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Parkinson’s disease (PD) is one of the typical movement disorder diseases among elderly people, which has
a serious impact on their daily lives. In this article, we propose a novel computation framework to recognize
gait patterns in patients with PD. The key idea of our approach is to distinguish gait patterns in PD patients
from healthy individuals by accurately extracting gait features that capture all three aspects of movement
functions, that is, stability, symmetry, and harmony. The proposed framework contains three steps: gait
phase discrimination, feature extraction and selection, and pattern classification. In the first step, we put
forward a sliding window–based method to discriminate four gait phases from plantar pressure data. Based
on the gait phases, we extract and select gait features that characterize stability, symmetry, and harmony
of movement functions. Finally, we recognize PD gait patterns by applying a hybrid classification model. We
evaluate the framework using an open dataset that contains real plantar pressure data of 93 PD patients
and 72 healthy individuals. Experimental results demonstrate that our framework significantly outperforms
the four baseline approaches.
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1. INTRODUCTION

The world population is rapidly aging. With this change occurring worldwide, health
issues associated with an aging population are increasing. The movement disorder
Parkinson’s disease (PD) is one of the common diseases among elderly people, which has
a serious impact on their daily lives [Zhang et al. 2005]. PD is caused by a degenerative
disorder of the central nervous system of a human body, leading to the gradual loss
of body movement function, along with anxiety and depression. According to a report
from World Health Organization [Gupta and Bala 2013; Michael J. Fox Foundation
2016], there are 6.3 million people suffering from PD worldwide, and the number in
China alone is more than 1.7 million, which is about 1% of the population over age
60. With an increasing amount of research focusing on diagnosing PD, two research
issues are of paramount importance: (1) How can we prediagnose PD and help doctors
make early interventions to delay its occurrence or even prevent it, especially when PD
symptoms are not apparent? (2) How can we assess the levels of symptoms and assist
doctors to make treatments to avoid falling into worse conditions?

Among many recent efforts, quantitative gait analysis has been a promising research
direction, as it intends to reveal gait variation [Iosa et al. 2012, 2013, 2014; Yogev et al.
2007; Sant’Anna et al. 2011] and further study the impact of specific diseases on gait
performance [Iosa et al. 2012, 2014; Yogev et al. 2007; Baltadjieva et al. 2006; Hausdorff
et al. 2007; Yogev et al. 2005; Frenkel-Toledo et al. 2005]. It provides a new assistive tool
for health professionals to address the two aforementioned issues through recognizing
PD gait patterns. To recognize PD gait patterns, a popular approach [Yogev et al.
2007; Wu and Krishnan 2010; Hausdorff et al. 2000] is first to extract the stride-to-
stride time series (consisting of the duration of each gait cycle, in which a gait cycle
refers to the process from one heel strike to the next heel strike of the same foot),
then extract gait features such as the similarity between two feet [Yogev et al. 2007],
standard deviation and Signal Turns Count (STC) [Wu and Krishnan 2010], average
values of stride time and speed, fluctuation magnitude, and fluctuation dynamics [18].
Alternatively, a symbolization method [Sant’Anna et al. 2011] has been proposed to
transform the acceleration signal of each foot into a symbolic sequence; the similarity
between two feet is calculated by comparing the symbolic sequence of two feet. Finally,
a classifier is used to recognize PD gait patterns.

The traditional approaches generally work well when the symptoms of PD patients
are apparent. However, when symptoms are not apparent, they exhibit two shortcom-
ings. First, the stride-to-stride time series in the traditional methods is typically coarse-
grained, and they ignore all the detailed information hidden in each gait phase. In fact,
a complete gait cycle (i.e., two adjacent strides) contains four gait phases—swing phase,
initial double-support phase, single-support phase, and end double-support phase [Iosa
et al. 2013]. The information hidden in each gait phase is important for gait analysis,
such information including the variation of each gait phase, the similarities of each
gait phase between two feet, and the rates between different gait phases. However,
it is impossible to obtain this information from stride-to-stride time series. Second,
the traditional approaches recognize PD gait patterns by extracting one aspect of gait
features. This may not achieve the desired recognition accuracy since several works
[Michael J. Fox Foundation 2016; National Institute of Neurological Disorders and
Stroke 2016; Iosa et al. 2014] demonstrate that PD actually affects several aspects of
gait simultaneously, such as gait stability, gait symmetry, and gait harmony.

To address the shortcomings in the traditional approaches, in this article, we first
obtain the four complete gait phases from gait plantar pressure data, making it possible
to compute fine-grained gait features. Based on these gait phases, we then extract
gait features from three aspects of movement functions—gait stability, gait symmetry,
and gait harmony—from which we can understand gaits more comprehensively and
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recognize PD gait patterns efficiently. However, this is not a trivial task for the following
reasons. First, we obtain fine-grained gait features on each gait phase level rather
than on stride-to-stride level. However, sensor data are inherently noisy. As a result,
plantar pressure data may contain much noise, making it difficult to extract gait phases
accurately. Second, it is challenging to normalize the gait features that can characterize
the three movement functions, that is, gait stability, gait symmetry, and gait harmony
based on plantar pressure data only. Third, even though two subjects belong to the
same gait pattern group, each of their gait features may be significantly different as
different subjects have different weights and walking speeds. Subject discrimination
is one of the key obstacles in gait pattern recognition.

To tackle these challenges, we propose a computation framework that leverages the
fine-grained gait features to capture multiple aspects of gait phases, thus recognizes
gait patterns more efficiently. The contributions of this work are summarized as follows.

—To discriminate four gait phases, we propose a sliding window–based model to iden-
tify Heel Strike and Toe Off events, then recognize four gait phases: swing phase,
initial double-support phase, single-support phase, and end double-support phase.
The proposed model is able to adapt its behavior to noisy plantar pressure data.

—We extract fine-grained gait features from all three aspects of movement functions—
stability, symmetry, and harmony—by computing relative variation, similarity be-
tween two feet, and special rates of different gait phases, respectively. These three
aspects of gait features correspond to the typical symptoms of PD: gait instability,
asymmetry, and inharmony, respectively. In addition, all features are normalized
to minimize individual differences and increase their comparability. Experimental
results demonstrate that PD patients show much weaker stability, symmetry, and
harmony than healthy individuals.

—To achieve high recognition accuracy, we construct a hybrid classification model using
the Adaboost method (i.e., a kind of Ensemble Method), which contains several BP
neural network classification models. We evaluate the proposed framework using
an open dataset that contains real plantar pressure data of 93 PD patients and 72
healthy people. Experimental results demonstrate that our framework outperforms
all the baseline methods in terms of Area Under ROC Curve (AUC), precision and
recall.

