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Abstract—Audio represents one of the most appealing yet least exploited modalities in wireless sensor networks, due to the potentially

extremely large data volumes and limited wireless capacity. Therefore, how to effectively collect audio sensing information remains a

challenging problem. In this paper, we propose a new paradigm of audio information collection based on the concept of audio-on-

demand. We consider a sink-free environment targeting for disaster management, where audio chunks are stored inside the network

for retrieval. The difficulty is to guarantee a high search success rate without infrastructure support. To solve the problem, we design a

novel replication algorithm that deploys an optimal number of Oð ffiffiffinp Þ replicas across the sensor network. We prove the optimality of the

energy consumption of the algorithm. We implement a sink-free audio-on-demand (SAoD) WSN system, and conduct extensive

simulations to evaluate the performance and efficiency of our design. The experimental results show that our design can provide

satisfactory quality of audio-on-demand service with short startup latency and slight playback jitter. Extensive simulation results show

that this design achieves a search success rate of 98 percent while reducing the search energy consumption by an order of magnitude

compared with existing schemes.

Index Terms—Audio-on-demand, wireless sensor networks
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1 INTRODUCTION

THE emerging wireless sensor networks (WSNs) [1], [2],
[3], [4] have been revolutionizing the ways of collecting

information from the physical world [5], [6], [7]. The com-
munity has envisioned a large variety of applications, such
as environment monitoring, scientific observation, under-
water surveillance, and structural health monitoring [8], [9],
[10], [11]. So far, audio represents one of the most appealing
yet least exploited modalities in sensor networks, mainly
because high-frequency audio sampling can produce
extremely large data volumes over bandwidth-limited links.

In this paper, we investigate a new paradigm of audio
services, namely audio-on-demand, in wireless sensor net-
works. We consider a sink/infrastructure free environ-
ment targeting for earthquake disaster management
scenario, where any base station/sink could be damaged
during the disaster. We call our design SAoD, a sink-free
audio-on-demand WSN system. The target application is
post-earthquake search and rescue, which becomes
extremely significant after the hitting of recent constant
violent earthquakes [12]. When an earthquake occurs,
recording and storing acoustic events and providing an
on-demand retrieval service are essential to the later
rescue in such systems. There are two main reasons: 1)
The disaster area is often disconnected from the outside

world, and 2) Most of the acoustic events are recorded
before rescue could take place.

Since individual sensors are limited in their effective
acoustic range, networks of acoustic sensors are needed to
cover a disaster area. The requirements of a reliable audio-
on-demand service are threefold. 1) Acoustic events should
be recorded and stored inside the network because existing
infrastructure if any may be destroyed in ruinous environ-
mental conditions. 2) Without a base station or other infra-
structures, it is difficult if not impossible to efficiently locate
acoustic events. 3) The non-disruptive on-demand playback
of the audio anywhere in the network requires parallel data
transferring and efficient buffer pre-fetching mechanism
due to the limited bandwidth capacity of WSNs.

With the recent advances in NAND flash memory, new
mote prototypes are now available that interface Mica-
class processing and radio hardware to up to 8GB of flash
memory [13]. The increasing in-network storage capability
indeed makes the above store-and-fetch paradigm possi-
ble for WSNs, where the sensory data is stored inside the
network and can be retrieved on-demand. However, exist-
ing infrastructure-free systems investigate only the
“store” [14] side of the store-and-fetch paradigm, leaving
the other side an open issue. For example, EnviroMic [15]
employs a distributed balanced storage mechanism to
store the high-volume sensory acoustic event data inside
the network. However, the sensory data stored inside
EnviroMic cannot be readily accessed before all sensors
are recovered from the experiment venue.

To support retrieval, a straightforward strategy is to
locate the data using flooding. The problem is that flooding
produces a large amount of traffic while the search success
rate cannot be guaranteed. It is natural to utilize replication
strategy to improve search efficiency. However, how to
achieve an optimal replication strategy with minimum
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retrieval energy consumption is not trivial for audio appli-
cations, especially under an infrastructure-free and band-
width-limited wireless sensor network. To address this
problem, in this paper we propose a probabilistic exhaus-
tive replication strategy. We show that, by replicating both
data replicas and query replicas uniformly at random across
the network, the proposed strategy guarantees a high search
success rate with a determined lower bound while the repli-
cation cost is Oð ffiffiffinp Þ, where n is the network size.

Based on the efficient replication strategy, we implement
the buffer pre-fetching module in SAoD system, a real
world sink-free audio-on-demand system over WSNs.
SAoD uses time-division cooperative recording technique
for collecting audio sensory data, where multiple sensors
detecting the same acoustic event form a group with an
elected leader to assign the time slots. Thus, the nodes in
the group record the acoustic event cooperatively in turn.
Consequently, different chunks of an acoustic event are nat-
urally recorded and stored in the form of time addressable
audio chunks by different nodes around the source of the
acoustic event in different time slots.

Instead of replicating raw audio chunks, SAoD encodes
the metadata of chunks residing on a node into a Bloom filter
(BF) and replicates the BF. A Bloom filter is a space-efficient
probabilistic data structure for representing a set. A BF can
support testing whether an element is a member of a set. The
metadata of each chunk includes the time addressable identi-
fier and the location where the chunk is stored. Thus, we can
compress the set of chunks recorded by a node into a space-
efficient bit vector. By replicating the bit vectors across the
network, SAoD further reduces the communication cost for
the replication. During retrieval, a query for a specific chunk
can be evaluated against the BFs. If matched, the raw data
chunk can be obtained from the origin location.

