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Abstract—The advances of wireless networking and sensor technology open up an interesting opportunity to infer human activities in

a smart home environment. Existing work in this paradigm focuses mainly on recognizing activities of single user. In this work, we

focus on the fundamental problem of recognizing activities of multiple users using a wireless body sensor network, and propose a

scalable pattern mining approach to recognize both single- and multiuser activities in a unified framework. We exploit Emerging

Pattern—a discriminative knowledge pattern which describes significant changes among activity classes of data—for building activity

models and design a scalable, noise-resistant, Emerging Pattern-based Multiuser Activity Recognizer (epMAR) to recognize both

single- and multiuser activities. We develop a multimodal, wireless body sensor network for collecting real-world traces in a smart

home environment, and conduct comprehensive empirical studies to evaluate our system. Results show that epMAR outperforms

existing schemes in terms of accuracy, scalability, and robustness.

Index Terms—Wireless body sensor networks, sensor-based activity recognition, pattern mining.

Ç

1 INTRODUCTION

WIRELESS sensor networks have received significant
attention in supporting a variety of applications such

as surveillance [1], habitat monitoring [2], and infrastruc-
ture protection [3]. One of the emerging applications in
recent years is understanding and recognizing human
activities using body sensor networks [4], [5], [6]. Different
from vision-based activity recognition, in this paradigm, a
number of on-body wireless sensors are typically deployed
to collect the observations of a human user and the living
environment. These sensors are able to capture many
useful, fine-grained observations such as human motion,
human-to-object interaction, and human-to-human interac-
tion which are not possible, if not difficult, to capture by
video camera. These observations in the form of a
continuous sensor data stream are used to train an activity
model; the trained model can then be used to classify

activities with new observations. Such system has many
potential real-life applications in medical care, assistive
living, entertainment, and logistics support, for example,
monitoring activities for the elderly and cognitively
impaired persons and providing proactive assistance [7],
personal healthcare [8], and predicting transportation
modes [9].

Most of the existing work on activity recognition focus
on single-user activities performed by one particular user.
However, there are typically multiple inhabitants in a living
space, and they often perform specific tasks together.
Activities that involve multiple users collaboratively or
concurrently (a.k.a. multiuser activities) are common in our
daily lives, especially in a home setting. A system capable of
recognizing multiuser activities has a practical implication
for real-world applications. Recognizing multiuser activities
using on-body sensors is more challenging than recognizing
single-user activities. First, user interactions often occur
when two or more users perform an activity together. Such
interactions can be, for example, voice conversation,
handling an object together, and passing objects from one
user to another. Capturing these interactions requires
elaborate sensors and network design. Importantly, how
to model interaction processes and perform inferences are
critical to system performance. Second, processing sensor
data stream generated from sensors is costly since such data
stream usually contains a large volume of continuous
sensor readings. Processing multiple data streams corre-
sponding to multiple users implies a scalability issue. How
to scale the activity model to the number of users is
important to a practical sensor-based recognition system.
The scalability problem of multiuser activity recognition
remains unsolved in the literature [10]. Third, sensor data
are inherently noisy which may affect system robustness
seriously. The RF interference and sensor malfunction often
cause errors in sensor readings. Moreover, in a multiuser
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scenario, the data stream collected from one user may
contain background noise. For example, audio information
generated from other users or the environment may affect
system performance seriously. The ability of noise resis-
tance plays a more important role in multiuser activity
recognition than single-user activity recognition.

Encouraged by the recent success of sensor-based activity
recognition for single user, in this paper, we propose to use a
body sensor network for multiuser activity recognition. To
address the above mentioned challenges, we investigate this
problem from two aspects—sensor platform and recognition
model. We first design a wireless body sensor network to
capture the observations of each user and the interactions
among multiple users. Based on this platform, we propose a
novel pattern-based activity model to capture unique,
discriminative features from diverse activities. In addition
to the single-user model, the multiuser model is able to
capture user interactions. Both activity models leverage on
Emerging Pattern (EP) [11]—a discriminative knowledge
pattern that describes significant differences between two
classes of data. We mine a set of EPs for each activity class
from the trace collected from the body sensor network we
build, and use the sets of EPs as powerful discriminators to
differentiate activity classes. Since EPs capture significant
differences, random noise can be easily eliminated. To
address the scalability issue, we propose a proximity-based
filtering technique to minimize the processing cost of each
data stream. We conduct comprehensive experiments using
the real-world activity trace we collected to evaluate this
design. Results show that our design achieves an overall
accuracy of 89.72 percent, outperforming existing schemes.

In summary, the main contributions of this work are
three folds:

. To the best of our knowledge, this work is the first
formal study of using a body sensor network for
multiuser activity recognition in a smart home
environment.

. We propose a novel pattern-based activity model
and design epMAR—a scalable, noise-resistant,
pattern-based algorithm—to recognize both single-
and multiuser activities.

. We develop a prototype system, and conduct
comprehensive experiments and comparison studies
using the real-world activity trace we collected to
evaluate the performance of our system.

