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ABSTRACT
With the increasing relevance of the Internet of Things (IoT)

and large-scale Location-Based Services (LBS), LoRa localization

has been attractive due to its low cost, low power and long range

properties. However, existing localization approaches based on

Received Signal Strength Indicator (RSSI) are either easily affected

by signal fading of different land-cover types or labor-intensive. In

this work, we propose SateLoc, a LoRa localization system that

utilizes satellite images to generate virtual fingerprints. Specifically,

SateLoc first uses high-resolution satellite images to identify land-

cover types. With the path loss parameters of each land-cover type,

SateLoc can automatically generate a virtual fingerprinting map for

each gateway. We then propose a novel multi-gateway combination

strategy, which is weighted by the environment interference of each

gateway, to produce a joint likelihood distribution for localization.

We implement SateLoc with commercial LoRa devices without any

hardware modification, and evaluate its performance in a 227,500m2

urban area. Experimental results show that SateLoc achieves a

median localization error of 47.1m, improving more than 40%

compared to the state-of-the-art model-based approaches. More

importantly, compared to the fingerprinting-based approach, SateLoc

does not require the labor-intensive fingerprint acquisition process.
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• Networks→Wide area networks; Location based services;
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1 INTRODUCTION
The vision of the Internet of Things (IoT) has been to

communicate with everyday objects around us. It has been reported

that the number of IoT devices will reach 75.44 billion by 2025 [37].

The location information of these IoT devices can be exploited in

various city-scale applications, such as finding lost objects (e.g.,

keys), navigating and tracking pets. Over the years, various solutions

have been proposed for such open-air localization. Traditional Global

Positioning System (GPS) can provide accurate locations of the IoT

devices. However, a GPS receiver typically consumes 30-50 mA

power and needs additional power to forward data [16], which is

incompatible with the low power consumption constraints of IoT

systems [32]. Besides, GPS tends to lose connectivity in indoor

environments. In order to remedy these defects, over the years,

many localization approaches have been proposed based on wireless

technologies such as Wi-Fi [39, 40], BLE [4, 41], and ZigBee [5, 38].

These approaches have been shown to be effective, however, they

require dense deployment of Access Points (APs) due to short radio

range, leading to high deployment and maintenance cost. Long-

range radio-based localization has recently attracted attention from

researchers.

Among existing long-range radios, LoRa has been widely

deployed in many city-scale IoT networks [9]. Exploiting LoRa for

localizing IoT devices over long distances has attracted increasing

research interests [1, 11, 16, 18, 21, 32]. An important property

of LoRa to enable remote sensing is its multipath and Doppler

resistance [6, 30]. In addition, its low cost, low power, and good

scalability make LoRa suitable for IoT localization.

While the research community has made significant advances in

LoRa localization, many limitations exist. Existing LoRa localization

algorithms rely on either calculating the Time Difference of Arrival

(TDoA) [16, 32] or measuring the Received Signal Strength Indicator

(RSSI) [1, 21]. TDoA-based approaches use the time differences

obtained from different gateways to estimate node location. These

approaches can only achieve sub-kilometer accuracy due to the

limitation of the inherent time resolution of LoRa chips [14]. RSSI-

based approaches can be further divided into two categories: 1)

directly obtain the location by comparing the received RSSI values

with an RSSI fingerprinting database (i.e., fingerprinting-based

approaches [1, 10, 35]); 2) first estimate the distance from the

signal source with a known signal propagation model, and then

calculate the location using trilateration algorithms (i.e., model-

based approaches [6, 12, 21, 22]). Fingerprinting-based approaches

can usually achieve good accuracy. However, they are labor-intensive

since they require a site survey to build a database, and update the

database regularly to reflect changes in dynamic environments. As

for the model-based approaches, one big issue is that they have not

considered complex signal fading of different land-cover types (e.g.,

buildings, trees, and water) along LoRa link.

Signal fading on LoRa link may vary depending on different land-

cover types. From our benchmark experiments in Section 3.2, we

observe that different land-cover types indeed cause significantly

different path loss to LoRa signal. The actual path loss of a LoRa

link may deviate from its theoretical value at a scale of tens of dBs.

This motivates us to investigate how to accurately quantify path loss

with respect to various land-cover types in the real world. If we can

obtain the actual path loss in any location, we can then use it as a
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virtual fingerprint and further build a virtual fingerprint database for

localization.

In this paper, we present SateLoc, a novel LoRa Localization
system based on virtual fingerprints obtained from Satellite images.
Specifically, SateLoc first utilizes the high-resolution satellite image

to identify the land-cover type of each pixel in the image. SateLoc

then automatically estimates the path loss of an arbitrary LoRa

link with the path loss parameters of the traversed land-cover

types. We face two technical challenges in quantifying the path

loss. The first challenge is to extract the LoRa link of an arbitrary

slope from the image and further divide it into segments, each of

which belongs to the same land-cover type. The second challenge

is how to combine the path losses of these segments with their

lengths and the corresponding path loss parameters. A simple sum-

up of the path losses of all segments may not work because these

segments are extracted at different distances from the gateway and

will have different impacts on the overall path loss. To address the

above challenges, we propose an algorithm that can automatically

segment an arbitrary LoRa link and calculate its overall path

loss (see details in Algorithm 1). For each gateway, SateLoc will

generate a virtual fingerprinting map, which consists of the path

loss between each pixel in the satellite image and the gateway.

Obviously, this virtual fingerprinting map can be generated with

little human effort. More importantly, SateLoc uses the Expected

Signal Power (ESP) instead of RSSI for fingerprinting since ESP

characterizes signal energy even when the signal power is below

the noise floor after a long propagation or traveling through walls.

Subsequently, we can combine the virtual fingerprinting maps of

multiple gateways to get the final location. However, in reality, the

measurements of different gateways may be suffered from different

environment interference, making it inappropriate to utilize these

measurements equally. To adaptively combining the fingerprinting

maps of gateways, we propose a weighted combination strategy,

which takes the environment interference of LoRa links as the weight.

Finally, SateLoc will produce a joint location likelihood distribution

to localize a LoRa node.

