential injuries. In our

daily work or physical exercise, the risks of injuries caused by the environment and the footwear have been

recognized by health experts for a long time [18, 36]. However, very few persuasive or coaching applications

incorporate such knowledge due to the lack of information.

To facilitate such smart applications, the underlying detection system should provide not only the type of

activity (e.g., walking, running or idle) but also its circumstances such as shoe, road surface, and vehicle types.

Existing work mainly adopt sensors such as GPS/GIS [11, 31, 41], accelerometer [15, 30, 32, 38], barometer [29],

and magnetic-field sensors [6] to detect the gross body movements. However, this approach fails to discover

detailed circumstances because such knowledge is out of the reach of these sensors’ sensing abilities. Insole

sensing approaches that use force [33] and capacitive sensors [22] have the potential of performing activity and

floor type sensing. However, they are still limited in their detection scopes as discussed later in Sec. 2.

To fill this niche, in this paper we propose SpiderWalk, a system which is built using a novel contact vibration

sensor for circumstance-aware transportation activity detection. The proposed sensor is built by tailoring a

novel crack-resistance sensing material which mimics the sensory slit organs located at the leg joints of spiders

[17]. Manufactured by depositing a thin layer of platinum (Pt ) with deliberately formed cracks on top of a

polyurethane acrylate (PUA) substrate, the crack-resistance sensingmaterial is ultra-sensitive in capturing subtle

vibration signals. In [17], the authors show the novel sensing material’s potential in supporting a wide-range

of applications including sensing the strings’ vibrations of musical instruments, capturing human speech when
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attached to the neck, and sensing the pulses by attaching to the wrist. By deploying such a sensor under a user’s

foot with high-frequency sampling (i.e., 8kHz), our system can detect the subtle vibration patterns caused by

different activities under different circumstances including vehicle, road surface, and shoe types using audio-

based context sensing approaches [21, 24]. To the best of our knowledge, our work is among the first to perform

such detailed activity and circumstance detection using vibration sensing.

To build a system with high performance while facing the many challenges brought by the real-world ap-

plications, we carefully design and implement SpiderWalk with many design considerations as discussed in

Sec. 3. First, to accurately capture vibration signals for various transportation activities under different circum-

stances, we propose to attach the sensor under the foot based on the experience that the feet are sensitive to

vibration differences under different transportation modes. We validate the effectiveness of this design by real-

world experiments and comparing with a microphone-based sensing system built following the state-of-the-art

audio-based approaches [21, 24]. Moreover, we address the data assignment and privacy preserving issues of

traditional audio-based systems through this design by only detecting vibrations from the sole of a shoe. Be-

cause our vibration sensor is attached to the foot inside the shoe, it is resistant to external sounds produced by

other sources around the subject of interest (SoI) and the user’s speech that propagates through the air. Further,

we pay special attention to the user comfort issue because our system is worn under the feet during daily lives.

State-of-the-art contact microphones built with stethoscope augmented microphones [39] or brass piezoelectric

sensors [26] are uncomfortable to wear because they are rigid and large in size. Different from these systems,

the crack-resistance sensing material adopted in our system is thin (less than 1mm) and flexible which can be

attached to the foot like a bandage as shown in Sec. 5. Finally, we address the device simplicity issue by hack-

ing a commercial-off-the-shelf (COTS) Bluetooth audio adapter to perform vibration sampling, encoding, and

transmission without requiring specialized hardware support as did in existing contact microphone designs [26].

This is done by tailoring the crack-resistance sensing material into a vibration sensor that matches the output

standards of a COTS electret microphone used in various audio devices. Following this design, the SpiderWalk
system is implemented by simply replacing the electret unit of a COTS Bluetooth audio adapter with our sensor

and reusing the existing audio sampling, encoding, transmission, and processing devices, making it low-cost and

ready-to-use in real-world applications.

Different from existing work on transportation activity detection which only predicts the activity itself, our

work aims at addressing the more complex problem of deciding the combination of transportation activities

and various circumstances. To address this issue, we propose to combine the results of four independent classi-

fiers through a novel integration framework that explores the temporal and spatial correlations among different

classes to obtain a unified detection result. Experiment results suggest the proposed approach can recover the

classification errors made by the independent classifiers and significantly improve the detection accuracy.

We conduct extensive experiments on real-world data, and the results suggest that SpiderWalk performs ac-

curate detection of various transportation activities and their circumstances with an average detection accuracy

of 93.8%. The resource overheads of the system are comparable to existing audio sensing systems [26] and GPS

positioning modules on smartphones [20], suggesting that SpiderWalk provides richer information without in-

creasing the system’s resource consumption compared to existing audio- and GPS-based systems. To reduce the

system’s overheads on CPU, memory and power consumption, we propose the frame admission control and

feature selection techniques which can be integrated into the data processing pipeline. We also discuss several

possible ways to further reduce the system’s overheads. As presented in Sec. 7, many potential applications

can be drawn from this system including but not limited to map generation and tracking, personal assistance,

security and health applications.

In summary, this paper makes the following contributions.
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• Our main contribution is the design and implementation of a novel contact vibration sensor using a ultra-

sensitive crack-resistance sensing material and COTS devices;

• We benchmark the performance of the proposed sensor and compare it with a COTS electret microphone;

• We implement the SpiderWalk system for circumstance-aware transportation activity detection based on

this novel sensor;

• A temporal and spatial correlated classification approach is proposed to accurately detect complex combi-

nations of transportation activities and their circumstances;

• Extensive experiments are conducted on real-world data to evaluate the system’s performance.

The rest of the paper is organized as follows. Sec. 2 introduces the related work. Sec. 3 presents our motivation

and considerations when designing the system. Detailed system design and implementation are introduced in

Sec. 4 and Sec. 5, respectively. Sec. 6 presents our experiment results. We discuss the potential applications in

Sec. 7. Finally, Sec. 8 concludes the paper.

2 RELATED WORK

We summarize the related work in this section. We categorize existing work into two classes: 1) work on trans-

portation activity and mode detection that explores different sensing modalities to achieve goals related to our

work; 2) audio-based context and activity sensing approaches that use microphones to capture audio data which

are close related to vibrations used in this work.

2.1 Transportation Activity/Mode Detection

Much research work has been conducted for transportation activity and mode detection using different sensors.

We summarize the existingwork into four categories: 1) location-based; 2) smartphone sensor-based; 3)magnetic-

field sensor-based; and 4) insole sensing-based approaches.

2.1.1 Location-based. In [11], Gong et al. present a GPS-based travel survey study combined with GIS infor-

mation in New York City that identifies users’ activities including walk, subway, rail, car, and bus. Zheng et al.

[41] propose to use motion related features extracted from GPS data to detect walk, bike, bus, and driving activi-

ties. Shah et al. use GPS data combined with acceleration for motorized transportationmode identification which

includes car, bus, and train [31]. In [27], Reddy et al. present a transportation mode classification system that

also combines GPS and acceleration data. Their system can accurately detect transportation modes including

still, walk, run, bike, and motor.
Different from GPS-based approaches, some researchers propose to use the location information provided by

the cellular network for location-based transportation mode detection [3, 35]. In [35], the coarse-grained GSM

traces are used to detect general movements such as stationary, walking, and driving. In [3], the authors use

information collected from the cellular towers to recognize activities including stationary, car, train, and walk.
While existing work has shown their effectiveness, location-based approaches are limited in several aspects.

First, they rely on the availability of GPS or cellular signals and cannot perform accurate estimation in indoor

or remote places with poor signal strength. Second, as discussed in the introduction, location-based approaches

are only capable of detecting the gross movements of the subjects. Fine-grained circumstance information such

as road surfaces and shoe types are beyond their sensing abilities.

2.1.2 Smartphone Sensor-based. To increase the system’s availability and reduce its reliance on infrastruc-

tures, recent work has explored smartphones’ built-in sensors for transportation mode detection.

Hemminki et al. [15] introduce a hierarchical classification system to discriminate modes including stationary,
walk, bus, train, metro, and tram using acceleration data. In [30], Shafique et al. propose to use smartphones’

acceleration data for transportation mode (walk, bicycle, car, and train) prediction. To further reduce power
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consumption, Sankaran et al. propose to use smartphones’ barometers to detect simple transportation modes

including idle, walking and vehicle [29].
The advantages of acceleration- and barometer-based approaches lie in their low power demand and can

provide continuous detection service without infrastructure support. However, similar to the location-based

approaches, these approaches are limited in detecting fine-grained circumstance information mainly due to the

low sensitivity and sampling rates of the sensors. As shown later in Sec. 6.6.3, experiment results suggest an

inertial-based approach can perform accurate detection of transportation modes including different activities

and vehicle types. However, it suffers from low detection accuracies for other circumstance information such as

shoe and road surface types.