We implement the SAoD system with 30 IRIS motes
equipped with MTS310 sensor boards. The experimental
results show that SAoD provides high quality audio-on-
demand service with very slight playback jitter and short
startup latency. Results of extensive simulations in large-
scale networks show that SAoD’s buffer pre-fetching can
achieve guaranteed success rate while reducing the energy
cost by one order ofmagnitude compared to existing scheme.

The main contributions of this work are threefold:

� We design and implement a real audio-on-demand
system over WSNs and evaluate the performance
using 30 nodes.

� We propose a novel replication strategy which guar-
antees a high chunk search success rate with a deter-
mined lower bound at greatly reduced
communication cost.

� We further reduce the communication cost of rep-
lication by encoding the chunk metadata using
Bloom filter.

The rest of the paper is organized as follows. Section 2
reviews the relatedwork. Section 3 introduces the probabilis-
tic exhaustive replication model. Section 4 describes the
detailed design of SAoD. Section 5 presents the system imple-
mentation and experimental results. Section 6 evaluates the
design in large-scale environment using extensive simula-
tions. Section 7 concludes the paperwith possible extensions.

2 RELATED WORK

Most of the existing work on audio sensor networks
focuses on how to efficiently transfer the sensory data
back to a base station (sink) [16] by either using online
stream compression [17] or customizing high bandwidth
sensor prototype [18].

In [16], Allen et al. deployed 16 sensor nodes on the
upper flanks of the Reventador active volcano to collect the
audio data. The nodes form a multi-hop routing topology
and relay data via a long-distance radio modem to the
observatory. They used the formed wireless sensor network
to continuously sample acoustic data at the active volcano.
A data collection protocol is designed to transfer continu-
ously sampled acoustic data to the base station.

Soroush et al. [19] tackled the problem of online compres-
sion of data streams in a resource-constrained network envi-
ronment, where traditional compression techniques are not
applicable. Particularly, they aimed at fast piecewise linear
approximation methods with quality guarantee. They stud-
ied two versions of the problem which explore quality guar-
antees in different forms. For the error bounded piecewise
linear approximation problem, they designed a fast online
algorithms running in linear time complexity and requiring
a constant space cost.

Li et al. [18] designed and implemented a high band-
width system for quality-aware voice streaming (QVS) in
WSNs. QVS is built upon a new sensor hardware platform
for high-rate audio communication. In their design they
used the transceiver Chipcon CC1100 which has a 64 bytes
FIFO buffer and maximum data rate of 500 kbps. They used
dynamic voice compression and duplication adaptation,
and distributed stream admission control techniques. Their
experimental results show that QVS delivers satisfactory
voice streaming quality.

The above existing work on audio services over WSNs
assumes the existence of a base station [20]. The infrastruc-
ture-based schemes, however, may be problematic when
applied to the audio-on-demand application addressed in
this paper, because a user may hope to access only limited
audio events of interest from any place in the WSN just as
audio events are recorded everywhere. Transferring all the
sensory audio data to a single base station is costly and
infeasible. Moreover, a base station is a centralized point of
failure. The failure of a base station in a disaster will para-
lyze the whole system.

To the best of our knowledge, we are the first to design
and implement an audio-on-demand system over WSNs.
The proposed retrieval scheme based on replication is
different from existing flooding and a geographic hash
table (GHT) [21]. Flooding does not guarantee the success
rate without exhaustively searching all the sensor nodes.
The GHT partitions the name space over the nodes and
has good success rate for key-value search, while it suf-
fers from the problem of exact match. Furthermore,
although the problem of node failure for a key in GHT
can be alleviated by using more than one node for a key,
GHT cannot survive the catastrophic failure. However,
the case that a large number of nodes may be destroyed
is norm rather than the exception in the target application
in this work.
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3 MODEL

The conventional wisdom for searching in a wireless sensor
network without infrastructure support, such as flooding
algorithm, is to replicate the query onto many nodes, which
then evaluate the query on the data they store. While this
works, it does not scale: to guarantee the search success
rate, exhaustive search would require replicating the query
onto every node. SAoD takes a different approach. It per-
forms exhaustive search probabilistically. Before going to
the details of the design of SAoD, we specify the model of
chunk search in SAoD.

3.1 Probabilistic Exhaustive Search Model

Let the replicas of a data be red balls and the replicas of a
related query green ones. Query matching in a WSN is simi-
lar to a procedure of tossing the sets of green and red balls
into a set of bins. Intuitively, with random casting, if the
number of red balls or green balls is large enough, a colli-
sion of two kinds of balls in some bin can be guaranteed
with high probability.

Theorem 1. Given a sensor network with n nodes, if we replicate
r copies of a data and g copies of related queries, both uniformly
at random in the network, the probability that at least one sen-
sor node has both a data replica and a query replica is not less
than 1� e�

rg
n .

Proof. If all the replicas are distributed uniformly at ran-
dom, for any given replica (data or query), the probabil-
ity that it falls in a given sensor node is 1

n, while the

probability that it is not in the given sensor node is 1� 1
n.