The rest of the paper is organized as follows: Section 2
discusses the related work. In Section 3, we describe our
body sensor network design. Section 4 gives the back-
ground on Emerging Pattern, and then describes the
mining of Emerging Patterns. We present our activity
models and the epMAR recognizer in Section 5. Section 6
reports our prototype system and empirical studies, and
finally, Section 7 concludes the paper.

2 RELATED WORK

In the literature review, we first briefly review previous
work in single-user activity recognition. We then focus our
discussion on the recent advance of multiuser activity
recognition.

2.1 Single-User Activity Recognition

Much early work in human activity recognition has been
done in computer vision to recognize single-user activities.
They leverage on video cameras as passive sensors, and
explore various spatial-temporal analysis to recognize
people’s actions from video sequences.

The advances of wireless networks and small form factor
sensors motivate much research work in sensor-based
activity recognition over the past few years. This approach
is fundamentally different than vision-based systems in
terms of the way to capture observations. As compared to
video camera, sensor devices are portable, unobtrusive, and
easy to deploy. In addition, sensors capture many useful
observations about human and environment which are not
possible to be done in vision-based systems. Typical sensors
range from on-body sensors (e.g., accelerometer, RFID) to
ambient sensors (e.g., switch sensors, infrared motion
sensor). Sensor readings are collected in the form of a
continuous sensor data stream, and interpreted by an
appropriate activity model for classification. Models to
classify sensor data are typically probabilistic-based, and
they can be categorized into static classifier and temporal
classifier. Typical static classifiers include naı̈ve Bayes [5],
decision tree [6], and k-nearest neighbor [12]. These
classifiers are relatively fast to train, and also less compu-
tationally expensive to perform classification. However,
they do not capture any temporal transition information of
the modeled activities. In temporal classification, state-space
models are used to model and infer hidden states (e.g.,
activity labels) given observations. We name a few examples
here: Dynamic Belief Network (DBN) [4], Hidden Markov
Model (HMM) [13], and Conditional Random Field (CRF)
[14]. These approaches incorporate information about the
transitions between activities via the transition matrix of the
system. Other approaches include probabilistic context-free
grammars proposed by Lymberopoulos et al. [15] to infer
activities in sensor networks. In their framework, activities
are described in high-level scripts that are directly mapped
to hierarchical probabilistic grammars which are obtained
through training. However, this approach has drawbacks in
handling uncertainty and noise in sensor data streams.
Hamid et al. [16] proposed a time series classifier in which
an activity is modeled as a sequence of discrete events.
Activities are recognized through discovering and matching
the subsequences with similar behavior appeared frequently
in time series data. Different from the time series classifier
concerning the mining of regularities, in our approach we
mine the abnormal growth among classes.

2.2 Multiuser Activity Recognition

Some work has been done in modeling interacting
processes and recognizing multiuser activities in computer
vision. Oliver et al. [17] proposed and compared HMMs
and Coupled HMMs (CHMMs) for modeling interactions
between people and classifying the type of interaction
based on observations collected from video camera. CHMM
is shown to work more efficiently than HMM. Gong and
Xiang [18] developed a dynamically multilinked HMMs
model to interpret group activities based on video camera.
Nguyen et al. [19] employed hierarchical HMM for
modeling the behavior of each person and the joint
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probabilistic data association filters for data association.
Park and Trivedi [20] presented a synergistic track- and
body-level analysis framework for multiperson interaction
and activity analysis in the context of video surveillance. An
integrated visual interface for gestures and behavior was
designed in [21] as a platform for investigating visually
mediated interaction with video camera. To use other
sensor modalities, Wyatt et al. [22] presented a privacy-
sensitive DBN-based unsupervised approach to separating
speakers and their turns in a multiperson conversation.
They addressed the problem of recognizing sequences of
human interaction patterns in meetings with a two-layer
HMM using both audio and video data. These temporal
models have shown good accuracy performance prior to
proper training with a large data set. However, they are
computationally expensive, and hence their scalability
remains a serious problem. In addition, although HMM
has been shown to suppress white noise in speech
recognition applications [23], the ability of handling
different types of sensor noise still remain questionable.

To the best of our knowledge, there is no formal study on
modeling and recognizing multiuser activities using body
sensor networks. Our approach is fundamentally different
from the above in its use of discriminative pattern mining.
Discriminative patterns mining has been studied in the data
mining literature, and applied in many domains. For
example, Khan et al. [24] proposed discriminative frequent
pattern mining to investigate interactive bugs in sensor
networks. In this work, we propose a pattern-based
approach to model multiuser activities in wireless body
sensor networks. In our earlier work [25], we have shown
the effectiveness of a pattern-based approach to single-user
activity recognition. This paper exploits a similar approach
to a more challenging problem—recognizing multiuser
activities. In our earlier study [26], we used machine
learning algorithms to recognize multiuser activities where
the scalability of the solution remains a big issue. In this
work, we propose a pattern mining approach and a user
proximity-based technique to improve the computation
scalability significantly. The earlier version of this work
appeared in [27].

