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ABSTRACT

Traditional fingerprint-based localization techniques mainly rely on infrastructure support such as GSM and Wi-Fi. They
require war-driving, which is both time-consuming and labor-intensive. With recent advances of smartphone sensors,
sensor-assisted localization techniques are emerging. However, they often need user-specific training and more power
intensive sensing, resulting in infeasible solutions for real deployment. In this paper, we present Barometer-based floor
Localization system (B-Loc), a novel floor localization system to identify the floor level in a multi-floor building on which
a mobile user is located. It makes use of the barometer on smartphone. B-Loc does not rely on any Wi-Fi infrastructure
and requires neither war-driving nor prior knowledge of the buildings. Leveraging on crowdsourcing, B-Loc builds the
barometer fingerprint map, which contains the barometric pressure value for each floor level to locate users’ floor levels. We
conduct both simulation and field studies to demonstrate the accuracy, scalability, and robustness of B-Loc. Our simulation
shows that B-Loc can locate the user fast and the field study in a 10-floor building shows that B-Loc achieves an accuracy
of over 98%. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

With the increasing pervasiveness of mobile phones, we
have experienced an explosive growth of location-based
applications, in which the location of a mobile user has to
be known. In a multi-floor building environment, knowing
the floor level of a mobile user is particularly useful for
a variety of location-based applications. For example, in a
fire emergency, locating the floor level of a user quickly
and accurately is critical to life saving. In a shopping mall
or an airport environment, a navigation service such as
Google maps can prompt a mobile user with the floor map
by knowing her/his current floor level. This is known as the
floor localization problem, which we aim to determine the
floor level in a multi-floor building on which a mobile user
is located.

Indoor localization [1–3] has been well studied in the
literature, and they can be used for floor localization. The
fingerprint-based approach leveraging on Wi-Fi or GSM
appears the most. SkyLoc [4] appears the first work for
floor localization using GSM fingerprints; however, the

accuracy is far from real use (i.e., three floor levels).
RADAR [5] uses Wi-Fi signal. The idea is to war-drive the
entire building to create a radio map between a physical
location and its Wi-Fi fingerprint measured from nearby
access points and base stations. Users can then pinpoint
their locations by comparing their measured signal strength
in the map. However, the main drawback is that war-
driving is both time-consuming and labor-intensive for
large indoor areas. Some recent approaches such as LiFS
[3] use crowdsourcing to reduce the war-driving cost to
some extent, but it involves a complicated training pro-
cess. In reality, many mobile users may not turn on Wi-Fi
all the time for energy saving, limiting the effectiveness of
crowdsourcing. In addition, in many developing countries,
many buildings have no or sparse Wi-Fi coverage, which
is not dense enough for localization. Even, in developed
countries, study [6] shows Wi-Fi may not be fully avail-
able in many buildings. Therefore, a cheap and scalable
solution, which does not need any infrastructure support,
is desirable.

The advancement of embedded sensors in smartphones
has motivated a sensor-assisted localization approach
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[1,7,8]. The accelerometer and compass have been used
to measure the walking distance and direction of a mobile
user. The user’s location can be easily obtained by com-
paring the user moving trace and the map. However,
these sensors are highly noisy [9]. The computed tra-
jectory will increasingly diverge from the actual one.
Hence, careful calibration is needed, for example, through
fixed beacons [1] or landmarks [2]. Crowdsourcing has
been also used to reduce the war-driving effort [2,10].
These works rely on detecting user activities using sensors
such as accelerometer. However, to ensure reliable detec-
tion, they typically require user-specific training, which
is costly, and the high sampling frequency, which may
drain the battery power quickly. In addition, the detec-
tion may be often interrupted by users making or receiving
phone calls.

The increasing availability of barometer embedded in
smartphones (e.g., Galaxy Nexus and Nexus 4) has moti-
vated us to go beyond the existing work by building a
simple, sensor-based, battery efficient solution for floor
localization. Muralidharan’s most recent paper [12] studies
on the properties of mobile-embedded barometers across
a number of buildings. He concludes that it is diffi-
cult to use the barometer to determine the actual floor
on which a user is located. In this paper, we overcome
these challenges. We propose a novel Barometer-based
floor Localization system (B-Loc). B-Loc does not rely
on any Wi-Fi infrastructure; it requires neither war-driving
nor any prior knowledge of the buildings. In addition, it
is more energy efficient as compared with other sensor-
assisted approaches [2,3]. B-Loc leverages on barometer
sensing and crowdsourcing to build barometer fingerprints,
which contain the barometric pressure value for each
floor level, and locate users’ floor levels by looking up
the map.

An intuitive solution may work as follows. Let us
assume that the barometric pressure (a.k.a. atmospheric
pressure) at the ground floor of a building is p0. Given the
barometric pressure decreases by 0.12 hPa for going up
every 1 m in the vertical direction, we can easily calculate
the altitude of a smartphone user by h D .p0 � p/=0.12
where p is the barometer reading. If each floor has the same
height of h0, we then know the floor level is dh=h0e. Unfor-
tunately, in reality, it does not work in this way. First, p0
is usually not accessible, and h0 varies for different build-
ings. Second, the barometer reading p from smartphone is
not accurate because of sensor drift. Such as a drift for the
same floor level can vary from one to three levels, which
is about 2 hPa (16.7 m). In addition, the most critical issue
is that the barometric pressure at the same floor of a build-
ing keeps changing in a day because of different weather
conditions and time [11,12].

In another typical solution, proposed by Wang in [13].
They track the user using barometer readings. First, they
assume that the user’s initial floor level is f0. When the
user changes floor levels, the barometer reading change
�p can be detected, and the user’s new floor level is com-
puted as f0 C �p=.0.12 � h0/. In reality, h0 varies from

building to building, and each floor may have different
height. So the floor height of each floor of every build-
ing is needed, limiting the scalability of this approach.
More important, the initial floor f0 is difficult to know,
because users may not always enter into a building from
the ground floor and they may start using the localiza-
tion service at any floor level. Furthermore, a miss or
wrong detection of �p will cause serious errors in the
latter localization.

