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ABSTRACT
We have seen increasingly popularity in embedding barome-
ter into smartphone today. A barometer measures the baro-
metric pressure, and it can be used for a variety of applica-
tions. For example, in localization techniques, it is used to
detect the altitude or altitude change of a user. Unfortunate-
ly, the smartphone barometer measurement is not accurate,
and it has to calibrate appropriately before use. In this
paper, we present Scalable Barometer Calibration (SBC),
a scalable, transitive calibration algorithm to automatically
calibrate barometer for a large number of smartphone users.
SBC requires neither any infrastructure nor any human in-
tervention, it uses smartphone barometer and accelerometer
only. SBC provides high accuracy of barometer calibration
and minimum energy consumption, making it more realis-
tic for real-world deployment. Our simulation and proto-
type system demonstrate the performance, scalability, and
robustness of SBC.
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1. INTRODUCTION
The advancement of embedded sensors in smartphones has
motivated numerous sensor-assisted applications [11,19]. The
barometer (a built-in sensor which measures atmospheric
pressure and first appears in the Google Galaxy Nexus) now
becomes more and more common in smartphones. Knowing
the barometric pressure around mobile users is particularly
useful for a variety of applications. For example, in weath-
er forecasting, knowing a super-dense picture of barometric
pressure from users in that area will provide timely and accu-
rate weather variation forecast. In shopping mall or airport
environments, a navigation service such as Google maps [3]
can detect a user’s current floor level by transforming the
barometric pressure to altitude. Many outdoor application-
s [1, 5] make use of barometer to calculate the altitude or
vertical displacement of users. Recent studies use smart-

phone barometer for indoor localization [16, 17]. These ap-
plications perform well only if the barometer measuremen-
t is accurate. However, in real-life scenarios, smartphone
barometer is often not accurate if it is not calibrated care-
fully and constantly. Smartphone barometers need to be
calibrated before they are used for building these applica-
tions. We name it the barometer calibration problem, which
aims to calibrate barometers for different smartphone users.

Barometer on smartphone often has a drift (a.k.a. creep)
between the reading and the real barometric pressure, and
the drift varies from device to device. For calibration, it is
important to get the drift of all smartphones. Unfortunately,
in reality, it cannot be easily done. The barometric pressure
varies by time and location [2,18]. The barometric pressure
at the same location may change in less then 10 minutes de-
pending on the weather condition. The barometric pressure
in different locations are different, even in the two adjacent
rooms it maybe different because of different temperature
and humidity in each room. In order to calibrate a smart-
phone barometer, we need to know the real barometric pres-
sure at the smartphone’s location, which may change over
time. For a small number of smartphone barometers, they
can be easily calibrated at a meteorological center where the
barometric pressure can be measured accurately. However,
it is a real challenge to calibrate barometers for thousands
and millions of smartphone users in a scalable manner.

An intuitive solution is to use weather reports for smart-
phone barometer calibration. We can easily compare the
barometer pressure values from a smartphone barometer
with the one in a weather report, and obtain the drift by
subtracting the two values, assuming that the value from the
weather report is accurate. Unfortunately, it may not work
in reality. In a weather report, the atmospheric pressure is
typically measured at sea level, which does not match to s-
martphones’ locations. Smartphone users may move around
in different locations with different heights from the sea lev-
el. The barometric pressure decreases by 0.12 hPa for going
up every 1 meter in the vertical direction. One may think
of using a high-precision pressure gauge meter to calibrate
smartphone barometers. To do this, we simply put these t-
wo devices together, and the drift can be easily obtained by
comparing the two readings. But, in reality, it is difficult, if
not both time-consuming and labor-intensive, to implemen-
t this method considering a large number of smartphones.
In addition, barometer drift may change over time due to
changes in the aneroid cell occurring slowly [7], and even the
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Figure 1: Overview of SBC

barometric pressure at the same location may keep changing
in a day due to different weather conditions [2]. Hence, we
may have to carry out calibration periodically, which it is
obviously not scalable.

In this paper, we present a novel Scalable Barometer Cal-
ibration (SBC) approach to address the challenges of cali-
brating a large number of smartphone barometers. For sal-
ability, we propose a transitive calibration scheme through
crowdsourcing. We observe that users often encounter with
each other at places such as in elevators and on the public
transport, the two most common places. In this case, their
barometer measurements must be the same. For example,
user A encounters with user B in an elevator. If user A’s
barometer is calibrated, we can calibrate user B’s barome-
ter using user A’s reading. Later, when user B encounters
with user C in a bus, and user C’s barometer can be calibrat-
ed in the same way. Based on this observation, we design
a scalable, transitive calibration algorithm to automatically
calibrate different smartphones’ barometers. We collect user
data through crowdsourcing, calibrate smartphone barom-
eters by user encounters and the calibration is done in a
transitive way with more users involved. In more detail-
s, we first detect user encounters in elevators and vehicles
and collect the data using crowdsourcing. The detection is
done through both barometer and accelerometer signatures.
We then calibrate groups of users when they encounter with
each other, and apply a graph based algorithm to calibrate
all smartphones in a transitive way.