After all the number of r replicas are distributed uni-
formly at random, for a given sensor node, the probability

that the node has no data replicas is ð1� 1
nÞr . Thus, for a

given query replica, if it is deployed in a sensor node, the

probability that the node has no data replicas is ð1� 1
nÞr.

Because all the query replicas are distributed indepen-
dently, the probability that none of the nodes with at
least one query replica having any data replicas is

1� 1

n

� �r� �g

¼ 1� 1

n

� �rg

: (1)

Thus, the probability that at least one node has both a
data replica and a query replica can be computed by

p ¼ 1� 1� 1

n

� �rg

: (2)

For the given function fðnÞ ¼ ð1� 1
nÞ�n, we have

lim
n!1 fðnÞ ¼ lim

n!1 1� 1

n

� ��n

¼ lim
n!1 1þ 1

n� 1

� �n�1
� n

n� 1

" #

¼ lim
n!1 1þ 1

n� 1
n�1 � lim

n!1
n

n� 1
¼ e � lim

n!1
n

n� 1
¼ e:

��
(3)

We first prove that fðnÞ is a decreasing function on n,
i.e., fðnÞ � fðnþ 1Þ.

According to the inequality of arithmetic and geomet-
ric means we can find that for any list of n positive real
numbers x1; x2; . . . ; xn, we have

x1 þ x2 þ . . .þ xn

n
� ðx1 � x2 � � � � xnÞ

1
n:

Based on the above inequality, let’s consider the fol-
lowing relations first:

f�
1

nþ1ðnÞ ¼ 1� 1

n

� ��n� �� 1
nþ1

¼ n� 1

n

� �n

�1
� � 1

nþ1
� 1

nþ 1
� n� 1

n
� nþ 1

� �

¼ n

nþ 1
¼ 1� 1

nþ 1

¼ 1� 1

nþ 1

� ��ðnþ1Þ !� 1
nþ1
¼ f�

1
nþ1ðnþ 1Þ:

Thus, we can achieve fðnÞ � fðnþ 1Þ.
According to Eq. (3) we have ð1� 1

nÞ�n � e. After per-
forming some simple operations, we can have

1� 1

n
� e�

1
n

1� 1

n

� �rg

� e�
rg
n

1� 1� 1

n

� �rg

� 1� e�
rg
n :

Thus p � 1� e�
rg
n is proved. tu

Theorem 1 shows that given a number of r data replicas
and a number of g query replicas, if SAoD deploys all the
replicas uniformly at random across the sensor network, the
lower bound of the search success rate of a chunk is

1� e�
rg
n . Given a network size, the lower bound of search

success rate is determined by the product of numbers of
data replicas and query replicas. For simplicity, we use � to
denote rg

n . Fig. 1 shows how the lower bound of success rate

changes with �. It shows that when � ¼ 4, the success rate is
larger than 98.17 percent, while when � ¼ 8, the success rate
is larger than 99.97 percent. Notice that only the product rg
matters; if the product does not change, one can increase g
while decreasing r and retain the same probabilistic bound.

It is not difficult to see that the traditional flooding
scheme need to exhaustively replicate a number of n queries

Fig. 1. Lower bounds of success rate.
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to guarantee the search success rate. By leveraging our
probabilistic exhaustive search model, we can avoid a sig-
nificantly large number of replicas while sacrificing very
slight search success rate. In practice, it is infeasible to con-
duct an exhaustive flooding scheme due to the prohibitively
expensive communication cost. Thus our scheme, which
grantees the success rate with high probability, is more
practical in real systems.

It is clear that the model works when replicas are
deployed uniformly at random across the sensor network.
We will show howwe sample random node and deploy rep-
licas efficiently across the network in detail in Section 4.4.

3.2 Minimizing the Communication Cost

Given a fixed bound of success rate, it is important to save
replicating cost by controlling the number of replicas to
deploy. In Theorem 2 we show that the optimal number of
replicas is determined by

ffiffiffi
n
p

, where n is the network size.

Theorem 2. Given the size of the data replica is Sd while the size
of the query replica is Sq, the optimal numbers of data replicas

and query replicas are in proportion to
ffiffiffi
n
p

, where n is the size
of the network.

Proof. Let e�
r�g
n ¼ 1� p ¼ e�c

2
, we then have r � g ¼ n � c2 ,

where c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ln ð1� pÞp
and p is the search success rate

defined in Eq. (2).
Communication cost tends to dominate the energy

consumption on sensor node in conventional wisdom.
Intuitively, the communication cost is determined by the
number of replicas to deploy. The optimal numbers of
replicas should be achieved with the minimized cost

min Cost ¼ r � Sd þ g � Sq

s:t r � g ¼ n � c2:
�

(4)

We can see that the minimized cost can be achieved
only when r � Sd ¼ g � Sq. By minimizing the above cost,
we achieve the optimal values of r and g

r ¼ c
ffiffiffiffiffiffiffiffiffiffiffi
n � SqSd

q
;

g ¼ c
ffiffiffiffiffiffiffiffiffiffiffi
n � SdSq

q
:

8><
>: (5)

The result shows that the optimal numbers of data/
query replicas are in proportion to

ffiffiffi
n
p

. Thus proved. tu

4 SYSTEM DESIGN

In this section, we present the design of SAoD. We first
briefly describe how the audio events are recorded and
stored. Then, we introduce how SAoD replicates the meta-
data of audio chunks in the compressed form. Finally, we
describe the replicating and chunk discovery scheme.