In B-Loc, we propose several novel solutions to address
these issues. First, we design a scalable, transitive calibra-
tion algorithm to automatically calibrate different smart-
phone users’ barometers. The calibration makes use of
user encounters and crowdsourcing, and it is carried out
in a transitive way with more users involved. Second, to
solve the issue that the barometer reading at the same
floor changes over time, we propose time-based projection
to project the barometer readings collected from differ-
ent floors at different time to a common timestamp. It
is based on the observation that although the barometer
reading at the same floor may change over time, the dif-
ference of the barometer readings between any two floors
keeps constant. If we obtain the barometer reading of a
floor at a timestamp, the readings of any other floor can
be estimated by computing the difference. Third, leverag-
ing on crowdsourcing, we cluster the barometer readings
for each floor to generate a barometer fingerprint map,
which contains the barometer readings of every floor at
any time.

In summary, we make the following contributions:

(1) We propose a novel barometer-based approach for
floor localization. B-Loc makes use of barometer on
smartphone only and does not require any infrastruc-
ture and the prior knowledge of buildings.

(2) We design several novel techniques to calibrate
barometers for different smartphone users in a scal-
able way, project barometer readings to a common
timestamp, and cluster crowdsourced barometer read-
ings to generate real-time barometer fingerprints.

(3) We conduct both extensive simulations and field stud-
ies to analyze the performance of B-Loc. We deploy
B-Loc in a real situation to demonstrate its superiority
over existing solutions.

The rest of this paper is organized as follows. Section 2
gives an overview, followed by the detailed design.
Section 3 discusses the system robustness, and Section 4
gives the theoretical analysis. Our evaluation is reported in
Section 5. Section 6 discusses the related work, and finally,
Section 7 concludes the paper.

2. SYSTEM DESIGN

We give an overview of B-Loc in this section, as shown
in Figure 1. The system operates in two phases. In the
first phase, B-Loc builds the barometer fingerprint map
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Figure 1. Overview of Barometer-based floor Localization system.

automatically. When a user travels up and down in the
building (e.g., taking elevators/escalators and climbing
stairs), as illustrated by the solid line arrows in Figure 1,
the mobile client software running on the phone collects
barometer readings in real-time. The activities of changing
floors are detected and captured by our activity recognition
algorithm. We design a robust technique to recognize such
activities using barometer on smartphone. The recognized
activities, together with real-time barometer readings, will
be uploaded to the cloud server as a user trace. Differ-
ent traces may contain the barometer readings of different
floor levels, and these readings have to be calibrated before
we make use of them. We calibrate barometers on differ-
ent smartphones based on user encounter, which can be
detected when two users enter in an elevator. The cali-
bration is carried out in a transitive way with more users
involved and eventually propagated to all possible users
in a scalable way. After calibration, barometer readings in
each trace will be projected to a timestamp t0, making the
readings from different users comparable. In the end, we
cluster the barometer readings using a clustering algorithm
based on CURE [14] to generate the barometer fingerprint
map, which contains the barometer readings of each floor
at t0. By projecting the readings in the map from time t0
to the current time tnow, we obtain the real-time barometer
fingerprints, which will be used in the second phase.

In the next phase, a mobile user first downloads the
barometer fingerprint map of the building and the cali-
brate information from the cloud server and then scans the
barometer reading around. B-Loc calibrates the readings
and compares the reading with the barometer fingerprints.
The nearest barometer reading in the map will conclude the
right floor level for the user.

2.1. Background of barometric pressure

In this section, we give the background of barometric
pressure and describe our preliminary studies. Baromet-
ric pressure is the force per unit area exerted on a surface
by the weight of air above that surface in the atmosphere
of Earth [11]. As altitude increases, barometric pressure
decreases. Figure 4(a) illustrates this relation with a tem-
perature of 15ıC and a relative humidity of 0%. Although
the pressure changes with weather, National Aeronautics
and Space Administration has averaged the conditions for
all parts of the earth year-round. Using this figure, one can
calculate the altitude at a given barometric pressure. At
low altitudes above the sea level, the pressure decreases by
0.12 hPa for going up every 1 m. For higher altitudes within
the troposphere, the formula that relates with barometric
pressure p to altitude h is as follows.

h D 44330 �

 
1 �

�
p

p0

� 1
5.255

!
(1)

In an environment with different temperature and humidity,
Formula 1 is not accurate enough to calculate the altitude
from barometric pressure for distinguishing different floor
levels. To investigate the phenomenon of barometric pres-
sure in an indoor environment, we conducted two studies
as follows.

We used a professional digital pressure gauge to mea-
sure the barometric pressure at a fix location in an office
building over a period of half an hour. Figure 2(c) plots
the result. From the figure, we observe that the baro-
metric pressure measurements change with a variation of
1.2 hPa, which is equivalent to about 10 m in altitude. This
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Figure 2. Barometric pressure in the building. (a) Variation in atmospheric pressure with altitude, (b) Barometric pressure and humidity
in rooms with different temperatures and (c) Barometric pressure changes by time.

Figure 3. The barometric pressure, temperature, and humidity in different parts of the floor plan

Table I. Barometer sensor parameters.

Property BMP180/182 LPS331AP

Absolute accuracy �4.0...C 2.0hPa (�33...C 17m) �3.2...C 2.6hPa (�27...C 22m)
Relative accuracy ˙0.12hPa.˙1m/ ˙0.2hPa.˙1.7m/
Noise 0.06hPa.0.5m/ 0.06hPa.0.5m/
Used in smartphone Galaxy Note 2/3, Xaiomi M2,Sony Ericsson Active, Nexus 3/4 Galaxy S3,S4

variation may result in a detection error ranging up to three
floor levels. Hence, directly applying the barometric for-
mula to calculate the floor level is not feasible. Next, we
studied the barometric pressures at different indoor loca-
tions at the same floor of the office building. We randomly
selected seven indoor locations as illustrated in Figure 3.
We used several digital pressure gauges, which have been
calibrated to measure the barometric pressure in each of
these locations at the same time during the summer, and
Figure 2(b) plots the readings, including the reading at
an outdoor location. The temperatures vary from room to
room; however, the humidity in each room shows little dif-
ference. The result shows that the maximum variation is
0.2 hPa, which is equivalent to 1.6 m in altitude. Through
this study, we observe that although the temperature and
humidity vary, but the barometric pressures at the same
floor level keep relatively constant.