In summary, we make the following contributions:

1. We propose an efficient and scalable approach for s-
martphone barometer calibration. SBC makes use of
barometer and accelerometer on smartphone only, and
does not require any infrastructure support.

2. We design several novel techniques to detect users when
they appear in the same elevators and vehicles, and cal-

ibrate barometers for different smartphones in a tran-
sitive way.

3. We conduct both extensive simulations and field stud-
ies to analyze the performance of SBC. We deploy SBC
in a real situation to demonstrate its superiority over
existing solutions. Our evaluation shows that 100 of
users in a 10-floor building can all be calibrated in a
single day.

The rest of this paper is organized as follows. Section 2
gives an overview, followed by the detailed design. Section
3 gives the theoretical analysis. Our evaluation is reported in
Section 4. Section 5 discusses the related work, and finally,
section 6 concludes the paper.

2. SYSTEM DESIGN
We give an overview of SBC in this section, as shown in Fig.
1. The system operates in three phases. In the first phase,
SBC collects data from user smartphones through crowd-
sourcing. When a user travels up and down in the building
(e.g., taking elevators), the mobile client software running on
the phone collects barometer readings in real-time. The ac-
tivities of taking elevators are detected and captured by our
activity recognition algorithm. We design a robust technique
to recognize such activities using barometer on smartphone.
When a user is in the vehicle, the mobile client software col-
lects the accelerometer trace in real-time. The recognized
elevator activities and the accelerometer trace will be up-
loaded to the cloud server as a user trace. In the second
phase, in the cloud server, we calibrate barometers on dif-
ferent smartphones based on user encounter in elevators and
vehicles. The user encounter in elevators are detected based
on user elevator activities. The user encounter in vehicles
will be detected using our DTW matching algorithm which
makes use of the accelerometer readings. After encounter
detection, the calibration is done in a transitive way with
more users involved, and eventually propagated to all pos-
sible users in a scalable way. In the last phase, a mobile
user first downloads the barometer drift of his smartphone.
When measuring the barometer pressure, the value is the
sum of the row barometer reading and the drift.

Table 1: Barometer sensor parameters
Property BMP180/182 LPS331AP

Absolute accuracy

(300-1100 hPa)(0-65◦C)
-4.0 ... +2.0 hPa (-33...+17m)

- 3.2...+2.6hPa

(-27...+22m)

Relative accuracy

(950-1050 hPa)(@25◦C)
± 0.12 hPa (± 1m) ± 0.2 hPa

(± 1.7m)

Noise 0.06 hPa (0.5m) 0.06hPa (0.5m)

Used in smartphone
Galaxy Note 2/3, Xaiomi M2,

Sony Ericsson Active, Nexus 3/4
Galaxy S3,S4

2.1 Barometer on Smartphone
Barometric pressure is the force per unit area exerted on a
surface by the weight of air above that surface in the atmo-
sphere of Earth [2]. As altitude increases, barometric pres-
sure decreases. Barometer sensor on smartphones can mea-
sure the barometric pressure. Barometer sensor has become
increasedly popular on smartphones today. Most common-
ly used barometer sensors are BMP180/182 and LPS331AP.
Table 1 gives their technical specifications. From the table,
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Figure 2: The properties of smartphone’s barometer

we observe that while the absolute accuracy1 is about ± 20
meters (which is low), the relative accuracy2 is about ± 1.5
meters (which is high) and the noise is only about 0.5m.
This implies that the barometer sensor has a high level of
sensitivity, and it is good enough to detect the change of the
barometric pressure when users go up or down in a building.
There is a clear barometric pressure change of about 0.45h-
Pa for each floor. Motivated by this observation, we use
barometer to detect the activities when users change their
floor levels by elevators.

We sampled the barometer readings of two smartphones of
the same type at the same indoor location. Although the
relative accuracy is high in the datasheet, but in reality, they
are not accurate. There are considerable drifts between the
barometer readings and the real barometric pressure. Figure
2(a) shows that there is a drift of sensor readings of two
smartphones which are put together. The drift may result
in an error ranging up to 1.8 hPa (15 meters). In another
study, we compare the barometer readings from different
smartphones with real barometric pressure, we are interested
to know if the drift changes in a short time. We used 6
different smartphones, and recorded the drift to the real
barometric pressure every 4 days. The results show that the
sensor drift in Fig. 2(b) keeps stable and the variation in
Fig. 2(c) is negligible. This means that the drift can be
stable for several days(20 days).