We implement SateLoc with commercial LoRa devices without

any hardware modification. We evaluate its performance in a 350 ×
650 m2 urban area. Experimental results show that SateLoc achieves

a median localization error of 47.1m, which is improved by 53.0%

and 49.1%, respectively, compared to two state-of-the-art model-

based approaches (i.e., standard log-normal model [6, 21, 22] and

Okumura-Hata model [12]). The localization accuracy of SateLoc

is also comparable to existing fingerprinting-based approaches [1],

and importantly we do not require any labor-intensive fingerprint

acquisition process.

In summary, we make the following key contributions:

• We propose SateLoc, which utilizes satellite images to
achieve accurate LoRa localization with little human effort.

SateLoc can automatically extract the land-cover information

to generate virtual fingerprinting maps (i.e., ESP maps) for

localization.

• We empirically analyze the model parameters in different
land-cover types. With these parameters, we can adaptively

get a more accurate path loss of an arbitrary LoRa link for

fingerprinting.

• We propose a multi-gateway combination strategy, which
quantifies the environment interference of each gateway as its

weight, to jointly estimate node location.

• We implement SateLoc with commercial LoRa devices and
conduct comprehensive experiments in the field. Results show

that SateLoc achieves a median localization error of 47.1m in

a 227,500m2 area.

The rest of the paper is organized as follows. Section 2 reviews

the related work of LoRa localization. Section 3 introduces the

background and motivation of SateLoc. Section 4 describes an

overview. In Section 5, we show how to automatically extract land-

cover information. We present the ESP map extraction process and

location estimation process in Section 6 and Section 7, respectively.

We give the implementation details and evaluation results of

SateLoc in Section 8. SateLoc is discussed in Section 9, and finally,

Section 10 concludes this paper.

2 RELATEDWORK
The related work of LoRa localization can be mainly divided

into the following two categories: 1) TDoA-based localization, 2)

RSSI-based localization.

2.1 TDoA-based Localization
TDoA-based approaches localize a LoRa node by the time

differences when the same signal arrives at multiple gateways.

In [16], a LoRaWAN network with TDoA capabilities was deployed

to perform localization for stationary nodes. Carvalho et al. [8]

evaluate the feasibility of using LoRaWAN for mobile applications.

Podevijn et al. [32] further implement a TDoA system to evaluate

the tracking performance in mobile scenarios.

However, TDoA-based approaches usually have poor localization

performance because, in the current commodity LoRa hardware

implementation, the resolution a timestamp can reach is one

microsecond (μs) only [14, 18]. Such resolution can easily result
in several hundred meters error in accuracy. In addition, these

approaches require strict clock synchronization among gateways,

making it more difficult for real deployment in the field.

A recent work μLocate in [27] designs a dedicated multi-band
LoRa backscatter system to achieve a meter-level localization

accuracy in a multi-room environment. In contrast, SateLoc aims

to achieve accurate remote localization with off-the-shelf LoRa

devices.

2.2 RSSI-based Localization
RSSI-based approaches are usually very efficient for remote LoRa

localization with low cost since RSSI values are widely available in

commodity LoRa devices.

Prior model-based approaches use RSSI measurements to

estimate the distance from node to gateway using propagation

models, which characterize the relationship between path loss and

distance. Bor et al. [6] and Petajajarvi et al. [31] employ the standard

log-normal model to describe path loss. Lam et al. [21, 22] further

propose algorithms based on the log-normal model to eliminate

noise interference for outdoor localization. Recently, Demetri et

al. [12] first identify the type of surrounding environments (urban or
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suburban) and then use the corresponding equation of the Okumura-
Hata model to characterize path loss. The main drawback in these

approaches is that most signal propagation models work better in

theory, but work poorly in reality due to the complex signal fading.

Specifically, they directly use unified models to characterize the

path loss of a whole LoRa link and do not consider different land-

cover types along the link, introducing deviation to the estimation of

the overall path loss. Improving localization accuracy with existing

propagation models remains a challenging task.

Fingerprinting-based approaches work more effectively in reality.

In these approaches, RSSI values of known locations are manually

collected into a database in an offline training phase, and then

RSSI measurements will be compared with the database for online

localization. Machine learning techniques, e.g., Bayesian inference

method [10, 23], SVM [35] and k-Nearest-Neighbor (kNN) [1],

are typically applied on collected RSSI measurements to estimate

node location. Although fingerprinting-based approaches can be

more accurate than model-based techniques, the construction of an

effective fingerprint database usually requires a significant amount

of manual efforts, especially for large-scale scenarios. Moreover,

regular updates are essentially required to keep fingerprints up to

date.

In SateLoc, we aim to combine the strength of the aforementioned

two approaches, and on the other hand, address their drawbacks.

Specifically, we utilize the land-cover information to enhance the

existing propagation models to be more realistic and adaptive to real

environments. With this enhanced model, we can then generate a

more effective virtual map for fingerprint matching with little human

effort.

3 BACKGROUND &MOTIVATION
In this section, we first give the background of LoRa, and then

describe the motivation of using land-cover information to improve

localization performance.

3.1 LoRa Background
LoRa is a physical layer technique that operates in sub-GHz ISM

bands. LoRa adopts Chirp Spread Spectrum (CSS) modulation, in

which a chirp is encoded using a linear variation of frequency over

time. Different chirps (“0” and “1”) differ from each other in the

initial frequency. A typical LoRa system consists of LoRa gateways

and LoRa nodes. Given a central frequency fc, the frequency of a
transmitted up chirp increases from fc−BW/2 to fc+BW/2. At the
receiver side, an inverse down chirp whose frequency decreases from

fc+BW/2 to fc−BW/2 can be utilized to decode the chirp. A LoRa
receiver can decode LoRa transmissions up to 20dB below the noise

floor, enabling very long communication distances. In addition, as

LoRa uses its entire allocated bandwidth to transmit data, it is more

robust to channel noise, multipath and Doppler effects. Therefore,

LoRa can play an important role in remote localization.

3.2 Motivation
In practice, the deployment of LoRa may not be in open

space only, but most likely in a combination of open space, forest,
rangeland and etc. In this case, the Friis’ law [12] cannot be applied

Table 1: Five representative land-cover types.

Type Description

BUILT-UP Built-up areas with human artifacts

FOREST Trees

FIELD Open space, Farms

WATER Rivers, oceans, lakes

RANGELAND Green land, grassland

Figure 1: The commercial Dragino LG01 gateway and LoRa
node. The LoRa node consists of a Dragino LoRa shield and an
Arduino UNO microcontroller board [2].

to model its propagation fading. When traversing different land-

cover types, LoRa signal propagation can be complicated and may

exhibit different behaviors.