2.2. Barometer on smartphone

We now move to study the barometer sensor on smart-
phones. Barometer sensor has become increasingly popular
on smartphones today. Most commonly used barometer
sensors are BMP180/182 and LPS331AP. Table I gives
their technical specifications. From the table, we observe
that while the absolute accuracy† is about ˙ 20 m (which
is low) and the relative accuracy‡ is high. This implies that
the barometer sensor has a high level of sensitivity, and
it is good enough to detect the change of the barometric

†The accuracy of a sensor reading compares with the real barometric

pressure.
‡The accuracy of the change of a sensor reading compares with the

change of real barometric pressure.
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Figure 4. The properties of smartphone’s barometer. (a) The barometer reading drift between smartphones, (b) The drift with real
barometric pressure in different smartphones, (c) The relation between smartphone temperature and barometer reading, (d) The
relation between wind and barometer reading, (e) The barometer readings in different usage scenarios and (f) Floor-change detection

accuracy.

pressure when users go up or down in a building. Moti-
vated by this observation, we use barometer to detect the
activities when users change their floor levels.

We sampled the barometer readings of two smartphones
of the same type at the same indoor location. Figure 4(a)
shows a constant drift of sensor readings, which may result
in an error ranging up to three floor levels. It is clear that
appropriate calibration needs to be carried out. In another
study, we compare the barometer readings from different
smartphones, and we are interested to know if the drift
changes over time. We used six different smartphones and
recorded the drift to the real barometric pressure every
4 days. The results show that the sensor drift in Figure 4(b)
keeps stable and the variation is negligible. This study
shows the feasibility of using barometer on smartphones
for floor localization.

We then conducted more experiments to further
study barometer sensor properties under different usage
scenarios—(i) the smartphone gets hot; (ii) the smartphone
is under the wind; (iii) the smartphone shakes; and (iv)
the smartphone is in pocket or bag. Figure 4(c) shows the
barometer readings of two smartphones at the same loca-
tion for 15 min—one with a constant temperature, and the
other with a growing temperature (e.g., when continuously
running a computation intensive application). The result
shows that the temperature does not affect the barometer
reading. Figure 4(d) shows the barometer readings of the
two smartphones with and without the wind (e.g., a fan
and the air conditioner are used to generate the wind). The
result shows that the barometer readings keep unchanged
under the fan and vary in a small range of 0.2 hPa under

air conditioning, it shows that the wind and temperature
changes have limited impact on the reading. Figure 4(e)
shows the barometer readings when shaking the phone,
putting in and taking out from the pocket or bag. The result
shows that the barometer readings remain constant under
these scenarios.

From these studies, we conclude that barometer on
smartphones, with proper calibration, is capable of deter-
mining users’ floor levels.

2.3. Floor-change activity detection

We first present a novel technique to recognize the activ-
ities of changing floors using barometer. We represent
a barometer sample P by B D ft, Barog, where t is
the time for sampling and Baro is the barometer read-
ing at time t. The barometer samples arriving in time
order form a barometer trace, which is represented by
BTrace D fID, B1, B2, ..g, where ID is the identity of the
user. Users typically change their floor levels by taking ele-
vators/escalators and walking up or down the stairs. The
barometer sensor is inherently noisy. Figure 5(a) shows the
raw barometer readings, which apparently contain many
spike noise. In B-Loc, we first filter these noise and then
smooth the values with a reasonable window size of 1000
ms (i.e., the value at time t is the average value from t�500
to t C 500 ms), as shown in Figure 5(b). In our previous
study, we observe that barometer readings on smartphones
do not change much in a short period of time unless users
change their floor levels. Hence, the change of barometer
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Figure 5. Floor-change activity detection by barometer readings. (a) Raw barometer readings, (b) Smoothed barometer readings and
(c) First derivative value of the readings.

readings can be used to recognize the floor-change activ-
ities. To do this, we extract the first derivative of the
barometer readings, and the resulting curve is shown in
Figure 5(c). We can see from the figure that the change
of barometer readings is transformed to crest when going
up and trough when going down. The crest and trough
are sharp when taking elevators and smooth when taking
escalators and stairs. The start and end time of the activ-
ity is the time of the left and right edge of each crest
or trough.

To detect these activities, we calculate the area size
of each crest or trough. If it meets certain conditions, a
change-floor activity is detected. In detail, each area is
defined as a continuous and closed region formed by the
x-axis and the curve. The region is located below or upon
the x -axis, which should meet the following conditions:
(i) lasted time between 3 and 120 s, (ii) area size bigger
than 1.0. Figure 5(c) shows the areas of different ways
of floor changing. In B-Loc, we do not impose any con-
straint on the ways users carry or use their smartphones.
A smartphone can be held on hand, placed into a pocket
or bag, or used to make/receive a phone call. This cer-
tainly offers a great advantage over the accelerator-based
activity recognition [10]. We define an floor-change activ-
ity as A D fSTime, ETime, SBaro, EBarog, where STime
is the start time of an activity, ETime is the stop time of
an activity, and SBaro and EBaro are the barometer read-
ing at STime and ETime, respectively. The user’s moving
trace can be then defined as MTrace D hID, A1, A2, : : :i,
where ID is the identity of the user. The detection is car-
ried out in the smartphone, and the resulting MTrace will
be uploaded to the cloud server. We conducted experiments
with two users using three different smartphones under
real-life situations in three different buildings. Figure 4(f)
shows the accuracy of detecting floor changes. The
results show that the average accuracy using barometer is
about 98.3%.

It is worth knowing that barometer readings at this stage
are used for real-time activity detection on smartphone. We
will show at a later stage how barometer readings are used
for generating the barometer fingerprint map in the cloud
server.

2.4. Transitive calibration algorithm

The objective of barometer calibration is not to calibrate
each smartphone’s barometer to the real barometric pres-
sure but use any smartphone’s barometer as a reference
point and find the drift between each of other user’s
barometer and the reference. Before we introduce our
calibration algorithm, we first introduce the property of
the drift between sensors. We define driftAB as the drift
between barometers A and B and driftAB D BaroA�BaroB,
where BaroA and BaroB is the reading from barometers
A and B, respectively, under the same barometric pres-
sure. The barometer drift holds the following properties: (i)
driftAB D �driftBA and (ii) driftAB C driftBC D driftAC.
These properties clearly demonstrate the transitive rela-
tionship. We define barometer calibration as follows: (i)
For two smartphones, they are calibrated when the drift of
the two barometers is known by the cloud server. (ii) For
more than two smartphones, they are calibrated when the
drift between every two barometers is directly known by
encounter in elevator or indirectly known by the transitive
relationship.

