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Abstract—Wireless network simulation is a fundamental ser-
vice aiming at providing controlled and repeatable environment
for protocol design, performance testing, etc. The existing
simulators focus on reproducing the packet behaviors on
individual links. However, as observed in some recent works,
individual link behaviors alone are not enough to characterize
the protocol performance. As a result, while the existing
works can mimic the link behaviors very closely, they often
fail to simulate protocol level performance. In this paper,
we propose a novel performance-aware simulation approach
which can preserve not only the link-level behaviors but also
the performance-level behaviors. We first devise an accurate
performance model by combining link quality and the spatial-
temporal link correlation. Based on the performance modeling,
we then propose a Performance Aware Hidden Markov Model
(PA-HMM), where the protocol performance is directly fed into
the Markov state transitions. PA-HMM is able to simulate
both link-level behaviors and high-level protocol performance.
We conduct extensive testbed and simulation experiments with
broadcast and anycast protocols. The results show that compared
to the state-of-the-art work, 1) the performance model is able to
accurately characterize wireless communication performance and
2) the protocol performance is closely simulated as compared to
the empirical results.

I. INTRODUCTION

Wireless network simulation is a fundamental service

aiming at providing controlled and repeatable environment for

protocol design, performance testing, algorithm analysis, etc

[1]. A good simulator is designed to generate the packet traces,

based on which the end-to-end protocol performance could

be close to the empirical performance. Some research efforts

have been devoted to repeatable simulation such as TOSSIM

[2] and M&M [3]. These works try to reproduce and simulate

the link-level behaviors of the empirical traces in order to

simulate the repeatable protocol performance. Specifically,

TOSSIM [2] employs the SNR model to simulate packet

traces for individual links. M&M [3] uses multi-level Markov

model to simulate both long term and short term behaviors

of individual links. The rationale behind is that the protocol

performance can be characterized if the individual links are

closely simulated.

However, many recent studies have shown that the in-

dividual link behaviors are not enough for capturing the

wireless protocol performance, especially for anycast and

broadcast/multicast [4]–[6]. The spatial correlation among

adjacent links is also highly impactive. As a result, the

simulation of individual link behaviors can hardly provide

repeatable performance simulation for the protocols involving

multiple links (analyzed in Section III). In this paper, we aim at

designing repeatable wireless network simulation, which can

simulate both link-level behavior and the end-to-end protocol

performance.

There are two key challenges as follows: First, accurately

modeling the end-to-end performance for network protocols,

especially for protocols involving multiple links (anycast

and broadcast/multicast). Second, generating packet reception

sequences that yield repeatable protocol performance, based

on the proposed performance model. As to the first challenge,

most protocol performances are determined by each single-hop

performance and the propagation path in the network. Since

the propagation path is controlled by the simulated routing

protocol, modeling the single-hop performance becomes the

essential key problem. Similar to [7], [8], we choose the

expected number of transmissions (ETX) as the key metric for

protocol performance since most of other performance metrics

can be derived with ETX [7]. Specifically, we separately define

the ETX metrics for the three transmission modes for single-

hop communications [9]: uETX for unicast, aETX for anycast,

and bETX for broadcast/multicast. The detailed definitions are

described in Section II.

While modeling uETX is straightforward, it is much

more challenging to model aETX and bETX, which in-

volves multiple links. Although some existing works use

packet reception ratio (PRR) on individual links to model

aETX/bETX, many recent studies [5], [10] indicate that the

temporal and spatial correlations among links also have a

significant impact on anycast/broadcast besides individual

PRRs. However, combining all three kinds of information

(PRR, temporal and spatial correlations) is a non-trivial

task. The reason is that the metrics for them essentially

contain overlapped information (as analyzed in Section II).