3 BODY SENSOR NETWORK DESIGN

We design a wireless body sensor network, as shown in
Fig. 1a. It consists of five sensor nodes—two IMOTE2
motes, two RFID reader motes, and an acoustic sensor
node. An IMOTE2 mote is located on each wrist of a subject
to capture hand movement, environmental temperature,
humidity, and light; it consists of an IPR2400 processor/
radio board and an ITS400 sensor board with a tri-axis
accelerometer, as shown in Fig. 1c. An RFID reader mote is
located on each hand to capture object use; it consists of a
MICA2Dot mote and a coin-size short-range RFID reader,
as shown in Fig. 1b. An RFID reader mote is able to detect
the presence of a tagged object within a few centimeters.
We use an audio recorder as an acoustic sensor to capture
sound, as shown in Fig. 1d. In addition, detecting user’s
location at room-level granularity is done in a simple way
that an UHF RFID reader is located in each room to sense
the proximity of a subject wearing an UHF tag. Figs. 1f, 1g,

and 1e show the sink nodes and servers where all the
sensor data with timestamps are logged.

The sensor data stream captured by our body sensor
network has 12 dimensions—3-axis acceleration data for
both hands, object use for both hands, temperature,
humidity, light, and user location. In the following sections,
we describe how to discover useful patterns from the data
stream for building our activity models, and how to use
these models to recognize activities.

4 EMERGING PATTERN FOR ACTIVITY

CLASSIFICATION

Emerging Pattern is one of the discriminative patterns, and
it describes significant differences between two classes of
data. In this paper, we use EPs to build a novel activity model
for activity classification. In this section, we first provide the
background of EPs, and then describe how to discover EPs
from the features extracted from raw sensor data.

4.1 Emerging Pattern

Suppose that a data set D consists of many instances. An
instance contains a set of items (i.e., an item set), where an
item is an attribute-value pair. The support of an item set X,
suppDðXÞ, is countDðXÞ=jDj, where countDðXÞ is the number
of instances in D containing X.

Definition 1 (Growth Rate). Given two different classes of data
sets D1 and D2, the growth rate of an item set X from D1 to
D2 is defined as GrowthRateðXÞ ¼

0; if supp1ðXÞ ¼ 0 and supp2ðXÞ ¼ 0;
1; if supp1ðXÞ ¼ 0 and supp2ðXÞ > 0;

supp2ðXÞ
supp1ðXÞ ; otherwise:

8<
:

Growth rate is used to represent frequency changes
significantly from one data set (D1) to another (D2). EPs are
those item sets with large growth rates from D1 to D2.

Definition 2 (Emerging Pattern). Given a growth rate thresh-
old � > 1, an item setX is said to be a �-EmergingPattern (or
simply EP) from a background data setD1 to a target data setD2

if GrowthRateðXÞ � �.

An EP with high support in its target class and low
support in the contrasting class can be seen as a strong
signal indicating the class of a test instance containing it.
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RFID reader motes, and one audio recorder, (b) RFID reader mote,
(c) IMOTE2 mote, (d) audio recorder, (e) servers, (f) MICA2Dot sink
node, and (g) IMOTE2 sink node.
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Hence, it can be used as a powerful discriminator to
differentiate the class membership of instances that contain
the EP.

4.2 Feature Extraction

Before discovering EPs from sensor data, we first need to
extract features which are potentially useful for activity
classification. The raw sensor data will be first converted to
a sequence of observation vectors by concatenating all of the
raw data in a fixed time interval which is set to one second
in our experiments, and then we extract features for each
sensor modality which is described as follows:

For acceleration data, we use five common features—DC
mean, variance, energy, frequency-domain entropy, and
correlation. The DC mean is the mean acceleration value in
a time interval. Variance is used to characterize the stability
of a signal. Energy which captures data periodicity can be
used to discriminate sedentary activities from moderate
and vigorous ones; and it is computed as the sum of the
squared discrete FFT component magnitudes of a signal.
Frequency-domain entropy helps to discriminate activities
with similar energy values, and it is computed as the
normalized information entropy of the discrete FFT
component magnitudes of a signal. Correlation between
axes is especially useful for discriminating between activ-
ities that involve translation in just one dimension. It is
computed for every two axes of each accelerometer and all
pairwise axes combinations of two different accelerometers.

For audio data, we use both time-domain and fre-
quency-domain features. The time-domain features mea-
sure the temporal variation of an audio signal, and consist
of three features. The first one is the standard deviation of
a reading in a time interval, normalized by the maximum
reading in the interval. The second one is the dynamic
range defined as ðmax�minÞ=max, where min and max
represent the minimum and maximum readings in the
interval. The third one is Zero-Crossing Rate (ZCR) which
measures the frequency content of a signal, and it is
defined as the number of time-domain zero crossings in a
time interval. In the frequency domain, we compute two
features—centroid (the midpoint of the spectral power
distribution) and bandwidth (the width of the range of
frequencies which a signal occupies).