The rest of the article is organized as follows. We first review the related work in
Section 2. We then formally define the problem in Section 3 and present our computa-
tion framework in Section 4, followed by the evaluation results in Section 5. Finally,
we present our conclusions and discuss future work in Section 6.

2. RELATED WORK

In this section, we briefly review the related work, which can be grouped into three
categories. The first line of research is on gait-phase discrimination. Senanayake and
Senanayake [2010] propose a gait-phase detection algorithm that applies fuzzy logic
on kinematic and kinetic parameters. The algorithm is embedded in a real-time data-
acquisition system, which consists of four force-sensitive resistors and two inertial
sensors to obtain foot-pressure patterns and knee flexion/extension angle. Han et al.
[2009] demonstrate an adaptive window-based gait-phase discrimination method based
on three-axis accelerations of the ankle during walking. The basic idea of this method
is to use four narrow windows to detect initial contact (IC) point and end contact (EC)
point. Kong and Tomizuka [2008] propose a fuzzy logic–based gait-phase discrimination
method on ground contact forces. Four pressure sensors are located under the hallux,
the first metatarsal, the fourth metatarsal, and heel, respectively, to collect pressure
data and then apply fuzzy logic to overcome the weakness of threshold-based method,
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that is, poor availability for smooth and continuous signal changes. Our work is mo-
tivated by these research efforts in the way that we leverage gait phases to compute
fine-grained gait features. Our previous work [Wang et al. 2015] discriminates the gait
phases from plantar pressure data by identifying Heel Strike (HS) and Toe Off (TO)
events. In contrast, in this article, we proposed a sliding-window model to detect the gait
phases, which achieves better performance when handling noisy plantar pressure data.

The second category focuses on gait feature extraction. Iosa et al. [2014] extract gait
features from upper-body accelerations to access gait stability, harmony, and symmetry,
and finally identify which feature is directly related to severity of the impairment. They
conduct further research on the stability and harmony of gait in children with cerebral
palsy [Iosa et al. 2012]. These methods perform on upper trunk acceleration and do
not use gait phases. Iosa et al. [2013] also investigate the relationship between the
proportions of gait phases and the golden ratio (�1.618034) based on computer vision
techniques. They find that the ratio between the entire gait cycle and standing phase
and the ratio between standing and the swing phase are both approximately equal
to the golden ratio. Sant’Anna et al. [2013] propose a novel method to access gait
symmetry, which transforms inertial sensor signals into a sequence of symbols, then
measures the time interval between two consecutive segments of the same symbol for
two feet. Finally, the total difference between two feet can be calculated. However,
it cannot directly adapt to the plantar pressure data; since the pressure value keeps
to zero in the whole swing phase, we cannot segment the signal into equiprobable
quantization. Moreover, another classical and popular way to extract gait features is
to measure the fluctuation of stride-to-stride time [Yogev et al. 2007; Baltadjieva et al.
2006; Wu and Krishnan 2010; Hausdorff et al. 2000]; the feature based on stride-to-
stride time is too coarse-grained since it ignores the information between gait phases.
In contrast, we extract features based on all the gait phases, which are generated from
plantar pressure data. These gait features reflect three aspects of movement functions:
stability, symmetry and harmony, respectively.

The third line of research focuses on recognizing different gait patterns. Gandomkar
and Bahrami 2012 propose a markerless vision-based technique to extract gait features
from human walking sequences, and finally differentiate normal and abnormal gaits.
Sant’Anna et al. [2011] further use the extracted gait feature, SIsymb, to classify gait
patterns corresponding to healthy people and PD patients with initial symptoms, that
is, affecting one side more than other. Similarly, Wu and Krishnan [2010] extract two
gait features—standard deviation of stride interval (σ r) and STC of stride interval,
then classify gait patterns corresponding to healthy people and PD patients by employ-
ing a least squares support vector machine (LS-SVM) algorithm. However, features σ r
and STC both indicate only the stability of gait rhythm. Due to the complexity of PD
symptoms and individual differences, it typically ends up with poor performance if we
classify gait patterns based only on features reflecting a single aspect of movement
function and linear classifier. To address this issue, we propose classifying gait pat-
terns based on fine-grained features that characterize all three aspects of movement
functions. Compared with our previous work [Wang et al. 2015], which applies the
naı̈ve BP neural network to model the extracted features, in this article, we construct
a hybrid classification model by composing a set of BP neural network models.

3. PROBLEM STATEMENT

In this article, we mainly focus on the pressure data at toes and heels. Specifically, the
pressure data collected from sensors placed under toes and heels can be regarded as a
time series, which is formally described as follows:

TS = {s1, s2, ......, sn},
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where n is the number of recordings, and si (1 � i � n) is a sampling point that is
denoted as:

si = (ti, pT i, pH i),

where ti is the timestamp, and pT_i and pH_i are the pressure value at the toe and the
heel, respectively.

Given the gait-pressure data of an individual (TSl, TSr), that is, gait pressures of
both the left and right foot, we can measure the following motion characteristics of
one’s gait.

—Stability: It reflects not only the steadiness of gait rhythm but also the steadiness
of pressure value at toes and heels of two feet. The normal gait should have good
stability. Meanwhile, it is well known that postural instability is one of the most
important symptoms of PD [Iosa et al. 2012, 2014; Yogev et al. 2007; Wu and Krishnan
2010].

—Symmetry: It reveals the similarity of two feet, which contains the similarity between
the gait rhythm and the pressure value of two feet. High symmetry between two feet
is an important metaphor of health. The symptoms of PD usually appear only on
one side of the body at the early-to-mid stage, which usually result in severe gait
asymmetry.

—Harmony: It characterizes the percentage of different gait phases. For example, while
the swing phase of a healthy gait should account for about 40% of the whole gait cycle,
that of the gait corresponding to Parkinson’s disease usually has a significantly lower
percentage [Iosa et al. 2012, 2013]. The reason is that Parkinson’s patients need to
increase the standing phase to keep balance.

Per this discussion, gait stability, symmetry, and harmony characterize people’s
movement functions from different aspects, which can be estimated based on gait
features. We aim to classify different gait patterns corresponding to PD patients and
healthy individuals by combining these features. We formally define the problem as
follows.

Problem. Given a time series of two feet gait pressure TSS = {(TSl_1, TSr_1), (TSl_2,
TSr_2), . . . . . ., (TSl_n, TSr_n)}, where each pair comes from either a healthy individual
or a PD patient, the goal is to extract features depicting the movement functions, then
correctly identify the gait patterns based on these features.