For example, given one link PRR and its correlation with an

adjacent link, we are able to infer the other link’s PRR. If

we separately take the PRRs of both links and the correlation

between them in the modeling, one link’s PRR is actually
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calculated twice. The existing works such as [11], [12] account

such overlapped information multiple times during the model

iteration, which can lead to largely inaccurate performance

characterization. To deal with the overlapping problem, the

independent link metrics κ factor [4] and β factor [13] are

potential alternatives. Unfortunately, the isolation of different

dimensional information leads to too complex metric designs,

which can hardly be directly utilized for ETX modeling.
As to the second challenge, Markov model has been

proved to be effective for packet trace simulation [3]. When

the ETX performance is accurately characterized, the packet

traces can be generated using a Markov model fed with

the derived performance states. Hence the key problem

is to 1) define the appropriate Markov states representing

both link-level and performance level behaviors and 2)

obtain appropriate parameters to generate packet sequences

preserving the performance states.
To address the above two challenges, we first propose

an accurate performance modeling approach for anycast and

broadcast/multicast (aETX and bETX), which considers PRR,

temporal and spatial link correlations. Based on this new

modeling approach, we devise a Performance Aware Hidden

Markov Model (PA-HMM), in which the aETX/bETX combi-

nations are used as the underlying unobserved performance

states and an abstraction of link features containing both

spatial and temporal link correlation is used as the observed

states. With the accurate performance models and PA-HMM,

the proposed work can simulate not only the link-level

behaviors but also the protocol performance, providing a more

repeatable and reliable simulation environment for wireless

protocols.
We implement the performance model and PA-HMM. The

experimental results show that, (1) The performance model

provides more accurate single-hop aETX/bETX modeling than

the existing works. (2) Compared to the existing simulators

(TOSSIM [2] and M&M [3]), the proposed work can achieve

more repeatable wireless network simulation in terms of both

link-level behaviors and protocol performance.
The main contributions of this paper are summarized as

follows:

1) We propose an accurate performance model for anycast

and broadcast/multicast, which jointly considers PRR,

spatial and temporal link correlation. With the model,

aETX and bETX can be accurately obtained from the

packet traces.

2) Based on the performance model, we propose a Per-

formance Aware Hidden Markov Model (PA-HMM) for

wireless network simulation, which can simulate both

link level and performance level behaviors of wireless

networks.

3) We implement PA-HMM and evaluate the simulation

based on PA-HMM. The results show that more repeat-

able simulation is achieved compared to the existing

works in terms of protocol performance.

The rest of the paper is organized as follows: Section

II presents related works on wireless network simulation

and performance characterization. Section III analyzes the

necessary link features that should be considered for accurate

performance modeling with measurement study. Section IV

presents the performance modeling and PA-HMM in detail.

Section V evaluates the performance model and the simulation

with PA-HMM in comparison with the state-of-the-art works.

Section VI concludes this work.

II. RELATED WORKS

Simulation has always been one of the most important

means to study protocol behaviors and evaluate protocol

performance in wireless networks. To this end, the existing

works have utilized different techniques to simulate packet

reception/loss manners on the individual links. However,

the protocol performance cannot be simulated solely by

reproducing individual link behaviors. In this section, we will

review the existing works on wireless simulations as well as

the modeling of wireless communication performance. The

comparison between our work and the existing works will also

be discussed.

A. Wireless network simulation

Many existing works utilize Markov model for network

simulation [3], [14]–[16]. The Gilbert model [14] is a proba-

bilistic model for simulating burst noise in wireless channels.

A hidden Markov model with two states is employed, where

the first state has a zero transmission error rate (perfect link

quality) and the other state has a given nonzero probability

of transmission error rate (intermediate link quality). The

transition probabilities control the duration spent in each state,

thus the burst links can be simulated. Nguyen et al. [15]

proposed to employ the exponential and Pareto distributions

to model the packet traces. Markov-based trace analysis

decomposed the packet trace with non-stationary properties

into stationary pieces consisting of lossy and error-free states.

Khayam et al. [16] focused on 802.11b networks in terms of

both bit errors and packet errors. From these works, we can see

that wireless simulation needs to consider both long-term and

short-term link variations. The simulated traces should also be

close to the input traces.

TOSSIM TOSSIM [2] is a discrete-event simulator for

wireless sensor networks operating the TinyOS system. The

input of TOSSIM is the physical layer signal powers (RSSI)

for each link and background noise, where the RSSIs are set by

simulation users and the background noise is generated based

on the historical environmental noise traces with the Closest

Pattern Matching (CPM) model. The packet reception/loss

traces are then generated using the SNR model.