2.4.1. Calibration for two barometers.

Calibration is carried out by analyzing barometer traces.
The idea is to calibrate users’ barometers when they
encounter each other. User encounter can be easily detected
in elevators because elevator is very common in build-
ings and users often encounter each other in elevators. We
observe that if users encounter each other in an elevator, the
time and value of their barometer change are the same. In
an other word, if we detect two floor-change activities from
both users’ barometer traces, these activities start and end
at the same time, and the barometer reading change is the
same, we conclude that the two users encounter in the same
elevator and Figure 4(a) is an example. This is formalized
as follows.

(1) I1: Ai.STime D Aj.STime;
(2) I2: Ai.ETime D Aj.ETime;
(3) I3: Ai.SBaro�Ai.EBaro D Aj.SBaro�Aj.EBaro; and
(4) I4: Ai D Aj;
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where Ai and Aj is the floor-change activity for users i and
j, respectively. The rule is then formulated as follows.

R1 : I1 ^ I2 ^ I3 ! I4.

If we have Ai D Aj, the drift is then calculated by the
following formula.

driftij D

PAi.ETime
tDAi.STime.Bi.t/ � Bj.t//

n
(2)

where Bi.t/ and Bj.t/ are the barometer readings of users i
and j, respectively, and at time t, n is the total sample size.

We analyze a case of when two users enter into different
elevators at different floors and experience a floor-change
activity with the same barometer change at the same time.
The previous rules will conclude they are in the same ele-
vator. To handle this case, we first observe that when users
encounter in an elevator, they often experience more than
one floor-change activity together. For example, users i and
j encounter each other at the ground floor and go up to the
8th and 10th floor, respectively. Before arriving at level 8,
the elevator stops at levels 3 and 5. In this scenario, users
i and j experience three floor-change activities (i.e., from 1
to 3, 3 to 5, and 5 to 8). Based on this observation, we detect
consecutive floor-change activities between two users to
minimize the probability of this fault case. We formalize it
as follows.

(1) I5: 9A1, A2, .., Ak 2 MTracei;
(2) I6: 9A1, A2, .., Ak 2 MTracej;
(3) I7: AmC1.STime � Am.ETime < 30 holds in MTracei

and MTracej;
(4) I8: MTracei.Am D MTracej.Am; and
(5) I9: users i and j are in the same elevator and the

confidence is k.

The rule is then formulated as follows.

R2 : I5 ^ I6 ^ I7 ^ I8 ! I9.

where MTracei and MTracej are the trace of users i and j,
respectively, and k is the confidence that users i and j are in
the same elevator.

2.4.2. Calibration for all barometers.

In the previous section, we present barometer calibra-
tion for two smartphones. To calibrate all smartphones’
barometers in a building, while the same principle will be
applied, the calibration propagates from phone to phone
in a transitive way. We model this process using a graph
shown in Figure 6(a). In this graph, each barometer is rep-
resented by a node. If two barometers are calibrated by
an encounter in elevator, we draw an edge between the
two nodes, and the weight of the edge represents the con-
fidence value of the calibration. Because there may be
more than one calibration done between two users (e.g.,
two users may encounter each other multiple times), we
choose the calibration with the highest confidence value.
Because barometer calibration is transitive, in theory, any
two barometers can be calibrated if this graph is connected.
To select a root barometer, a trivial approach is to randomly
choose a node as root and find a spanning tree from the
graph as shown in Figure 6(b). Any node in the spanning
tree can be calibrated following the path from the node to
the root. For example, to obtain the drift of barometer j, we
find a path between nodes f and j, f � k � j, and obtain the
drift by driftfj D driftfk C driftkj.

There are two factors affecting the accuracy of our cal-
ibration algorithm. The first one is the confidence values
of the edges in the path. The other one is the length of the
path. The confidence determines the probability of correct

Figure 6. Calibration and projection. (a) The calibration graph, (b) An example calibration tree with an arbitrary root, (c) Computed
calibration tree, (d) Extract FTrace from MTrace, (e) Project two FTrace to a timestamp t0 and (f) Project all FTrace to a timestamp t5.
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calibration. The length of the path determines the calibra-
tion accuracy because errors may be accumulated along
the path. This turns out to be an optimization problem—
find a spanning tree, choose a root to minimize the sum
of nodes’ depths, and maximize the weight of the edges
in the path. It has been proven to be an NP-complete
problem [15]; hence, finding this spanning tree is not real-
istic. In B-Loc, we propose a heuristic solution based on
the observations that the confidence of edges in the path
is important and the calibration errors accumulate slowly
(which will be further analyzed in Section 4.2). We first
find a maximum spanning tree, which maximizing the edge
confidences in the tree, and we then choose a node as the
root, which minimizes the average depth of all other nodes.
As an example, we run the algorithm on the graph shown
in Figure 6(a), and the resulting graph is shown in Figure
6(c). The complexity of the algorithm is O(NlogN).

2.5. Time-based projection

After calibration, we update all the barometer readings
in MTrace by adding their drifts. The barometer read-
ings in MTrace are collected by different users at different
time, and each trace may only contain a partial view of
barometer fingerprints of the building. To have a complete
view, we have to combine them. To do so, we first project
MTrace to a timestamp. We define a new data structure
called FTrace. A FTrace contains the barometer reading
distance between some floors and a reference barometer
reading point extracted from a MTrace. As shown in the
left-hand side of Figure 6(d), in the MTrace, there are
floor-change activities of going up and down. Because the
barometer reading distance between every two floor levels
is constant, we can extract the barometer distance between
floors from MTrace as shown in the right-hand side of
Figure 6(d). For example, we know b4 and b5 are the
barometer reading at the same floor (we assume no miss
detection), and b4 � b3 D b5 � b6 C d3; we can then
infer that b6 is scanned on a higher floor than b3, and d3
is the barometer reading distance of the two floors. In this
way, we extract all the barometer reading distance between
floors from MTrace. The structure of FTrace is defined as
fhd1, d2, ..dk�1i, ht, big, where di is the barometer distance
of two floors ( which floors still unknown at this stage). b is
the barometer reading at timestamp t in the lowest floor of
FTrace, and ht, bi is called the reference point of FTrace.