4. METHOD

In this section, we present the detailed design of the proposed gait analysis framework.

4.1. Gait Analysis Framework

Gait is a complex process, which consists of several phases. Discriminating different
gait phases is an important aspect of analyzing the gait process, and is the basic
procedure to quantitatively characterize gait and do further analysis. Therefore, in
this article, we first discriminate four gait phases (swing, initial double standing, single
standing, end double standing) from the foot pressure time series of both feet during
walking. The description of these four gait phases is provided in Section 4.2. Based on
these gait phases, we can further extract and select valid features to quantitatively
describe gait from the aspects of stability, symmetry and harmony. Finally, in order to
demonstrate the effectiveness of these features, we use them to classify gait patterns
corresponding to PD patients and healthy individuals by using a hybrid classification
model. Figure 1 shows the overview of the proposed gait analysis framework, which
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Fig. 1. Overview of gait analysis framework.

Fig. 2. Four gait phases and transitions between them. The objective foot is highlighted in gray.

includes three steps: gait phase discrimination, features extraction and selection, and
pattern classification. The details of these steps are presented in the following sections.

4.2. Gait Phase Discrimination

As shown in Figure 1, given a series of gait data, the first task is to discriminate differ-
ent gait phases. Gait-phase discrimination is an effective tool to analyze gait and has
been widely used in gait analysis [Iosa et al. 2013; Senanayake and Senanayake 2010;
Han et al. 2009; Kong et al. 2008]. In the proposed framework, we adopt the four-phase
criterion [Iosa et al. 2013], which segments one gait cycle into four phases: swing phase,
initial double-support phase, single-support phase, and end double-support phase.
Figure 2 depicts these four phases and the transition between each of them. It is
clear that the four phases form a circulation and appear alternately during walking. In
contrast, the initial double-support phase and end double-support phase will disappear
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Fig. 3. Swing phases with irregular fluctuations. The blue and red circles mark out the ideal Toe off and
Heel Strike events.

during running. In this article, we focus only on the gait of walking. From Figure 2,
we see that gait events such as Heel Strike (HS) and Toe Off (TO) of two feet play
important roles in discriminating gait phases.

Ideally, a when foot is swinging, the pressure value at toe and heel should be zero
since the foot is not touching the ground. Thus, the HS event and TO event can be
easily identified as follows [National Institute of Neurological Disorders and Stroke
2016]:

—Given the preprocessed pressure time series TS of the left or right foot, if the sampling
point si satisfies:
(1) the pressure value at the heel of si+1, pH_i+1 > 0, and
(2) the pressure value at the heel of si, pH_i = 0,
then, si is an HS event.

—Given the preprocessed pressure time series TS of the left or right foot, if the sampling
point si satisfies:
(1) the pressure value at the toe of si-1, pT_i-1 > 0, and
(2) the pressure value at the toe of si, pT_i = 0,
then, si is a TO event.

However, due to hardware constraints and some special postures, when one foot is
swinging, the real pressure readings at toes and heels do not always keep to zero. Figure
3 shows a sample of two-feet pressure readings of a subject. We can see that there are
many irregular fluctuations in the swing phases. A worse fact is that the amplitude of
such irregular fluctuations varies from subject to subject. If we adopt the intuitive idea
directly, the irregular fluctuation will result in many pseudo HS and TO events.

To address the problem, we introduce a sliding window–based model to identify HS
and TO events. According to Figure 3, we observe that the shape of reversed pressure
readings at the toe is similar to that of the pressure readings at the heel and the points
where TO events occur are similar to the points where HS events occur. We need to
construct a model to identify only HS events since TO events will be identified by using
the model to process the reversed pressure readings at the toe. For simplicity, we only
present how to construct the model for identifying the HS events in this section. The
model is described as follows.
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Fig. 4. A sample to illustrate that lack of any one constraint in the slide-window model will result in an
error when identifying an HS event, where l = 40, P = 15, M = 6. (a) Without the first constraint, (b) without
the second constraint, (c) without the third constraint, and (d) without the fourth constraint.

Given a pressure record si (i = l, l + 1, . . . , n), we construct a window as follows.

W(i, l) = [si−l+1, si−l+2, . . . . . . , si]

If si satisfies the following four constraints:

(1) si.HeelValue < P;
(2) si.HeelValue � si−1. HeelValue;
(3) Suppose M is the amount of the points satisfying

sj .HeelValue ≤ si.HeelValue, where sj ∈ W, then,

M > AmountThreshold

(4) st does not satisfy conditions (1)∼(3), where

st ∈
{

W(i + l − 1, l − 1), i + l − 1 ≤ n
W(n, n − i), others

Then, si is a point where an HS event occurs.
Generally, the length of the slide window, l, should be set much smaller than the

length of all the gait cycles, as shown in Figures 2 and 3. (Generally, the durations
of all gait cycles are larger than 0.6s. Suppose that the sampling rate is 100Hz; the
lengths of all gait cycles is larger than 60.) If l is too large, the window may contain
more than one HS event. However, due to the fourth constraint, the window can only
identify one HS event at a time and the other HS events will be missed. Therefore, we
suggest setting l as 20∼30.

The first constraint is used to quickly filter out the points where HS events do
not occur (shown as the green point in Figure 4(a)). In order to adapt to irregular
fluctuation during swing phases, P should be set larger than the amplitude of the
irregular fluctuation. Otherwise, an HS event may be filtered out falsely. Generally, we
suggest setting P as 13∼20.

The second constraint is used to ensure that the extracted point is exactly the begin-
ning of a pressure rising region (shown as the black point in Figure 4(b)). Without this
constraint, the extracted point will have some extra time delay (shown as the green
point in Figure 4(b)).

The third constraint enables the model to rule out the pseudo HS event caused by
the nonmonotonic pressure changes (shown as the green point in Figure 4(c)).

In a gait cycle, there might be more than one point satisfying constraints 1∼3 (as
shown in Figure 4(d)). However, in fact, one gait cycle contains only one HS event. If
si is regarded as an HS event, it is impossible that the gait cycle, which starts from si,
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contains another HS event. Before we identify all the gait events, we cannot know the
length of the gait cycle, but we can infer that:

• If i + l – 1 > n, the window W(i + l – 1, l), which starts with si, would not contain
another HS event since the length of W(i + l – 1, l), l, is much smaller than that of a
gait cycle.

• Otherwise, the window W(n, n – i + 1), which also starts with si, would not contain
another HS event since the length of W(n, n – i + 1), n – i + 1, is much smaller than
that of a gait cycle.