M&M M&M [3] is a Markov model based approach, which

is directly based on the packet traces instead of the physical

layer indicators. A multi-level Markov model is employed in

M&M, where the higher level states capture the long-term link

behavior and the lower level states capture the short-term link

behavior. The transition probabilities control the durations of

long-term and short-term behaviors and are extracted from the

collected traces in real environments.
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(a) Empirical PRR trace (b) Generated trace with 1D(PRR) (c) Generated trace with 2D (d) ETX of empirical/generated trace

Fig. 1: Characterizing single link performance.

We can see that the existing works focus on simulating

single links. The rationale behind is that once the individual

links are simulated, the protocol performance can be simulated

as well. However, many recent studies observed that the spatial

correlation between adjacent links can significantly affect

the communication performance (anycast and broadcast).

Srinivasan et al. [4] observed correlation on the packet

receptions and losses among different links and analyzed

the impact of link correlation on broadcast performance.

Many following works [5], [17], [18] also confirmed the

impact of link correlation on anycast and broadcast/multicast

performance. As a result, simulation of individual links is not

enough to simulate the protocol performance.

Different from the aforementioned works, we directly adopt

both end-to-end performance and link-level behaviors into the

proposed simulation model. Both the link-level behaviors and

the end-to-end performance can be preserved.

B. Performance characterization

The expected number of transmissions (ETX) has been

widely used as the performance metric for various protocols.

While ETX for unicast (uETX) is easy to calculate, it

is challenging to characterize the ETX of anycast and

broadcast/multicast. We denote the ETX for anycast and

broadcast/multicast as aETX and bETX. Specifically,

• aETX is the ETX for a sender to successfully deliver one

packet to at least one of its receivers.

• bETX is the ETX for a sender to successfully deliver one

packet to all of its receivers.

aETX for a sender s is often calculated as 1
Ps

SR
, where Ps

SR

is the probability that at least one node in its receiver set

(SR) receives the packet. To calculate Ps
SR

, the work [11]

uses the multiplication of the link quality of all outbound

links of s. However, due to the spatial link correlation, the

result is often over estimated as the correlated information

is accounted multiple times. In [10], link correlation is

additionally considered for accurate aETX calculation. The

calculation of bETX is more complex as given by:

bET X =
+∞

∑
k=1

kP(X = k) (1)

where P(X = k) denotes the probability that all nodes in

SR receive the packet after k transmissions. The existing

approaches [5], [19] differ from each other mainly in the way

of calculating P(X = k). In [19], topology and link quality

are considered and in [5], link correlation is additionally

considered. However, the overlapped information between

link correlation and individual link quality is also accounted

multiple times in the model iteration.

The modeling of aETX/bETX in this paper differs from

these performance models in the following ways. First, we

jointly consider link quality and the temporal-spatial link

correlation. To improve the model efficiency, we propose a

packet trace abstraction scheme, which can efficiently extract

the three kinds of information without explicit link metric

calculations. Second, in addition to the aETX/bETX, we

further analyze the model and identify how to reversely

generate the link metrics using the aETX/bETX sequences.

III. MEASUREMENT STUDY ON LINK FEATURES FOR

MODELING WIRELESS COMMUNICATION PERFORMANCE

In this section, we analyze the impacting factors of

unicast, anycast and broadcast/multicast performance and find

the necessary information required for uETX/aETX/bETX

modeling.

A. Characterizing single link performance (uETX)

Link quality (1D). Link quality is one of the most

widely identified impacting factors for wireless communica-

tion performance. Packet reception ratio (PRR) is a typical

characterizing metric for link quality. It is a link-wise long

term property, indicating the probability that a packet can

be successfully received. We denote link quality as the one-

dimension (1D) link feature.

Figure 1(a) shows an empirical PRR trace of a wireless link.

If we simulate this link using the average PRR value (0.57)

with random variations, the generated PRR is shown in Figure

1(b). Now with the two packet traces generated based on the

two links, we check whether the uETX is characterized. The

uETX is obtained from the packet traces as ntx = nloss + 1,

where nloss is the number of losses before a packet reception.

We repeat the experiments 100 times and obtain the average

uETX values for both links.