Next, we project two FTrace to the same timestamp,
making them comparable. Consider two FTrace FTi and
FTj from user i and j, respectively, bi and bj are not com-
parable because tiŠ D tj. As shown in Figure 6(e), we
first choose a reference time t0 in the overlap time zone
of the two BTrace from user i and user j and obtain sam-
ple ht0, bmi in BTi and sample ht0, bni in BTj. For every
sample, we obtain the barometer reading distance between
the floor level of the sample and the floor level of the ref-
erence point; for example, ht0, bmi is sampled at a higher
floor level than t1, b1, and the distance is d2 C d1. We can
then infer that, at time t0, the barometer reading at the floor

of the reference point is bm � d2 � d1, and the barometer
reading of the reference point of FTj at t0 is bn � d6 � d5.
Therefore, both the references of FTi and FTj are projected
into the same timestamp t0.

We present Algorithm 1 to project all FTrace into the
same timestamp, as illustrated in Figure 6(f).

Algorithm 1 Project all FTrace into the same timestamp.

Input:
The set of all FTrace, C; An empty set, C0;

Output:
The set of all projected FTrace, C0;

1: Find a biggest subset C1 of C, where the intersection
of their time intervals is not empty. Remove C1 from
C, and put C1 to set C0;

2: Choose a timestamp t from the intersection time inter-
val of C1, project all FTrace to timestamp t;

3: Repeat 1 and 2 until C is empty;
4: Choose two biggest set C01 and C02 from C0, choose a

FTrace from C01 and C02 respectively, project them to
timestamp t1, and project all FTrace in C01 and C02 to
t1, union set C01 and C02;

5: Repeat 4 until C0 become an one element set;
6: return C0.

2.6. Barometer reading clustering

After calibration and projection, we are now able to com-
pare barometer readings in FTrace and relay them to each
floor level in the building. As shown in Figure 7, we
first transform FTrace from fhd1, d2, d3, ..dk�1i, ht, big to
barometer reading points fb, bC d1, .., bC d1C ..C dk�1g,
where each element represents the barometer reading of a
floor level. Each FTrace contains some barometer readings
at different floors of the building at the same timestamp
t. Ideally, for a n-floor building, we should have n differ-
ent barometer readings. However, errors may be introduced
during calibration. To eliminate errors, we use cluster-
ing. We apply the hierarchical clustering algorithm named
CURE [14]. Initially, each barometer reading is a clus-
ter. The CURE algorithm merges two closest clusters in

Figure 7. Clustering barometer readings.
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each step until a certain number of clusters are formed.
CURE fits well in this situation because it is less sensi-
tive to outliers. However, we cannot apply CURE directly
because the resulting number of clusters f (should be the
same to the floor numbers n) is unknown. In B-Loc, we
adapt the CURE algorithm by designing the distance func-
tion and determining when to stop clustering. We use the
Euclidean distance as distance function to calculate the dis-
tance between two clusters of samples. In each cluster, we
choose m median samples to calculate the distance. The
distance function between cluster Ci and Cj is computed
as follows.

Distance.Ci, Cj/ D

vuut mX
kD1

.Bik.b � Bjk.b/2 (3)

where Bik.b is the barometer value of the kth middle value
sample of cluster Ci.

The clustering algorithm stops when the distance of the
nearest two clusters is smaller than a threshold. We set the
threshold to the two-third (0.3 hPa) of the minimum barom-
eter distance between floor levels in FTrace (the one-third
0.15 hPa is for tolerating the error of the barometer read-
ing). After clustering, we obtain a set of clusters. For each
cluster, we compute the average of their m median samples
as the value of this cluster. We then order all the clusters
by this value from high to low. The ordered sequence has
an one-to-one mapping to floor levels. The highest value
maps to the ground floor, and the lowest value maps to the
top floor level. In the end, we obtain the barometer reading
of each floor at timestamp t and also the barometer read-
ing distance of every pair of floor levels. A barometer map
with a reference point ht, biis generated, and it is defined
as Map D fhd1, d2, d3, ..dn�1i, ht, big, where di represents
the barometer distance of floor i and i C 1, n represents
the floor number, and b represents the barometer reading at
the ground floor at timestamp t. Using the barometer fin-
gerprint map, we can know the barometer readings at each
floor. For example, the barometer reading at floor level 3 is
.bC d1 C d2/.

2.7. Real-time barometer fingerprint map

After obtaining the barometer fingerprint map at times-
tamp t with the reference point ht, b1i, we now convert the
reference point to the current time (i.e., tnow), in the first
scenario, when the users are still in the building. Our idea
is to find a BTrace, which contains readings at both time
t and tBTrace. We first obtain the floor level f1 of user at
time t by comparing the barometer reading at time t with
the barometer fingerprint map. We then detect if the floor-
change activities occurred between time t and tBTrace and
obtain the floor change, which is�f . The current floor level
of the user is f2 D f1 C �f ; we then obtain the barometer
reading b2 at time tBTrace, and the reference point is now
htBTrace, b2�df2�1�df2�2�...�d1i. In this way, we convert
the barometer fingerprint map from time t to tBTrace.

In the second scenario, all users leave the building and
arrive the building in the next day, in order to update the
reference point to now (t). Because users are all calibrated,
the approach is to obtain the barometer readings of the
users at t and cluster the readings using our clustering algo-
rithm. Only if there is at least one user in the ground floor,
the cluster with the biggest barometer reading must be the
reading of the ground floor. Hence, the reference point gets
updated.

2.8. Locating users

Users can now download the barometer fingerprint map
and the calibration information from the cloud server. For
each barometer reading sampled from a smartphone, the
reading will be adjusted based on the calibration informa-
tion and look up the map to find the floor level of the
user.

The barometric pressure of the ground floor may change
by time, and B-Loc is able to dynamically update the ref-
erence point of the map. Our approach is to append the
barometric pressure change to the reference point (ht, bi).
For example, the barometric pressure changed �b after
60 s, and the reference point will be updated to htC60, bC
�bi. In this way, the application does not need to download
the map again if the user stay in the building. At the same
time, the application will upload the reference point to the
cloud server periodically, where the barometer fingerprint
map is updated.