For RFID reading or location information, we use object
name or location name directly as features. For each RFID
wristband reader, we choose the first object in a one-second
interval since a user is unlikely to touch two or more objects in
such a short interval. If no RFID reading is observed or in the
presence of a corrupted tag ID, the value will be set to NULL.

Based on the above extraction process, we transform a 12-
dimensional observation vector into a 47-dimensional feature
vector. A feature vector consists of many feature items, where a
feature item refers to a feature name-value pair in which a
feature can be numeric or nominal. We denote a numeric
feature as numfeaturei. Suppose its range is ½x; y� and an
interval ½a; b� (or in other forms, ða; b�, ½a; bÞ, or ða; bÞ) is
contained in ½x; y�. We call numfeaturei@½a; b� a numeric feature
item, meaning that the value of numfeaturei is limited
inclusively between a and b. We denote a nominal attribute
as nomfeaturej. Suppose its range is fv1; v2; . . . ; vng, we call
nomfeaturej@vk a nominal feature item, meaning the value of
nomfeaturej is vk.

Numeric feature values are continuous, hence they need to
be discretized. We follow the entropy-based discretization
algorithm [28]. This algorithm partitions a range of contin-
uous values into a number of disjoint intervals by using class
information entropy. The class information entropy of
candidate partitions is used to select binary boundaries,
and the minimal entropy criteria are then used to find
multilevel cuts for each attribute. The discretization algo-
rithm partitions 44 numeric feature values into a total of 484
disjoint intervals. We then directly combine the feature name
and its interval into a numeric feature item. For the nominal
feature, the feature name and its value are combined as a
nominal feature item. For the left object and right object

features, we merge them into one feature by computing
left object [ right object without losing any object due to
user’s handedness. In our current sensor setting, we have a
total of 574 feature items. Finally, we obtain a sequence of
feature vectors, and they will be used as inputs for our mining
process described in the next section.

4.3 Mining Emerging Patterns from Feature Vectors

To discover EPs from feature vectors for each activity class,
we first use 10-fold cross-validation [29] to generate training
data set O. Each training data set O consists of a number of
instances in which each observation o 2 O is annotated with
an activity label, and we separate single-user instances from
multiuser instances. We then mine the EPs in O for each
activity class Ai 2 A, where A ¼ fA1; A2; . . . ; Amg. More
specifically, for User 1 and each activity Ai performed, we
mine a set of EPs that occur frequently in O1

Ai
and rarely in

O1 �O1
Ai

, where O1 is the entire training data set for User 1,
and O1

Ai
is the training instances for Ai. We denote EP 1

Ai
as

the EPs of Ai for User 1.
We mine EPs of single-user activities and multiuser

activities separately by an efficient algorithm [30]. The key
idea of this algorithm is to mine a concise representation of
equivalence classes of frequent item sets in a data set. An
equivalence class is a set of item sets that always occur
together in some transactions of the data set. The item sets
within an equivalence class all share the same level of
statistical significance regardless of the variety of test
statistics. As an equivalence class can be uniquely deter-
mined and concisely represented by a closed pattern and a
set of generators, the algorithm discovers closed patterns
and generators using a simultaneous depth-first search
scheme. After computation, we get m sets of EPs, one set
per activity for each user. We refer EP1 as the entire set of
EPs for User 1, where EP1 ¼ fEP 1

A1
; EP 1

A2
; . . . ; EP 1

Am
g.

Table 1 presents an example of the EPs of the brushing teeth
activity for both User 1 and 2. For readability, we translate
each feature number in an EP into a feature name-value pair
so that the meaning of each item is obvious. Columns 3 and 4
show the corresponding values of support and growth rate
for each EP. To illustrate, the EP for User 1 contains
acceleration data, objects such as toothpaste and toothbrush,
location (i.e., bathroom) and audio data, and it has a support
of 90 percent and a growth rate of infinity. In fact, one of the
advantages of EPs is that the patterns discovered is easy to
understand. These sets of EPs will be used to build our
activity models described in the next section.
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5 EP-BASED ACTIVITY MODEL AND RECOGNITION

ALGORITHM

Based on the EPs we obtained above, we are now ready to
build activity models and recognition algorithms. In this
section, we first describe the problem statement, then
present an overview of epMAR, followed by describing
activity models and recognition algorithms in details.

5.1 Problem Statement

We formulate the problem of multiuser activity recognition
as follows: Suppose we have n users preforming their
activities, and such activity can be a single-user activity
performing by each individual independently or a multiu-
ser activity performing by several users collaboratively or
concurrently. For each user, we collect an activity trace
which is a sensor data stream consisting of a continuous
sequence of sensor observations. Given a training data set
for each user, our objective is to design an appropriate
activity model and develop a recognition algorithm to
assign each new observation in each data set with the
correct activity label. Formally, the training data set O of
an user consists of T observations, O ¼ fo1; o2; . . . ; oTg, and
each observation is associated with an activity label Ai,
where Ai 2 A and A ¼ fA1; A2; . . . ; Amg, i.e., A is the entire
set of activity classes and there are m activities in total.