4.1 Cooperative Recording

SAoD utilizes the cooperative recording scheme proposed
in [15] to split the task of recording an acoustic event into
units divided by time slots among multiple sensors around
the acoustic event. When multiple nodes detect the same
acoustic event simultaneously, they form a group. The
members of the group coordinate to elect a leader, who

assigns recording tasks to individual members in turn.
Thus, an acoustic event file, ai, is naturally segmented on
time. Audio is partitioned into chunks of uniform unit to
make the file addressable on time. Each chunk has a fixed
playing time equal to the length of a time slot. Due to the
limited memory capacity of sensor nodes [22] and the heavy
loads caused by the analog-to-digital converter (ADC) sam-
pling, choosing a proper size of the slot is not trivial. In
Section 5, we will show how we obtain the optimal setting
of time slots in SAoD system in greater detail.

By using the cooperative recording technique, the chunks
of an acoustic event file can naturally be collected by differ-
ent sensor nodes and stored in a distributed way. Without
the cooperative recording technique, when an acoustic
event occurs, a straightforward design will let all the nodes
which detect the event perform the ADC sampling to record
the event. Thus, the same event will be recorded and stored
by multiple sensor nodes, making the scheme costly in both
energy and storage consumptions. The time-division coop-
erative recording design can make audio chunks time
addressable. Therefore in each time slot, one chuck will be
recorded by one assigned node. Such a design greatly
reduces the redundancy of sampling and storage. It also
effectively achieves a better load balance. During retrieval,
different chunks can be fetched from different nodes.

4.2 Metadata Encoding

Instead of replicating the raw audio chunks, we use Bloom
filters [23] to encode the metadata of the chunks residing on
a node. By replicating the metadata in a space-efficient way,
SAoD greatly reduces the communication cost.

A Bloom filter is essentially a bit vector bitvec m with m
bits, initially all set to 0, which facilitates membership test to
a finite set S ¼ fx1; x2; . . . ; xvg of v elements from a universe
U . It uses a set of k uniform and independent hash functions
fh1; h2; . . . ; hkg to map the universe U to the bit address
space ½1;m�. For each element x belonging to S, the hiðxÞth
bits are set to 1 for 1 � i � k. To check whether or not an
item y is in S, we check whether all the hiðyÞth bits are set to
1. If not, y clearly is not a member of S. If all the hiðyÞth bits
are set to 1, y is in S with high probability which can be con-
trolled by the parameters of BF.

After all v elements of S are hashed and inserted into the
BF, the probability that a specific bit of bitvec m is still 0 is

p ¼ 1� 1

m

� �kv

� e�
kv
m: (6)

The probability of a false positive after n elements
inserted in the bitvec m is the probability that a new element
is not in S, but can be separately hashed by the k hash func-
tions to a number k of “1” bits of the bitvec m

f ¼ ð1� pÞk ¼ ð1� e�
kv
mÞk: (7)

Given an optimal choice of k hash functions, the false
positive rate f can be minimized when k ¼ m

v lg2 and the

lower bound of the false positive rate is

fmin ¼ 0:6185
m
v : (8)
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As aforementioned, in SAoD each sensor stores chunks
of different acoustic events in the equipped flash memory.
Fig. 2 illustrates the process that a node in SAoD encodes
the metadata of its chunks. On the top of the figure, the bars
with the same color denote the chunks of the same acoustic
event file. For simplicity, we use cij to denote the jth chunk
(denoted by cj) of the ith acoustic event file (denoted by ai).
SAoD obtains a global unique time addressable identifier of

chunk cij by combining the identifier of the acoustic event

file and the sequence number (time address) of the chunk,
namely aijcj.

By inserting all the identifiers of the chunks in the flash
memory into the Bloom filter, a node in SAoD achieves a
space-efficient bit vector for representing its chunks,
which supports membership queries. The size of the
Bloom filter can be determined by m � kv

ln 2, where k is the
number of hash functions used in the Bloom filter and v
is the maximum number of chunks limited by the capac-
ity of the flash memory.

4.3 Network Size Estimation

As aforementioned in Theorem 2, the optimal numbers of
replicas are determined by the network size n. Without a
base station, it is difficult to obtain such statistics [24]. To
solve this problem, SAoD utilizes a variant of the gossip
algorithm first proposed in [25] to estimate the network
size. The robust algorithm enables every node to quickly
collect the global statistics in the network. The main idea of
the method is as follows. Initially, each node does the
following experiment: it flips a coin up to l times and counts
the number of times the head appears before the first tail. It
saves this count r in a bit vector (all bits initially set to 0) by
setting the rth (counting from the right end) bit of the vector
to 1. Then the nodes in the system network perform a gossip
algorithm. During each round of gossip, each node ran-
domly selects a neighbor and sends its bit vector to the
selected neighbor. The node receiving the bit vector per-
forms a bitwise-or operation between the received bit vector
and its local bit vector, and replaces the local bit vector with
the resulting bit vector. The robust gossip scheme leads the
computation of aggregated information to converge expo-
nentially: after OðlognÞ rounds of gossip, all nodes will get
the estimated network size with high probability [25]. More-

over, the statistical value of n is roughly 2t�1
0:77351 with high

probability, where t is the position of the first “1” bit in the
bit vector counting from the left end.