3. DESIGN FOR ROBUSTNESS
In this section, we first analyze different fault cases of
floor-change activity detection. There are basically two
fault cases, (i) miss detection (a floor-change activity
occurs but miss detected) and (ii) wrong detection (e.g.,
a normal barometer fluctuation was detected as a floor-
change activity). The experiments show that our floor-
change activity detection has about 1.1% miss detection
and 0.4% wrong detection. We are interested to know the
consequences of these fault cases.

(1) Influence on calibration: The miss detection does not
affect calibration because we only use detected floor-
change activities. The wrong detection will cause
a failure in calibration when two wrong detections
occur at the same time and with the same barom-
eter distance. However, this probability of wrong
detection is very small and can be negligible.

(2) Influence on map generation: When clustering the
barometer readings, the wrong detection will results
in wrong barometer readings. For example, given a
FTrace, which is fhd1, d2, ..dk�1i, ht, big, if d3 is a
wrong detection, when we transform them to barome-
ter readings fb, bCd1, .., bC..Cdk�1g, there will have
k�3 wrong readings. These readings, which are rare,
will be viewed as outliers during clustering. Because
CURE algorithm is less sensitive to outliers, they will
be removed and have little impact on clustering. The
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miss detection will generate a wrong barometer read-
ing only if the floor height of the building is different.
If that is the case, miss detection is equivalent to
wrong detection.

(3) Influence on localization: It will not affect the local-
ization because we locate users by barometer read-
ings not their travel traces.

Next, we analyze the accuracy of the calibration process.
The confidence values of all the edges in the path determine
the probability of correct calibration. In our approach, we
choose a maximum spanning tree which essentially mini-
mizes the probability of wrong calibration. The length of
the path determines the calibration accuracy because cali-
bration errors may accumulate (will be analyzed in the next
section).

4. THEORETICAL ANALYSIS

We provide the theoretical analysis of B-Loc in this
section.

4.1. Modeling calibration

We model the calibration process using a random graph
�n,N with n labeled vertices and N edges, where a vertex
represents a barometer (n is the total number of barometer
sensors) and an edge may exist between two vertices if they
are calibrated. All sensors can be calibrated if graph �n,N is
connected. We denote p as the probability that there exists
an edge between any two vertices in �n,N , which is equal
to the probability that two users encounter in an elevator.
We assume that the average number of users in elevator is
k and the frequency that a user takes an elevator is f . We
have

p D
k � f � t

n � 1
(4)

where t is the time. It is shown in [16] that the random
graph �n,N is almost surely be connected if

p >
1

n
.1C �/ ln n (5)

With a large n, the value of .1C�/ ln n=n is small; therefore,
a smaller p can meet the previous equation.

It is shown in [16] that, in the random graph �n,N , the
size of the greatest component of �n,N is, for c D N

n with

c > 1
2 with probability tending to 1, approximately G.c/n,

where

G.c/ > 1 �
x.c/

2c
(6)

where

x.c/ >
1X

kD1

kk�1

kŠ

�
2ce�2c

�k
(7)

The curve y D G.c/ is shown on Figure 8(a). This means
almost all points of �n,N belong to either some small com-
ponent which is a tree or the single "giant" component of
the size G.c/n. From this, we imply that, if p > 1

n�1 , most
of the nodes will belong to the same "giant" component
and all can be calibrated. Figure 8(c) shows the calibration
graph of 100 users in a 10 floor building in our simulation,
the giant component grows soon with more user eleva-
tor trips. Figure 8(c) shows the calibration graph of 100
users in a 10 floor building in our simulation, the giant
component grows soon with more user elevator trips.

4.2. Calibration error

We model the calibration accuracy as follows.

driftij D drift0ij C
nX

kD1

Uk (8)

where n is the length of the path from node i to j, drift0ij
is the real drift, and U is the noise function with a ran-
dom value between �0.06 to 0.06 hPa. The accumulated
noise function is X D

Pn
kD1 Uk. Because U has a uniform

distribution, in probability and statistics, X is a Irwin-Hall
distribution [17] function. The probability density function
is

fX.x : n/ D
1

.n � 1/Š

dxeX
kD0

.�1/k
 

x

y

!
.x � k/n�1; x 2 Œ0, n�

(9)

Figure 8. Theoretical analysis. (a) The curve y D G.c/, (b) Probability density function and (c) The calibration graph of 100 users in a
10-floor building.
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The curve of fX.x : n/ is shown in Figure 8(b). It is shown
that the error is less than 0.24 hPa with high probability
when the path length is less than 16. Because the minimum
barometer reading distance of any adjacent floor level is
about 0.45 hPa, the error is tolerable.

5. EVALUATION

We now move to evaluate B-Loc using both simulation and
field studies.

5.1. Simulation methodology

We design a simulator to evaluate the efficiency and scala-
bility of B-Loc. In the simulation, we aim to evaluate how
well B-Loc performs calibration and how fast the barome-
ter fingerprint map can be built. The simulator models the
process of user taking the elevator up and down in a multi-
floor building. It works as follows. The simulation process
is divided into cycles of elevator going up or down (which
occurs with an equal probability). For elevator going up,
each cycle simulates the process that the elevator goes up
from the ground floor, with people entering and leaving the
elevator from or to any levels, until the elevator is empty.
We model the process of people entering the elevator from
the ground floor as the Poisson distribution. The expected
number of the Poisson distribution is set to 1/4 of the max-
imum load of a typical elevator (i.e., four persons). People
on the ground floor may go up to any floor with a proba-
bility of 1=.n � 1/, where n is the number of floors of the
building. From any other floor fi, some people may enter
the elevator, and go to the rest (n � i) floors with an equal
probability 1=.n � i/. Each cycle starts from the ground
floor, we first compute the number of people entering the
elevator and which floors they are going to, the elevator
goes up from the ground floor, and stops when people exit-
ing or entering, until there are no users in the elevator. For
elevator going down, every time the elevator starts from
the top floor, users in every floor may enter the elevator,
and will go to the rest n0 floors with an equal probability of
1=2.n0�1/, except to the ground floor which is 1=2. When
people enter or exit the elevator from a floor, the number
of people on that floor gets updated, and the trace of every
user is recorded. Based on our observation from real-life
situations, in our simulation model, we assume that when
an elevator passing a floor, the probability of a user in that
floor entering the elevator is p (1% in our setting).