By employing the proposed sliding window–based model, we can get all HS events
of two feet from the pressure data of the left foot, TSl, and the pressure data of the
right foot, TSr. According to Figure 3, we can see that the shape of reversed pressure
readings at the toe is similar to that of the pressure readings at the heel, and the points
where TO events occur are similar to the points where HS events occur. We can get all
TO events of two feet by performing the proposed model on the reversed TS1 and TSr.

Based on the extracted HS and TO events of two feet, the four gait phases—swing,
initial double-support, single double-support and end double-support—can be defined
as follows.

Definition 1. Swing (Sw) phase: It starts from the TO event of the objective foot and
ends at the next HS event of the same foot.

Definition 2. Initial double-support (Ids) phase: It starts from the HS event of the
objective foot and ends at the next TO event of the other foot.

Definition 3. Single support (Ss) phase: It starts from the TO event of the objective
foot and ends at the next HS event of the other foot.

Definition 4. End double-support (Eds) phase: it starts from the HS event of the
objective foot and ends at the next TO event of the other foot.

Due to the phase offset, the Ids phase of the objective foot is exactly the Eds phase
of the other foot, and the Ss phase of the objective foot is exactly the Sw phase of the
other foot. Figure 3 shows a sample of a two-feet pressure time series of an individual,
in which the key gait events and gait phases are marked as well.

4.3. Gait-Feature Extraction and Selection

In this section, we present the features that we use to quantitatively characterize
gaits. In order to measure gaits more comprehensively, we extract features from all
three aspects of movement functions—stability, symmetry, and harmony—which are
important metrics to assess movement function [Iosa et al. 2014].

To simplify the description, before computing the gait attributes, we calculate the
duration of gait phase and transform each kind of gait phase into a time series. Finally,
we can obtain a time series set TSs that contains eight time series as follows:

TSs = {SwT L, SwT R, IdsTL, IdsTR, SsTL, SsTR, EdsTL, EdsTR}, (1)

where SwT L/R, IdsTL/R, SsTL/R and EdsTL/R denote the duration time series of swing
phase, initial double-support phase, single-support phase and end-double support
phase of two feet, respectively.

4.3.1. Stability. Gait stability is an important indicator of health [Ihlen et al. 2012;
Yang et al. 2009] and is one of the typical symptoms of PD. Based on the extracted gait
phases, we can measure gait stability from both gait rhythm and pressure amplitude.
We use two features to measure the stability of gait rhythm.
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(a) The coefficient of variation of the duration of gait phases (CVrhythm)

CVrhythm =
8∑

i=1

CV(TSs(i)), (2)

where TSs(i) is generated from Equation (1). In particular,

CV(X) = 50 × SD(X)/mean(X) (3)

(b) The standard deviation of detrended time series of gait phase durations
(DSDrhythm). DSDrhythm is formulated as

DSDrhythm =
8∑

i=1

SD(Detrend(TSs(i))), (4)

where TSs(i) denotes the ith time series of TSs, which is represented in Equation (1).
Detrend() denotes a detrending function, which is performed by taking the first differ-
ence of the time series. SD() denotes the standard deviation.

In addition to stability of gait rhythm, we also investigate the stability of pressure
amplitude. In this article, we employ two features to measure the stability of pressure
amplitude.

(a) The coefficient of variation of maximum pressure in the standing phase (as shown
in Figure 2, the standing phase is the ordered combination of the initial double-support
phase, single-support phase and end double-support phase; CVpressure).

Suppose that the time series of maximum pressure value in the standing phases of
two feet are denoted as PressureTL and PressureTR, respectively; then, CVpressure can
be calculated as

CVpressure = CV(PressureTL) + CV(PressureTL), (5)

where CV(X) is computed by Equation (3).
(b) The standard deviation of detrended time series of maximum pressure in the

standing phase (DSDpressure). DSDpressure can be computed as

DSDpressure = SD(Detrend(PressureTL)) + SD(Detrend(PressureTR)) (6)

where the functions Detrend() and SD() have been introduced in Equation (4).
On the one hand, CVrhythm and CVpressure indicate the discreteness of the duration of

all kinds of gait phases and the discreteness of the maximum pressure value during the
standing phases, respectively. The advantage of CVrhythm and CVpressure is that they can
minimize the effect of individual differences in walking speed and weight, respectively.
Generally, more stable gait results in smaller CVrhythm and CVpressure. On the other
hand, DSDrhythm and DSDpressure indicate the relative fluctuation of duration of all
kinds of gait phases and the relative fluctuation of maximum pressure values during
the standing phases, respectively. The advantage of DSDrhythm and DSDpressure is that
they minimize the effect of changes between successive phase elements. Generally, a
more stable gait results in smaller DSDrhythm and DSDpressure.

4.3.2. Symmetry. There is evidence proving that movement asymmetry is commonly
observed along with a decline in health status [Yogev et al. 2007]. Particularly, PD
patients may present very asymmetrical gaits [Baltadjieva et al. 2006]. Similar to gait
stability, we measure gait symmetry from both gait rhythm and pressure amplitude.

Given the time series of the swing phase of two feet, SwT L and SwT R (as shown in
Figure 5), we can see that PL_i and PR_i (i = 1, 2, . . . , m) occur alternately over time.
Without loss of generality, suppose that PL occurs first (i.e., one first step forward with

ACM Transactions on Intelligent Systems and Technology, Vol. 8, No. 1, Article 6, Publication date: August 2016.



Recognizing Parkinsonian Gait Pattern 6:11

Fig. 5. The process of computing gait symmetry of gait rhythm.

the left foot), we can measure the total duration difference, TotalDiff , between two feet
as follows:

TotalDiff(SwTL, SwTR) = |PL m − PR m| +
m−1∑
i=1

(|PL i − PR i| + |PL i − PR i+1|). (7)

Specifically, the duration difference between two elements deriving from two feet, re-
spectively, are taken into consideration only if the two elements are adjacent over
time. Obviously, more elements will result in larger TotalDiff. To eliminate the effect
of different amounts of elements, the average difference, AvgDiff , is computed as

AvgDiff(SwTL, SwTR) = TotalDiff(SwTL, SwTR)
2m− 1

. (8)

Afterwards, to minimize the effect of difference of absolute value between different
individuals, AvgDiff (SwT L, SwT R) is normalized by the mean value of SwT L and
SwT R. Thus, the symmetry of the swing phase is finally computed as

Sym(SwTL, SwTR) = 2AvgDiff(SwTL, SwTR)
mean(SwTL) + mean(SwTR)

. (9)

Similarly, we can obtain Sym(IdsTL, IdsTR), Sym(SsTL, SsTR), and Sym(EdsTL,
EdsTR). Finally, the symmetry of gait rhythm, Symrhythm, is represented as the sum of
four kinds of gait-phase symmetry as follows.