5.2 Overview of epMAR

Fig. 2 gives an overview of epMAR. The inputs are multiple
sensor data streams (i.e., multiple sequences of observations)

where each data stream corresponds to a user. A sensor data
stream will be first preprocessed into feature vectors. Our
system operates in two phases—model training and activity
recognition. In the training phase, a training data set for each
of the users will be used to mine sets of EPs (described in
Section 4.3) and train the activity models. The activity models
consist of both a single-user model and a multiuser model.
While the single-user model is used to recognize single-user
activities, the multiuser model is capable of recognizing
multiuser activities since it captures user interactions. Both
models use EPs as the main discriminator for activity
classification. In the recognition phase, given a sequence of
feature vectors (i.e., St, t ¼ 0 � T ) for each user, we first obtain
a test instance (i.e., St�tþLAi ) for a possible activity Ai by
segmenting the sequence using a sliding window with a
length of LAi

(LAi
is the average duration of Ai and can be

obtained from the training data), and then we apply our
recognition algorithm to classify and label this sequence
segment. The above process will be performed recursively.
Since each of these sequence segments corresponds to an
activity label, for each pair of consecutive sequence segments,
we design an algorithm to detect and adjust the boundary.
This algorithm serves as a feedback loop in our system aiming
to classify sequence segments accurately and overcome the
drawback of a sliding window-based segmentation method.
When recognizing multiuser activities, we use a proximity-
based filtering technique to reduce the model computation
for user interactions to achieve better scalability.
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TABLE 1
A Partial Set of the EPs of Brushing Teeth for both Users

Fig. 2. Overview of epMAR.
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5.3 Activity Models

An activity model measures the likelihood of each possible

activity label given a test instance. We design a probabilistic

score function to measure such likelihood.

5.3.1 Single-User Model

The score function for the single-user model is composed of

three probability elements: EP score, Sliding-Window Cover-

age score, and Activity-Correlation score. We describe the three

elements as follows:
EP Score. Given a test instance St�tþLAi and a possible

activity for Ai, this score element measures the likelihood

of St�tþLAi matching the EPs of Ai. The more fraction of

EPs we detect in St�tþLAi , the higher EP score we obtain

and the higher likelihood St�tþLAi matches Ai. The

measurement is done by detecting each EPAi
contained

in St�tþLAi . As each activity class is typically associated

with more than one set of EPs, we aggregate the strength

of each EP to sum up their contributions. We use a simple

aggregation method described in [31], and the aggregated

EP score of St�tþLAi for Ai is defined as follows:

aggr scoreðAi; St�tþLAi Þ ¼X
X�St�tþLAi ;X2EPAi

growth rateðXÞ
growth rateðXÞ þ 1

�suppAi
ðXÞ; ð1Þ

where suppAi
ðXÞ is the support of X in Ai, and

growth rateðXÞ is suppAi
ðXÞ divided by the X’s support

in non-Ai classes. Then, the EP scores of each activity are

“normalized” by dividing them using the median of the

scores of the training instances of that activity. Finally,

the EP score of St�tþLAi for Ai is defined as follows:

ep scoreðAi; St�tþLAi Þ ¼
aggr scoreðAi; St�tþLAi Þ

base scoreðAiÞ
; ð2Þ

where base scoreðAiÞ is the median of the values of

aggr scoreðAi; St�tþLAi Þ obtained from training data.
Sliding-window coverage score. We use a sliding

window with a length of LAi
to segment St and obtain a

test instance St�tþLAi for each possible activity Ai.

However, LAi
provides only an estimation, and the actual

length of St�tþLAi for each Ai deviates from LAi
in reality.

To provide a measurement of how well a sliding window

covers the entire St�tþLAi , we introduce Sliding-Window

Coverage score. It measures how many relevant or

irrelevant observations contained in a test instance for a

particular activity. The less irrelevant observations we

detect in a test instance, a higher Sliding-Window Coverage

score we obtain, and the better the sliding window covers

the test instance. We denote coverage scoreðAi; St�tþLAi Þ as

the Sliding-Window Coverage score of a test instance St�tþLAi
for an activity Ai. This score element is computed based

on relevanceðAi; fpÞ, where fp is a feature vector contained

in LAi
. Recall that a feature vector is a set of feature items,

relevanceðAi; fpÞ is computed based on relevanceðAi;

itemhÞ for each itemh 2 fp which is defined as follows

(note that an item itemh 2 X;X 2 EPAi
will be given more

weights since it is part of EPAi
)

relevanceðAi; itemhÞ ¼
P ðitemhjAiÞ þ

X
itemh2X;X2EPAi

suppAi
ðXÞ: ð3Þ

We then aggregate the value of relevanceðAi; itemhÞ for
all itemh 2 fp, and the normalized relevanceðAi; fpÞ can be
computed as follows:

relevanceðAi; fpÞ ¼
unnorm relevanceðAi; fpÞ

base relevanceðAiÞ
: ð4Þ

Finally, the coverage score of St�tþLAi for Ai is computed
by averaging all the relevanceðAi; fpÞ as follows:

coverage scoreðAi; St�tþLAi Þ

¼ 1

LAi

X
fp2LAi

relevanceðAi; fpÞ: ð5Þ

Activity-correlation score. This score element is de-
signed to measure correlations between activities. Such
correlation commonly exists in our daily lives. For example,
a user usually brushes his teeth, followed by washing his
face; cleans the dining table after eating a meal.