In the simulation of barometer readings of a building,
the barometer reading of the ground floor is simulated with
function F.t/ D F.t � 1/ C math.random./ � 0.1, where
F.0/ D 1000hPa and t is the time, one unit of time is set
to the time the elevator travels 1 floor, for simplicity, the
barometer change of every floor is the same which is set to
0.45hPa.

Given a number of floors n and a number of users u,
we simulate cycles of elevator going up and down until a
certain number of user-elevator trips m is reached (a user-
elevator trip is defined as the process of a user entering

and leaving the elevator). At the end of each simulation
cycle, we combine the ground truth from the floor-change
activity detection to get the MTrace of every user. We will
evaluate how well the barometer sensor of the users can
be calibrated. We then build the barometer fingerprint map
using the calibrated MTrace, and show how fast it can
be built.

The parameters of the simulator are listed as follows.

(1) floor number: the number of floors.
(2) user number at each floor: the number of users at

each floor.
(3) total trip number : the number of user-elevator trips

for all the users.
(4) average trip: the average number of user-elevator

trips for each user.
(5) average number of users in elevator: the average

number of users in elevator when it is moving.

The performance metrics used in the paper are summa-
rized as follows.

(1) average weight: The average weight of all edges in
the calibration tree.

(2) average hop: The average hop of all nodes to the root
in the calibration tree.

(3) percentage calibrated: The percentage of users who
have been calibrated.

5.2. Simulation results

Figure 9(a)–(f) show the simulation results when the user
number at each floor is 10 and the average number of users
in elevator is 4. Figure 9(a) shows the percentage cali-
brated in three different buildings under different total trip
number. It shows that all users can be calibrated after about
150=300=1000 trips in a 5=10=40�floor building. When
the total trip number is changed to the average trip as
shown in Figure 9(b). We find that in the three buildings, all
users can be calibrated when each user takes the elevator
for about 2.5 times on average. Figure 9(f) shows the per-
centage calibrated in the 10-floor building with different
average trip. The different colors in each column represent
the calibrated groups, from the largest to the smallest. It
shows that when average trip grows from 1 to 1.3, the size
of the largest calibrated group grows fast and almost 95
percent of users are calibrated when the average trip is 1.5.

Figure 9(c) shows the number of floors found in the
barometer fingerprint map with different average trip. It
shows that B-Loc builds the map for the 5/10/40-floor
buildings when the average trips of users are less than 1.5.
Compare to the result in Figure 9(a) and Figure 9(f), it
shows that B-Loc builds the map before all users are cal-
ibrated, and locates most of the users quickly (e.g., 95
percent of users when average trip is 1.5). Figures 9(d)
and 9(e) show the average weight and average hop in the
calibration tree, respectively. Figure 9(d) shows that the
average calibrate weight is about 2/3/5 in the 5/10/40-floor
building. In Figure 9(e), the hops is about 3=4.5=8 in the
three buildings when all users are calibrated, which do not
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Figure 9. Simulation results. (a) The percentage calibrated with different total trip number, (b) The percentage calibrated with different
average trip, (c) Floor numbers detected with different average trip, (d) The average weight, (e) The average hop, (f) The size of the
calibration groups, (g) Calibration result when user number at each floor is different, (h) Calibration result when average number of

users in elevator is different and (i) The average hop when user number at each floor is different.

affect the calibration accuracy based on our analysis in
Section 4.2.

Figure 9(g) shows that when there are different number
of users in the building, all users can be calibrated with
nearly the same average trip. It implies that more users
is not necessary to have more average trips. Figure 9(h)
plots the calibration result with different average number
of users in elevator. The result shows that the calibra-
tion process is faster with more average user in elevator.
Figure 9(i) plots average hop when all users are calibrated.
The result shows that average hop grows when there are
more users in the building, this is reasonable because more
users form large calibration trees.

5.3. Field study

To evaluate B-Loc under the real-world situations, we
implemented a prototype system and publish it on a web-
site [18]. We encourage users to download and try B-Loc in
our 10-floor computer science building. The floor plan of
the building is shown in Figure 2(b). A total number of 67
users downloaded our application to their mobile phones
(e.g., Samsung, Google Nexus, and Sony Ericsson). Out
of 67 mobile phones, only 28 have both barometer sen-

sors and a mobile network data connection (i.e., GPRS or
3G). We developed a mobile application named "Talking to
Strangers (up/down stairs)" which is built on top of B-Loc.
The application finds users from other floors of a building
for message chatting. This is similar to other chat appli-
cations such as find strangers around, but we incorporate
B-Loc into our application for floor localization.

When the application runs, it continuously collects
barometer readings at a rate of two samples per second,
and all the samples will be logged in a data file which
will be uploaded to the cloud server every 2 h. The floor-
change activity detection is carried out in real-time and
the MTrace will also be uploaded to the cloud server. The
client also performs time synchronization with the sever by
computing the round-trip delay time and the offset. If the
barometer fingerprint map is available in the cloud server, it
will be downloaded to locate the user. The indoor/outdoor
detection is carried out by scanning GPS signals. Before
obtaining the map, the application uses a simple tracking
approach to locate the user. It has a low accuracy because
it assumes users enter the building from the ground level
(i.e., the initial floor is 1) and the height of each level is fix
(i.e., the barometer reading change of every floor is about
0.45), floor localization is then carried out by detecting

2568 Wirel. Commun. Mob. Comput. 2016; 16:2557–2571 © 2016 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm



H. Ye et al. Scalable floor localization using barometer on smartphone

user activities of changing floors. We did not give special
instructions to the users during our study. Users ran the
application as they like. To get the ground truth, we first
manually get the drift to the real barometric pressure for all
the 28 smartphones, then placed a barometer logger at each
floor to get the ground truth by comparing their readings
with the ground truth. The field study ran for eight days. In
each mobile client, the history of floor location is logged.
In the cloud server, all calibration results and the barometer
fingerprint map generated are logged. We analyze the per-
formance based on the logged data in both the client and
the cloud server.