We then conducted more experiments to further study barom-
eter sensor properties under different usage scenarios—1) the
smartphone gets hot, 2) the smartphone is under the wind,

1The difference of the change of a sensor reading compares
to the change of real barometric pressure.
2The accuracy of a sensor reading compares to the real baro-
metric pressure.

3) the smartphone shakes, and 4) the smartphone is in pock-
et or bag. Figure 2(d) shows the barometer readings of two
smartphones at the same location for 15 minutes—one with
a constant temperature, the other with a growing temper-
ature (e.g., when continuously running a computation in-
tensive application). The result shows that the temperature
does not affect the barometer reading. Figure 2(e) shows the
barometer readings of the two smartphones with and with-
out the wind (e.g., a fan and the air conditioner are used
to generate the wind). The result shows that the barome-
ter readings keep unchanged under the fan, and vary in a
small range of 0.2hPa under air conditioning, it shows that
the wind and temperature changes have limited impact on
the reading. Figure 2(f) shows the barometer readings when
shaking the phone, putting in and taking out from the pock-
et or bag. The result shows the barometer readings remain
constant under these scenarios.

It is clear that appropriate calibration needs to be done,
and it shows that if we carefully calibrate the barometer by
getting the drift between the barometer reading and the real
barometric pressure, the barometer can be very accurate.

2.2 Transitive Calibration Algorithm
The objective of barometer calibration is to calibrate each s-
martphone’s barometer to the real barometric pressure. Our
approach is to choose an accurate smartphone’s barometer
as a reference point and find the drift between each of oth-
er user’s barometer and the reference. Then all calibrated
barometer readings will be accurate. Before we introduce
our calibration algorithm, we first introduce the property
of the drift between sensors. We define driftAB as the
drift between barometer A and B, and driftAB = BaroA −
BaroB , where BaroA and BaroB is the reading from barom-
eter A and B, respectively, under the same barometric pres-
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sure. The barometer drift holds the following properties:
1) driftAB = −driftBA, 2) driftAB + driftBC = driftAC .
These properties clearly demonstrate the transitive relation-
ship. We define barometer calibration as follows: 1) For two
smartphones, they are calibrated when the drift of the two
barometers is known by the cloud server. 2) For more than
two smartphones, they are calibrated when the drift between
every two barometers is directly known by encounter in ele-
vator/vechile or indirectly known by the transitive relation-
ship. In order to calibrate all the barometers, we first pro-
pose two ways of calibrating two barometers. One is based
on user encounters in elevators in an indoor environment,
the other is based on user encounter in vehicles in an out-
door environment. We know that a user can not encounter
with all other users in elevators or vehicles, in our approach,
we then calibrate all users based on the transitive proper-
ty of calibration. It is important to notice that, we only
detect user encounters in elevators and vehicles because it
is energy efficient and accurate, making our approach more
practical and scalable for widely usage. Other encounter de-
tection techniques based on bluetooth [15] and sound [20]
are not practical because they cost more energy and have
more restrictions.

2.3 Calibration by User Encounter in Eleva-
tors

Calibration is done by analyzing barometer traces. The idea
is to calibrate users’ barometers when they encounter each
other. Users encounter often in elevators since elevator is
very common in buildings and users often take elevators. So
we first detect the activity of user taking elevators, than find
out who encountered each other in the elevator.

2.3.1 Elevator Activity Detection
We first present a novel technique to recognize the activities
of taking elevators using barometer. We represent a barom-
eter sample P by B = {t, Baro}, where t is the time for
sampling, and Baro is the barometer reading at time t. The
barometer samples arriving in time order form a barometer
trace, which is represented by BTrace = {ID,B1, B2, ..},
where ID is the identity of the user. Users typically change
their floor levels by taking elevators. The barometer sen-
sor is inherent noisy. Figure 3(a) shows the raw barometer
readings. In SBC, we smooth the values with a reasonable
window size of 1000 ms (i.e., the value at time t is the average
value from t− 500 to t+500 ms), as shown in Fig. 3(b). In
our previous study, we observe that barometer readings on
smartphones don’t change much in a short period of time
unless users change their floor levels. Hence, the change
of barometer readings can be used to recognize the floor-
change activities. To do this, we extract the first derivative
of the barometer readings and the resulting curve is shown
in Fig. 3(c). We can see from the figure that the change
of barometer readings is transformed to crest when going
up and trough when going down. The crest and trough are
sharp when taking elevators and smooth when taking esca-
lators and stairs. This let us distinguish taking elevators
from taking escalators and stairs. The start and end time
of the activity is the time of the left and right edge of each
crest or trough.