2.1.3 Magnetic-field Sensor-based. In [6], Chen et al. propose the Mago system that can perform reliable

transportation mode detection by fusing the metal-induced magnetic field distortion captured by the Hall-effect

magnetic-field sensors and the vibrations captured by the smartphones’ built-in accelerometers. Their approach

can accurately detect seven classes of commute activities (stationary, bus, bike, car, train, light rail and scooter).
Moreover, their system can differentiate the phone’s in-car position which is an important piece of context

information. While SpiderWalk shares a similar data processing pipeline with Mago, our sensing approaches are

fundamentally different. Our approach can detect transport related circumstance information even if it does not

have an observable effect on the magnetic-field (e.g., shoes).

2.1.4 Insole Sensing. In [33], Shu et al. propose an in-shoe pressure sensing array to detect actions such as

normal standing, standing on one leg, heel strike, and push off. Their work shows the potential of in-shoe pressure
measurements for transportation activity detection. Combining insole sensors with smartphones’ built-in sen-

sors, Zhang et al. [40] fuse readings from a novel foot force sensor with smartphone’s GPS data for fine-grained

transportationmode recognition. Their system can discriminate transportationmodes includingwalking, cycling,
bus passenger, car passenger, and car driver.
Different from forces, insole capacitive sensors have also shown their effectiveness in sensing the foot move-

ments [34], which makes them potentially useful for transportation activity detection. Because the capacitive

sensor readings are influence by the type of floors, skin conductivity, and properties of the socks [22, 34],Matthies

et al. [22] propose the CapSoles system that can detect the user identities and floor types with capacitive pressure-

sensitive insoles. Experiment results suggest CapSoles can perform accurate detection of floor types including

sand, lawn, pavement, tartan, linoleum, and carpet. The system can also detect postures including standing, sitting,
kneeling, lying, and carrying.
Our system is similar to the above insole sensing approaches in two aspects. First, we also use an insole sensing

solution to perform activity and floor type sensing, and share the advantages including user comfort, accuracy,

and infrastructure independence [22, 33]. Second, our work is close to CapSoles [22] in that we are both inter-

ested in detecting the floor types. Different from the above work that uses force and capacitive sensors, in this

work, we propose to use an ultra-sensitive vibration sensor with a high sampling rate to capture transportation

related circumstance information. As a result, our system is expected to be more sensitive in detecting the subtle

differences in various transportation activities, and provide richer circumstance information.

In summary, the major difference of our work from existing work lies in that we use a novel insole contact

vibration sensor to detect transportation activities with rich circumstance informationwhich is beyond the scope

of existing work.

2.2 Audio-based Context & Activity Sensing

Another category of work closely related to this work is audio-based context and activity sensing. Researchers

from the Dartmouth College have conducted a series of work on audio-based context sensing on smartphones
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using the built-inmicrophones including SoundSense [21], DSP.Ear [9], andDeepEar [19]. Their work shows that

audio-based context sensing can be performed on smartphones with high performance and efficiency. Instead

of using smartphones’ resources alone, Auditeur [24] is proposed to provide a mobile cloud service for power-

efficient acoustic event detection on smartphones.

Different from the above work that uses smartphones’ built-in microphones, recent work has explored vari-

ous contact microphones for activity and context sensing. BodyScope is proposed in [39] that uses stethoscope

augmented microphones to detect different activities from non-speech body sounds. In [26], Rahman et al. intro-

duce the design and implementation of a novel contact microphone built on top of a brass piezoelectric sensor

to capture various non-speech body sounds for activity and context recognition.

Motivated by and different from the above work, we propose in this work the design and implementation

of a novel contact vibration sensor built using a novel, ultra-sensitive crack-resistance sensing material [17] to

capture different vibration patterns caused by various transportation activities under different circumstances.

3 MOTIVATION & CONSIDERATIONS

In this section, we present the motivation and design considerations of our system, and briefly introduce the

way our system meets these considerations. Detailed system design and implementation are introduced later in

Sec. 4 and Sec. 5, respectively.

3.1 Motivation

Motivated by the recent developments in audio-based sensing technologies which have shown to be effective in

recognizing various ambient contexts and human activities [21, 26, 39], our basic idea is to apply audio sensing

technologies for circumstances-aware transportation activity detection. Common physics tells us that sound is

produced by the vibration of the audio source which propagates by air pressure variation. People can easily tell

the difference between walking wearing high-heels and athletic shoes by simply listening to the sounds of steps.

Moreover, such vibration is propagated through not only the air but also medias that make contact with the

vibration source. For example, distinctive vibration patterns can be felt by the feet when sitting in the car and

the metro, caused by the engine and the wheels running on railways, respectively.

Motivated by the above work and life experiences, in this work, we propose to use a foot-worn contact vi-

bration sensor to capture the vibration patterns caused by different transportation activities under different

circumstances. While the idea behind this work is simple, there are many challenges in designing and imple-

menting a practical wearable system that can achieve our goal, which we discuss in detail through our design

considerations as follows.

3.2 Data Assignment & Privacy Preservation

In our context, the data assignment issue is expressed as whether the sensed data are actually produced by the

subject of interest (SoI). It is challenging for a microphone to accurately assign the data because it captures not

only the sounds produced by the SoI but also sounds produced by other sources around the SoI. For example,

an audio-based system may mistakenly determine a user sitting in a busy lobby to be walking on capturing the

stepping sounds of other pedestrians around the user.

Another challenge for a common microphone is the privacy preservation issue. While a microphone is mainly

designed and optimized to capture human speech for recording or communication purposes, it becomes a major

threat to privacy when speech is not intended to be captured. Though audio-based context sensing systems [21]

are often built for capturing ambient sounds, it is often inevitable that the sensitive conversation data are also

recorded by the microphones.
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Fig. 2. Crack-resistance sensing material, grey layer

above—Pt layer, yellow layer below—PUA layer, black lines

on Pt layer—cracks.

Fig. 3. Scanning electron microscope image.

The root-cause of a common microphone to suffer from the data assignment and privacy preservation issues

is its sensitivity to external sound/noise. And it is difficult to address the issues because its nature of capturing

sounds by sensing the ambient air pressure variations. In [26], the authors show the advantage of a piezoelectric-

based contact microphone in blocking external sounds and noise, making their system potentially applicable in

our scenario. However, their solution is also limited as discussed next.

3.3 User Comfort & Device Simplicity

User comfort is an important issue when designing a wearable system. While contact microphones outperform

common microphones on resisting external sounds, they are uncomfortable to wear and complex in system

implementation. For example, stethoscope augmented microphones [39] are large in size and impossible to wear

under the foot. In [26], the authors developed a piezoelectric sensor based contact microphone which are small in

size and sensitive to sounds propagated through flesh and muscle. However, the brass piezoelectric sensor used

in their work is rigid and large in size. Film piezoelectric sensors are good candidates to build wearable systems

for being thin and flexible. However, piezoelectric sensor based systems suffer from the device simplicity issue

as discussed next.

Prototype systems built using experimental, customized devices are often less optimized, higher in cost, and

less robust compared to COTS devices. As a result, it is desirable to use COTS devices to build a system to make

it ready-to-use in large-scale, real-world applications. Like audio-based context sensing systems, an easy way to

implement a system is to use the existing audio sensing devices and processing frameworks to collect and process

vibration data. Existing piezoelectric-based sensors, however, cannot fit into a common audio device for there is a

mismatch between the output voltage of the sensors and common electret microphones as wewill explain later in

Sec. 4.1.2. As a result, fully customized systems are built using specialized sampling and processing hardware [26],

making them complex and costly. Different from piezoelectric sensor-based approaches, the contact vibration

sensor used in our system is designed to simulate a COTS electret microphone. The proposed system can then

be implemented by simply replacing the built-in microphone of a common audio device with our sensor, and

reusing the remaining parts, making it low-cost, and ready-to-use for real-world applications.

4 SENSOR DESIGN & EVALUATION

Following the above design considerations, this section introduces our contact vibration sensor design and per-

formance benchmarking results.

4.1 Contact Vibration Sensor Design

Our contact vibration sensor is built by tailoring a novel crack-resistance sensing material to simulate a common

electret microphone.
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Fig. 4. Electret mic. vs. variable resistor. Fig. 5. Contact vibration sensor.

4.1.1 Crack-Resistance Sensing Material. Our contact vibration sensor is designed based on a novel crack-

resistance sensing material proposed in [17]. By mimicking the sensory slit organs at the leg joints of spiders,

this sensing material is built by depositing a stiff, thin layer of Pt (less than 100nm) on a polyurethane acrylate

(PUA) substrate as illustrated in Fig. 2. Transversal cracks on the Pt layer are formed and controlled by bending

the sample during depositing. As shown in Fig. 2(a) and Fig. 3(a), when no strain is applied to the material,

matching crack edges are mostly in contact with each other, resulting in a low resistance. And when extension

force is applied to the sensor as shown in Fig. 2(b) and Fig. 3(b), gaps between matching crack edges increase,

resulting in a higher resistance. Experiment results in [17] show that the crack-resistance sensing material is

highly sensitive to vibrations and can potentially be used as a contact microphone or vibration sensor. In this

work, we repeat the steps proposed in [17] to build the sensor for vibration detection. In general, the crack-

resistance sensing material is equivalent to a variable resistor responsive to vibrations which we can use to

simulate a common electret microphone as explained in the next section.