We use conditional probability to model correlations
between activities. We define the Activity-Correlation score of
Ai as P ðAijAjÞ, which is the conditional probability of Ai

given Aj. This score can be easily obtained from the training
data set. Note that the initial value of the conditional
probability of Ai is set to zero, i.e., P ðAijNULLÞ ¼ 0.

Finally, we construct our single-user activity model
using a linear combination of the above three elements,
and we have the following definition.

Definition 3. Given a time t and a labeled activity Aj which ends
at t, for each possible activity Ai, a test instance St�tþLAi is
obtained from t to tþ LAi

, the score function of Ai for a single-
user model is then defined as follows:

single user scoreðAi;Aj; St�tþLAi Þ
¼ c1�ep scoreðAi; St�tþLAi Þ
þ c2�coverage scoreðAi; St�tþLAi Þ
þ c3�P ðAijAjÞ;

where c1, c2, and c3 are the coefficients, representing the
importance of an individual score element.

These coefficients reveal different activity and behavior
patterns of a user. For example, a higher c1 implies that a
user always performs her/his activities in a consistent
manner. A higher c2 implies that an activity is performed in
a constant duration whereas a lower c2 implies that the
duration variance of the activity among all the instances can
be large. If c3 is high, it implies that there exists strong
correlation between activities performed by a user, i.e.,
activities performed always follow a certain order. These
coefficients are obtained from our experiment which will be
evaluated and discussed in Section 6.

5.3.2 Multiuser Model

The multiuser model is designed to recognize multiuser
activities, and it measures the likelihood of performing an
activity with other users. This is achieved by modeling user
interactions, in addition to modeling EPs, sliding-window
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coverage, and activity correlation in the single-user model.
To model user interactions, we examine the test instances
of other users who are possibly involving the interaction,
and measure the joint probability of their possible labels.
To illustrate, we take an example of a two-user scenario as
shown in Fig. 3. Two sequences corresponding to User 1
and User 2, respectively, are input into the recognizer
where each sequence is handled separately. The figure
illustrates the case that we are now detecting a test instance
St�tþLAi of User 1 for a possible multiuser activity Ai, given
the previous labels for both users (i.e., a labeled activity Aj

for User 1 and another labeled activity A0j for User 2). We
introduce an additional score element, inter score, to
model the interaction between these two users, which is
defined as follows:

inter scoreðAi;A
0
j; S

0
t�tþLAi

Þ

¼ max
A0i

½P ðAijA0iÞ�P ðA0ijAiÞ�confidenceðA0i; A0j; S0t�tþLAi Þ�;

ð6Þ

where S0t�tþLAi
is the sequence segment of User 2 during

the time period from t to tþ LAi
, A0i is the possible activity

for S0t�tþLAi
, and P ðAijA0iÞ�P ðA0ijAiÞ is the joint probability

of Ai and A0i occurs while they are conditioned on each

other. confidenceðA0i; A0j; S0t�tþLAi Þ measures the certainty of

label A0i, and it is defined as follows:

confidenceðA0i; A0j; S0t�tþLAi Þ

¼
single user scoreðA0i; A0j; S0t�tþLAi ÞP
k single user scoreðA0k; A0j; S0t�tþLAi Þ

:
ð7Þ

Finally, we construct our multiuser activity model by
combining the interaction score element with the single-
user model, which is formally defined as follows:

Definition 4. Given a time t, a labeled activityAj which ends at t

for User 1 and a labeled activityA0j which ends at t for User 2, for

each activity Ai of User 1, a test instance St�tþLAi is obtained

from t to tþ LAi
, St�tþL0

Ai
is obtained for User 2, the score

function of Ai for a multiuser model is then defined as follows:

multi user scoreðAi;Aj; A
0
j; St�tþLAi ; S

0
t�tþLAi

Þ

¼ single user scoreðAi;Aj; St�tþLAi Þ
þ c4�inter scoreðAi;A

0
j; S

0
t�tþLAi

Þ;
ð8Þ

where c4 is the coefficient representing the importance of
inter score.

Similar to other coefficients, a higher c4 implies there exist
more interactions between multiple users when they per-
form a multiuser activity. This coefficient is again obtained
from our experiment which will be described in Section 6.
Note that while Definition 4 defines the multiuser activity
model for a two-user case, it applies to n users as well.