Symrhythm = Sym(SwTL, SwTR) + Sym(IdsTL, IdsTR)
+ Sym(SsTL, SsTR) + Sym(EdsTL, EdsTR) . (10)

In addition, we investigate the symmetry of pressure amplitude. Suppose that the
time series of maximum pressure value in the standing phases of two feet are denoted as
PressureTSL and PressureTSR, respectively. Then, the symmetry of pressure amplitude,
Symmpressure, can be calculated as

Sympressure = Sym(PressureTL, PressureTR), (11)

where the function Sym() is defined by Equation (9).
Symrhythm indicates the average duration difference of four kinds of gait phases

between two feet. Sympressure indicates the average difference of maximum pressure
value during the standing phase between two feet (as the pressure value keeps to
0 during the swing phase, only the standing phase is considered in Sympressure). In
general, poor gait symmetry would accompany larger Symrhythm and Symrhythm.

4.3.3. Harmony. Harmony is one of the intrinsic features of human gait, which con-
tributes to efficient and smooth movements during walking [Iosa et al. 2012], and
facilitates repetitive walking in the healthy individual [Iosa et al. 2013]. Intuitively,
gait harmony refers to the proportions between different gait phases. For example,
during one gait cycle, the proportion between the standing phase and the swing phase
should be about 60% versus 40%, while significant alterations of these proportions are
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usually identified as signs of pathological gait [Winter et al. 1990]. In this article, we
employ two proportions to describe gait harmony:

(a) The average proportion of the swing phase in a gait cycle (P1);

P1 = 1
2

(P1L + P1R) , (12)

where P1L can be calculated based on Equation (13):

P1L = 1
m

m∑
i=1

SwTL(i)
SwTL(i) + IdsTL(i) + SsTL(i) + EdsTL(i)

, (13)

where SwT L, IdsTL, SsTL, and EdsTL denote the time series of four kinds of gait
phases of the left foot, respectively (as mentioned in Equation (1)). Similarly, we can
compute P1R.

(b) The average proportion of the single support phase in the standing phase (P2):

P2 = 1
2

(P2L + P2R) , (14)

where P2L can be calculated based on Equation (15):

P2L = 1
m

m∑
i=1

SsTL(i)
IdsTL(i) + SsTL(i) + EdsTL(i)

. (15)

Similarly, we can compute P2R.
In order to gain better gait pattern classification performance and reduce the compu-

tational complexity in these successive steps, we retain only the features that contribute
significantly to classifying gait patterns. In this article, we use Information Gain (IG)
[Kullback 1959] to measure the effectiveness of candidate features. Specifically, fea-
tures whose IG is smaller than 0.1 will be discarded. The remaining features will be
used as input for the gait pattern classifier, which are organized as a feature vector.

4.4. Gait Pattern Classification

In our previous work [Wang et al. 2015], we used a BP neural network to construct
the classification model and achieved good recognition accuracy. To further improve
the performance, in this article, we use Adaboost [Jiawei and Kamber 2006], a popular
ensemble method to construct a hybrid model, which combines several BP neural
network models as basic models.

The basic idea of Adaboost [Han et al. 2006] can be described as follows. Several BP
neural network classifiers are learned iteratively. The next classifiers will pay more
attention to the training tuples incorrectly classified in the previous classifiers. Finally,
the votes of each classifier are combined with different weights, which are positively
related to the accuracy of different classifiers.

Formally, given a dataset D, containing d-labeled training tuples, (X1, y1), (X2,
y2), . . . , (Xd, yd), where yi is the label of Xi, Adaboost assigns an equal weight 1/d
to each training tuple. Then, it trains k BP neural network classifier models itera-
tively. For the jth (j = 1, 2, . . . , k) model Mj, first, a repeatable sampling method is
used to generate a training dataset Dj from D. The size of Dj is equal to that of D. The
chance of each tuple being selected depends on its weight. The ones with higher weights
are more likely to be selected. Second, Mj is learned on Dj, and its error error(Mj) is
computed using Dj as a testing dataset:

error(Mj) =
d∑

t=1

wt× err(Xt), (16)
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Table I. Statistics of Subjects

Parkinson’s disease patients Healthy individuals
Total number 93 72

Percentage of men 63% 55%
Age 66.301 ± 9.500 63.658 ± 8.641

Height (m) 1.674 ± 0.086 1.682 ± 0.085
Weight (kg) 72.396 ± 11.960 72.764 ± 12.347

UPDRS 31.615 ± 11.825 0.477 ± 0.876
UPDRSm 19.319 ± 7.656 0.477 ± 0.876

H&Y 2.258 ± 0.343 0 ± 0
Age, height, weight, UPDRS, UPDRSm, and H&Y are shown as: mean ± std.

where Xt ∈ Dj, wt is the weight of Xt . err(Xt) is the misclassification error of Xt. If Xt
is misclassified, err(Xt) = 1; otherwise, err(Xt) = 0. If the performance of Mj is so poor
(error(Mj) > 0.5), then it is abandoned and a new Mj will be generated from a new Dj.
Third, the weights of all the training tuples are updated. Correctly classified tuples
will get higher weights; incorrectly classified tuples will get lower weights. Specifically,
if Xt is correctly classified, then

wt = wt × error(Mj)
1 − error(Mj)

. (17)

The weights of the tuples reflect the difficulty of correctly classifying them. Higher
weight indicates that they are more often misclassified. The weights of tuples will be
used to generate the training dataset Dj+1 for the next model Mj+1.

Given a tuple X, Adaboost uses the weighted combination of BP neural network mod-
els to predict its label. Specifically, the model with smaller error (i.e., more accurate),
will be assigned with a higher weight. The weight of model Mj can be calculated as
follows:

weight(Mj) = log
1 − error(Mj)

error(Mj)
. (18)

Then, for each class c, the weights of the models that classify X into c will be accu-
mulated. Finally, the one with the largest weight sum will be regarded as the class
for X.

5. EXPERIMENT EVALUATION

In this section, we report the evaluation results of the proposed framework.