To detect the taking elevator activities, we calculate the area
size of each crest or trough. If it meets certain conditions,
a taking elevator activity is detected. In detail, each area
is defined as a continuous and closed region formed by the



x axis and the curve. The region is located below or upon
the x axis, which should meet the following conditions: 1)
Lasted time between 3 and 120 seconds, 2) Area size bigger
than 1.0. Figure 3(c) shows the areas of taking elevators. In
SBC, we do not impose any constraint on the ways users car-
ry or use their smartphones. A smartphone can be held on
hand, placed into a pocket or bag, or used to make/receive
a phone call, etc. We define an taking elevator activity as
A = {STime,ET ime, SBaro,EBaro}, where STime is the
start time of an activity, ETime is the stop time of an activ-
ity, SBaro and EBaro is the barometer reading at STime
and ETime, respectively. The user’s moving trace can be
then defined as MTrace = 〈ID,A1, A2, . . .〉, where ID is
the identity of the user. The detection is done in the s-
martphone and the resulting MTrace will be uploaded to
the cloud server. We conducted experiments with two users
using three different smartphones under real-life situations
in three different buildings. Figure 4(a) shows the accuracy.
The results show the average accuracy using barometer is
about 98.3%.

2.3.2 Find encounter in elevators
We observe that if users encounter each other in an elevator,
the time and value of their barometer change are the same.
In an other word, if we detect two taking elevator activities
from both users’ barometer traces, these activities start and
end at the same time, and the barometer readings change is
the same, we conclude that the two users encounter in the
same elevator, Fig. 2(a) is an example. This is formalized as
follows. 1) I1: Ai.ST ime = Aj .ST ime; 2) I2: Ai.ET ime =
Aj .ET ime; 3) I3: Ai.SBaro − Ai.EBaro = Aj .SBaro −
Aj .EBaro; and 4) I4: Ai = Aj ; where Ai and Aj is the
floor-change activity for user i and j, respectively. The rule
is then formulated as follows.

R1 : I1 ∧ I2 ∧ I3 → I4.

If we have Ai = Aj , the drift is then calculated by the
following formula.

driftij =

∑Ai.ETime
t=Ai.STime(Bi(t)−Bj(t))

n
(1)

where Bi(t) and Bj(t) is the barometer reading of user i and
j, respectively, at time t, n is the total sample size.

We analyze a case that when two users enter into different
elevators at different floors and experience a floor-change
activity with the same barometer change at the same time.
The above rules will wrongly conclude they are in the same
elevator. To handle this case, we first observe that when
users encounter in an elevator, they often experience more
than one floor-change activity together. For example, user
i and j encounter each other at the ground floor and go up
to the 8th and 10th floor, respectively. Before arriving at
level 8, the elevator stops at levels 3 and 5. In this scenario,
user i and j experience 3 floor-change activities (i.e., from
1 to 3, 3 to 5 and 5 to 8). Based on this observation, we
conclude users encounter in elevator when there are n(n ≥ 2)
consecutive floor-change activities between them, where n is
called the confidence of the encounter. A big n value will
minimize the probability of the fault case. We formalize it
as follows.

1) I5: ∃A1, A2, .., Ak ∈ MTracei; 2) I6: ∃A1, A2, .., Ak ∈
MTracej ; 3) I7: Am+1.ST ime − Am.ET ime < 30 holds in
MTracei andMTracej ; 4) I8: MTracei.Am = MTracej .Am;
5) I9: user i and j are in the same elevator and the confi-
dence is k. The rule is then formulated as follows.

R2 : I5 ∧ I6 ∧ I7 ∧ I8 → I9.

where MTracei and MTracej is the trace of user i and j,
respectively, and k is the confidence that user i and j is in
the same elevator.

2.4 Calibration by User Encounter in Vehicles
We represent a accelerometer sample C by C = {t, x, y, z},
where t is the time for sampling, and x, y, z are the ac-
celerometer reading at the three axes of the smartphone.
The accelerometer samples arriving in time order form a ac-
celerometer trace CTrace = {ID,C1, C2, ..}, where ID is
the identity of the user. Assume two users are in the same
vehicle, their smartphone accelerometers will have the same
readings when the vehicle is accelerating or decelerating. We
use this observation to detect users encounter in the same
vehicle.

2.4.1 Feature extraction
In order to compare two accelerometer traces from two user-
s. Using a reading from a signal axis is not feasible because
the reading is affected by the placement of the phone. An-
other way is to combine the readings from all the three axes.
Fig. 4(b) shows the result of combining three axes. As we
can see, the crests and troughs in the trace almost disap-
peared. This is due to gravity, and the direction of the vehi-
cle accelerating/decelerating and the direction of gravity are
mutually perpendicular. A slight acceleration change in the
vertical direction of gravity will cause very small change to
the combination of the acceleration. For example, the grav-
ity is 9.8m/s2, when the train acceleration is about 2m/s2,
the combination is changed from 9.8m/s2 to 10m/s2, on-
ly 0.2m/s2 change appears. This means the acceleration
signature when the user in the vehicle is weakened, which
will cause error when comparing. When doing comparison, a
simple approach is to use a absolute value as the feature and
calculate the mean squared error (MSE) of the two wave-
forms. Since the users’ phones have not been calibrated
(i.e., the readings of the two phones have a constant drift
under the same acceleration), there exists an unknown con-
stant drift. This will cause error when calculating the MSE
value.