4.1.2 Reuse Existing Audio Hardware. We build our contact vibration sensor by tailoring the above sens-

ing material to simulate a common electret microphone. Fig. 4(a)-(b) show the appearance and the simplified

schematic of a typical electret microphone (inside the dashed box). The electret unit in Fig. 4(b) is a prepolarized

dielectric material with a permanent static electric charge between its two plates. The distance between the two

plates changes as a result of air pressure variation caused by sounds, which creates a voltage difference. Such

voltage difference is amplified by a JFET transistor and result in a measurable voltage signal in the microphone’s

two terminals (Term. 1 and 0). For a electret microphone, the output voltage signal on Term. 1 is always positive
and below Vs . The electret microphone in the dashed box is thus equivalent to a variable resistor Rx responsive

to external vibrations as shown in Fig. 4(c). We tailor the crack-resistance sensing material so that its variation

of resistance in response to vibrations results in a voltage difference between Term. 1 and 0 that matches the

standard of a common electret microphone. In this way, we build a contact vibration sensor that appears exactly

like a common electret microphone to the ADC unit of a COTS audio chip. By simply replacing the electret

microphone with our contact vibration sensor, we can implement a vibration sensing system by reusing the

existing sampling, encoding, transmission and processing in COTS audio devices.

After careful measurement and test, we match the contact vibration sensor with an electret microphone by

controlling its resistance to be around 2.2kΩ when no external force is applied. This is done by tailoring the

crack-resistance sensing material to the size of approximately 3mm*25mm. Fig. 5 shows the sensor built for our

wearable sensing system. The gray foil is our contact vibration sensor, with conductors on both ends for signal

output, and the white tape is designed to attach the sensor to the foot. The slide glass is not a part of the system.

A piezoelectric based microphone, however, cannot simply be used to replace an electret microphone because

it may create a negative output voltage. Moreover, the output voltage of a typical piezoelectric sensor1 is far

beyond the output limitation of an electret microphone which is always below Vs (typically with Vs ≤ 5V ).

1For example, the LDT0-028K piezoelectric PVDF.
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Contact vibration sensor: 

right foot, inside the 

shoe, under the foot

Electret microphone: 

left foot, inside the shoe, 

under the foot

Line-in to a dual-

channel audio recorder

Frequency response test:

1. 20Hz ~ 20kHz: bone-

conduction transducer

2. ≤ 25Hz: a vibration motor

External sound test:

1. 20Hz ~ 20kHz : a speaker

2. ≤ 25Hz: a vibration motor

Speech sensing test:
Subject reads letters from A to Z

Subject 

sitting

Fig. 6. Performance benchmarking setup.

As a result, fully customized systems [26] are required, making them high-cost and prohibitive for large-scale

deployment. On the contrary, our sensor can be integrated into existing COTS audio devices as shown later in

Sec. 5. Though Pt is used, the cost for each sensor is less than $1 for it is small in size and only requires a very

thin layer of Pt .

4.2 Performance Benchmarking

In this section, we benchmark the performance of the contact vibration sensor proposed above. Fig. 6 shows the

setup for performance benchmarking. Tests are conducted by asking a subject to sit still on a chair in a quiet room.

A contact vibration sensor and an electret microphone are wire-connected to a dual-channel audio recorder,

worn under the subject’s right and left foot, respectively, inside the shoes as shown in Fig. 6. Performance

benchmarking is conducted by comparing the performance of the contact vibration sensor against the electret

microphone with respect to vibration frequency response, sensitivity to external sounds, and preserving privacy

sensitive speech information.

4.2.1 Frequency Response. The frequency response test is conducted under two settings: 1) a bone-conduction

transducer is attached under each shoe as shown in Fig. 6. The two transducers perform frequency sweeping from

20Hz to 20kHz simultaneously. 2) for frequency below 20Hz, we use a vibration motor with a variable rotation

rate between 50rpm to 1500rpm to generate a vibration from 1Hz to 25Hz. We test the response for frequencies

below 25Hz because extra low-frequency signals may contain important information such as pressure change,

and can propagate through solid materials for a longer distance than high-frequency signals. Vibration data are

recorded by the dual-channel audio recorder as introduced above.

Fig. 7 illustrates the comparison of frequency response of the electret microphone and our contact vibration

sensor. This result suggests that both our contact vibration sensor and the electret microphone can capture

vibration signals. By observing the results in Fig. 7, it is clear that our contact vibration sensor has a flatter

frequency response. The electret microphone is generally more sensitive when vibration frequency is around

3kHz. However, when vibration frequency is very low (below 25Hz), our contact vibration sensor achieves better

results. In this work, we focus on capturing vibration signals caused by various transportation activities under

different circumstances with no predefined optimal frequency. Low-frequency signals may also be important for
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Fig. 8. Sensitivity to external sounds.

Fig. 9. Spectrogram of captured speech.

reflecting the plantar pressure changes to discriminate different activities [33]. As a result, a sensor with flatter

response and being sensitive to low-frequency signals is preferred.

4.2.2 Sensitivity to External Sounds. Sensitivity to external sounds is considered harmful in our scenario be-

cause it causes the data assignment and privacy preservation issues as discussed above. To evaluate our contact

vibration sensor’s sensitivity to external sounds, we repeat the frequency response test and change the audio

source from bone-conduction transducers to a loudspeaker as shown in Fig. 6.

Fig. 8 illustrates the comparison of the electret microphone’s and our contact vibration sensor’s frequency

response when exposed to external sounds from 1Hz to 25Hz (sounds of the vibration motor), and 20Hz to 20kHz

(from the speaker). It is clear that our contact vibration sensor outperforms the electret microphone for being

much less sensitive to external sounds. Though both the contact vibration sensor and the electret microphone

are worn under the foot inside the shoe which blocks part of external sounds, a possible explanation to the above

result is that the electret microphone is encapsulated in a metal shell which leaves enough space for its plates

to move when air pressure changes as shown in Fig. 4(a). Our contact vibration sensor, however, is a thin foil

attached to the foot which will not vibrate unless the external sounds causes the flesh or sole to vibrate.

4.2.3 Speech Sensing. Speech is often considered as sensitive information when designing audio based sens-

ing solutions. In this test, we ask the subject to repeat letters from A to Z and record the captured vibration and

audio data from both the contact vibration sensor and the electret microphone. System setup is similar to the

above two tests as illustrated in Fig. 6.
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Fig. 10. Implementation of our Bluetooth foot-worn vibration sensing system.

Fig. 9 shows the spectrogram of captured speech data by the electret microphone (left channel) and the contact

vibration sensor (right channel). As shown in the figure, the electret microphone clearly captures every letter

spoken by the subject while the contact vibration sensor barely captures any signal. Though speech sounds

can propagate through both the air and the flesh, the contact vibration sensor cannot capture user’s speech

because it is located under the foot far away from the throat and is insensitive to external sounds. As a result, we

conclude that our contact vibration sensor outperforms electret microphones in privacy preserving by means of

preserving users’ sensitive speech information.

4.2.4 Summary. In summary, the proposed contact vibration sensor is effective for vibration sensing and

outperforms electret microphones for having a flatter frequency response, resistance to external sounds, and

privacy preserving. A simple experience test also reveals that our flexible sensor is more comfortable to wear

than the rigid electret microphones and brass piezoelectric sensors. As a result, we conclude that the proposed

sensor is suitable for our goal. We omit the performance comparison against piezoelectric sensor based solutions

in this study for device simplicity and user comfort reasons, which we leave for our future work. Moreover, the

shape and supportingmaterial may also influence the sensing performance. As a pilot study, we leave the detailed

discussions on these topics for our future work.

5 SYSTEM IMPLEMENTATION

We present the implementation of our wearable sensing system and the data processing pipeline.

5.1 Wearable System Implementation

Fig. 10 shows the implementation of our foot-worn vibration sensing system.Wemodify a COTS Bluetooth audio

adapter by replacing its built-in electret microphone with our contact vibration sensor. The contact vibration

sensor is attached to a sock to form a simple wearable system. The Bluetooth audio adapter has a maximum

sampling rate of 8kHz which is capable of capturing vibration signals ≤ 4kHz.
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Fig. 11. Spectrograms for different transportation activities and circumstances, darker colors indicate higher amplitudes as

shown in Fig. 9.

Vibration data are transmitted through Bluetooth connection to an unmodified Android smartphone. The data

recording program is implemented using the audio recording programming interface provided by Android SDK.

We set the audio recording format to be 8kHz 16bit Mono PCM to cope with the Bluetooth audio adapter. The

received vibration data can be stored in a WAV file for offline analysis or processed online in memory according

to application requirements.

5.2 Observing the Data

Before introducing the data processing pipeline, we first observe the data collected under different circumstances.

Fig. 11 shows four groups of data collected with different transportation activities, wearing different shoes, walk-

ing on different types of surfaces, and sitting in different vehicles, respectively.