4.4 Replica Deployment

As shown in Theorem 1, the optimal replication model
requires that the replicas are deployed at random. In SAoD
deployment, we assume that the sensors are deployed uni-
formly at random in a specified area. After SAoD computes
the optimal number of replicas to deploy according to
Theorem 2, it samples the optimal number of random loca-
tions in the fixed area anddeploys the replicas of themetadata
bit vector to the nodes nearest to the locations. Before casting
all the replicas to the set of selected nodes, it forms a minimal
spanning tree among the randomly sampled/computed
nodes. Here, the logical neighbors in the minimal spanning
tree communicate with each other using the underlying geo-
graphic routing algorithms [26]. The replicas are deployed
using multicast along the minimal spanning tree. Fig. 3 illus-
trates an example of the process of replica deployment across
a rectangle with 4	 104 sensors deployed uniformly at ran-
dom. The bright green nodes are the ones with replicas
deployed through the minimal spanning tree. Note, the loca-
tion information of the source node is attachedwith the Bloom
filter for chunk downloading during retrieval. Algorithm 1
describes themetadata replication strategy in detail.

Algorithm 1.Metadata Replication

Require: EstimatedNetworkSize ¼ n is achieved;
1: create an empty bit vector withm bits for node p, BFp;
2: for all chunks in the local flash memory of node p do
3: insert the identifiers of the chunks into BFp by setting

the hashing functions fhjð�Þ; 1 � j � kg;
4: end for
5: compute r, the optimal number of replicas according to
Theorem 2 using the gathered statistics n;

6: multicast BFp attached with locationp, the location of node
p, through the minimal spanning tree formed with the
nodes nearest to the number of n0 sampled locations;

7: return

4.5 Query Evaluation

During playback, the SAoD buffer pre-fetching module
issues queries asking for the set of missing chunks in the
pre-fetching window. SAoD replicates the query replicas to
an optimal number of randomly and uniformly sampled
nodes in the similar way shown in Algorithm 1. Every
receiving node checks all the Bloom filters replicated locally.
The member verification mechanism of the Bloom filter can
effectively enable chunk discovery. If any chunk is tested to

Fig. 2. Metadata encoding. Fig. 3. Replica deployment.
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be contained in a Bloom filter, the replica is assumed to be
the desired result with high probability. The locationp

attached with the chunk identifier is then returned for the
buffer pre-fetching module to access the chunk. Note, due
to the false positives of Bloom filters, the returned results
may contain undesired ones with very low probability. This
may lead to a slight decrease of the precision of the final
results while keeping the recall rate guaranteed. If a false
positive result is returned, SAoD filters it by simply sending
the query to the node to evaluate the query locally. If no
matching results, no actual chunks will be transferred. In
Section 6, we will further discuss how to adjust the Bloom
filter settings to achieve the tradeoff between the precision
and the communication cost. It is not difficult to see that the
chunk discovery algorithm can achieve better recall and
latency than expected by Theorem 1, because the un-desig-
nated nodes on a path forwarding the queries can also pro-
vide data if they have. Algorithm 2 describes the query
evaluation process in detail.

Algorithm 2. Query Evaluation

1: R �;
2: for all BFs replicated in a node do
3: for all desired chunk t in the query Q do
4: if 8ðjÞð1 � j � kÞs:t:BFp½hjðtÞ� ¼ 1 then
5: R R [ fðlocationp; tÞg;
6: end if
7: end for
8: end for
9: return R.

5 SYSTEM EXPERIMENTS

We have implemented SAoD system over a real testbed. The
wireless sensor testbed consists of 30 IRIS motes all
equipped with a MTS310 sensor board and running
TinyOS [27], [28]. The IRIS mote is a widely available, low-
cost and low-power platform. It basically inherits the
MICAz mote with the improvement of a larger RAM (from
4 KB to 8 KB) and a longer communication range. Each IRIS
mote has a 512 KB flash memory for storing audio data.
Although the flash memory is limited, it is sufficient to eval-
uate the performance of SAoD.

Fig. 4 illustrates the prototype system, deployed uni-
formly in a 5	 6 gridwith 30 nodes in the open field of a local
sports stadium. The distance between two neighboring nodes
is three meters. Thus the prototype system covers an area of

180 m2. To set up the testbed, each node is equipped with a
microphone capable of acquiring acoustic events. An audio
source is broadcasted from a random location within the grid
area. The sensors record the acoustic events using the cooper-
ative recording technique in a time-division manner. All the
chunks are stored into various nodes in the network. A node
(i.e., IRIS mote) is placed randomly in the area to issue
queries and gather acoustic chunks to feed the buffer of the
player in the connected laptop. In the experiments, we let
sensors start to work on the time of deployment [29]. In the
real applications, to save energy the sensor nodes of SAoD
are usually kept in the sleep mode [30]. In emergency of the
target applications, nodes can be triggered by the sensor’s

accelerometermodule [31] because the vibration of the sensor
is likely to be the indication of the happening of earthquake.