To solve these issues, we use the variation of acceleration as
the feature. Since the gravity keeps unchanged, the varia-
tion of acceleration is only affected by vehicle acceleration.
The combined variation of the three axes is the variation of
vehicle acceleration. The way to get the variation of each
axis and the combination are shown in Equations 2 and 3.
The direction of the combination is set as the direction of
the axis with the max mean variation. In Fig. 4(c), the sol-
id black line shows the combination of the variation of the
three axes. By this transformation, the variation will not be
affected by the phone orientation and the gravity, and the
signature of vehicle acceleration is clearly. More importan-
t, the variation keeps the same even the two smartphones
are not calibrated. Figure 4(c) shows an example variation
traces of two smartphones in the same vehicle. We can see
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Figure 6: Dynamic Time Warping

that the fluctuation of the waveforms show the same pat-
terns.

Before comparing two variation traces. As shown in Fig.
4(c). For every two accelerometer traces from users A and
B, we get their minimum overlapped time t0. From t0, we
get a series pairs of variation traces from users A and B, each
trace contains variation of 60 seconds. For a special case,
when two uses remains stationary, the acceleration keeps
unchanged, the two variation trace will have the same value.
This case must be removed. So, in our approach if the mean
variation of a trace is smaller than 0.1, the pair is removed.

V arXa(t) = Xa(t+Δt)−Xa(t) (2)

V arAlla(t) =
√

V arXa(t)2 + V arYa(t)2 + V arZa(t)2 (3)

2.4.2 Mathing with DTW
Since the sampling rate of different smartphone may have
a little different, a pair of variation traces we collect in the
same time interval (60 seconds) will have different length-
s of data, which cannot be handled by MSE. So the MSE
based approach can not be used in this scenario. In our ap-
proach, we apply the Dynamic Time Warping Distance Mea-
sure (DTW) [10] which is less sensitive to the time shift. To
calculate the DTW, we first align the two variation traces.
For example, as shown in Fig. 6. for two time series of
acceleration variance V arMs and V arMl, where

V arMs = s1, s2, s3, s4, ...sn

V arMl = l1, l2, l3, l4, ...lm

the sequences V arMs and V arMl can be arranged to form a
n-by-m plane or grid, where each grid point(i, j) corresponds
to an alignment between elements si and lj . A warping path,
W, maps or aligns the elements of V arMs and V arMl.

W = w1, w2, w3, w4, ...wk

The Dynamic Time Warping distance between two time se-
ries V arMs and V arMl is then:

DTW (V arMs, V arMl) = ∂(First(V arMs), F irst(V arMl))+

min

⎧⎪⎨
⎪⎩
DTW (V arMs, Rest(V arMl))

DTW (V arMl, Rest(V arMs))

DTW (Rest(V arMs), Rest(V arMl))

(4)

where First(x) is the first element of x, and Rest(x) is the
remainder of the time series after the First(x) has been re-
moved, and ∂(i, j) = (si − lj)

2. From the DTW value, we
get numeric measure of the similarity between two user vari-
ation traces. In our approach, if the average DTW distance
is smaller than 0.05 we conclude that the users are under
the same barometric pressure, and the drift is get by

driftij =

∑t′+60
t=t′ (Bi(t)−Bj(t))

n
(5)

For better accuracy, we conclude users encounter in vehi-
cle when there are n(n ≥ 2) pair of consecutive variation
traces with DTW distance smaller than 0.05, and n is the
confidence of the encounter.

2.5 Calibration for All Barometers
In the previous section, we present barometer calibration for
two smartphones by detecting user encounters. To calibrate
all user smartphones’ barometers, while the same principle
will be applied, the calibration propagates from phone to
phone in a transitive way. We model this process using a
graph shown in Fig. 5(a). In this graph, each barometer is
represented by a node. If two barometers are calibrated by
an encounter in elevator or vehicle, we draw an edge between
the two nodes, and the weight of the edge represents the
confidence value of the encounter (calibration). Since there
may be more than one calibration done between two users
(e.g., two users may encounter each other multiple times),
we choose the calibration with the highest confidence value.
Since barometer calibration is transitive, in theory, any two
barometers can be calibrated if this graph is connected. To
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Figure 7: Theoretical Analysis

select a root barometer, a trivial approach is to randomly
choose a node as root and find a spanning tree from the
graph as shown in Fig.5(b). Any node in the spanning tree
can be calibrated following the path from the node to the
root. For example, to get the drift of barometer j, we find a
path between node f and j, f − k − j, and obtain the drift
by driftfj = driftfk + driftkj .