When detecting a multiuser activity for a given user, our
multiuser model captures each possible interaction be-
tween this user and each of the other users. Given n users
in a sensor network space, it requires the computation of
OðnÞ for single user, and Oðn2Þ for all the n users. To
improve the scalability of our multiuser model, we propose
a proximity-based filtering technique which limits the
computation of user interactions based on user proximity.
With this technique, the computation of the multiuser
model is only necessary when users are in close physical
proximity with each other, i.e., room-level proximity in a
home environment. This is reasonable since multiuser
activities in a home environment are typically performed
at the room level. For example, if a user is currently located
at the kitchen room, a multiuser activity can only occur
between she/he and other users in this room. Hence, we
only need to compute the interaction scores of this user and
each of other users in this location, resulting in greatly
reducing the computation and improving the scalability of
our model. The proximity information (i.e., location in the
room granularity) can be easily extracted from the sensor
data stream. This technique is integrated in our recognition
algorithm and will be evaluated in our experiments.

5.4 Algorithm to Detect and Adjust Boundary

As described in Section 5.2, we obtain a test instance using a
sliding window, and such segmentation can be done
recursively. However, since a sliding window provides only
an approximation of the actual duration of the instance. Any
error in a segmentation may affect subsequent segmenta-
tions. To overcome this limitation, we propose an algorithm
to detect and adjust the boundary of the two label activities.
This algorithm is based on the following heuristics.
Intuitively, given an activity instance, its feature vectors,
obtained from preprocessing its observations, usually have a
higher relevance to this activity than all other activities.
Furthermore, the relevance of its feature vectors in the same
activity instance does not vary significantly as compared to
the relevance of two feature vectors belonging to two
different activities. Based on these heuristics, we design an
algorithm, as shown in Algorithm 1, to detect the boundary
and adjust the segmentation so that a sliding window can
be aligned to the starting point of each test instance.

Algorithm 1. The Algorithm to Detect and Adjust

Boundary-adjustBoundary

Input: feature vectors of a sliding-window length

LAj
þ LAi

: F ¼ fft�LAj ; . . . ; ftþLtþLAi
g,

where t is the existing boundary,
labeled activity Aj followed by Ai.

Output: the boundary between Aj and Ai.

1: foreach p from t� LAj
to tþ LAi

do

2: RW ½p� ¼ relevanceðAj; fpÞ � relevanceðAi; fpÞ;
3: end for
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4: foreach p from t� LAj
to tþ LAi

do

5: upperSum ¼ sum of all RWs from t� LAj
to p;

6: lowerSum ¼ sum of all RWs from p to tþ LAi
;

7: GAIN ½p� ¼ upperSum� lowerSum;

8: end for

9: boundary ¼ p such that GAIN ½p� is maximum;

10: return boundary;

5.5 The epMAR Algorithm

When recognizing activities for each user, given m possible

activities, we first obtain a test instance St�tþLAj for Aj using

LAj
; and we compute scoreðSt�tþLAj ; AjÞ for Aj. The one

with the maximum score is assigned to St�tþLAj with its

candidate label Aj. The same process is repeated to

compute another candidate label Ai. We then apply the

algorithm to detect and adjust the boundary of Aj and Ai.

Finally, we recompute the score for each activity label, and

the label with the maximum score yields the final label for

this instance. The above process then runs recursively from

this boundary over the entire trace. The entire process of

epMAR is described in Algorithm 2.

Algorithm 2. The epMAR Algorithm

Input: n users (user 1; user 2; . . . ; user n);

m activities fA1; A2; . . . ; Amg;
n observation sequences with a length of T

corresponding to each user:

O1 ¼ fo1
1; o

1
2; . . . ; o1

Tg,
O2 ¼ fo2

1; o
2
2; . . . ; o2

Tg; . . . ; On ¼ fon1 ; on2 ; . . . ; onTg.
Output: assign the activity label to each observation.

1: pre-process O1; O2; . . . ; On to obtain feature vectors
F 1; F 2; . . . ; Fn where F 1 ¼ ff1

1 ; f
1
2 ; . . . ; f1

Tg,
F 2 ¼ ff2

1 ; f
2
2 ; . . . ; f2

Tg; . . . ; Fn ¼ ffn1 ; fn2 ; . . . ; fnTg;
2: t1 ¼ t2 ¼ � � � ¼ tn ¼ 1;

3: while t1 	 T or t2 	 T or ... or tn 	 T
4: foreach pair of users u ¼ 1; 2 who are located in the

same room do

5: Au
previous ¼ null;Au

candidate ¼ null;

6: foreach activity Ai; i ¼ 1; 2; . . . ;m do

7: get instance S1
t�tþLAi

¼ [tþLAip¼t f1
p ;

8: get instance S2
t�tþLAi

¼ [tþLAip¼t f2
p ;

9: compute score with interðAi;A
u
previous; A

u other
previous;

Sut�tþLAi
; Su other

t�tþLAi
Þ;

10: end for

11: Au
current ¼ Ai with the highest score;

12: if tu ¼ 1 or Au
current ¼ Au

candidate

13: Assign label Acurrent to ot � otþLAcurrent ;
14: tu ¼ tu þ LAu

current
;

15: Au
previous ¼ Au

current;
16: Au

candidate ¼ null;
17: else if Au

candidate 6¼ Au
current

18: tu ¼ adjustBoundaryðFu
t�LAu

previous

; tþ LAu
current

;

Au
previous; A

u
currentÞ;

19: Au
candidate ¼ Au

current;

20: end if

21: end for

22: end while

The epMAR algorithm is flexible in a way that it works
for both single- and multiusers. In the case of single-user,
the recognizer takes a single-user observation sequence as
input and recognizes activities based on the single-user
model. In the case of multiple users, the recognizer takes
multiple observation sequences (corresponding to the users
in the same location) as input and detects activities based on
our multiuser model.