As aforementioned in Section 4.1, the key parameter in
the system design is the length of time slot during coopera-
tive recording. In the system experiments, we found that
choosing the length of the time slot is highly related to the
memory size of IRIS mote and the sampling frequency of
the sensor board. The IRIS MTS310 motes used in this
experiment are equipped with 8 KB memory. We vary the
sampling frequency and observed when sampling fre-
quency is over 7 KHz the failures surge in flash write. This
is because sampling and flash write cannot perform concur-
rently on IRIS MTS310. The flash write operation cannot
start before the sampling operation finishes. Thus, a sensor
node need to store the data in the memory during the time
slot assigned to it. After the end of the time slot, the data
will be written to the flash. Thus, we need to fix the bound
of time slot with an acceptable sampling frequency to avoid
memory overflow.

In the experiment, we set the sampling frequency to
7 KHz by setting the MTS310 sensor board’s parameter
SAMPLE_INTERVAL to 143ms. At the same time, the
length of time slot is set to 700 ms. With this setting, the pro-
gram memory is almost full at 7,800 B, which pushes the
performance examination close to the system limits. In fact,
the sampling frequency of the MTS310 sensor board can be
configured up to 16 KHz. Due to the limit of memory size in
the experiment testbed, we limit the sampling frequency at
7 KHz in the experiments. In practice, a system designer
can choose motes configured with larger memory capacity
and adjust the sampling frequency to improve the quality.

In the experiment, the chunks are pre-fetched from the
network by using the query evaluation algorithm in
Section 4 and fed to the buffer for the player. In the proto-
type, the client node performs the following scheduling
algorithm. Every time slot, the scheduler checks the next
b chunks. If all the chunks are available, it starts/contin-
ues playing while keeping fetching the chunks in the pre-
fetching window with the size of aþ b chunks. If not, it
stops and fetches the missing chunks in the next aþ b

chunks. Once the next b chunks are all available, it
resumes the playback. For smooth playback, the player

Fig. 4. System deployment.
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pulls the fetched chunks from the head of buffer list at the
playback speed. It is clear that the buffer settings influ-
ence the system performance and quality of service. We
vary the parameters a and b in the scheduler to optimize
the buffer settings.

In the experiments we mainly examine the quality of ser-
vice of SAoD. We consider three metrics, startup latency,
jitter, and playback continuity.

Startup latency quantifies the waiting time from the
audio event is requested until the playback starts. In
SAoD design, startup latency is an important metric
because in the target applications such as earthquake res-
cue, a quick response from the system is critical. In the
experiments, we adjust the buffer settings and examine
the startup latency.

Jitter quantifies the waiting time during playback. In the
target earthquake rescue application, an acceptable play-
back quality with slight jitter is important for estimating the
situation and determining the rescue plan for different
cases. We can also use the waiting time per chunk to com-
pute the average jitter. As aforementioned in the above
scheduling algorithm, if any chunk is missing in the next
b-chunk window in the buffer, the playhead stops for buffer
pre-fetching until the next aþ b chunks are all available.

Playback continuity is defined as the total delay time
divided by the number of played chunks. Here, delays
include startup latency and all playback jitters. We ignore
the cases requiring the seek and pause operations in this
prototype

Continuity ¼ startup latencyþ playback jitters

number of played chunks
: (9)

The unit is seconds per chunk played. Lower continuity
values are better, representing better playback continuity.

Fig. 5 shows that the startup latency increases nearly line-
arly when the parameter b increases, while the startup
latency has very slight change with different settings of
parameter a. Thus, we prefer to choose a smaller b for a
short startup latency. However, Fig. 6 indicates when b is
less than four, the average playback jitter is much worse
and such worse jitter can be reduced by increasing a.

As we can see in Fig. 8 when the entire pre-fetching win-
dow size increases to 11, the average playback jitter
decreases to zero. Fig. 7 shows that the optimal settings of
the buffer parameter are b ¼ 5 and a ¼ 4, which can achieve
the minimized buffer size with no playback jitter and short
startup latency.

Figs. 9 and 10 indicate that the playback continuity is dom-
inated by the parameter b. This reveals that most of the user

Fig. 5. Startup latency.

Fig. 6. Average jitter changes with b.
Fig. 8. Average jitter changes with a+b.

Fig. 7. Average jitter changes with a.

Fig. 9. Continuity changes with b.
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waiting time in SAoD system is startup latency. Due to the
slight jitter, startup latency is the most important factor and
havemuch heavierweight in the continuity computation.

Fig. 9 shows that with a higher setting of b (b � 10), the
best choice of a is a moderate value a ¼ 5. A smaller a, such
as a ¼ 2, incurs frequent short stops. On the other hand, a
larger a, such as a = 7, leads to fewer but longer stops.

Based on the above analysis, in the SAoD system we set b
¼ 5 and a ¼ 4. The experimental results reveal that playback
is quite fluent with very slight jitter and short latency.