Figure 1(d) shows the CDF of uETX values for both

empirical and the 1D generated traces (1D). We can see that,

the uETX values using 1D information are largely different

from the empirical uETX. The reason is that the average PRR
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(a) Empirical trace of a link pair (b) Generated trace with 2D (c) Generated trace with 3D (d) ETX of empirical/generated trace

Fig. 2: Characterizing broadcast/anycast performance.

captures long term link behaviors, which could derive the long

term overall uETX of the empirical trace. However, due to

the PRR variations and the nature of reciprocal relationship

between PRR and ETX, the fine-grained short term uETX

cannot be captured, resulting in the inaccurate performance

characterization. For example, the average PRR of 0.2 and

0.8 is 0.5. The ETX is normally calculated as 1
0.5 =2. However,

the actual ETX should be 1
2 (

1
0.2 +

1
0.8 ) = 3.125, which is quite

different from the result directly obtained by the average PRR.

Therefore, a long-term PRR metric is not enough to accurately

capture the uETX performance.
PRR and its temporal distribution (2D). It has been

observed by many recent works that both packet receptions

and losses have clear temporal behaviors [13], [20], [21].

These works try to characterize the temporal distribution using

various metrics such as μ [22], β [13], etc. To see the

impact of the temporal features on the protocol performance,

we manually generate packet traces for the simulated link

preserving both PRR and the temporal packet distributions

(using the metric μ and a simulation approach similar to [3]).

Figure 1(c) shows the generated PRR trace, preserving 2D

properties (the long term PRR and temporal distributions).

Intuitively, it is much more close to the original link in

Figure 1(a) than the 1D simulated link in Figure 1(b). Figure

1(d) shows the uETX comparison between the empirical trace

and the 2D generated trace. We can see that uETX is also

characterized more accurately. Preserving the 2D properties

(i.e., PRR and its temporal distribution) seems good enough

for characterizing uETX.

B. Characterizing the performance for multiple links
(aETX/bETX)

Next, we study whether the above 2D information can

characterize transmission performance involving multiple links

(aETX and bETX). Figure 2(a) shows the empirical PRR traces

of a link pair. We can see that these two links have a high

positive correlation. Figure 2(b) shows the simulated link pair

preserving both PRR and the temporal distributions of the links

in Figure 2(a). Obviously, the correlation between the links

is not captured by the generated link pair. Then we further

investigate whether aETX and bETX are characterized by the

simulated link pair. Using the packet reception traces for the

two links, we can directly obtain the number of transmissions

for delivering one packet to at least one receiver (aETX)

and the number of transmissions for delivering one packet

to both receivers (bETX). Figure 2(d) depicts the CDF of the

aETX/bETX values for the empirical traces and the generated

traces with simulated link pair. We can see that there exist

large errors on both aETX and bETX with 2D. The reason is

that, anycast and broadcast can be greatly affected by spatial

correlation, which is not captured by the 2D link features. For

example, if the receptions of two links are strongly correlated,

aETX tends to be large [10] and bETX tends to be small [4]

for the same generated packet traces on both links.

PRR and the temporal-spatial distributions (3D). The

spatial distribution of PRRs essentially reflects the relationship

among different links, which has been observed by the

existing works [4]. Now we manually set packet traces for

the simulated link pair preserving PRR, temporal and spatial

distributions. Figure 2(c) shows the generated traces. We can

see that the relationship between two links is similar to that in

Figure 2(a). As shown in Figure 2(d), both aETX and bETX

are much more accurately characterized with 3D information.

We also repeat the experiment under various different envi-

ronments (e.g., indoor, outdoor, WiFi-interfered, pedestrians,

etc.) and obtain similar observations to the above results.

C. Short summary on characterizing link features

From the above study, we can see that 1) PRR characterizes

the long term property of a link; 2) The temporal distribution

characterizes the how a link’s PRR variates. These two-

dimension information can accurately characterize single

link performance. 3) The spatial distribution characterizes

the relationship between different links. With the three-

dimension information, each link’s PRR, PRR variations

and its correlation with other links can be determined,

which essentially determines the performance of anycast and

broadcast/multicast.

Therefore, to accurately infer the link behaviors as well

as wireless communication performance in terms of uETX,

aETX and bETX, we need to consider all the three kinds

of information. In the next section, we will present our

performance modeling approach and the simulation approach

based on the performance model.
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p(
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p(
t 1)

p(
t 2)

p(
t 3)

p(
t 4)

Fig. 3: The PA-HMM. The unobserved q states capture the performance state transitions (with aETX and bETX). The observed

t states capture the link level behavior transitions (with PRR tuples, where a tuple indicates the PRR distribution at multiple

receivers).