5.1. Experimental Setup

The datasets used in this work are derived from the study by Hausdorff et al. [2007],
Yogev et al. [2005], and Frenkel-Toledo et al. [2005], which consist of gait data from
93 patients with idiopathic PD and 72 healthy individuals. The PD patients were
evaluated by a movement-disorder neurologist according to the unified Parkinson’s
disease rating scale (UPDRS), UPDRS motor (UPDRSm), and Hoehn and the Yahr
(H&Y) scale. The detailed statistics of the subjects are shown in Table I. The database
includes the vertical ground reaction force records of subjects as they walked under
two different states (walking normally and working on serial-7 subtraction) at a self-
selected pace for approximately 2min on level ground. In this study, we used only the
data from subjects walking normally. Underneath each foot, there were 8 pressure
sensors that measure force (in Newtons) as a function of time. The sampling frequency
of these 16 sensors is 100Hz. Actually, different heel height and hardness of the shoes
may slightly change the gait kinematics [Cowley et al. 2009; Bendix et al. 1984]. For
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Table II. Summary of the Features Extracted by the Proposed Method

PT CO P value IG
CVpressure 48.81 ± 17.80 37.33 ± 12.70 1.97E-05 0.105

DSDpressure 107.53 ± 32.12 108.33 ± 39.99 0.89 0
CVrhythm 50.05 ±16.34 36.41 ± 8.96 5.97E-09 0.164

DSDrhythm 0.16 ± 0.09 0.11 ± 0.03 3.47E-07 0.186
Sympressure 0.88 ± 0.29 0.74 ± 0.23 8.22E-04 0
Symrhythm 0.11 ± 0.07 0.06 ± 0.02 1.56E-09 0.327

P1 0.34 ± 0.03 0.36 ± 0.01 1.08E-07 0.143
P2 0.52 ± 0.06 0.56 ± 0.03 6.43E-08 0.143

These features are shown as: mean ± std.
P value derived from a two-sample t-test.
H0: features from PT and Control are consistent with one single distribution.

example, high-heeled shoes will slightly lengthen the stand phase and end double-
support phase while shortening the stride interval and single-support phase, resulting
in smaller P1 and P2. In addition, soft shoes may mildly magnify the deviation of the
stride intervals, resulting in a larger CVrhythm. However, the plantar dataset that we
use was collected from the subjects who were tested using the same system (a pair
of shoes embedded with pressure sensors and a recording unit carried on the waist)
[Hausdorff et al. 2007]. Hence, the negative impacts caused by the shoes basically can
be ignored.

We used four baseline methods: the method in Wu and Krishnan [2010], our previous
work [Wang et al. 2015], the method in Sant’Anna et al. [2011] and the method using
the same features as the proposed method but recognizing gait patterns by employing
a single BP neural network. The first method [Wu and Krishnan 2010] extracted the
stride intervals (i.e., stride-to-stride duration) standard deviation (σ ) and STC, and
employs the LS-SVM to classify gait patterns corresponding to healthy individuals and
PD patients. The second baseline method, in our previous work [Wang et al. 2015],
is similar to the proposed framework, but it used a simple method to identify gait
events HS and TO, which led to time offset in most of the extracted gait events. These
gait events with time offset will finally affect the subsequent quantitative analysis.
In addition, the classification model was constructed by a neural network, while we
constructed a hybrid classification model by using the Adaboost algorithm in this
article to achieve high recognition accuracy. The basic idea of the third baseline method
[Sant’Anna et al. 2011] was to classify gait patterns based on gait symmetry, which
was computed using a symbolic processing method. To further illustrate the advantage
of the proposed framework, we replaced Adaboost (the method used in this article to
construct the gait pattern recognition model) with a BP neural network, that is, the
fourth baseline method, which used the same gait features.

We used two evaluation metrics: AUC [Bradley 1997] and a pair of Precision and
Recall. The formal definition of AUC and the pair (Precision, Recall) can be found in
our previous work [Wang et al. 2015]. Generally speaking, high AUC, and Precision
and Recall, indicate good gait pattern classification performance.

Our evaluations were conducted in MATLAB on an Intel (R) Xeon (R) CPU E5-2620
with 32GB RAM running Windows 8.

5.2. Evaluation Results

5.2.1. Gait Feature Comparison. A summary of the features extracted in this study are
shown in Table II. Specifically, we can obtain the following three observations according
to Table II.
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Fig. 6. The box-plots of all features extracted by the proposed method. The whiskers represent the smallest
and largest observations, the edges of the box correspond to the lower and upper quartiles, the horizontal
line indicates the median, and the plus sign marks probable outliers. Co: control, PD: PD patients.

—Except for DSDpressure, both the mean value and standard deviation of the fea-
tures measuring the gait stability of healthy individuals (i.e., CVpressure, CVrhythm,
DSDrhythm e) are obviously smaller than that of PD patients. It indicates that the gait
stability of PD patients is weaker than that of healthy individuals. Moreover, the P
value of the features between healthy individuals and PD patients is quite small,
that is, the three features of PD patients and healthy individuals do not follow the
same distribution, which is helpful for gait-pattern classification.

—Similarly, the mean value and standard deviation of the features measuring the
gait symmetry of healthy individuals (i.e., Symmetrypressure and Symmetryrhythm) are
smaller than that of PD patients. Especially in the case of Symmetryrhythm, the mean
value and standard deviation of healthy individuals are much smaller than that of PD
patients. It indicates that the gait-rhythm symmetry of PD patients is significantly
weaker than that of healthy subjects, which is consistent with common sense. In
addition, the P value of Symmetryrhythm between healthy individuals and PD patients
is smaller than 1.56E-09, which is smaller enough to indicate that the Symmetryrhythm
measures of PD patients and healthy individuals do not follow the same distribution.

—The features measuring gait harmony (i.e., P1 and P2) of PD patients are both smaller
than that of healthy individuals. In other words, the standing phase proportion of PD
patients is generally greater than that of healthy individuals, and the double-support
phase of PD patients is generally greater than that of healthy individuals. The reason
is that decreased ability to maintain balance forces PD patients to lengthen the
standing phase, especially the double-support phase, to keep balance. Furthermore,
the P value of P1 and P2 is small enough to demonstrate that these two features of
PD patients and healthy individuals do not follow the same distribution.

The visualization of the extracted features is shown in Figure 6. We can see that,
except for DSDpressure and Symmetrypressure, the distribution of the features between
healthy individuals and PD patients is quite different, which corroborates the obser-
vations obtained from Table II. However, the overlap of the distribution is so large
compared to the difference in median that we cannot distinguish gait patterns by any
single feature. Therefore, we organized all the features as a vector and used it as the
input of the classifier. To optimize the input vector, in this article, we used IG to select
features. If the IG value of one feature is smaller than 0.1, it will be discarded. The
IG of extracted features is presented in Table II. Consistent with the observation from
Figure 6, DSDpressure and Symmetrypressure contribute less to gait pattern classification.
Therefore, these two features were discarded, and the final input vector was chosen as
follows:

Vinput = 〈
CVpressure, CVrhythm, DSDrhythm, Symmetryrhythm, P1, P2

〉
.
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Fig. 7. Optimal features extracted by the first baseline method [Wu and Krishnan 2010]. (a) the box-plots
of the standard deviation of gait rhythm (σP = 0.01) and Signal Turns Count, STC (Th = 0.02); (b) GMSE as
σP is varied; (c) P value of STC as th is varied.