There are two factors affecting the accuracy of our calibra-
tion algorithm. The first one is the confidence values of
the edges in the path. The other one is the length of the
path. The confidence determines the probability of correct
calibration. The length of the path determines the calibra-
tion accuracy because errors may be accumulated along the
path. This turns out to be an optimization problem—find a
spanning tree, choose a root to minimize the sum of nodes’
depths, and maximize the weight of the edges in the path.
It has been proven to be a NP-complete problem [14], hence,
finding this spanning tree is not realistic. In our approach,
we propose a heuristic solution based on the observation-
s that the confidences of edges in the path are important
and the calibration errors accumulate slowly (which will be
further analyzed in Section 3.2). We first find a maximum
spanning tree which maximizing the edge confidences in the
tree, we then choose a node as the root which minimizes the
average depth of all other nodes. As an example, we run
the algorithm on the graph shown in Fig. 5(a) and the re-
sulting graph is shown in Fig. 5(c). The complexity of the
algorithm is O(NlogN).

3. THEORETICAL ANALYSIS
3.1 Modeling Calibration
We model the calibration process using a random graph
Γn,N with n labeled vertices and N edges, where a vertex
represents a barometer (n is the total number of barometer
sensors), and an edge may exist between two vertices if they
are calibrated. A user sensor can be viewed as a set of con-
nected vertices (i.e., connected component [13]) in Γn,N , All
sensors can be calibrated if graph Γn,N is connected. We de-
note p as the probability that there exists an edge between
any two vertices in Γn,N , which is equal to the probability
that two users encounter in an elevator. We denote p as
the probability that there exists an edge between any two
vertices in Γn,N , which is equal to the probability that t-
wo users encounter in an elevator. We assume the average
number of users in elevator is k, the frequency that a user

takes an elevator is f . We have

p =
k ∗ f ∗ t
n− 1

(6)

where t is the time. It is shown in [13] that the random
graph Γn,N is almost surely be connected if

p >
1

n
(1 + ε) lnn (7)

With a large n, the value of (1+ ε) lnn/n is small, therefore
a smaller p can meet the above equation.

It is shown in [13] that, in the random graph Γn,N , the size

of the greatest component of Γn,N is, for c =
N

n
with c >

1

2
with probability tending to 1, approximately G(c)n, where

G(c) > 1− x(c)

2c
(8)

where

x(c) >

∞∑
k=1

kk−1

k!
(2ce−2c)k (9)

The curve y = G(c) is shown on Fig. 7(a). This means
almost all points of Γn,N belong to either some small com-
ponent which is a tree or the single ”giant” component of the

size G(c)n. From this, we imply that, if p >
1

n− 1
, most of

the nodes will belong to the same ”giant” component and all
can be calibrated.

3.2 Calibration Error
We model the calibration accuracy as follows.

driftij = drift′ij +
n∑

k=1

Uk (10)

where n is the length of the path from node i to j, drift′ij
is the real drift, and U is the noise function with a ran-
dom value between −0.06 to 0.06 hPa. The accumulated
noise function is X =

∑n
k=1 Uk. Since U has a uniform

distribution, in probability and statistics, X is a Irwin-Hall
distribution [4] function. The probability density function
is

fX(x : n) =
1

(n− 1)!

�x�∑
k=0

(−1)k
(
x

y

)
(x− k)n−1;x ∈ [0, n]

(11)



The curve of fX(x : n) is shown in Fig. 7(b). It is shown that
the error is less than 0.24 hPa with high probability when the
path length is less than 16. Since the minimum barometer
reading distance of any adjacent floor level is about 0.45
hPa, the error is tolerable.