We intend to study the influence of different land-cover types

on LoRa link. We first use the log-distance path loss model [34] to

describe the large-scale path loss PL(d) in dB:

PL(d) = PL(d0)+10n log(
d
d0

)+Nσ , (1)

where d is the distance between LoRa node and gateway, PL(d0)
is the mean path loss at a known reference distance d0, n is the
path loss exponent of the corresponding environment, and Nσ is a
zero-mean Gaussian random variable with a standard deviation of σ .
The key advantage of this model is that it can model the path loss

well in different environments with appropriate path loss parameters

n and σ .
To present the impact of different land-cover types quantitatively,

we conduct the following field experiments to identify the path loss

parameters of each land-cover type.

Setup. In this experiment, we select five representative land-cover
types as illustrated in Table 1. Each type may have different obstacles

which cause different effects on LoRa signal propagation. Note that

these types can be easily identified using multi-spectral satellite

images [25].

We deploy a commercial Dragino LG01 gateway and a Dragino

LoRa shield [15], as shown in Figure 1. Omnidirectional antennas

are attached to both the gateway and the node. Besides, they are

embedded with standard Semtech SX1278 LoRa RF-fronts [36]. In

all land-cover types, both the gateway and the node are placed at

1m above the ground. In the case of the water type, the gateway

and the node are placed at 1m above the water surface. The LoRa
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Figure 2: Path loss vs. distance in the five land-cover types.
Dots are the measurements and solid lines show the theoretical
values calculated from Equation 1.

node transmits packets periodically with the parameters configured

as follows: Spreading Factor SF=12 1, BandWidth BW=125 kHz,
Coding Rate CR=4/8, and Transmission Power TP=13 dBm. We
use a common reference distance d0 = 1m to obtain a stable and

accurate path loss reference PL(d0) [17, 34].
Dataset. In each land-cover type, we deploy the LoRa node at five

different distances to the gateway: 2m, 13m, 34m, 60m, and 92m,

for packet collection. We set the maximum distance to 92m because

a few walls in a built-up area or trees in a forest can make LoRa

link disappear within 100m [6, 24]. In each location, we collect

50 packets, and record the RSSI and SNR of each packet for later

analysis. In total, 1250 packets (50 packets × 5 locations × 5 types)

are collected for parameter study.

Parameter Study.While LoRa can receive transmission with a
signal power that is up to 20 dB below the noise floor, the common

RSSI cannot capture the path loss of these extremely weak signals.

LoRa uses the ESP to obtain the energy of the signal [12]:

ESP= RSSI+SNR−10log(1+100.1SNR). (2)

For each packet, we use its SNR and RSSI to calculate the ESP

and further the path loss 2. With sufficient packets collected at the

reference distance d0, we can first obtain the reference path loss
PL(d0) of each land-cover type. Then for each type, we use the curve
fitting function in MatLab to obtain its essential path loss parameters

n and σ . Figure 2 shows both measured and theoretical path loss at
different distances in the five land-cover types. Each fitting curve is

represented with a unique color of the corresponding measurements.

We use the corresponding n and set σ = 0 to generate these curves.
As seen, the log-normal model can well capture the characteristics

of LoRa links in different land-cover types. Taking a closer look

at the figure, different types can lead to significantly different path

loss. Both built-up and forest types will cause a relatively more
severe path loss than the other types. As these land-cover types are

commonly seen in an urban area, hence the path loss differences

among these types cannot be ignored when estimating the path loss

of a LoRa link.

1SF is the ratio between the symbol rate and chip rate and takes a value between 7 to 12.
A higher value of SF results in a longer time for each symbol transmission and yields a
longer communication range.
2To achieve the conversion between ESP and path loss, we have pre-measured the
ESP value ESP0 when the transceivers are placed together. Thus, we have: PathLoss =
ESP0−ESP. In the following, these two terms can be used interchangeably.

Table 2: Reference path loss PL(d0), path loss exponent n,
standard deviation σ , and the average model fitting error in
different land-cover types.

Type PL(d0) n σ Error (dB)

Built-up 23.091 4.499 1.887 2.351

Forest 21.254 3.616 0.854 1.531

Field 20.478 2.056 0.569 0.818

Water 20.709 2.158 0.599 0.882

Rangeland 20.392 2.274 0.622 0.987

Table 2 shows the reference path loss PL(d0), path loss parameters
n and σ of all land-cover types we have measured. The table

also shows the average error between the modeled value and the

measurements. As seen, path loss exponent n is larger in a more
complex land-cover type, which contains more Non-Line-of-Sight

(NLoS) paths and thus more severe fading. Standard deviation σ
and the fitting error both depend on the path loss variation due to

dynamic obstacles (e.g., pedestrians, vehicles) and static obstacles

(e.g., buildings, trees) across the link [34]. Therefore, these two

values are relatively higher in the built-up and forest types with more
obstacles.

This experiment shows that different land-cover types can result

in significantly different path loss effects. This strongly motivates us

to utilize the land-cover information to improve LoRa localization

accuracy. Our idea is first to identify the land-cover types from a

satellite image, and then automatically generate an ESP map for

localization.

4 OVERVIEW OF SATELOC
Figure 3 gives an overview of SateLoc. SateLoc integrates land-

cover information from satellite images and location and signal

information from gateways to localize a LoRa node. The workflow

of SateLoc is described as follows.

(1) With the training image set, SateLoc first trains a Random

Forest (RF) model, including a spectral feature extraction process

and a parameter optimization process.

(2) When the RF model is trained, it can be applied to generate a

land-cover map according to the satellite image of the testing area,

which covers both the gateways and the node to be localized.

(3) With the land-cover map, SateLoc further produces an ESP

map for each gateway based on its location in the testing area. The

ESP map essentially serves as a virtual fingerprinting map.

(4) Every time when a LoRa node to be localized transmits a

packet, SateLoc records all surrounding gateways that receive the

packet. Using the signal information (i.e., RSSI and SNR) extracted

from the LoRa packets, SateLoc can produce a location likelihood

distribution for each gateway based on its ESP map.

(5) SateLoc uses a weighted combination strategy to combine

the likelihood distributions of all gateways. Finally, a joint location

likelihood distribution can be generated to determine node location.