IV. THE PERFORMANCE AWARE MARKOV MODEL FOR

WIRELESS SIMULATION

Now we present the Performance Aware Hidden Markov

Model (PA-HMM) for repeatable wireless network simulation,

which is based on the performance modeling considering the

aforementioned link features. The proposed work can preserve

both wireless communication performance and the link-level

behaviors. We will first present the overview of the simulation

based on HMM and then present the details of each building

block of PA-HMM including the wireless communication

performance modeling and the HMM.

A. Overview

The performance aware hidden Markov model (PA-HMM)

is shown in Figure 3. We denote the packet receptions and

losses on each links with binary sequences, where a “0”

denotes a packet loss and a “1” denotes a packet reception. The

binary sequences on multiple links of a sender are generated at

the same time using the PRR tuples represented by tn as shown

in the figure, where n denotes the n-th time window. Each

performance state q (unobserved) is a combination of aETX

and bETX and has its own probability distribution p(tn/qn)
of emitting the PRR tuple distributions (tn). The performance

states (q) capture the performance-level behaviors and the

link states (t) capture the link-level behaviors (as will be

described in Section IV-C). The transition probability of the

performance states controls the performance variations. For

each performance state qn, the emission distribution contains

m component for the m links in tn (m is the number of

outbound links of a sender). Each component contains d
elements controlling the PRR temporal variation in a duration

of d ×W slots, where W denotes the number of packets

sampled in one PRR window. It is worth mentioning that

wireless communication is inherently based on broadcast and

packet receptions/losses happen at the same time. Hence,

compared to the existing “link-wise” approaches, a more

reasonable simulation manner is to generate the packet traces

for multiple adjacent links at the same time.

As most wireless protocols are based on anycast and

broadcast/multicast, in PA-HMM, single-hop protocol perfor-

Table 1: Notations

Parameter Description
aETX ETX required to deliver one packet to at least one receiver
bETX ETX required to deliver one packet to all receivers

tn the n-th PRR tuple
qn the n-th performance state in the PA-HMM model,

which is a combination of aETX and bETX
p(tn/qn) the emission probability from state qn to PRR tuple tn

p(qn/qn−1) the transition probability from state qn−1 to state qn

mance is denoted by the performance states using aETX/bETX

combinations (q). The link level behavior is captured by the

PRR tuple distributions (t), where both link correlation and

link quality are preserved. The input parameters include: 1)

Performance states (aETX/bETX pairs); 2) PRR distribution

tuples (as will be described in Section IV-C); 3) The transition

probability matrix between performance states, p(qn/qn−1);
4) The emission probability distribution for each performance

state, p(tn/qn). These parameters can be either manually set

by the simulation users or extracted from the target empirical

traces (the simulated results will have similar performance and

link-level behaviors with those of the empirical trace). Next,

we will present how to model aETX/bETX and obtain the

necessary parameters.

B. Performance modeling for aETX and bETX

aETX. Recall that aETX is the number of transmissions

for a sender to deliver one packet to at least one node of its

receivers. Similar to the existing works [10], [11], the aETX

is calculated as:

aET X =
1

ps
SR

(2)

where ps
SR

is the probability that at least one node in SR
receives the packet. Since we extract the metric from packet

reception/loss traces, ps
SR

can be obtained as follows:

ps
SR

=1− p0∗
=1− ∑

∀ti∈T
p(ti)pti(0∗) (3)

where p0∗ denotes the probability that all receivers lose the

packet (“0” stands for a packet loss), T denotes the PRR tuple
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P(R1=0)

P(R2=0) P(R3=0)

P(R2=0 & R3=0)

P(
R1

=0
&

R2
=0

) P(R1=0 &
R3=0)

P(R1=0 & R2=0 & R3=0)

Fig. 4: Calculation of bETX: The case of three receivers.

set, p(ti) denotes the probability of PRR tuple ti, and pti(0∗)
denotes the probability that all receivers lose the packet given

the PRR values in tuple ti.
bETX. Recall that bETX is the expected number of

transmissions for a sender to deliver one packet to all its

receivers. Note that the receivers are not restricted to receive
the packet at the same time.