Table III. Summary of the Features Extracted by the First Baseline Method
[Wu and Krishnan 2010]

Features PT CO P value
σ (σP = 0.01) 0.018 ± 0.006 0.024 ± 0.012 1.16E-4

STC (Th = 0.02) 16.931 ± 8.794 25.108 ± 11.143 8.78E-4
These features are shown as: mean ± std.

Fig. 8. The box plots of all features extracted by the second baseline method [Wang et al. 2015].

The features σ (standard deviation of gait rhythm) and STC extracted by the first
baseline method are shown in Figure 7 (the detailed feature optimization process can
be seen in our previous work [Wang et al. 2015]). A summary of σ and STC is shown
in Table III. We can see that the P values of these two features are much greater than
that of the features in Vinput, indicating that the features extracted by the first baseline
method are less effective for gait pattern recognition than the features in Vinput.

The features extracted in our previous work [Wang et al. 2015] are shown in Figure 8.
We can see that there is no obvious difference compared to the features extracted by
the proposed method. A summary of these features is shown in Table IV. The P values
of DSDrhythm, P1 and P2, are slightly smaller than the P values of the corresponding
features extracted based on the proposed method in this article. However, the P values
of CVpressure, CVrhythm, and Symrhythm are larger than the P values of the corresponding
features extracted in this article. It indicates that features DSDrhythm, P1, and P2
extracted by the second baseline method are more effective for gait-pattern recognition,
while the other three features CVpressure, CVrhythm, and Symrhythm extracted by the
proposed method in this article are more useful.
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Table IV. Summary of the Features Extracted by the
Second Baseline Method [Wang et al. 2015]

Features PT CO P value
CVpressure 48.06 ± 20.49 36.20 ± 12.04 2.26E-05

DSDpressure 103.28 ± 32.99 101.60 ± 37.96 0.7622
CVrhythm 50.29 ± 17.52 36.64 ± 8.01 6.30E-09

DSDrhythm 0.16 ± 0.08 0.11 ± 0.02 9.90E-08
Symmpressure 0.89 ± 0.30 0.74 ± 0.23 5.10E-04
Symmrhythm 0.11 ± 0.08 0.06 ± 0.02 7.77E-08

P1 0.34 ± 0.03 0.36 ± 0.01 5.27E-08
P2 0.52 ± 0.06 0.56 ± 0.03 3.21E-08

These features are shown as: mean ± std.
P value derived from a two-sample t-test.
H0: features from PT and Control are consistent with one

single distribution.

Table V. Summary of the Symmetry Extracted by the
Third Baseline Method [Sant’Anna et al. 2011]

Features PT CO P value
Symb8 22.23 ± 6.52 19.42 ± 3.72 0.001

Symb10 23.44 ± 6.28 20.37 ± 3.63 3.04E-04
Symb12 23.99 ± 5.93 20.95 ± 3.67 1.93E-04
Symb14 24.39 ± 5.71 21.08 ± 3.52 2.72E-05
Symb16 24.66 ± 5.69 21.31 ± 3.28 1.58E-05
Symb18 24.99 ± 5.66 21.59 ± 3.20 1.02E-05

These features are shown as: mean ± std.
P value derived from a two-sample t-test.
H0: features from PT and Control are consistent with one

single distribution.

Fig. 9. The box plots of the features generated by the third baseline method [Sant’Anna et al. 2011]. The
subfigures 8 Symbols ∼ 18 Symbols correspond to the symmetry generated under 8 ∼ 18 symbols, respectively.

Features extracted by the third baseline method [Sant’Anna et al. 2011] are shown
in Figure 9. Different numbers of symbols will generate different symmetry measures.
In this article, we computed symmetries by setting the amount of symbols as even
numbers ranging from 8 to 18. We can see that, compared with the features in Vinput,
the distribution difference between healthy individuals and PD patients is not obvious.
Moreover, there is no distinct change as the number of symbols varies. A summary of
these features is presented in Table V. Comparing with the P value of the features
in Table II, the P values of these features are larger overall. In other words, the fea-
tures extracted based on the third baseline method are less effective than the features
extracted by our proposed method for gait-pattern recognition.

5.2.2. Gait-Pattern Classification Results. In order to get robust verification results,
10 times 10-fold cross-validation [Kohavi et al. 1995] was applied to the proposed
method and the four baseline methods. Specifically, for each 10-fold cross-validation,
a new random seed was used to repartition the dataset into 10 subsets. Each subset
was used as the test set in turn and the other 9 subsets were used as training sets.
The classification results of the proposed method and baseline methods are shown in
Table VI (note that, for the third baseline method, the symbol number was set as 18,
where the P value is the smallest, as attributes with a smaller P value will generate
better classification results).

By comparing the 10 times 10-fold cross-validation classification results in Table VI,
we find that the proposed method is:
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Table VI. Classification Result Comparison

First baseline method Second baseline method Third baseline method
Num. Pre. Rec. AUC Num. Pre. Rec. AUC Num. Pre. Rec. AUC

1 0.627 0.584 0.686 1 0.846 0.828 0.866 1 0.675 0.675 0.602
2 0.627 0.584 0.687 2 0.813 0.839 0.862 2 0.634 0.624 0.677
3 0.627 0.584 0.687 3 0.835 0.817 0.837 3 0.650 0.643 0.677
4 0.627 0.584 0.686 4 0.823 0.849 0.862 4 0.634 0.636 0.602
5 0.627 0.584 0.686 5 0.828 0.828 0.846 5 0.625 0.655 0.591
6 0.626 0.584 0.686 6 0.859 0.849 0.844 6 0.628 0.627 0.559
7 0.627 0.584 0.686 7 0.821 0.839 0.856 7 0.664 0.670 0.656
8 0.627 0.584 0.686 8 0.809 0.817 0.851 8 0.660 0.690 0.645
9 0.627 0.584 0.687 9 0.854 0.817 0.847 9 0.599 0.596 0.602
10 0.627 0.584 0.687 10 0.828 0.828 0.842 10 0.650 0.633 0.667