The first three steps are offline processes that need to be performed

only once. The last two online localization steps will be performed

each time the LoRa signal transmitted to the gateways.
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Figure 3: Overview of SateLoc and the workflow.

5 LAND-COVER CLASSIFICATION
In this section, we show how to identify land-cover types with the

high-resolution satellite image datasets provided via DeepGlobe [13].

SateLoc uses Random Forest (RF) for the multi-class segmentation

task. We select RF as our classification approach due to its

capabilities of dealing with such large-scale datasets, modeling

complex relationships among multiple image features, and avoiding

overfitting.

5.1 Building an RF Model
The inputs to train the RF model are the 803 satellite images

associated with labeled land-cover types at a spatial resolution of

50cm in the DeepGlobe dataset. We extract a feature vector for each

pixel in satellite images. Each feature vector contains five typical

spectral features, including the three raw RGB values, the Local

Binary Patterns (LBP) [29], and the Normalized Different Vegetation

Index (NDVI) [26]. During preprocessing, we first extract the same

number of samples (i.e., 16,800 samples) for each land-cover type

to eliminate the imbalance of sample sizes. Then we standardize all

features to zero mean and unit variance to accelerate the convergence

of the RF model.

We use 70% of the feature vectors and their corresponding labels

as the training set and the rest as the test set. We perform a grid-based

search on the training set to automatically find the optimal hyper-

parameters with a five-fold cross-validation strategy to maximize

the classification accuracy. Specifically, we test the following key

parameters in RF: decision tree number in [50,500] in increments

of 50, max features per tree in [1,5] in increments of 1, and min

samples split in [2,512] in exponentially increments. Finally, we find

that RF performs the best when the decision tree number is equal to

400, max features per tree are equal to 1, and min samples split is

equal to 32. We use the above configuration to construct the final

RF model, which can be applied to the satellite image of the area

of interest to predict the land-cover type of each pixel and further

output a land-cover map.

5.2 Predicting Land-cover Type
To evaluate classification accuracy, we assess the experimental

results with Overall Accuracy (OA), precision and recall. OA is

the percentage of correctly classified pixels of all pixels, while

precision and recall are at a granularity of each type. The values of

OA, precision, and recall are in the range of 0 to 1, and the higher

value indicates better classification performance.

Table 3: Classification accuracy of the RF model.

Type Built-up Forest Field Water Rangeland

Precision 0.57 0.46 0.44 0.68 0.39

Recall 0.52 0.56 0.49 0.66 0.31

OA 0.51

(a) Satellite image (b) Land-cover map

Figure 4: An example of land-cover type classification: (a) the
ground truth satellite image in RGB, and (b) the corresponding
land-cover map generated by SateLoc in a 5×5 km2 urban area
of Hangzhou, China.

Table 3 shows the classification accuracy of the trained RF

model. The OA is 0.51. This is because the labels provided in

the dataset are far from perfect [13]. In the dataset, many masks

ignore terrain details and small structures not annotated in the ground

truth. Incomplete and often inaccurate labeling presents a significant

barrier for model development and evaluation. However, compared

to the baseline CNN-based approach proposed in [13] with an OA

of 0.433, our RF model still improves the accuracy by 17.8%.

Figure 4(a) shows an example satellite image of a portion of

urban areas in Hangzhou, China. The image is directly sampled

from Google Earth and its corresponding land-cover map is shown

in Figure 4(b). We see that the classification and segmentation quality

is good enough, except for some uncertainty between water (blue)

and forest (green). However, these misclassified pixels are sparsely

distributed with each covers an area of 0.6× 0.6 m2. These pixels are
a small number of the long LoRa link and the induced path loss error

is still acceptable. In addition, the land-cover map has a property that
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Figure 5: Illustration of ESP map generation with an example
land-cover map. LoRa node at Pixel 1 transmits its packets in
the same land-cover type (i.e. built-up) while node at Pixel 2
needs to transmit across multiple types.

each land-cover area is composed of a number of clustered pixels

with clear boundaries. This property helps speed up the generation

of the corresponding ESP map, which will be described in the next

section.

6 GENERATING ESP MAPS
In this section, we describe how to utilize the land-cover map

to generate the virtual fingerprinting map, i.e., ESP map, for each

gateway.

Figure 5 shows an example land-cover map and each square

represents a pixel in the map. We aim to generate the ESP map for

the gateway (shown as the yellow circle). The basic idea of ESP map

generation is to first select the pixels on the wireless link between

the LoRa gateway and each candidate location, and then calculate

the path loss with the land-cover types of these pixels. Take Pixel 1

as an example, we first connect it with the gateway using a straight

line. Then we extract the coordinates and label of each pixel on

the line. Since these pixels all belong to the built-up type, SateLoc
directly uses the path loss model in Equation 1, along with the

distance d(Gateway,Pixel1) and the corresponding path loss exponent

nbuilt−up, to calculate the ESP value at Pixel 1. It is worth noting that

we set σbuilt−up = 0 to eliminate the randomness of the generated
fingerprinting maps.

In a more complicated case shown in Figure 5, the link between

Pixel 2 and the LoRa gateway goes through several land-cover types.

There will be two intersections A and B at the boundaries between
different types. Starting from the gateway, we first calculate the

path loss PL(Gateway,A) on segment (Gateway,A) with Equation 1.
For the next step, we replace the reference distance d0 with the
distance d(Gateway,A) between gateway and intersection A in the path

loss model. The reference path loss PL(d0) will also be replaced by
PL(Gateway,A) correspondingly. Now we can calculate the path loss

PL(A,B) on segment (A,B) with the updated path loss model and the
path loss exponent nwater. We repeat the above steps until we obtain

the path loss of the last segment, i.e., segment (B,Pixel2), of the link.

Algorithm 1 ESP map generation algorithm
Input: Land-cover map LM with X×Y pixels; Gateway location (xG,yG);
Basic ESP value ESP0; Path loss exponents n′s of five land-cover types;
Receiver sensitivity S; Pixel resolution R; The reference path loss PL(d0)
(set with Table 2 according to the land-cover type of the pixel where the

gateway is placed) at the reference distance d0
Output: ESP map EM = {EM(1,1), ...,EM(X ,Y )}
1: for i = 1 to X do
2: for j = 1 to Y do
3: // Get the pixel array P that consists of the coordinates [x,y]
and land-cover types c of all pixels on link ((xG,yG),(i, j)]. The
getTraversedPixels function is designed based on the Bresenham’s
algorithm.