4. EVALUATION
We now move to evaluate our approach using both simula-
tion and field studies.

4.1 Simulation Methodology
We design a simulator to evaluate the efficiency and scalabil-
ity of SBC. The simulator models the calibration of a group
of users who work in an multi-floor office building, it sim-
ulates the process of user taking the elevator up and down
and arrive or leave the building by subway, bus or cars. For
taking elevators, the simulation process is divided into cycles
of elevator going up or down (which occurs with an equal
probability). For elevator going up, each cycle simulates the
process that the elevator goes up from the ground floor, with
people entering and leaving the elevator from or to any lev-
els, until the elevator is empty. It works as follows. The
simulation process is divided into cycles of elevator going
up or down (which occurs with an equal probability). For
elevator going up, each cycle simulates the process that the
elevator goes up from the ground floor, with people enter-
ing and leaving the elevator from or to any levels, until the
elevator is empty. We model the process of people entering
the elevator from the ground floor as the Poisson distribu-
tion. The expected number of the Poisson distribution is set
to 1/4 of the maximum load of a typical elevator (i.e., four
persons). People on the ground floor may go up to any floor
with a probability of 1/(n − 1), where n is the number of
floors of the building. From any other floor fi, some people
may enter the elevator, and go to the rest (n− i) floors with
an equal probability 1/(n − i). Each cycle starts from the
ground floor, we first compute the number of people entering
the elevator and which floors they are going to, the eleva-
tor goes up from the ground floor, and stops when people
exiting or entering, until there are no users in the elevator.
For elevator going down, every time the elevator starts from
the top floor, users in every floor may enter the elevator,
and will go to the rest n′ floors with an equal probability of
1/2(n′ − 1), except to the ground floor which is 1/2. When
people enter or exit the elevator from a floor, the number
of people on that floor gets updated, and the trace of ev-
ery user is recorded. Based on our observation from real-life
situations, in our simulation model, we assume that when
an elevator passing a floor, the probability of a user in that
floor entering the elevator is p (1% in our setting).

For arriving or leaving the building, we simulate the users
will encounter in subway, bus or cars with a constant prob-
ability p. In the simulation of barometer readings of the
building, the barometer reading of the ground floor is simu-
lated with function F (t) = F (t− 1)+ random() ∗ 0.1, where
F (0) = 1000hPa and t is the time, one unit of time is set
to the time the elevator travels 1 floor, for simplicity, the
barometer change of every floor is the same which is set
to 0.45hPa. Given a number of floors n and a number of
users u, we simulate cycles of elevator going up and down
until a certain number of user-elevator trips m is reached
(a user-elevator trip is defined as the process of a user en-

tering and leaving the elevator). And we will simulate user
arrive and leave after 4 ∗ u user-elevator trips are simulat-
ed, which means users averagely take the elevator 4 times
everyday. At the end of each simulation cycle, we combine
the ground truth from the floor-change activity detection to
get the MTrace of every user, and evaluate how well the
barometer sensor of the users can be calibrated.

The parameters of the simulator are listed as follows.

1) user number at each floor : the number of users at each
floor. 2) total trip number : the number of user-elevator
trips for all the users. 3) average trip: the average number
of user-elevator trips for each user. 4) average number of
users in elevator : the average number of users in elevator
when it is moving.

The performance metrics used in the paper are summarized
as follows. 1) average hop: The average hop of all nodes
to the root in the calibration tree. 2) percentage calibrated :
The percentage of users who have been calibrated.

4.2 Simulation Results
Figures 8(a) and 8(b) show the simulation results when the
user number at each floor is 10 and the average number of
users in elevator is 4. Figure 8(a) shows the percentage
calibrated in three different buildings under different total
trip number. It shows that all users can be calibrated after
about 150/300/1000 trips in a 5/10/40-floor building. That
means all users can be calibrated in a single day. Figure
8(b) show the average hop in the calibration tree. In Fig.
8(b), the hops is about 3/4.5/8 in the three buildings when
all users are calibrated, which do not affect the calibration
accuracy based on our analysis in Section 3.2. Figure 8(c)
plots the calibration result with different average number
of users in elevator. The result shows that the calibration
process is faster with more average user in elevator. Figure
7(c) shows the calibration graph of 100 users in a 10-floor
building

4.3 Field Study
To evaluate SBC under the real-world situations, we imple-
mented a prototype system and publish it on a website [6].
We encourage users to download and try SBC in our 10-
floor computer science building. A total number of 67 user-
s downloaded our application to their mobile phones (e.g.,
Samsung, Google Nexus, Sony Ericsson, etc). Out of 67
mobile phones, only 28 have both barometer sensors and a
mobile network data connection (i.e., GPRS or 3G). We de-
veloped a mobile application named ”Talking to Strangers
(up/down stairs)” which is built on top of SBC. The appli-
cation finds users from other floors of a building for message
chatting. This is similar to other chat applications such as
find strangers around, but we incorporate SBC into our ap-
plication to detect the floor of a user. When the application
runs, it continuously collects barometer and accelermeter
readings at a rate of 2 samples per second, and all the sam-
ples will be logged in a data file which will be uploaded to
the cloud server every 2 hours. The taking elevator activity
detection is done in real-time and the MTrace will also be
uploaded to the cloud server. The client also performs time
synchronization with the sever by computing the round-trip
delay time and the offset. The indoor/outdoor detection is
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Figure 9: Field study results

done by scanning GPS signals. To get the ground truth, we
first manually get the drift to the real barometric pressure
for all the 28 smartphones, then placed a barometer logger at
each floor to get the ground truth by comparing their read-
ings with the ground truth. The field study ran for three
days. In the cloud server, all calibration results and user
accelermeter and barometer reading traces are logged. We
analyze the performance based on the logged data in both
the client and the cloud server.