For simplicity, we start from the case of three receivers R1,

R2, and R3. Basically, bETX can be calculated as:

bET X =
+∞

∑
k=1

kP(X = k) (4)

where P(X = k) is the probability that k transmissions cover

all three receivers. It can be calculated as

P(X = k) = P(X > k−1)−P(X > k) (5)

where P(X > k) is the probability that after k transmissions,

at least one receiver has not received the packet.

The calculation of P(X > k) turns out to be an inclusion-

exclusion problem as shown in Figure 4. Note that P(R1=0)

denotes the probability that after k transmissions, R1 has not

received the packet, P(R1=0&R2=0) denotes the probability

that after k transmissions, both R1 and R2 have not received

the packet, and P(R1=0&R2=0&R3=0) denotes the probability

that after k transmissions R1, R2, and R3 have not received

the packet. With the above information,

P(X > k) = P(R1 = 0)+P(R2 = 0)+P(R3 = 0)−
P(R1 = 0&R2 = 0)−P(R1 = 0&R3 = 0)−P(R2 = 0&R3 = 0)+

P(R1 = 0&R2 = 0&R3 = 0)

= Pn0=1 −Pn0=2 +Pn0=3

(6)

where Pn0=1 denotes the probability that n0(=1) receivers lose

the packet k times. With the input, we get:

Pn0=1 =(p000 + p001 + p010 + p011)
k+

(p000 + p001 + p100 + p101)
k+

(p000 + p010 + p100 + p110)
k

Pn0=2 =(p000 + p001)
k+

(p000 + p010)
k+

(p000 + p100)
k

Pn0=3 =(p000)
k

(7)

where pi jk denotes the probability that R1 = i,R2 = j,R3 =
k (i, j,k ∈ [0,1]). Combining Eqs. (4)-(7), we can obtain the

bETX to cover the three nodes.

n-receivers case for bETX. Now we move to calculate the

bETX for n receivers, which is an extension of Eq. (4). The

key is to calculate P(X > k), the probability that not all n
receivers received the packet after k transmissions. We use an

n-bit bitmap to denote the case of packet reception distribution.

For example, a bitmap of “0101” denotes the case in which

the first and third receivers lose the packet and the second and

the fourth receivers receive the packet. Then P(X > k) is given

as:

P(X > k) =
n

∑
m=1

(−1)m−1Pn0=m

=
n

∑
m=1

(−1)m−1 ∑
∀Sm

ek
Sm

(8)

where Pn0=m is the probability that m receivers do not receive

the packet by k transmissions, Sm is set of bitmaps with m
“0”s and eSm is the probability with m uncovered receivers.

eSm is calculated as:

eSm = ∑
∀b∈Sm

pb = ∑
∀b∈Sm

∑
∀ti∈T

pti(b) (9)

where b is a bitmap with m “0”s and pti(b) denotes the

probability of the bitmap b given the PRR tuple of ti.
Combining Eqs. (4), (5) and (8), the bETX to cover n

receivers is given by:

bET X =
+∞

∑
k=1

kP(X = k)

=
n

∑
m=1

(−1)m−1 ∑
∀Sm

1

1− eSm

(10)

The combinations of the extracted aETX and bETX values

are then used as the performance-level states.

C. Link-level states: PRR tuple distribution

Link level states are responsible to represent the link level

metrics including PRR, temporal and spatial correlations.

Different from the existing modeling approaches, we do not

utilize separate link metrics such as κ for link correlation or

β for burstiness. Instead, we abstract a PRR tuple distribution

from the packet reception traces on multiple links, which

essentially stores the PRR and temporal-spatial distributions.

With the PRR tuples, link-level behaviors can be preserved.

Given packet reception traces on different links, we first

slice time into many short periods and obtain a series of PRR

values for each link. The period length can be set according

to user’s granularity requirement. After that, we combine PRR

values at the same period in a PRR tuple and account the

overall probability of each different PRR tuples. After that,

we obtain a table storing PRR tuples and its distribution

probabilities. One different PRR tuple represents one different

spatial distribution for a short period. The probabilities for

PRR tuples represent the temporal distributions and variations.
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Fig. 5: Illustration of the packet trace abstraction.
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Fig. 6: Impact of states number on modeling accuracy and

memory overhead.