4: P= getTraversedPixels(xG,yG, i, j,LM)
5: // Initialize the link length L and the path loss PL using the first
pixel P1 in P. P1x,P1y,P1c are the attributes x,y,c of P1, respectively.

6: xend = P1x, yend = P1y, n= nP1c

7: D= R
√

(xend − xG)2+(yend − yG)2

8: PL = PL(d0)+10n log D
d0

9: L = D, xstart = P1x, ystart = P1y
10: // Search for the segments whose pixels belong to the same type,

and iteratively calculate their path losses with their distances to the

gateway. Pkx,Pky,Pkc indicate the attributes x,y,c of the k-th pixel in P,
respectively. |P| is the total pixel number of array P.

11: for k = 2 to |P|−1 do
12: if Pkc == Pk+1c then
13: continue
14: else
15: xend = Pkx, yend = Pky, n= nPkc

16: D= R
√

(xend − xstart)2+(yend − ystart)2

17: PL = PL+10n log L+D
L

18: L = L+D, xstart = Pkx, ystart = Pky

19: // Add the path loss of the last segment to get the overall path

loss.

20: xend = P|P|x, yend = P|P|y, n= nP|P|c
21: D= R

√
(xend − xstart)2+(yend − ystart)2

22: PL = PL+10n log L+D
L

23: EM(i, j) = ESP0−PL
24: if EM(i, j) < S then
25: EM(i, j) =−∞
26: return EM

After that, we sum up the path loss of all segments and get the ESP

value at Pixel 2.

Algorithm 1 shows the details of our ESP map generation

algorithm. For each pixel in the land-cover map, SateLoc first

extracts all the traversed pixels from it to the gateway (not included)

using a form of Bresenham’s line drawing algorithm [7]. Then

SateLoc divides these pixels into segments, each of which belongs

to the same land-cover type. The path loss of each segment can be

iteratively calculated with the corresponding path loss exponent

and its distance to the gateway. Finally, SateLoc calculates the

overall path loss and further the ESP value of the pixel. While pixels

belonging to the same type are usually clustered in an area(illustrated

in Section 5), there will be reasonable ESP calculations (each

corresponds to a segment) for each pixel. Therefore, the overall

map generation cost (including time cost and computing resource

overhead) will be acceptable.
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(a) ESP map in an area with sparse
buildings nearby (in dBm)

(b) ESP map in an area with dense
buildings nearby (in dBm)

(c) Likelihood distribution (d) Joint likelihood distribution

Figure 6: ESP to location in a 1.5×1.4 km2 area of Yuquan Campus, Zhejiang University: (a) An example ESP map of gateway1
placed in an area with sparse buildings. (b) An example ESP map of gateway2 placed in an area with dense buildings. (c) An example
likelihood distribution of gateway2 when receiving an ESP value of ≈-116 dBm from the LoRa node. The while pixels show the most
possible locations estimated using Equation 3. (d) The joint likelihood distribution of the LoRa node produced using Equation 6 when
gateway1 receives an ESP value of ≈-88 dBm and gateway2 receives an ESP value of ≈-116 dBm. A brighter pixel indicates a higher
likelihood. The green triangle marks the actual location of the node.

To make the map more accurate, we utilize the receiver sensitivity

S of the gateway. Specifically, pixels with an ESP value less than S
will not receive the LoRa signal from the gateway. Therefore, for

pixels whose ESP value less than S, we just assign−∞ to them in the
ESP map. This will also help significantly reduce the computation

overhead in the following likelihood distribution generation process.

Taken from [36], we set S = −136 dBm according to the LoRa

configuration in our experiments. Figure 6(a) and (b) show two

example ESP maps over the 2D space when gateways are placed

in Yuquan Campus, Zhejiang University with sparse and dense

buildings nearby, respectively. As seen, the path loss does not spread

uniformly from the gateway. The area with dense buildings nearby

suffers from more severe signal fading and the corresponding LoRa

coverage degrades more significantly.

7 FROM ESP MAP TO LOCATION
7.1 ESP Map to Likelihood Distribution
We have obtained the ESP map for each gateway, we now present

our algorithm to infer the location of the node. As we record the

RSSI and SNR of each transmitted packet from a LoRa node,

the corresponding ESPnode can be calculated using Equation 2.

Assuming there areM gateways in the testing area that may receive

the LoRa signal, which means there areM ESP maps for localization.

The likelihood Lm,i of the node locating at the i-th pixel of the m-th
ESP map can be computed as:

Lm,i = 1− |ESPnode−ESPm,i|
max(|ESPnode−ESPm|)−min(|ESPnode−ESPm|)

,

(3)

where ESPnode is the mean ESP value measured from the LoRa node.

ESPm,i is the ESP value at the i-th pixel in the m-th ESP map. The
denominator calculates the value range of ESP differences in the

m-th ESP map, and normalizes the likelihood. For pixels with an
ESP value of −∞, we directly set their likelihoods as 0. Figure 6(c)
shows an example likelihood distribution of gateway2 over the 2D
space when receiving a LoRa packet with an ESP value of ≈-116
dBm in our experiments. As seen, the shape of possible locations is

not a circle since the LoRa links are affected by different land-cover

types.

7.2 Likelihood Distribution Fusion
Figure 6(c) also shows that the pixel with the maximum likelihood

can be far away from the ground truth when using only one gateway

to localize LoRa node. To get a more accurate location, SateLoc

usually requires at least two gateways (i.e., M ≥ 2). The more

gateways used, the higher the localization accuracy. In practice,

however, there may not be many LoRa gateways covering the same

area. To make a trade-off between deployment cost and localization

accuracy, we setM= 3 in our experiments. The detailed performance
with varying numbers of gateways will be evaluated in the evaluation.

A straightforward way to get the joint likelihood distribution is to

equally add the likelihood obtained from all gateways. However, the

performance of this method deteriorates due to different environment

interference along different LoRa links. The reason is that each link

contains various land-cover types, each of which has a specific level

of environment interference. Based on Table 2, we use variance

σ2 to quantitatively represent the level of environment interference.
This is because σ2 can characterize the uncertainty of the path loss
and can be directly summed up when the path loss is independent.