4.4 Field Study Results
Figure 9(a) shows the calibration graph of the users at the
end of the first day. The thickness of the lines represents the
confidence (i.e., weight) of the calibration between two users.
The graph is connected and users are directly calibrated (i.e.,
2-8 users). The users’ average trips are 6 (when coming in
and going out for lunch and dinner). The calibration tree
is extracted and shown in Fig. 9(b). The average hop of
calibration is about 3, the max hop of calibration is 6, and
the average calibration weight is about 1.8. The calibration
error is shown in Fig. 9(c). The left vertical axis shows the
number of barometers in different error regions. The right
vertical axis shows the accuracy of the calibration in each
region. The accuracy is defined as the ratio between error
and the barometer reading distance of one floor.

4.5 Energy Consumption
We evaluate the energy consumption of SBC using a Sam-
sung Galaxy Nexus smartphone running Android 4.1 OS.
The power consumption is computed based on PowerTutor,
a diagnostic tool for analyzing system and application pow-

er usage from the Android Market. The experiment ran for
12 hours continuously. The average power consumption of
SBC is 26 mW. It shows that SBC is energy efficient.

5. RELATED WORK
Since barometer is a new sensor appears in the smartphones
recently, to our best knowledge, this is the first time using
the crowdsourcing based approach to do smartphone barom-
eter calibration. The traditional barometers appeared many
years, but the calibration of a large group of smartphone
barometers is different from calibrating a traditional barom-
eter, they are not comparable. In order to show the impor-
tance of calibrate the barometers, in this section, we talk
about the smartphone barometer calibration used in floor
localization, and compare it with other approaches not us-
ing smartphone barometer. Using a calibrated smartphone
barometer, a smartphone can easily get the user’s floor by
transforming the barometer reading to altitude. When not
using smartphone barometers, some fingerprint based tech-
niques have been proposed such as [9,21]. They mainly rely
on Wi-Fi signal strength. However, like RADAR [9] has to
war-drive the building in order to obtain the map. War-
driving is very time-consuming and labor-intensive, and it
may have to be done periodically since the Wi-Fi signature
at the same location may be changed over time. Hence,
this solution is not scalable. The fingerprint based tech-
nique has been used in floor localization. SkyLoc [21] uses
GSM fingerprints to locate a user’s floor level in a multi-floor
building. But the GSM signals vary significantly in indoor
environments, and the training process in SkyLoc is time-
consuming. It has a poor scalability since war-driving and



training are required for every building. Different from these
systems, SBC calibrate and makes use of the new barometer
sensor appears in recent smartphones. It does not require
war-driving to build the fingerprint database, SBC relies
on crowdsourcing and intelligently calibrate the smartphone
barometers, it can be used to locate users’ floor level.

Sensor-assisted localization methods [11,12,15,19] have been
proposed, making use of embedded sensors available on s-
martphones. These systems typically use accelerometer and
electronic compass. However, careful calibration is needed
from time to time due to the limitations of the sensing tech-
nology. Crowdsourcing has been also used to reduce the
training effort [8, 22]. These works rely on detecting user
activities using sensors such as accelerometer. However, to
ensure reliable detection, they typically require user-specific
training which is costly, and the high sampling frequency
which may drain the battery power quickly. FTrack [15] us-
ing accelerometer for floor localization. The main problem
of this approach is that they cannot handle some practical
issues such as different user walking patterns and a variety
of ways to carry/use mobile phones, which may affect the
accuracy and limit the feasibility. While SBC follows the
basic principle of FTrack, it detects user activities of tak-
ing elevator by a novel barometer based technique, and it
has no assumption of users walking pattern or the ways to
carry/use mobile phones.

The increasing availability of barometer embedded in smart-
phones (e.g., Nexus 4) has motivated us to go beyond the ex-
isting work by building a simple, sensor-based, battery effi-
cient solution for floor localization. Muralidharan’s most re-
cent paper [18] study on the properties of mobile-embedded
barometers across a number of buildings. He concludes that
it is difficult to use the barometer to determine the actual
floor that a user is on. The main problem is that barometers
are not calibrated, if all users’ barometers are calibrated, it
will be much easier to solve this problem.

6. CONCLUSION AND FUTURE WORK
This paper presents a novel, scalable barometer calibration
scheme. Leveraging on mobile phone sensing and crowd-
sourcing, SBC requires neither any infrastructure nor any
human intervention. Different from similar approaches, SBC
relies on barometer and accelerometer only. SBC provides
high accuracy of user encounter detection and minimum en-
ergy consumption, making it more realistic for real-world
deployment. Our simulation and prototype system demon-
strate the performance, scalability, and robustness of SBC.
For our future work, we will further improve SBC by enhanc-
ing the calibration algorithm for larger number of users. We
also plan to offer SBC as a free service for public use, and
test SBC under real-life situations.
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