Fig. 11 shows the waveform of a traditional Chinese
music named “Liangzhu” played on guitar, which is used
in the experiment. The frequency of a guitar ranges from
70 Hz to 1 KHz, which is quite similar with the frequency
range of the human voice. Moreover, the audio frequency
in a single guitar music, such as “Liangzhu”, varies more
significantly than that of the voice from a single specific
person. Using this method we can evaluate the perfor-
mance of this design for different audio frequencies.
Thus, we can examine the performance of this design for
different audio frequency. The higher part of Fig. 11 is
the waveform of the original music before transmission.
The lower part is the waveform played by SAoD. Result
shows how the waveform of SAoD reproduces that of the
original one.

6 SIMULATIONS

In this section, we evaluate the design using simulations
in large-scale networks. We first introduce our simulation
methodology and the setups. Then we specify the metrics
used for the evaluation. At last we present the results
comparing with existing schemes. In the comparison we
use the flooding scheme as the baseline, since it is exten-
sively used in the literatures. To make a more fair com-
parison, in the baseline scheme we also replicate the data
in the same way as SAoD.

6.1 Simulation Setups

In the simulation, we put 10; 000 nodes on the grid of a
1,000 m 	 1,000 m rectangle and then perturb each point by
a random shift following a normal distribution with s ¼ 3,
which has been widely treated as an approximation for the
manual deployment of sensor nodes in many literatures [32].
The energy dissipation for sensor communications follows
the widely used path loss model [33], [34].

The communication radius of each node is set to 20 m.
We randomly deploy a number of 10

ffiffiffi
n
p

audio sources.
Each source can be detected within a distance following a
normal distribution with m ¼ 19 and s ¼ 2. The length (ms)
of an audio event follows a normal distribution with
m ¼ 2; 000 and s ¼ 500. We simulate the cooperative record-
ing by randomly assigning the audio chunk among the
nodes within the radius the audio source can be sensed.
According to the de facto standard used by TinyOS [27],
every message in our design has a limited length of 46 bytes
with 28 bytes payload, 11 bytes header information and
7 bytes metadata. During the search process, we randomly
select a node to issue queries.

6.2 Metrics

SAoD design considers both quality of service and system
efficiency. Quality focuses on user-perceived qualities, such
as chunk search latency and success rate, while efficiency
focuses on resource utilization, such as energy consumptions.
We describe themetrics used in the evaluation as follows.

Energy consumption. Saving energy is critical in SAoD
design. Since communication tends to dominate the energy
consumption on sensor node in conventional wisdom [35],
we carefully examine the communication cost of this design.
Following the path loss model [34], the energy spent in trans-
mitting one message of size k bits over a distance d is com-

puted by: EtxðdÞ ¼ k"da þ kEelec, whereEelec ¼ 50	 10�9, " is
the transmitter amplifier (" ¼ 10�11 for a ¼ 2, and " ¼ 13	
10�16 for a � 3) , and a is the pass-loss exponent (2 � a � 4).
The energy spent in receiving one k-bits message is computed
byErxðdÞ ¼ kEelec.

Success rate. In this design, the chunk retrieval success
rate is critical to the quality of audio services. Success rate is
defined as the fraction of queries which have returned
matched chunks if exist. Ensuring a high success rate is the
main challenge in the design of a sink-free audio-on-
demandWSN.

Energy efficiency. We define the energy efficiency as the
ratio of energy consumption to the success rate. Compared
with the energy consumption and the success rate, the energy
efficiency is a more fair metric. Lower energy efficiencies rep-
resent greater success rate with less energy consumed.

Search latency. A short search latency is always desirable in
the audio-on-demand service inWSNs [36], [37]. It is defined
as the duration between the time when a query is issued and
the result is returned. It is the sum of the latency during each

Fig. 10. Continuity changes with a. Fig. 11. Playback waveform.
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hop in the underlying wireless links. The time required to
transfer a packet includes the propagation time as deter-
mined by the distance between the underlying nodes and
the transmission time. The transmission time of a k-bits mes-
sage is computed by: ETX 
 k

B, where B is the bandwidth

(bps) of a wireless link. ETX is the number of expected trans-
missions, which incorporate the possibility of re-transmis-
sion caused by packet loss following the packet loss model
by Jerry et al. [38].We ignore the backoff time in ETX for sim-
plicity, although the backup time can be estimated easily. In
the SAoD design, the playhead moves ahead only when the
buffer is full. Fast locating and pre-fetching the chunks are
quite important to the system [39], [40].

Precision. Precision captures the fraction of relevant
chunks in the returned results. Due to the false positives of a
Bloom filter, some returned results may not be the desired
results. If a false positive result is returned, SAoD needs to
evaluate the query by sending the query to the node holding
the raw data.

6.3 Results

In the baseline flooding scheme we set the value of Time to
Live (TTL) to 25. When simulating SAoD scheme, we set
� ¼ 4 .Tomake the comparison fair, the flooding is performed
with the same data replica deployment as that of SAoD.

It is clear that the settings of the Bloom filter parameters
including m and k are critical to the performance of our
scheme. We first vary the setting of k from 1 to 30 and find
that when k ¼ 19 the false positive of a Bloom filter is quite
acceptable. Fig. 13 plots how the precision changes with the
parameter k in detail.