A larger σ2 indicates more severe environment interference. We
hence develop a weighted combination algorithm to build the joint

likelihood distribution and mitigate the effects of the environment

interference. The algorithm involves the following three steps:

First, we estimate the environment interference of each pixel

in the M likelihood distributions (one for each gateway). The

environment interference Γm,i of the LoRa link between the m-th
gateway Gatewaym and the i-th pixel Pixeli can be obtained by:

Γm,i =
|Pm,i|
∑
k=1

σ2k , (4)

where Pm,i is the pixel array on link (Gatewaym,Pixeli), |Pm,i| is the
total pixel number in Pm,i, and σ2k is the interference value at the k-th
pixel in Pm,i. Obviously, a larger Γ indicates that we should assess
less weight on the corresponding link.
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Second, we calculate the corresponding weight wm,i at the i-th
pixel of the m-th likelihood distribution:

wm,i =

∏M
θ=1 Γθ ,i
Γm,i

∑M
θ=1

∏M
θ=1 Γθ ,i
Γm,i

. (5)

For a specific pixel Pixeli, a relatively larger environment interfer-
ence Γm,i among the M links (one for each gateway) will lead to a

lower weight wm,i. In addition, Equation 5 normalizes each weight

wm,i to a range of 0 to 1. For each pixel, the sum of theM gateways’

weights equals to 1.

Finally, SateLoc calculates the weighted sum of M likelihood

distributions to form the joint likelihood distribution 3. SateLoc just

picks the pixel with the highest likelihood as the final location:

Location= argmax
i

M

∑
m=1

wm,iLm,i. (6)

Note that the first two steps are offline performed after getting

the traversed pixels in Algorithm 1, while the last step needs to be

performed in the online localization phase. Figure 6(d) shows an

example joint likelihood distribution when gateway1 receives an
ESP value of ≈-88 dBm and gateway2 receives an ESP value of
≈-116 dBm.

8 EVALUATION
In this section, we first present the implementation of SateLoc.

We then describe our evaluation and present the experimental results

in both localization accuracy and latency.

8.1 Implementation
We set the LoRa gateway shown in Figure 1 as the receiver, and

the LoRa node as the transmitter. The RadioHead library [33] pro-

vides a LoRa communication library for embedded microprocessors

and is installed in both the gateway and node. The transceivers use

one channel in the 433 MHz band for transmitting or receiving

LoRa signals. We carefully study the typical LoRa configuration

parameters: TP, SF, BW, and CR. To ensure the LoRa transmission

range and its resilience to noise, we select a set of parameters, i.e.,

TP = 13 dBm, SF = 12, BW = 125 kHz, CR = 4/8 in our experiments.

Detailed localization performance of different parameters will also

be evaluated. The node consistently broadcasts LoRa packets with

unique IDs to all gateways at a period of five seconds. Note that

we set such a short time period just for experimental analysis. In

practice, the period can be much longer to provide a better lifetime.

Each gateway is connected to a laptop through Ethernet to monitor

and collect LoRa packets. For packets collected at gateways with

the same ID, we record their RSSIs and SNRs. The core localization

estimation algorithms of SateLoc are implemented on a desktop with

an Intel i7 6700 CPU and 8GB RAM.

Figure 7 shows the site deployment of SateLoc in Yuquan

Campus, Zhejiang University. The test satellite image (Figure 7

left, a 1.5 × 1.4 km2 area) used in our experiments is directly

extracted from Google Earth with a spatial resolution of 0.6m.

Three LoRa gateways and one LoRa node are placed in a 350 ×
650 m2 area on a college campus (Figure 7 right). The advertised

3M can be an arbitrary positive integer.

Figure 7: Deployment of SateLoc in Yuquan Campus, Zhejiang
University. The left image is the overall satellite map (2816 ×
3072 pixels) we used in SateLoc. The right image is the zoom-in
map of a 350× 650m2 urban area, which shows the deployment
of the Dragino gateways (red triangles) and the measurement
sites (yellow dots). The three gateways are placed at the 2D
pixels of (1170, 2130), (1780, 1550), and (2240, 1660) in the
satellite map.

communication range of LoRa is expected to be more than 10km for

suburban environments [24]. However, LoRa coverage can degrade

significantly with the presence of obstacles in NLoS scenario. Our

experimental area covers a large number of buildings and trees, and

is full of NLoS paths. As already shown in Figure 6, the LoRa

coverage in our experiments can be only a few hundred meters,

which is consistent with the experimental results in [6, 20, 24, 28].

Therefore, it is reasonable to place three gateways in such complex

outdoor scenario, which is also the deployment environments in

urban areas, to maintain an acceptable LoRa link quality.

All LoRa gateways are placed at 10m above the ground in

buildings. For each gateway, we record its location and pre-measure

the path loss at the reference distance (i.e., 1m) for analysis. The

LoRa node is powered by a 5V portable power supply, and is placed

at a height of 1m when sending LoRa packets. We place the LoRa

node at 38 test locations (shown in Figure 7) in the campus area.

We manually label these locations in the form of 2D pixels in the

satellite map as the ground truth. In each location, we collect the

RSSIs and SNRs of 20 LoRa packets, which are aimed to calculate

the average ESP to further mitigate the environment interference. We

have also shown the performance with varying numbers of packets

in our evaluation.

8.2 Performance Evaluation
As a target for precise and fast remote localization, the two most

important metrics are used to testify SateLoc: accuracy and latency.

8.2.1 Accuracy. We first compare the performance of SateLoc
with RSSI-based and TDoA-based approaches. Then, we show the

effectiveness of the ESP map and our path loss model. Finally, we

evaluate the effects of different LoRa configuration parameters.
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(a) Comparison with model-based approaches

(b) Comparison with fingerprinting-based and TDoA-based ap-
proaches

Figure 8: Overall performance of SateLoc.

Comparison study. Comparison with model-based approaches.
We compare the localization accuracy of SateLoc with two state-of-

the-art approaches that use standard log-normal model [6, 21, 22]

and Okumura-Hata model [12] to characterize the path loss. We

use the parameters of the two models estimated in these works. In

particular, the Okumura-Hata model is also related to the surrounding

environment and consists of an urban equation and a suburban

equation. We use its urban equation in the built-up and f orest types
and use the suburban equation elsewhere. Based on the estimated

path losses, we employ a trilateration method to localize the node in

these approaches. For a fair comparison, we use the same number

of gateways (i.e., 3) and LoRa configuration parameters during

benchmarking.