From Fig. 11, it is clear that different activities (walking vs. sitting) and vehicles (car vs.metro) can be discrimi-

nated by vibration signal patterns from both the frequency and time domain. Signal strength varies periodically

during walking that approximately matches with each step while hardly any vibration is detected when the

subject is sitting. Similarly, when sitting in different vehicles, discriminative signal patterns can be observed

that approximately match with the vibration caused by the car’s engine and the metro train’s wheels running

on railways. By comparing high-heels and athletic shoes, it can be observed that different types of shoes have

similar spectral patterns during short time periods. However, they can be discriminated if patterns are extracted

over a longer period. Finally, it is difficult to discriminate different road surfaces (ceramic vs. brick) simply from

the spectrograms. We provide detailed analysis of the signal components and features that are important for

discriminating different classes later in Sec. 6.4.2 by computing their information gain.

Summarizing the above observations, we conclude that it is possible to discriminate different transportation

activities, shoes, and vehicles from the vibration signal collected. However, it is still challenging to perform

accurate detection when different road surface types are involved. As a result, we adopt the audio processing

and machine learning approaches [21, 26] that have shown to be promising in context detection to build our

data processing pipeline.

We model the detection problem in this paper as a supervised learning problem and build the processing

pipeline as shown in Fig. 12. While the frame- and window-level preprocessing steps are similar to existing

audio-based event detection systems, we propose a novel classification approach by combining the independent
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Fig. 12. Data processing pipeline.

classifiers for transportation activity and circumstance detection with respect to temporal and spatial correla-

tions. We introduce the detailed steps involved in the data processing pipeline in the following sections.

5.3 Data Preprocessing

Because vibration is similar to audio in physical nature, we adapt the existing audio processing approaches

[21, 26] for vibration-based circumstance-aware transportation activity detection.

5.3.1 Frame Segmentation. Given the input streaming data at a sampling rate of 8kHz, we apply a 50% over-

lapping sliding windowwith a fixed size to perform frame segmentation. Frame size used in existing audio-based

systems varies from 23ms to 125ms [21, 23, 26]. In this work, we find the optimal frame size by testing the sys-

tem’s performance with frame size varies from 2ms to 128ms. After frame segmentation, we obtain a series of

frames from the raw vibration data stream.

5.3.2 Frame-level Feature Extraction. We extract both time- and frequency-domain features to characterize

the vibration data in each frame following existing audio processing approaches [21, 26]. Table 1 lists the frame-

level features extracted. For time-domain features, we extract the signal’s energy and zero crossing rate (ZCR) to
characterize the signal’s time-domain energy level and diversity. For frequency-domain features, we first per-

form FFT to obtain the signal’s frequency-domain representation. We then compute features including spectral
centroid, spectral variance, spectral mean, spectral flux, spectral entropy, relative spectral entropy, spectral skewness,
bandwidth, spectral rolloff 25%-90%, spectral slope, and spectral kurtosis. We also compute the signal’s energy in

eight sub-bandswith frequency ranges (0, fs/256), (fs/256, fs/128), (fs/128, fs/64), (fs/64, fs/32), (fs/32, fs/16),
(fs/16, fs/8), (fs/8, fs/4), and (fs/4, fs/2), and the 12 dimensional Mel Frequency Cepstral Coefficients (MFCC)
with 20 filters. For each frame, a 36 dimensional feature vector is extracted from the raw vibration data.

5.3.3 Window-level Processing. After frame-level segmentation and feature extraction, the raw input vibra-

tion stream is converted into a sequence of frame feature vectors. We then apply a much longer sliding window

with 50% overlapping to segment the frame sequence into windows. Existing work on transportation mode de-

tection varies largely in their window sizes. Some work uses short windows of 5s [6] while others adopt large

windows like 60s [11] or 120s [38] to even longer and unbounded segments [41]. Since there does not exist a

commonly agreed optimal window size, we test the system’s performance with window sizes from 5s to 120s

increased by 5s in each step to search for the optimal window size. Because of the time cost of experimenting on

the complete data set is prohibitive, we carefully choose a smaller subset to benchmark the system’s performance

and select the optimal set of parameters in Sec. 6.2.

For each window, we apply 10 statistical functions, i.e., mean, variance, max, min, median, 1st and 3rd quar-
tiles, skewness, kurtosis, and slope to each frame-level feature to extract window-level features. After frame- and
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Table 1. Frame-level features extracted (with abbreviations when applicable).

Group Feature Description

Time-domain
Energy RMS of signal amplitude within a frame [21, 26]

Zero Crossing Rate (ZCR) Time-domain signal diversity of vibration data within a frame [21, 26]

Frequency-domain

Spectral Centroid (SC) Center of mass across frequencies [21, 26]

Spectral Variance (SV) Energy variance across different frequencies [26]

Spectral Mean (SM) Mean energy across different frequencies

Spectral Flux (SF) Degree of signal change between frames [26]

Spectral Entropy (SE) Spectral entropy computed by FFT amplitudes

Relative Spectral Entropy (RSE) Difference between the current frame and previous frames [21]

Spectral Skewness (SS) Skewness of spectral distribution [26]

Bandwidth Width of the range of the frequencies that the signal occupies [21]

Spectral Rolloff 90% (SRF90)

Frequency bin below which 90%, 75%, 50%, and 25% of the

distribution is concentrated [26]

Spectral Rolloff 75% (SRF75)

Spectral Rolloff 50% (SRF50)

Spectral Rolloff 20% (SRF20)

Spectral Slope (SP)
The shape of spectra [26]

Spectral Kurtosis (SK)

Sub-band Energy (SubEng[1-8]) Energy of 8 different frequency sub-bands [26]

MFCC (MFCC[1-12]) 12-dimensional Mel Frequency Cepstral Coefficients [26]

window-level segmentation and feature extraction, we obtain a 360-dimensional feature vector to characterize

vibration data within a window.

5.3.4 Frame Admission Control. By observing the collected data in Fig. 11, it is clear that in many cases

(e.g., sitting, car, and metro), a large portion of data contain no significant vibration signals, i.e., silent periods.

Frames obtained from these silent periods often contain no interesting information and are similar to each other.

Processing these silent frames may cost valuable computational and battery power, which reduces the system’s

efficiency. As a result, in this paper, we propose a simple frame admission control approach by filtering out

the low energy frames obtained from silent periods. We empirically determine a reference low energy level

enerдyr ef by the cutting energy level below which 1% of the frames in the training data set reside. Then the

energy threshold enerдyth to determine a frame to contain no interesting information is computed as:

enerдyth = α · enerдyr ef

where α ≥ 0 is a scaling factor.

Frames with energy below enerдyth are filtered to skip the above feature extraction process. However, to

cope with the window-level processing step, these frames cannot be simply discarded. Instead, a predefined

frame feature vector that represents all low energy frames is used to replace the filtered frames.

5.4 Temporal and Spatial Correlated Classification

In this work, we model the transportation activity and circumstance detection problem as a supervised multi-

label classification problem. Given the continuous stream of window-level features, the classification problem is

to assign a label to each type of the activity and circumstances. A naïve approach to solve this problem is to build

four independent classifiers for activity, road surface, shoe, and vehicle types. However, this naïve approach fails

to explore the intrinsic nature of the data: 1) the activities and circumstances often remain stable in temporally

adjacent windows, e.g., people walking down a street is unlikely to change the activity or shoes frequently; 2)

different combinations of activities and circumstance types in the same window have different possibilities, e.g.,

it is unlikely that one will jog on the plastic tracks wearing high-heels. As a result, in this work, we propose to
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perform transportation activity and circumstance detection with temporal and spatial correlated classification.

We note here that the main contribution of this work is the design of the novel contact vibration sensing system.

The following classification framework is mainly proposed to better demonstrate the effectiveness of our system

on the task. Further topics such as the optimal choices of classifiers are out of the scope of this paper.

5.4.1 Label Distribution from Independent Classifiers. First, we select a base classifier and build four instances

for transportation activity, road surface, shoe, and vehicle type detection, respectively. In this work, we propose

to use the Random Forest Classifiers [5] which have shown to be promising in Wi-Fi signal strength- [25] and

capacitor-based [22] transportation mode detection systems to build our models. We evaluate the performance

of the proposed Random Forest-based model in Sec. 6. Moreover, in Sec. 6.6.2, we compare the proposed model

with two extensions of HMMs [4, 10, 37] which are also frequently used for complex activity recognition.

Instead of directly using the classification results, we obtain the label distribution from each individual classi-

fier independently given the current window.

Definition 5.1. Label distribution. Given the current window at time t , the label distribution of the i-th classifier

(i = 1, 2, 3, 4 corresponding to transportation activity, road surface, shoe, and vehicle type, respectively) is a

vector

Di,t =< d
j
i,t >

where d
j
i,t is the classifier’s confidence on classifying the current window into label j (j = 1, ...,Ni where Ni is

the number of possible labels for the i-th classifier).

We useWeka [7] to implement the Random Forest Classifier. As a result, the label distribution can be obtained

directly from the classifier which is computed by normalizing the distribution of each random tree.