Figure 5(a) shows an illustrating example, where S is a

sender; R1,R2 and R3 are three receivers. The “0” and “1”

represent packet losses and receptions. Taking the packet

reception traces as input, we first slice the traces into several

windows (each window contains 4 packets). In each window,

we can obtain a PRR tuple, e.g., the PRR tuple of the first

window is [0.5,0.75,0.5], indicating that PRRs on the three

links are 0.5, 0.75 and 0.5 within the window. After that,

we can obtain the probabilities of all different PRR tuples as

shown in Figure 5(b). This table is the packet trace abstraction

and used as the states for link features (t). We can see that

PRR values, spatial distributions and temporal distributions

are all covered the abstraction. For each aETX/bETX state,

there are several corresponding link states of PRR tuples and

probability distributions. It is worth noting that, during the
abstractioneach packet reception/loss is accounted only once,

inherently avoiding the information overlapping problem.

D. Optimization

With the performance modeling approach, we can obtain the

performance states (aETX/bETX pairs) from the packet traces

(It is also worth noting that the states can be set manually

for the simulation users to explore all possible performance

space). However, there will be infinite values for aETX/bETX

states, which will significantly increase the complexity for PA-

HMM. For example, if we divide the range of aETX/bETX

values into 100 sections, there will be 100×100 different

(aETX,bETX) states. The transitional matrix size will be

(100×100)2. To reduce the overhead, we can decrease the

number of performance states using k-means clustering. The

cluster centers can then be used as the performance states.

Fig. 7: The 8×10 testbed with TelosB/TinyOS nodes.

Apparently, there exists a tradeoff between accuracy and the

computational overhead. With a small k, the model accuracy

decreases and memory overhead decreases. With a large k, the

model accuracy increases yet the memory overhead increases.

We determine k experimentally. Figure 6 shows the model

accuracy of presenting the aETX/bETX states and memory

overhead with varying k values. We can select k=7 to achieve

a good tradeoff between efficiency and accuracy because it

achieves relatively high accuracy (nearly 0.8) while incurring a

smaller memory overhead. Please refer to our technical report

for detailed experimental settings1. Similarly, the link level

states (PRR tuples) can also be optimized by clustering the

traces into k states. We will continue explore schemes for

improving the space efficiency in our future work.

V. EVALUATION

In this section, we evaluate the proposed performance

modeling approach as well as the PA-HMM based simulation.

We use our 8×10 TelosB nodes testbed (Figure 7) to collect

packet traces. The radio power is set to -32.5 dBm to enable a

6-10 hop network. Each node periodically broadcasts packets

and records the packet receptions from neighboring nodes. The

packet receptions on each link are sent to the PC via USB

cables. It is worth noting that the packet traces can be from

any networks or generated according to the user demands.

With the traces, we then study the model accuracy as well as

the repeatable simulation performance. In order to explore the

full potential of the PA-HMM simulation we utilize the exact

aETX/bETX values as performance states.

A. Performance modeling

We study the model accuracy of both aETX and bETX

for anycast and broadcast by repeating experiments with

varying number of receivers. We manually tune the PRR,

temporal and spatial distributions by introducing intentional

packet losses to compare the modeling accuracy under various

environments. Performance models of aETX and bETX are

separately evaluated, in terms of accuracy and computation

overhead.

Baseline approaches. For the performance model, We use

the approaches introduced in Section II as baseline approaches.

Specifically, for aETX we compare 3DW with two existing

works TON11 and TWC14 [10], [11]. TON11 considers only

1http://mobinets.org/pub/wSim-tech-rep.pdf
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Fig. 8: Evaluation results on the aETX/bETX performance modeling.

link quality and TWC14 considers both link quality and

link correlation. For bETX, we also compare 3DW with two

existing works TVT09 and CorLayer [5], [19]. TVT09 [19]

considers only link quality and CorLayer considers both link

quality and link correlation. For repeatable simulation, we

compare our work with TOSSIM [2] and M&M [3].

Figure 8(a) compares the bETX modeling accuracy of

the proposed work (denoted as PAM) and other approaches.