5.4. Field study results

Figure 10(a) shows the calibration graph of the users at the
end of the first day. The thickness of the lines represents
the confidence (i.e., weight) of the calibration between two
users. The graph is connected, and users are directly cali-
brated (i.e., two to eight users). The users’ average trips are
6 (when coming in and going out for lunch and dinner). The
calibration tree is extracted and shown in Figure 10(d). The
average hop of calibration is about 3; the max hop of cali-
bration is 6, and the average calibration weight is about 1.8.
The calibration error is shown in Figure 10(b). The left ver-
tical axis shows the number of barometers in different error
regions. The right vertical axis shows the accuracy of the
calibration in each region. The accuracy is defined as the
ratio between error and the barometer reading distance of
one floor. An accuracy of higher than 50% is the necessary
condition to locate the user to the right floor. Figure 10(c)
shows the real barometric pressure of the ground floor and
the reference point of the map in 24 h. The reference point

is available from 8 AM to 11 PM when there are users
in the building. The reference point updates the same way
as the barometric pressure change, which shows that the
map is accurate. The root of the calibration tree is not cal-
ibrated by real barometric pressure and caused a constant
drift between the two curves.

We obtain the accuracy of floor localization by compar-
ing the ground truth with the barometer loggers and the
floor location history of B-Loc. It is shown on the left
vertical axis of Figure 10(e), where the accuracy is more
than 98% for every user when they are calibrated and the
barometer fingerprint map is generated. When the users
are not calibrated or at the beginning of every day when
the reference point of the map is not found, using the sim-
ple tracking approach the accuracy is about 70%, which
appears in about 3% of all location cases as shown in the
right vertical axis of Figure 10(e).

5.5. Energy consumption

In the end, we evaluate the energy consumption of B-
Loc using a Samsung Galaxy Nexus smartphone running
Android 4.1 OS, and the result is shown in Figure 10(f).
The power consumption is computed based on PowerTu-
tor, a diagnostic tool for analyzing system and application
power usage from the Android Market. The experiment
ran for 12 h continuously. The average power consump-
tion of B-Loc is 46 mW. For comparison, we also show
the power consumption of other localization techniques
and some basic mobile functions. It shows that B-Loc con-
sumes much less energy than the traditional localization
techniques.

Figure 10. Field study results. (a)The calibration graph of the users, (b) The calibration error and accuracy, (c) The Reference point of
the barometer fingerprint map, (d) The calibration tree of the users, (e) Accuracy of B-Loc and (f) Energy consumption.
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6. RELATED WORK

Many fingerprint-based techniques for indoor localization
have been proposed such as [4,5,19–21]. They mainly rely
on Wi-Fi signal strength, and they are capable of achieving
a high accuracy in an indoor environment. However, like
RADAR [5] has to war-drive the entire building in order to
obtain the radio map. War-driving is very time-consuming
and labor-intensive, and it may have to be carried out peri-
odically because the Wi-Fi signature at the same location
may be changed over time. Hence, this solution is not
scalable. The fingerprint-based technique has been used
in floor localization. SkyLoc [4] uses GSM fingerprints to
locate a user’s floor level in a multi-floor building. They
report an accuracy of 73% for locating a user to the right
floor, and 95% within 2 floors. But the GSM signals vary
significantly in indoor environments, and the training pro-
cess in SkyLoc is time-consuming. It has a poor scalability
because war-driving and training are required for every
building. Some recent approaches such as LiFS [3] use
crowdsourcing to reduce the training cost to some extent,
but it involves a complicated training process. In reality,
many mobile users may not turn on Wi-Fi all the time for
energy saving, limiting the effectiveness of crowdsourcing.
Different from these systems, B-Loc makes use of the new
barometer sensor appears in recent smartphones. It does
not require war-driving to build the fingerprint database,
B-Loc relies on crowdsourcing and intelligently build the
barometer fingerprint map to locate users’ floor level.

Sensor-assisted localization methods [1,7,8,22] have
been proposed, making use of embedded sensors available
on smartphones. These systems typically use accelerome-
ter and electronic compass. However, careful calibration is
needed from time to time due to the limitations of the sens-
ing technology. For example, Escort [1] leverages on fixed
beacons for calibration. Crowdsourcing has been also used
to reduce the training effort [2,10]. These works rely on
detecting user activities using sensors such as accelerom-
eter. However, to ensure reliable detection, they typically
require user-specific training which is costly, and the high
sampling frequency which may drain the battery power
quickly. In addition, the detection may be often interrupted
by users making phone calls. Muralidharan’s most recent
paper [12] study on the properties of mobile-embedded
barometers across a number of buildings. But failed to
solve the problem of using the barometer to determine the
floor of a user. In another solution proposed by Wang in
[13] before the mobile-embedded barometers appear, using
a barometer sensor to track user’s floor level. As we dis-
cussed in the introduction, this approach need the detail
information of the building and need to know a initial floor
of every user, which is hard to get. Furthermore, a miss
or wrong detection will cause serious errors in the lat-
ter localization. FTrack [22] using accelerometer for floor
localization. The idea is to detect user activities of chang-
ing floors and track their floor levels based on their initial
locations. It requires neither infrastructure nor training.
With crowdsourcing, user traces containing acceleration

data are collected and interpreted to generate the map for
floor localization. The main problem of this approach is
that they cannot handle some practical issues such as differ-
ent user walking patterns and a variety of ways to carry/use
mobile phones, which may affect the accuracy and limit
the feasibility. While B-Loc follows the basic principle
of FTrack, it is not a tracking system, and it does not
rely on the previous location information. B-Loc detects
user activities of changing floor by a novel barometer-
based technique, and it has no assumption of users walking
pattern or the ways to carry/use mobile phones.

7. CONCLUSION AND FUTURE
WORK

This paper presents a novel, scalable floor localization
scheme. Leveraging on mobile phone sensing and crowd-
sourcing, B-Loc requires neither any infrastructure nor any
prior knowledge of the building. Different from similar
approaches, B-Loc does not require war-driving and rely
on barometer only. B-Loc provides high accuracy of activ-
ity recognition and minimum energy consumption, making
it more realistic for real-world deployment. Our simulation
and prototype system demonstrate the performance, scal-
ability, and robustness of B-Loc. For our future work, we
will further improve B-Loc by enhancing the calibration
algorithm. We also plan to offer a full version of B-Loc as
a free service to Google’s play store and the Apple store
for public use, and test B-Loc under real-life situations.
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