5.4.2 Temporally Smoothed Classification Score. Based on the label distribution from each individual classifier,

we explore the temporal correlation among adjacent windows by computing the temporally smoothed label

distribution as follows.

d̃
j
i,t =

1

Zi,t

N−1
∑

n=0

1

n + 1
d
j
i,t−n

where 1
n+1 is the weight of window t−nwhen computing the temporally smoothed label distribution for window

t , N is the number of windows involved (we empirically set N = 10 based on a preliminary testing result),

Zi,t =
∑Ni

j=1

∑N−1
n=0

1
n+1d

j
i,t is the normalizing factor that keeps

∑Ni

j=1 d̃
j
i,t = 1.

Let L =< li >, i = 1, ..., 4 be a combination of labels for transportation activity, road surface, shoe, and vehicle

types, where li is the label assigned to the i-th class. We define the temporally smoothed classification score of

window t for label combination L, Ct (L), as the sum of temporally smoothed label distribution of li ∈ L as

Ct (L) =

4
∑

i=1

d̃lii,t (1)

5.4.3 Spatial Correlation Score. When considering the spatial correlations among different transportation ac-

tivities and circumstances, we aim at eliminating combinations that are unlikely to happen, e.g., jogging wearing

high-heels. The basic idea behind the proposed spatial correlation score S(L) is to approximate the joint density

of L. A simple way to obtain the spatial correlation score is to count the support of different label combina-

tions in the training data set. However, the simple counting approach is biased to combinations that appear

frequently in the training data set. To solve this problem, we propose the following piecewise function for the
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Table 2. Information of the subjects.

Subject No. Gender Age Height (cm) Weight (kg)

1 Male 21 170 73

2 Female 22 168 52

3 Male 22 172 62

4 Male 33 177 70

5 Female 60 163 60

6 Male 60 173 68

spatial correlation score:

S(L) =

{

supp(L), i f 0 ≤ supp(L) < threshold

1, i f supp(L) ≥ threshold
(2)

where supp(L) is the support of label combination L in the training data set, and threshold is a small real number

(empirically set to 1%�) to eliminate the unlikely combinations while keeping all the possible combinations.

5.4.4 Temporal and Spatial Correlated Classification. Based on the above classification and spatial correlation

scores, we define the final synthesized score of label combination L for window t , Ft (L), as follows:

Ft (L) = Ct (L) · S(L) (3)

where Ct (L) and S(L) are as defined in Equ. (1) and (2), respectively.

Given a series of window-level features and the current window at time t , the temporal and spatial corre-

lated classification approach for transportation activity and circumstance detection is done by finding the label

combination with the highest final score as follows:

resultt = argmax
L

Ft (L) (4)

As shown later in Sec. 6.6, the proposed temporal and spatial correlated classification approach is effective in

recovering the detection errors made by the independent classifiers.

6 EVALUATION

We evaluate the performance of SpiderWalk system in this section.

6.1 Data Collection and Methodology

6.1.1 Subjects and Data Collection. With IRB approval, data collection is done with six subjects—two females

and four males—over a month. Table 2 lists the subjects’ information. The subjects are asked to wear the foot-

worn sensor as shown in Fig. 10 during their daily livings. Vibration data are transmitted wirelessly through

Bluetooth connections to smartphones on which we deploy the data collection program. Data transmission

and formatting are implemented using the existing audio recording framework provided by the Android OS as

introduced in Sec. 5. The ground truth for the activity, road surface, vehicle, and shoe types are manually labeled

by the subjects.

It is important to note that our system can only function when the sensor touches the ground, especially when

trying to capture the vibration patterns to discriminate different vehicles. As a result, we ask the subjects to keep

their feet wearing the sensors fully touching the ground when sitting or standing.

6.1.2 The Collected Data Set. Table 3 summarizes the types of activities and circumstances collected in our

data set and the distribution of data hours across subjects and labels. By the time this paper is written, we

have collected a total amount of approximately 220 hours of data. The null class in the road surface category
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Table 3. Labels of activities and circumstances collected & data distributions across subjects and labels.

Subject No. Hours Activity Hours Road Surface Hours Shoe Hours Vehicle Hours

1 18.2 Walking 120 Ceramic 20.7 Dress Shoes 86.3 Bus 38.2

2 13.2 Running 6.2 Grass 10.9 Athletic Shoes 93.4 Metro 13.9

3 16.8 Riding 21.5 Wooden 32.5 Slippers 22.6 Bike 21.5

4 35 Idle 71.9 Tar 32.4 High Heels 17.2 Car 7

5 60.6 Brick 10.6 On Foot 138.9

6 75.8 Plastic 6.1

Mud 25.7

Null 80.5

represents cases the subject is not traveling on foot. And the on foot class in the vehicle category represents cases
the subject is not traveling by vehicles. While the total number of possible label combinations of the above four

categories is 640, there are 61 label combinations in the collected data set. The collected label combinations are

much fewer for two reasons: 1)mutually exclusive: some labels that are mutually exclusive by definition, e.g.,

road surface (null) + vehicle (on foot) is not a valid combination as explained above; 2) unlikely combinations:

some combinations are unlikely to happen in real-life, e.g., activity (running) + vehicle (car), and activity (running)
+ shoe (high heels). We do not ask the subjects to perform unnatural or risky activities even if some combinations

such as activity (running) + shoe (high heels) are possible.
Another observation made from Table 3 is that the data distribution across different subjects and labels is

imbalanced. This is partially because we ask the subjects to collect data in a close to nature manner. As a result,

we obtain fewer data for running thanwalking. Additionally, subject 1 to 3 spendmost of their time in classrooms

and labs which results in a large amount of idle data. We removed most of these idle data to balance the data

distribution because the vibration signals in this class are very sparse and hardly contain any useful information.

While the data imbalance issuemay potentially affect the system’s performance, we discuss this issue in Sec. 6.3.3

in detail. Though the data is imbalanced, the collected data set is feasible for performance evaluation as suggested

by the results in Sec. 6.3.3.

6.1.3 Experiment Design and Organization. We start our experiments by selecting the optimal set of parame-

ters including frame and window sizes, and the number of trees in the Random Forests through benchmarking

in Sec. 6.2. We use the detection accuracy for different categories and the average detection accuracy to evaluate

the system’s performance.

We then use the selected parameters to evaluate the system’s performance in Sec. 6.3, in which we also discuss

issues related to the collected data set including the impact of physical factors and the data imbalance issue.

Detailed performance is presented through confusion matrices, precision, recall, and F1 score.

In Sec. 6.4, we evaluate the performance of system components including the frame admission control and

feature selection. Together with the results presented in Sec. 6.5.1, we gain an in-depth understanding of the

impact of these components on detection accuracy and system overheads. By computing the information gain

for different features during the feature selection process, we gain some insights into the correlations between

the labels and their preferred features.

Sec. 6.5 evaluates the system’s overheads on the smartphone and the sensor nodewith respect to CPU,memory,

and battery power consumptions. We compare the performance of the proposed system with a naïve, indepen-

dent classifier model, extensions of HMMs, and by using different sensing modalities in Sec. 6.6. Finally, Sec. 6.7

provides some discussions on the system’s design and implementation issues.
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Fig. 13. Detection accuracy with different frame and window sizes (be�er viewed in color).

6.2 System Parameter Benchmarking

In this section, we test the system’s performance with different parameters to discover the optimal parameter

set. During these tests, system components such as admission control and feature selection are not enabled.

Additionally, we test a large number of combinations for frame and window sizes, as well as the number of trees

in this experiment. The time cost of testing on the complete data set of 220 hours is prohibitive. As a result, we

obtain the optimal system parameters by testing the system’s performance on a benchmark data set containing

10% of the total data. The benchmark data set is selected by matching the trend of performance change with the

results obtained using the complete data set on a few samples in the parameter space.

6.2.1 Frame and Window Sizes. We first evaluate the system’s detection accuracy with different frame sizes

(i.e., 2ms to 128ms) and window sizes (i.e., 5s to 120s with a step of 5s). During the test, we set the number of trees

in the Random Forest models to 20. Fig. 13(a)-(d) show the detection accuracy for activity, road surface, shoe,

and vehicle types, respectively. Fig. 13(e) summarizes the results by averaging the above detection accuracies.

A general observation from the figures is that our system’s performance is not sensitive to frame and win-

dow sizes. And the optimal frame and window sizes for different categories are close to each other. The optimal

frame size of 32ms is agreed by all four categories. The optimal window sizes for activity, road surface, shoe and

vehicles are 50s, 40s, 65s, and 90s, respectively. From the results of average detection accuracy, the optimal frame

and window sizes are decided to be 32ms and 40s, respectively. In Sec. 6.3, we report the system’s detailed per-

formance on the complete data set under this setting. We use this set of parameters in the following experiments

unless noted otherwise.

6.2.2 Number of Trees. One advantage of using Random Forests as the classification models is their flexibility

of choosing different number of trees to achieve a trade-off between performance and cost. In this test, we

evaluate the system’s performance with different number of trees on the benchmark data set. During this test,

we set the frame size to be 32ms and window size to be 40s following the optimal values obtained from the above

experiment. Fig. 14 illustrates the detection accuracywith different number of trees from 1 to 150. There is a sharp
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Fig. 14. Detection accuracy with different number of trees.

increase in detection accuracy when the number of trees increases from 1 to 20. After the detection accuracy

reaches 98.7% with 20 trees, the increase in tree number does not show a clear positive effect on improving the

system’s detection accuracy. On observing that the time cost for training and testing the models and the memory

cost to store the models increase linearly with the number of trees, we conclude that the best trade-off between

accuracy and resource usage is to set the number of trees to 20.