Figure 8(a) shows that the median localization error of SateLoc

is 47.1m, while the median localization errors of the standard

log-normal model and the Okumura-Hata model are 100.2m and

92.6m, respectively. Compared to the two model-based localization

approaches, SateLoc improves the localization accuracy by 53.0%

and 49.1%, respectively. Although there is still a gap compared

to high-precision GPS, we believe that SateLoc can help achieve

some prime applications such as parked vehicle tracking [11] with

low power consumption. Specifically, the service provider may

need to compute how much time each vehicle has been parked.

GPS-based vehicle tracking is not widely deployed since GPS is

power-hungry and requires a connection to the vehicle battery, which

increases the complexity of vehicle installation [11]. In this case, the

provider can use SateLoc to detect the start and end time of parking.

Another appealing use case of LoRa localization is the anti-theft of a

large number of stationary assets in construction sites, utility yards,

airports, etc due to the low cost of LoRa nodes.

Comparison with fingerprinting-based approaches. We further
compare the performance of SateLoc with a state-of-the-art

fingerprinting-based approach [1], which uses kNN for localization.

We randomly select 70% (i.e., 14) LoRa packets of each location

as the training set and the rest as the test set. During training, we

calculate the ESP value of each gateway in each location to construct

the fingerprint database. In total, there are 532 fingerprints (14

packets × 38 locations), each consists of three ESP values of the

corresponding gateways. We adopt Euclidean distance to measure

fingerprint similarity. For each test packet, we extract candidate

locations with the k = 3 smallest distances and use the centroid as
its location. We get the final localization error of a test location by

averaging the localization errors of packets collected there.

Figure 8(b) shows that SateLoc achieves comparable localization

accuracy compared to the kNN-based approach (a median localiza-

tion error of 37.8m). In addition, we find that the localization errors

of the kNN-based approach are mainly distributed around 40m,

which is roughly the distances between neighbor test locations in our

experiments. This indicates that the accuracy of these fingerprinting-

based approaches is highly dependent on the site deployment when

collecting fingerprints. However, it is labor-intensive to construct and

maintain an effective fingerprint database, especially in a large-scale

area. Instead, SateLoc manages to remedy the defect using more

effective virtual ESP fingerprints.

Comparison with TDoA-based approaches. We also make a
comparison between SateLoc and a basic TDoA-based localization

approach. As shown in Figure 8(b), TDoA-based approaches may

not perform well due to the low clock precision of the low-cost

commercial LoRa devices used in our experiments. Specifically, the

clock error of our devices can reach up to tens of microseconds,

leading to a localization error of thousands of meters. Two lessons

learned from these comparisons to make good use of TDoA

information are: 1) adding modules with high-precision clocks in

the gateways, or 2) deploying relatively expensive devices with high

clock precision.

Effectiveness of the ESP map and path loss model. The ESP
map boundary of a gateway can be viewed as its signal coverage area.

We move the LoRa node around the gateway and mark the furthest

locations where LoRa signal can be received. Then we connect these

locations to get the measured coverage boundary. Figure 9 shows

the theoretical boundary of the ESP map and the measured LoRa

coverage of a deployed gateway. As seen, the measured boundary

can roughly match the automatically generated ESP map. Taking

a closer look, the measured boundary is consistently smaller than

the theoretical boundary. This is because the minimum measured

ESP values (i.e., -123.02 dBm on average) are slightly above the

theoretical ESP value (i.e., -136 dBm).

We also perform controlled experiments to validate our iterative

aggregation path loss model and compare it with other state-of-the-

art path loss models. We deploy the LoRa devices with different

numbers of land-cover types in the middle and record the distances
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Figure 9: Effectiveness of the ESP map of Yuquan Campus,
Zhejiang University. The white lines show the measured signal
coverage boundary.

Figure 10: Path loss estimation errors of our iterative
aggregation path loss model and existing models.

for each type. Note that it is difficult to get a complete ground truth

ESP map since we need to take these samples site by site. Hence,

we use per-sample values collected in our experiments as the ground

truth. Figure 10 shows the detailed path loss estimation errors of

SateLoc and other existing models in our experiments. As seen,

SateLoc achieves a median path loss estimation error of 7.87 dB,

reducing the error by 18.4%, 34.4% and, 75.4% compared to the

Okumura-Hata model (i.e., 9.64 dB), standard log-normal model

(i.e., 12.00 dB), and free space model (i.e., 32.05 dB), respectively.

Results show that SateLoc can get more accurate path losses and

further a more accurate ESP map with the novel map generation

algorithm.

Impact factors. In the following, we evaluate the performance
of SateLoc with different LoRa configurations by varying one

of the parameters at a time during the packet collection process.

We also evaluate the localization accuracy of SateLoc when using

different numbers of gateways and packets, and in different weather

conditions.

Impact of transmission power. Considering that different transmis-
sion power will lead to different transmission ranges, localization

accuracy may be greatly affected. To evaluate the influence of

transmission power, we set TP to: 13 dBm, 10 dBm, and 7 dBm,

respectively. Figure 11(a) shows the localization error of different

TPs. Results show that when the TP drops from 13 dBm to 7

dBm, the median localization error increases by 80.6%. Besides,

the localization error in some locations can reach up to 300m. This

is because some gateways cannot successfully receive packets from

these locations with a limited transmission power, and thus cannot

be used for localization.

Impact of spreading factor. Spreading factor can influence not
only transmission range, but also the resistance to interference

noise [3]. We evaluate the performance of SateLoc with three

different SFs: 12, 10, 8. Figure 11(b) shows that the median

localization errors are increased to 75.0m and 102.8m when the

SFs are set to 10 and 8, respectively. Results show that a higher SF

can significantly improve the localization performance of SateLoc,

since it can reduce the interference of environmental noise.

Impact of bandwidth. A higher bandwidth gives a higher data rate,
but decreases the sensitivity due to additional noise [6]. Figure 11(c)

shows the localization accuracy when the BWs are set to 125 kHz,

250 kHz, and 500 kHz, respectively. It is as expected that the

localization errors increase with higher bandwidths. Compared to

the 125 kHz BW, the localization errors of the 250 kHz BW and 500

kHz BW increase by 40.5% and 79.8%, respectively.