We can see that, (1) TVT09 [19] is accurate only when

link correlation is around 0.5, i.e., the spatial distribution

is random. The reason is that it does not consider the

spatial distributions and implicitly assumes that the PRRs are

independently distributed at different receivers. (2) CorLayer

[5] is accurate when link correlation is strong and inaccurate

when link correlation is weak. The reason is that it is based on

the assumption that receivers of the better-quality links receive

the packets earlier than other receivers. When link correlation

is 1, it can be treated as the case that all receivers receive the

packet at the same time, which minimizes the negative impact

of the assumption.

Figure 8(b) compares the aETX modeling accuracy. We can

see that (1) the proposed model is more accurate than the

approach in [11]. The reason is the spatial and temporal link

characteristics are additionally considered. (2) The proposed

model and TWC14 have the same accuracy. The reason is that

TWC14’s modeling essentially takes 2n link correlation values

for n links, which implicitly takes the spatial distribution

as well as its temporal distributions. Therefore, although

they do not explicitly reduce the overlapped information, the

modeling results are as accurate as our work PAM. We further

compare the computation overhead of PAM and TWC14 on

the MSP430 platform. Figure 8(c) compares the computation

overhead of the proposed model and TWC14 [10]. We can see

that when the number of receivers increases, TWC14 incurs

much more delay. The reason is that in the proposed model,

the probability of all zeros can be directly extracted by p0∗
(Eq.(3)) while TWC14 has to translate the PRR and link

correlation metrics for calculating the aETX.

B. Comparison with TOSSIM and M&M simulation

Using the collected packet traces at all links, we can simu-

late the network using PA-HMM based simulation (denoted

as PAM in the figures). For fair comparison, we use the

same measured traces to drive the M&M and PA-HMM. For

TOSSIM, we measure the noise traces on our testbed and feed

it into the TOSSIM simulation. We first study whether the

packet traces can be characterized by letting nodes periodically

transmit packets in both the testbed experiments and all the

three simulations Since both PA-HMM and M&M consider

PRR and the temporal distribution, the key is to check whether

link correlation among different links on the testbed can be

preserved and simulated. We run the protocols 1000 times

and the results are shown in Figure 8(d), where the relative-

errors between the empirical and simulated link correlation

by different simulation approaches are demonstrated. We can
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see that, most of the simulation errors of PA-HMM are

smaller than 9%. Conversely, Only about 50% cases in M&M

simulates the transmission count with relative errors smaller

than 9%. The relative error of TOSSIM is even larger.

Next we compare our work with M&M and TOSSIM in

terms of protocol performance. We test two popular protocols:

opportunistic routing [23] and data dissemination [24], which

are based on anycast and broadcast/multicast respectively.

We initiate the PA-HMM, TOSSIM and M&M using the

same packet traces collected from our testbed. Then we study

whether the simulated packet traces can support repeatable

protocol performance (number of transmissions).

Figure 8(e) shows the comparison of PA-HMM, TOSSIM

and M&M for opportunistic routing protocol. Figure 8(f)

shows the comparison of PA-HMM, TOSSIM and M&M

for bulk data dissemination protocol. We can see that for

both opportunistic routing and dissemination, the protocol

performance based on PA-HMM is much more closer to the

empirical results (the relative error between simulation results

and empirical results are greatly reduced compared to the other

approaches). The reason is that 1) Our work explicitly use

wireless communication performance (aETX and bETX) as

the underlying performance states, thus the generated trace can

preserve the single hop wireless communication performance.

2) The aETX/bETX errors in the other works can further

lead to incorrect routing decisions, which makes the difference

between simulated performance and the empirical performance

even larger in TOSSIM and M&M. Due to the page limit, we

have moved some technical contents and evaluation results to

our technical report2.

VI. CONCLUSION

In this paper, we investigate the problem of repeatable

wireless network simulation. We first propose a performance

model that considers spatial-temporal link correlation to

accurately characterize the single-hop ETX performance. And

then based on the performance model, we further propose a

novel Performance Aware Hidden Markov Model (PA-HMM)

for wireless network simulation. The evaluation results show

that the performance model achieves more accurate ETX

modeling for both anycast and broadcast/multicast, and the

PA-HMM based simulation can simulate both the link level

behaviors as well as the protocol performance (ETX).
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