6.3 Performance Evaluation

Through the above preliminary experiments, we select the optimal system parameters to be frame size of 32ms,

window size of 40s, and the number of trees to be 20. In this section, we evaluate the system’s performance on the

complete data set using these parameters. We first present the detailed detection performance on the complete

data set. We then study the impact of different physical factors including gender, age, height, and weight on the

system’s performance. Finally, we study the data imbalance issue in the last experiment.

6.3.1 Detailed Detection Performance. We evaluate the system’s performance using the optimal parameter

set on the complete data set by 10-fold-cross-validation. And the overall result suggests an average detection

accuracy of 93.8%. We break down the results into details by presenting the confusion matrices and computing

the precision, recall, and F1 score for each category as illustrated in Fig. 15.

From Fig. 15(a), the result shows that the average precision, recall, and F1 score for transportation activity

detection are all 0.96, suggesting our system can achieve accurate detection of various activities. Both of the

riding and running activities have the lowest recall of 0.87. Detailed result shows that 10.6% and 12.6% of the

riding and running instances are recognized aswalking, respectively. A possible explanation is that in some cases

the user is riding or running (jogging) slowly which results in a vibration pattern similar to walking.
Next, from Fig. 15(b), the average precision, recall, and F1 score for road surface detection are all 0.91. The

lowest precision of 0.81 and recall of 0.78 are from surface types ceramic and brick, respectively. This is because
10.5% instances of ceramic are recognized as tar, and 12.3% instances of brick are recognized as ceramic or tar.
Possible reasons are ceramic tiles are rough and similar to tar roads, and we mark roads covered with marble

tiles which are very similar to ceramic tiles as brick roads, making it difficult to distinguish from each other.

From Fig. 15(c), the average precision, recall, and F1 score for shoe type detection are 0.95, 0.94, and 0.94,

respectively. Slippers has the lowest recall of 0.87 because 12% of the instances aremistakenly classified as athletic
shoes. It can possibly be explained by the data imbalance issue because the athletic shoes class has much more

instances than the slippers class, which we discuss in detail in Sec. 6.3.3.

Third, Fig. 15(d) suggests our system can detect different vehicle types with average precision, recall, and F1

score of 0.94, 0.94, and 0.93, respectively. The lowest precision of 0.84 and recall of 0.58 are from vehicle types

car and metro, respectively. Further study shows that 8% of the instances classified as car are actually on foot.
And 30% of the instances of metro are classified as bus. A possible explanation for the low precision of car is
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Fig. 15. Detection result breakdown.

some instances of sitting in the car is collected when the car is not moving or moving slowly, making it easy to

be confused with the idle class whose corresponding vehicle type is on foot. And the low recall rate of metro is
possibly due to the data imbalance issue because bus has two times more instances thanmetro, and the vibration
patterns of these two vehicles are sometimes similar. Another observation made from the results is that the

system cannot effectively detect whether the user is walking in a motorized vehicle (bus or metro), or on the

road. It mis-classifies all the instances of walking in the metro to walking on the roads, and 90% of the instances

of walking in the bus to walking on the roads. A possible explanation is the subtle vibrations from the vehicles

are overwhelmed by the vibration and pressure signals caused by walking.

In summary, our system achieves an average detection accuracy of 93.8%, suggesting the proposed sensing

and detection system is effective in identifying different transportation activities and their circumstances.

6.3.2 Impact of Physical Factors. As shown in Table 2, the six subjects vary in physical factors including

gender, age, height, and weight. In this section, we conduct experiments to understand how these physical

factors impact the performance of our system. For each of the four factors listed above, we group the subjects

into two groups as shown in Fig. 16(a). We perform cross-group evaluation by using one group for training and

the other group for testing. The average detection accuracy is used to evaluate the system’s performance.

Fig. 16(b) illustrates experiment results. The black bars show the average cross-group detection accuracy

with respect to different physical factors drop to around 40%. By comparing to the results presented in Sec. 6.3

above, we conclude that the system is dependent on physical factors. A closer study reveals that the physical

factors affect the detection of different categories differently. The activity and vehicle types are less affected for

remaining a detection accuracy of above 60% and 50%, respectively. The shoe and road surface types suffer more

from factor differences with accuracies drop to around 30%. Possible explanations include: 1) the sensors are not
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calibrated to have the same response level to vibrations; 2) the subjects are wearing different shoes even if they

belong to the same class, e.g., dress shoes for males and females are quite different, which further affects the

detection of road surfaces.

We make a simple attempt to deal with the above issues by normalizing the window-level features. And the

results shown by the gray bars in Fig. 16(b) suggest a 7% improvement in accuracy on average. Although the

above experiment results suggest our system is dependent to physical factors, we demonstrate the potential of

improving the system’s performance by a simple technique. Further directions include calibrating the sensors,

collecting more training data, building more optimized models, and etc, which we leave for our future work.

6.3.3 Data Imbalance Issue. As shown in Table 3, the distribution of data is imbalanced across different sub-

jects and labels. And the results presented above in Sec. 6.3 also suggest the detection performance of the metro
and slippers is affected by the imbalance issue. However, the impact of data imbalance on the system’s perfor-

mance is complicated. On the one hand, the spatial correlations modeled in our classification framework may be

overfitting the distribution in the training data. As a result, the detection results may bias to labels with more in-

stances. On the other hand, if such bias really exists in the real-world, it is expected to improve the performance

of the system.

To study this issue, we obtain a balanced data set by carefully resampling the original, biased data set following

two criteria: 1) we balance the number of instances for each label combination to approximately 240 instances;

2) for each label combination, we select instances evenly from subjects providing the data to eliminate the

imbalance among subjects. We compare the results obtained from the original, biased data set against the results

from the balanced data set. The results illustrated in Fig. 17 suggest the two data sets achieve comparable results

with the performance on the balanced data set a little lower on average accuracy by 0.37%. For some categories,

including activity and road surface, the system’s performance on the original data set is better than on the

balanced data set by 1%, and 2.5%, respectively. For the other two categories, the balanced data set outperforms

the original data by 1.2% and 0.8% for vehicle and shoe type detection, respectively.

Combining the results presented in this experiment and in Sec. 6.3, we conclude that the data imbalance issue

has an impact on the system’s performance, especially for vehicle and shoe detection. However, such impact

is insignificant in general. Several conclusions can be drawn from the results. On the one hand, it suggests the

results on the complete data set are valid because the data imbalance issue does not have a decisive impact on

the results. On the other hand, it also suggests the spatial correlations modeled in our classification framework is

not as important as expected. A possible explanation is that the individual classifiers are carefully tuned during

benchmarking in Sec. 6.2. And when the parameters are less optimized, the temporal and spatial correlations can

effectively improve the results by providing chances to fix the detection errors made by the individual classifiers

as shown later in Sec. 6.6.1.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 2, No. 1, Article 42. Publication date:

March 2018.



42:22 • L. Wang et al.

(a) Percentage of filtered frames (b) Detection accuracy

60%
65%
70%
75%
80%
85%
90%
95%

100%

0 1 2 4 8 16 32 64

A
cc

u
ra

cy

α

Activity Surface Vehicle

Shoe Average
0%

10%

20%

30%

40%

50%

60%

70%

0 1 2 4 8 16 32 64
α

Filtered Frames (%)

Fig. 18. Admission control performance with different α values.

Table 4. Examples of features with the highest information gain for different classes. Features are presented in the form

WindowLvFunction-FrameLvFeature (In f ormationGain). Abbreviations for frame level features are listed in Table 1.

Class Features with the highest information gain

Idle vs. Other Activities Var-MFCC5 (0.47), Var-MFCC6 (0.47), Var-MFCC3 (0.47), Var-MFCC4 (0.47), Var-MFCC8(0.46)

Walking vs. Others Activities Var-SubEng7 (0.38), Var-SubEng6 (0.38), Var-SubEng8 (0.37), Max-MFCC1 (0.37), Mean-SubEng7 (0.37)

High heels vs. Other Shoes Q1-MFCC8 (0.23), Q1-MFCC10 (0.22), Med-MFCC11 (0.21), Q3-RSE (0.21), Q1-MFCC6 (0.20)

Athletic shoes vs. Other Shoes Min-SRF75 (0.08), Min-SRF90 (0.07), Min-MFCC2 (0.07), Min-MFCC3 (0.06), Min-MFCC4 (0.06)

Bus vs. Other Vehicles Q1-MFCC11 (0.39), Q1-MFCC9 (0.35), Min-MFCC3 (0.34), Q1-MFCC11 (0.31), Q1-MFCC7 (0.30)

Car vs. Other Vehicles Med-MFCC11 (0.06), Med-MFCC8 (0.06), Med-MFCC10 (0.06), Med-MFCC6 (0.06), Q1-MFCC4(0.06)

Grass vs. Others Road Surfaces Q3-SubEng2 (0.04), Med-SubEng2 (0.04), Med-SubEng3 (0.04), Q3-SubEng3 (0.04), Skew-ZCR (0.04)

Mud vs. Others Road Surfaces Skew-RSE (0.15), Mean-RSE (0.15), Q3-RSE (0.15), Med-RSE (0.15), Max-RSE (0.15)

6.4 System Components

We evaluate the performance of system components in this experiment.