Impact of coding rate. Coding rate offers protection against the
burstiness of interference and helps reduce the packet error rate. CR

can be set to either 4/5, 4/6, 4/7 or 4/8. Figure 11(d) shows that

the median localization errors of the four CRs are 48.4m, 47.8m,

59.6m, and 47.1m, respectively. Results show that SateLoc achieves

consistent localization accuracy across different CRs. This is because

changing the CR will not significantly influence both the RSSI and

SNR of the received LoRa packets.

Impact of number of gateways.We also evaluate the performance
of SateLoc when using the collected data from different numbers

of gateways. As described in Section 7.2, we first use 1, 2, and 3

distributions (i.e., gateways) to form the joint likelihood distribution,

respectively. Then we pick the pixel with the highest likelihood as

the final location. The localization results are shown in Figure 11(e).

As seen, a larger number of gateways will significantly decrease

the localization error. Considering the practical coverage and the

deployment overhead of LoRa gateways, we use 3 gateways in our

experiments. We believe the localization accuracy can be further

improved with more gateways.

Impact of number of packets. In our experiments, we collect
20 packets to calculate the average ESP values and localize the

node around every two minutes (20 packets × 5 seconds/packet).

In practice, we find that the ESP values of packets collected at the

same location are stable. Besides, SateLoc can complete the online

localization phase within three seconds (evaluated in Section 8.2.2).

These indicate that we can use fewer packets to localize the node.

Figure 11(f) shows that using fewer packets will not significantly

decrease the localization accuracy. When the number of packets

drops from 20 to 5, the median localization error only increases from

47.1m to 53.8m. For cases where response time is limited, SateLoc

can still perform well using all available LoRa packets.

Impact of weather condition. Weather condition is one of the
main influence factors in wireless communication. We collect

experimental data on sunny, foggy, and rainy days. Figure 11(g)

shows that bad weather conditions (i.e., more moisture in the air)
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(a) Transmission Power (b) Spreading factor (c) Bandwidth

(d) Coding rate (e) Number of gateways (f) Number of packets (g) Weather condition

Figure 11: Localization accuracy of SateLoc with different factors.

can significantly reduce localization accuracy. This is because the

path loss parameters in Table 2 are extracted on sunny days and

cannot work well in other conditions. A straightforward solution is

to extract the corresponding parameters in all weather conditions.

8.2.2 Latency. The two main phases that contribute to the
latency of SateLoc in online localization are the likelihood

distribution generation and the fusion phase.

In the generation phase, time delay mainly contributes to the

likelihood calculation process. For each gateway, SateLoc takes

about 5.85s to generate its likelihood distribution with the whole

satellite image (2816 × 3072 pixels) we used in SateLoc. In the

fusion phase, it takes around 0.38s to produce the joint likelihood

distribution and get the maximum likelihood.

It is worth noting that time delay is highly relevant to image size.

If we only use the pixels of the zoom-in deployment map in Figure 7,

the generation time of each gateway can be further reduced to 0.75s

and the fusion time can be reduced to 0.30s. Therefore, the overall

time delay (0.75 s/gateway × 3 gateways + 0.30 s) of the online

localization phase should be within 3s. In SateLoc, the time interval

between adjacent packets is five seconds, which is sufficient for

continuous localization. In a general LoRa network, the packet rate

of a LoRa node can even be less than 30 packets/hour to prolong its

lifetime [31]. As a result, SateLoc is compatible with existing LoRa

networks.

9 DISCUSSION
In this section, we first discuss two possible ways to further

improve the localization accuracy by improving land-cover classifi-

cation accuracy and integrating TDoA information. Then we present

a discussion on future directions of SateLoc in more environments

and applications.

High-accuracy land-cover classification. Land-cover classifi-
cation from high-resolution satellite images is known to be a

challenging problem. The labels are also far from perfect due to the

cost for annotating multi-class segmentation mask [13]. Quantifying

the path loss of LoRa link accurately much depends on classification

quality. While deep learning is a promising approach for accurate

land-cover classification [19], we will investigate a more efficient

deep learning approach in our future work. Besides, since the land-

cover may change over time, it is necessary to update the test satellite

image and re-classify the land-cover types periodically (although not

frequently, such as updating every six months) to maintain a good

localization accuracy.

Integrating TDoA information. Although SateLoc significantly
reduces localization accuracy to around 50m, more efforts are

required to apply this system for applications with high-accuracy

localization requirements such as localizing goods in a warehouse.

The localization accuracy can be further improved with multi-

dimensional information available in off-the-shelf LoRa devices,

such as TDoA. In our future work, we plan to investigate how to

fuse the locations extracted from TDoA and RSSI.

More real-world evaluations. In this paper, we analyze the
performance of SateLoc in an urban area of around 0.2 km2. Our

current evaluation includes land-cover types of buildings, fields,

forest, and rangeland. In the future, we plan to deploy SateLoc in

more environments to further evaluate the performance of SateLoc.

Large-scale tracking applications. SateLoc has the potential
to help realize large-scale tracking using continuously estimated

locations. However, tracking applications usually have higher

requirements for system responsiveness. While SateLoc needs to

calculate the likelihood of all pixels in a satellite image to estimate

the start location, we can use the spatial information of adjacent

locations to reduce the search space of subsequent locations. More

importantly, the tracking accuracy can be further improved with road

information extracted from satellite images.
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10 CONCLUSION
In this paper, we propose SateLoc, which uses high-resolution

satellite images for remote LoRa localization. We first analyze

the path loss parameters in different land-cover types. With these

parameters, we can capture the path loss of an arbitrary LoRa

link. SateLoc consists of two phases: an offline training phase

and an online localization phase. In the training phase, SateLoc

trains an RF model for automatically generating a land-cover map

according to the satellite image of the area of interest. Next, SateLoc

produces a virtual fingerprinting map (i.e., ESP map) for each

gateway without the labor-intensive fingerprint acquisition process.

Then in the localization phase, SateLoc uses a novel weighted

combination strategy to combine the fingerprinting maps of multiple

gateways and output a joint location likelihood distribution for

node localization. We implement SateLoc with commercial LoRa

devices in a 227,500m2 urban area. The experimental results show

that SateLoc achieves a median localization error of 47.1m, while

requiring little human effort.
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