Since different nodes in the network may have different
numbers of chunks, the setting of m for the Bloom filter
should vary according to this number. We set the value of

m by: m ¼ vk
lg2, which achieves the lowest false positive of

Bloom filters, and compare the precision with the case with
fixed m0 setting throughout the network, where m0 is the
average value of the different m values chosen above. This
means that using fixed m0 throughout the network and
using optimized m values in different nodes will have the
same replication energy cost. Results in Fig. 12 show that
with the optimal m value in each nodes, we can achieve an
average precision of 98.35 percent while the precision with
a uniformedm0 is only 0.016 percent.

From the above results, we set k to 19 and compute an
optimalm in the following experiments.

Fig. 14 shows the search success rate. It indicates that the
SAoD scheme greatly outperforms the baseline scheme. The
average search success rate of flooding is 70:8 percent, while
the search success rate of SAoD is 98:1 percent. The results
show that the SAoD achieves perfect chunk discovery suc-
cess rate, which is critical for our target application. In prac-
tice, we can adjust the parameter � to tradeoff between
search success rate and resource consumption.

Fig. 15 shows how the search success rate changes with
the network size. It shows that the search success rate of
SAoD remains perfect when the network size increases,
while the success rate of flooding decreases greatly. This
reveals that the SAoD scheme is more scalable than the
flooding scheme.

Fig. 16 examines the energy consumption of SAoD. The
lowest energy consumption of the flooding scheme is about

Fig. 12. Optimal settings ofm in Bloom filters.

Fig. 13. Optimal setting of k in Bloom filters.

Fig. 14. Success rate.

Fig. 15. Success rate changes with network size.
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0.5 J while the highest energy consumption of SAoD is
0.09 J. The average energy consumption of a query using
flooding is 1.36 J, while the average energy consumption of
a query using SAoD is 0.073 J. The results show that the
SAoD replication strategy is indeed cost-efficient. It reduces
the energy consumption to more than one order of magni-
tude lower than that of flooding scheme.

Fig. 17 plots how the energy consumption changes with
the network size. It shows that the energy consumptions of
flooding and SAoD both increase with the network size.
The energy consumption of flooding increases sharply
when the network size increases, while the energy con-
sumption of SAoD changes slightly with the network size. It
is not difficult to see that the energy consumption of SAoD
is linear with the square root of the network size. This dem-
onstrates that the replica deployment strategy of SAoD is
quite efficient.

Load balance is important for a wireless sensor net-
work [41], because the overload of some sensor nodes will
make them die quickly and this can paralyze the entire net-
work. Fig. 18 shows the loads of all the nodes in the net-
work. It reveals that the loads are balanced among the
nodes in the SAoD network.

Figs. 19 and 20 plot the energy efficiency of SAoD. Fig. 19
shows that the average energy efficiency of SAoD query is
0.103 while that of flooding is 1.921. This means a 19	 per-
formance improvement. Fig. 20 illustrates the energy effi-
ciency of SAoD is much better than that of flooding in
different network size. When the network size increases the
improvement also increases.

Fig. 21 illustrates the precision of SAoD. It shows that the
average precision of SAoD query is 98.4 percent which is

quite acceptable. Although due to the false positives of Bloom
filters, the system cannot achieve a precision of 100 percent,
the cost of removing the false positive is cheap (Section 4.5).

Fig. 22 shows that the precision of SAoD scheme
decreases very slightly when the network size increases.
This is because that when the network size increases, the
number of query replicas increases. Given a fixed false posi-
tive of Bloom filter, the more the queries are evaluated, the
more false results will be returned. Thus, the precision may
decrease slightly.

Fig. 23 plots the latency of SAoD. It shows that 19.7 per-
cent SAoD queries have shorter search latency than those of
flooding, while overall the latency of SAoD is slightly larger.
This is because SAoD utilizes the minimal spanning tree to
multicast the query replicas while the flooding scheme fol-
lows the shortest path to propagate the queries. The average
latency of SAoD is 28.72 ms while the average latency of

Fig. 17. Energy consumption change with network size.

Fig. 18. Load balance.
Fig. 16. Energy consumption.

Fig. 19. Energy efficiency.

Fig. 20. Energy efficiency change with network size.
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flooding is 26.54 ms. The results show that in the 1,000 m 	
1,000 m area with 10,000 nodes the longest latency of SAoD
is about 281 ms. Such a low latency is quite acceptable in
real-world systems.

Fig. 24 shows that the search latencies of both scheme
increase with the network size. The results show that the
search latency is linear with the network size in square root
scale.

Fig. 25 shows the data replication costs. We assume that
each chunk identifier takes 20 bytes. It shows that by repli-
cating Bloom filters, the SAoD scheme greatly reduces the
energy cost for replicating.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we design and evaluate SAoD, an audio-on-
demand system over WSNs. SAoD stores the audio data

inside the network for retrieval. We show mathematically
that SAoD achieves high success rate with determined
lower bound for chunk retrieval at the cost of Oð ffiffiffinp Þ.
Instead of replicating the raw audio data, we use Bloom fil-
ters to compress the metadata of chunks. We implement a
real system based on IRIS mote as well as conduct compre-
hensive simulations to evaluate this design.

Equipped with the results obtained in this study, we see
great potentials of applying SAoD to a wide range of audio-
on-demand applications. Meanwhile, there are also some
interesting open questions for our future work. For example,
the potential breakdown ofmotesmay lead to loss of chunks.
We will investigate distributed chunk-grain data redun-
dancy and recoverymechanism, in our design in the future.
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