6.4.1 Frame Admission Control. We evaluate the performance of frame-level admission control by setting

different scaling factors (α ). The result is illustrated in Fig. 18. The baseline is set to α = 0 with admission control

disabled. We then increase α by powers of two (i.e., 2n ) starting with n = 0. When α = 1, 1% of the frames are

filtered and the resulting detection accuracy is similar to the baseline with a slight increase. For α = 2, 23% of the

frames are filtered and the detection accuracy drops for 1.6% on average. By further increasing α , the percentage

of frames filtered increase linearly with n and the accuracy also decreases. When α = 64, 61.2% of the frames

are filtered and the average detection accuracy drops by over 7%.

It can be observed from Fig. 18(b) that by increasing α to 64, the detection accuracy for shoes experiences

more decrease (approximately 10% drop) than other categories. A possible explanation is that different shoes are

discriminated by the differences in the subtle vibrations from the soles. By increasing α from 32 to 64, frames con-

taining subtle vibrations but with low overall energies are filtered, leading to the sharp drop in detection accuracy

for shoes. On the contrary, the loss in accuracy for activity detection is relatively less significant (approximately

3.5% drop) by the mean time. This result suggests activity detection possibly rely more on the variance of general

signal patterns rather than the subtle vibration patterns in each frame.

In summary, we conclude that frame admission control will decrease the performance of the system, which

should be used carefully. For our data set, the result suggests that the largest α is 16 when 34.2% frames are

filtered while keeping the average detection accuracy to be above 90%.
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Table 5. System overheads.

Configuration CPU Memory Battery

Baseline 11% - 40% ≤42MB 660mW

Admission Control 10% 11% - 38% ≤41MB 555mW

Admission Control 20% 10% - 33% ≤38MB 592mW

Admission Control 30% 10% - 33% ≤35MB 520mW

Admission Control 40% 7% - 30% ≤33MB 443mW

Admission Control 50% 7% - 30% ≤30MB 433mW

Feature Selection 7% - 30% ≤32MB 473mW

6.4.2 Feature Selection. Extracting and classifying the 360-dimensional feature vector is prohibitive for the

smartphones for its CPU, memory, and battery power consumptions. As a result, we propose to use feature se-

lection techniques to reduce the feature numbers. To select a small subset of features with strong discriminative

power, we compute the information gain of each feature to measure its ability to classify the instances. We treat

the problem as a series of binary classification problems when computing the information gain. For example,

given the instances of different types of shoes, we compute the information gain of each feature when discrim-

inating one type of shoes against all the other types of shoes. The same approach is applied to activities, road

surfaces, and vehicles.

Table 4 lists some examples we obtained from the results. The complete list of detailed results is omitted due

to page limits. The table suggests for the idle activity, the combinations of window level function variance with
different MFCC features are the most discriminative features. For the walking activity, the preferred window

level functions and frame level features are more diverse. Frame level features of high-frequency Sub-band En-
ergy (e.g., SubEng6-8) are more important than other features. For the high heels, frame level MFCC features

corresponding to the high-frequency components of the signal (e.g., MFCC8, MFCC10, and MFCC11) are more

important compared to the athletic shoes which prefers SRF and low-frequency frame level features such as

MFCC2, and MFCC3. For different vehicles, MFCC features have shown to be important for both the bus and
car. However, the corresponding window level functions are largely different for the two vehicles. Finally, for

different road surfaces, low-frequency Sub-band Energy (e.g., SubEng2-3) are important frame level features for

the grass, while the RSE features dominates the most important frame level features for the mud class.

Based on the above analysis, we select a feature subset by combining the features with the top ten highest

information gain for different classes. The final selected window-level feature vector contains 85 features. Com-

pared to the original 360-dimensional feature vector, the selected feature vector is approximately 24% in size.

From Fig. 19, it is clear that the selected feature set achieve similar result (1.1% drop in accuracy on average)

compared to the original one with much fewer features extracted. Further studies presented next in Sec. 6.5.1

suggest the system’s overheads are reduced by feature selection.

6.5 System Overheads

In this section, we evaluate the system’s overheads on CPU, memory, and power consumptions on the collection

and processing node (i.e., the smartphone), and the battery consumption of the sensor.

6.5.1 Smartphone’s Resource Overheads. In this experiment, we evaluate the system’s overheads on com-

puting, memory, and battery power under different configurations. The test is conducted on a Google Nexus 5

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 2, No. 1, Article 42. Publication date:

March 2018.



42:24 • L. Wang et al.

Table 6. Accuracy comparison of different approaches.

Category
num trees = 20 num trees = 1

Independent Proposed Independent Proposed

Activity 95.1% 96.3% 89.5% 94.3%

Road Surface 87.6% 90.8% 73.2% 81.2%

Shoe 92.4% 94.3% 81.6% 87.8%

Vehicle 91.6% 93.6% 84.1% 90.8%

Average 91.6% 93.8% 82.1% 88.5%

smartphone. We use the systemmonitor provided by Android Studio2 to measure the system’s CPU andmemory

costs, and use PowerTutor3 to monitor battery power consumption.

Table 5 summarizes the system’s overheads under different configurations. The baseline configuration disables

both frame admission control and feature selection. For frame admission control, we set different rates of filtered

frames to measure the system’s overhead. For feature selection, we compare the system’s overheads with the

baseline configuration. When testing the overheads of one system component (i.e., frame admission control or

feature selection), we disable the other component to make a clear comparison with the baseline.

The CPU usage during each test varies largely across time. Generally, there is a mild decrease in CPU usage by

enabling frame admission control and feature selection, which can be observed fromTable 5. Similar observations

can also be made for memory usage. From Table 5, there is a steady decline in battery power cost by enabling

frame admission control and feature selection. Generally, our system’s overheads are comparable to the non-

speech body sounds processing system proposed in [26] and GPS positioning systems on smartphones [20]. We

plan to explore techniques such as using the smartphones’ co-processors [9] or task offloading [24] to reduce

the system’s overheads.

In summary, frame admission control and feature selection have shown to be effective in reducing the system’s

overheads. Combining the performance testing results presented above, a reasonable system configuration is to

set the frame admission control rate to be ≤ 40% and enabling feature selection to balance the system’s detection

accuracy and overheads.

6.5.2 Sensor’s Power Consumption. We evaluate the power consumption of the sensor by measuring the bat-

tery’s output currency using an ammeter. The result suggests the sensor’s power usage is approximately 21mA

on average, and the 150mAh built-in battery can support the sensor to work continuously for 7.14 hours in

theory. Real-world tests suggest the battery can actually support the sensor for 6.76 hours without recharging.

The working hours of the sensor is sufficient for daily usage scenarios because we can further decrease the

power consumption by turning off the sensor during the idle periods, which can be effectively detected by the

smartphone’s built-in inertial sensors as shown later in Sec. 6.6.3.

6.6 Comparison Studies

In this section, we present the results of comparison studies on three aspects: 1) compare with a naïve system

designwhich uses four independent classifiers; 2) comparewith othermodels including two extensions of HMMs;

and 3) compare with other sensing modalities.

6.6.1 Compare with Independent Classifiers. In this experiment, we compare the performance of the proposed

classification approach (temporal and spatial correlated classification) against a naïve solution that builds four

independent classifiers for the four categories to show its effectiveness.

2https://developer.android.com/studio/index.html
3http://ziyang.eecs.umich.edu/projects/powertutor/
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Fig. 20. DAG representations of FHMMs and CHMMs used for comparison studies.

Table 7. Accuracy comparison of different approaches.

Model Activity Road Surface Vehicle Shoe Average

FHMMs 81.8% 58% 73.7% 72.6% 71.5%

CHMMs 88.1% 62.4% 81.1% 74.9% 76.6%

Proposed 96.3% 90.8% 94.3 % 93.6% 93.8%

Table 8. Accuracy comparison of different sensingmodalities

(two male subjects, without external noise).

Category Vibration Audio Inertial Vibration + Inertial

Activity 98.1% 98.8% 97.5% 97.8%

Road Surface 91.8% 94.9% 79.1% 93.1%

Shoe 98.5% 95.8% 79.3% 99.1%

Vehicle 98.4% 98.6% 91.8% 98.7%

Average 96.7% 97% 86.9% 97.2%

As shown in the left half of Table 6, when the number of trees is set to the optimal value of 20, the proposed

approach outperforms the naïve approach by 2.1% on average. The largest improvement is achieved for the road

surface class that the proposed approach shows a 3.2% increase in detection accuracy than the naïve one. The

improvement seems to be insignificant because the classifiers are carefully tuned through extensive experiments

as presented above. When the parameters are less optimized, e.g., when the number of trees is set to 1 as shown

in the right half of Table 6, the proposed approach improves the classification accuracy by 6.4% on average, and

8% for the road surface category. Further studies into the results suggest an important reason for the above

improvements lies in that the proposed temporal and spatial correlated classification approach can recover the

classification errors made by the independent classifiers.