Avg 0.627 0.584 0.686 Avg 0.831 0.831 0.851 Avg 0.642 0.645 0.628
Fourth baseline method Our proposed method

Num. Pre. Rec. AUC Num. Pre. Rec. AUC
1 0.828 0.828 0.858 1 0.883 0.892 0.889
2 0.837 0.828 0.861 2 0.912 0.892 0.896
3 0.846 0.828 0.866 3 0.863 0.882 0.908
4 0.830 0.839 0.856 4 0.871 0.871 0.882
5 0.837 0.828 0.870 5 0.853 0.871 0.901
6 0.837 0.828 0.866 6 0.879 0.860 0.889
7 0.821 0.839 0.856 7 0.879 0.860 0.894
8 0.837 0.828 0.868 8 0.902 0.892 0.894
9 0.828 0.828 0.864 9 0.878 0.849 0.885
10 0.839 0.839 0.865 10 0.871 0.871 0.895

Avg 0.834 0.831 0.863 Avg 0.879 0.874 0.893
Results keep three decimal places.

—significantly superior to the first baseline method by 39.4%, on average, in terms of
precision; 30.2%, on average, in terms of recall; and 40.2%, on average, in terms of
AUC.

—slightly superior to the second baseline method by 5.2%, on average, in terms of
precision; 4.9%, on average, in terms of recall; and 5.8%, on average, in terms of
AUC

—significantly superior to the third baseline method by 35.5%, on average, in terms of
precision; 42.2%, on average, in terms of recall; and 36.9%, on average, in terms of
AUC

—slightly superior to the fourth baseline method by 5.2%, on average, in terms of
precision; 3.5%, on average, in terms of recall; and 5.4%, on average, in terms of
AUC

The ROC curves of the proposed method and four baseline methods are shown in
Figure 10, which indicates that our method is able to achieve a high detection rate
while keeping a low false-alarm rate. The proposed method, in the worst case, is able
to accurately recognize over 85% of PD patients while keeping the false-alarm rate
lower than 16%. Specifically, for the 8th 10-fold cross-validation (E-8), over 90% of
PD patients can be accurately recognized with a false-alarm rate of less than 13%. In
contrast, for the four baseline methods, in the best case, to achieve a detection rate over
85%, they have to suffer over 68%, 22%, 67%, and 25% false-alarm rates, respectively.
Generally speaking, the AUC values of all four baseline methods are smaller than that
of the proposed method.
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Fig. 10. The ROC curves of the proposed method and baseline methods. E-1 ∼ E-10, the ROC curves of
10 times 10-fold cross-validation of our proposed method. B1-1 ∼ B1-10, the ROC curves of 10 times 10-fold
cross-validation of the first baseline method. B2-1 ∼ B2-10, the ROC curves of 10 times 10-fold cross-
validation of the second baseline method. B3-1 ∼ B3-10, the ROC curves of the third baseline method as the
symbol number is set to the even number from 8 to 18. B4-1 ∼B4-10, the ROC curves of 10 times 10-fold
cross-validation of the fourth baseline method.

Fig. 11. Average Precision, Recall and AUC of BP neural network models as training times and learning
rate are varied. (a) Average Precision of 10 times 10-fold cross-validation on the dataset as training times
and learning rate are varied. (b) Average Recall of 10 times 10-fold cross-validation on the dataset as training
times and learning rate are varied. (c) Average AUC of 10 times 10-fold cross-validation on the dataset as
training times and learning rate are varied.

5.2.3. Parameter Selection. In the gait-pattern classification method, there are three
key parameters: the number of BP neural network models (as the basic classification
models), the learning rate, and the training time, which directly affect the performance
of gait-pattern classification. To achieve high recognition accuracy, we first selected the
appropriate learning rate and training time for all BP neural network models to obtain
the optimized basic classification models. Figure 11 shows the average precision, recall,
and AUC of BP neural network models, as the training time and learning rate vary.
According to Figure 11(a), we can see that when the training time is larger than 350
and the learning rate is larger than 0.05, the precision tends to be steady at about 0.83.
According to Figure 11(b), we observe that the recall tends to be steady at about 0.825
when the training time is larger than 300 and the learning rate is larger than 0.05.
Based on Figure 11(c), we can see that the AUC value tends to be steady at about 0.86
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Fig. 12. Average Precision, Recall and AUC of gait-
pattern classification method as the number of BP
neural network varies.

Fig. 13. Processing time on different data scales, in
which number of BP neural network and training
time are fixed to 10 and 600,respectively

when the training time is larger than 250 and the learning rate is larger than 0.04.
In this article, we suggest that setting training times = 600 and learning rate = 0.06
for each BP neural network is a fair trade-off for the proposed method on the used
dataset. Afterwards, we selected an appropriate number of BP neural network models
to construct the final hybrid classifier. According to Figure 12, we observe that the best
performance is achieved when the number of BP neural network models is set to 10.

5.2.4. Computation Complexity Analysis. Figure 13 demonstrates how the processing time
changes with respect to the data scale, in which the number of the BP neural network
models and the training time was set to 10 and 600, respectively. We observe that
both the time consumed to extract features (AttrComp Time) and the time consumed
to classify gait patterns (Decision Time) increase approximately linearly as the data
scale increases. In other words, the total time complexity increases linearly as the data
scale increases, indicating that the computation time of our method will not increase
dramatically as the data scale grows.

6. CONCLUSION AND FUTURE WORK

In this article, we investigated the problem of extracting fine-grained gait features
from plantar pressure data and identifying gait patterns in PD patients. Our work
was motivated by the fact that fine-grained gait features are much more efficient in
revealing movement function and discovering PD gait patterns. To address the problem,
we first discriminated four gait phases (i.e., swing phase, initial double-standing phase,
single-standing phase, end double-standing phase) from plantar pressure data during
walking by using a sliding window–based model. Based on the gait phases of two feet,
we further extracted and selected a set of features to quantitatively describe the gait
from three aspects of movement functions: stability, symmetry and harmony. Third, we
classified gait patterns corresponding to PD patients and healthy individuals based on a
hybrid classification model, which contained several BP neural network classification
models. Finally, we evaluated the proposed framework on an open dataset, which
includes the real plantar pressure data of 93 idiopathic PD patients and 72 healthy
individuals. The results demonstrate that our framework outperforms four baseline
methods.

In the future, we plan to extend our work in two directions. First, we will attempt to
use other types of data, such as acceleration and angular velocity, to further improve
gait-recognition performance. Second, we would like to apply our approach to address
other motor nervous system diseases, for example, stroke and Huntington’s chorea.
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