6.6.2 Compare with FHMMs and CHMMs. In this experiment, we compare the performance of the proposed

classification model with two extensions of HMMs that are often used for activity recognition. The results are

obtained by testing on the same data set as used in Sec. 6.3 with 10-fold-cross-validation.

The models selected for comparison are Factorial Hidden Markov Models (FHMMs) [10], and Coupled Hidden

Markov Models (CHMMs) [4, 37]. As shown in Fig. 20, for FHMMs and CHMMs, the observation sequence

is the sequence of window level feature vectors, and the four hidden state sequences are the label sequences

for activities, road surfaces, shoes, and vehicles, respectively. During the training phase, since the observation

sequence and the corresponding label sequences are already present, we train the models by direct counting

[37]. When testing, given the observation sequence, we use the Viterbi algorithm to decode the label sequences.

While both models model the temporal correlations, the difference between FHMMs and CHMMs is that the

former is composed of four independent chains that only models the temporal correlation while the later adds

cross-chain dependencies that can also model spatial correlations.

Table 7 lists the experiment results which suggest FHMMs and CHMMs also achieve reasonable detection ac-

curacies of 71.5%, and 74.9%, respectively, considering the complexity of the task. CHMMs outperforms FHMMs

by nearly 5% in average accuracy, which is possibly due to the contribution of the spatial correlations modeled
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by the cross-chain dependencies. However, the results also suggest FHMMs and CHMMs are less accurate than

the proposed Random Forest-based model. Based on our experiences during the experiments, we present the

possible reasons as follows. First, it is difficult to precisely express the correlations between the hidden states

and the observations represented by the 360-dimensional feature vector by simply using the emission probabili-

ties. For Random Forest-based approaches, such correlation is first modeled by a collection of decision trees and

then enhanced by the bagging technique, making the detection accurate even with the independent classifiers.

Second, FHMMs and CHMMs are prone to serial failures which means the mistake made in one step can lead to

mistakes in the following steps for a long period. Similar observations are also made during our previous work

on multi-user activity recognition [13]. Additionally, the decoding process of the FHMMs and CHMMs is more

time consuming than the proposed approach. Finally, as a discriminative model, the Random Forest classifier is

expected to outperform generative models such as HMMs on classification tasks with fewer data provided [14].

In summary, the proposed model outperforms FHMMs and CHMMs on our data set. However, it is possible

to improve their performance by tuning the model parameters or using more sophisticated models. Further

discussions on these topics are out of the scope of this paper, which we leave for our future work.

6.6.3 Compare with Other Sensing Modalities. In this experiment, we compare the performance of the pro-

posed system with audio- and inertial sensor-based approaches. Comparison data are collected by asking two

male subjects to collect vibration, audio, and inertial sensor readings simultaneously during their normal daily

activities for over two weeks. For audio-based approach, we use the same system parameters for feature extrac-

tion and detection. To conduct a fair comparison, a bluetooth microphone is attached to the same position of

the vibration sensor on the other foot during audio data collection. For inertial sensor-based approach, we col-

lected data by sampling the built-in sensors of the smartphone used for audio and vibration data collection. Data

from two types of sensors—accelerometer and gyroscope—are collected and both time- and frequency-domain

features [14] are computed.

Without external noise. Table 8 shows the comparison results which suggest that the proposed vibration-

based approach achieves comparable accuracy with audio-based approach when no external noise is present. It

also suggests both vibration- and audio-based approaches outperform inertial-sensor based approaches on road

surface and shoe type detection. However, inertial sensor achieves comparable results on activity and vehicle

type detection, which is consistent with the results of existing inertial sensor-based approaches [15]. Since our

approach involves a smartphone for data collection and processing, inertial sensor-based approach can easily

be integrated into our framework. The combined approach achieves the highest average detection accuracy of

97.2% as shown in the last column of Table 8.

With external noise. Though Table 8 suggests the average detection accuracy of the proposed approach is

slightly lower than audio-based approach, the advantage of the proposed system lies in that it is privacy pre-

serving and resistant to external sounds as discussed above. To further demonstrate this advantage, we conduct

a simple controlled study by asking one subject to sit in a room wearing both the vibration and audio sensors

with another subject walking around him. Detection results show that the proposed vibration sensor correctly

detects the subject to be idle with 100% accuracy while audio-based approach mistakenly recognizes the subject

to be walking in 66.7% of the time.

6.7 Discussion

We provide some discussions on the system’s design and implementation in this section.

First, while the above experiment results suggest the system achieves high detection accuracy, we can further

improve the system’s performance by applying a post-processing step on the results. For example, we can use

low pass filters or Markov models [21] to smooth the detection results. We omit this step in this work to show
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the performance of the system without post-processing the results. We plan to add this function in our future

system implementation to improve the system’s performance.

Second, besides frame admission control and feature selection, we can further reduce the system’s costs by

introducing other low-cost sensors such as accelerometers or gyroscopes to provide more aggressive admission

control policies. For example, users are not likely to change their shoes during running. As a result, we can turn

off the vibration sensor to save energy when user’s state detected by the low-cost sensors remains unchanged.

Finally, during data collection, we find the current vibration sensors are easy to break when performing stren-

uous exercises such as running. We plan to explore newways of encapsulating the sensor to make it more robust

while keeping its flexibility and sensitivity in our future work. We also plan to test different placement strategies

to improve wearing experience and sensing performance.

7 POTENTIAL APPLICATIONS

There are many applications that can potentially be supported by the SpiderWalk system. In this section, we

discuss some of them as follows.

Map generation and tracking. SpiderWalk can be used to generate maps with detailed road condition and

surface information with participatory sensing applications supported by the SpiderWalk system. A SpiderWalk
augmented tracking application can then accurately track a user’s path even with inaccurate GPS positioning

information, e.g., the user is walking along a brick sidewalk along the side of the main street. The tracking

application can also warn the user on detecting the user has left the sidewalk and stepped into the main street

for pedestrian safety protection [16].

We have built a sample application on top of SpiderWalk which can track the user’s current transportation

activity with rich circumstance information. It also keeps a log of user’s activities and shoe preferences for

persuasion and recommendation purposes. Based on this application, we are now laughing a crowdsourcing

project to generate a detailed map with road surface information and analyze the spatial-temporal distribution

of different activities on our campus.

Personal assistance. Personable preferences such as the most favorite shoes, preferred ways of traveling,

and favorite exercises can be mined from the detection results. Moreover, it is even possible to infer use’s gender,

occupation, age, and habit through long-term activity and context analysis.

The rich circumstance information provided by SpiderWalk can make persuasive applications smarter. For

example, the application canwarn users for possible injuries when exercising in hazard environments or wearing

improper shoes, or suggest the user to jog on roads instead of lawns to protect the environment.

Security and health. As an ultra-sensitive wireless vibration sensor, the applications of the proposed system

is unlimited. It can be applied for person identification for securities. It can also in other application scenarios

such as non-speech body sounds detection [26, 39].

We have also started a project aiming at capturing the abdominal surface vibrations by embedding the con-

tact vibration sensor to the belt. The captured vibration signals are used to detect the bowel sounds produced

by movements of the gastrointestinal (GI) tract, which could be indicators for diseases such as irritable bowel

syndrome, GI bleeding, and other GI symptoms [28].

Due to its advantages such as device simplicity and low-cost, it is hopeful that SpiderWalk will be used in

many real-world applications in the near future.

8 CONCLUSION

In this paper, we introduce the SpiderWalk system that achieves circumstance-aware transportation activity

detection using a novel contact vibration sensor. By using a novel, flexible crack-resistance sensing material

which is ultra-sensitive to vibrations, our system can capture the subtle vibration patterns produced by different
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activities under different circumstances. Comparing to existing work on sensor-based transportation activity

detection, our system can provide information on not only the activity but also its surrounding circumstances

such as road surface, vehicle, and shoe types to meet the increasing demands of emerging applications as dis-

cussed above. By simulating a COTS electret microphone, the proposed contact vibration sensor can easily be

integrated into COTS audio devices, making our system low-cost and ready-to-use in real-world applications.

Moreover, because the contact vibration sensor is worn under the foot and is resistant to external sounds, our

sensor outperforms electret microphone-based solutions on data assignment and privacy preserving issues. Ex-

periments conducted on a real-world data set suggest our system achieves an average detection accuracy of

93.8%, showing the system’s effectiveness. Resource consumption testing results show that the CPU, memory,

and power overheads of the proposed system running on a smartphone is similar to existing audio- and GPS-

based systems, suggesting the proposed system can provide rich circumstance information without increasing

the system’s resource consumption.

As a pilot study on using this novel contact vibration sensor for circumstance-aware transportation activity

detection, there are many directions to follow in the future, including but not limited to: 1) more robust and

optimized sensor design; 2) different placement strategies; 3) pre- and post-processing algorithms; 4) admission

control and duty cycling approaches; and 5) other novel applications.
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