We now analyze the complexity of epMAR. Assuming
that computing a score for an activity requires time OðSÞ,
and adjusting the boundary between two activities needs
time OðBÞ, where both OðSÞ and OðBÞ are linear to the
length of a slice window. Given the total number of
activities m, number of users n, and assuming the average
loop for confirming an activity instance is k. For each pair of
users in the same room, it takes k �m �OðSÞ þ ðk� 1Þ �OðBÞ
time to recognize an activity. In the worst case, all users are
in the same room, we need to consider all the possible pairs
of the users, which is C2

n pairs. Assuming that the average
number of activity instances contained in each user’s
observation sequence is l. The total complexity of epMAR
can be computed as l � C2

n � ðk �m �OðsÞ þ ðk� 1Þ �OðBÞÞ.
Based on the measurement result in our experiments, the
value of k falls in the interval [2.5, 3.0]. Therefore, the time
complexity of epMAR is finally l � C2

n � ðm �OðSÞ þOðBÞÞ.

6 EXPERIMENTAL STUDIES

We now move to evaluate epMAR. Up to now, there are no
public standard data sets available for evaluating multiuser
activity recognition [31]. We build one by conducting real
world trace collection. In this section, we first describe the
experimental setup, then present our results.

6.1 Experimental Setup

We implement our body sensor network described in
Section 3. This sensor platform measures hand movement
(i.e., acceleration data), human-to-object interaction (i.e.,
objects touched and sound), human-to-human interaction
(i.e., voice), environmental information (i.e., temperature,
humidity, and light), and user location at room granularity.

To capture acceleration data, we use an IMOTE2 mote
which consists of an IPR2400 processor/radio board and an
ITS400 sensor board with a tri-axis accelerometer. The
sensor board also measures environmental temperature,
humidity, and light. To capture object use, we build a
customized RFID reader mote which incorporates a
MICA2Dot mote, a coin-size Skyetek M1-mini RFID reader,
and a Li-Polymer rechargeable battery. The RFID reader
mote is able to detect the presence of a tagged object within
the range from 6 to 8 cm, thus, human-to-object interaction
(i.e., objects touched by a user) can be captured. It is also
able to capture human-to-human interactions through
objects, i.e., handling an object together or passing an
object from one user to another. To capture vocal interac-
tions among users and environmental sound, we use an
audio recorder as an acoustic sensor with a sampling rate of
16 kHz since the built-in microphone on ITS400 fails to
support such high sampling rate due to the bandwidth
limitation of a wireless link. In addition, detecting user’s
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indoor location is done in a simple way that a UHF RFID
reader is located in each room to sense the proximity of a
user wearing a UHF tag. This simply method is able to keep
track of multiple users at room-level granularity. To
determine user identity, the IDs of each IMOTE2 and RFID
reader are logged and bounded to a specific user. However,
it is not possible to determine audio identity since audio
information may be generated from other users who stay in
the same room.

The sampling rate of the 3-axis accelerometer in each
IMOTE2 mote is set to 128 Hz, the sampling rate of each
RFID reader mote is set to 2 Hz, and the sampling rate of
audio recorder is set to 16 KHz. All the sensor data with
timestamps are logged.

6.2 Trace Collection

Collecting sensor data for multiple users is a difficult and
time-consuming task. Aiming to have a realistic data
collection, we first conduct a survey among 30 university
students. In this survey, each participant was asked to
report on what daily activities (both single- and multiuser
activities) she/he performed at her/his home, and how
each activity is performed (i.e., where each activity is
performed, number of persons involved, number of times
each activity is performed each day, duration of each
activity, steps performed and objects used in each activity,
etc.). They were asked to report not only their own
experiences, but also the experiences from their family
members (e.g., parents, siblings, etc.). From the survey
reports, we have a number of findings as follows: In a
home environment, although many daily activities can
be performed by multiple users, single-user activity is still
the majority. Second, there are typically less than four
people involved in a multiuser activity. Third, most of the
multiuser activities are performed in the same room.
Fourth, interactions among users occur in a number of
ways including voice conversation and objects passing.

To have a reasonable and realistic data collection, we
randomly select 21 activities (shown in Table 2) from the
activity list in our survey. The ratio of number of single-
user activities to number of multiuser activities is close to

the survey result. We limit the number of users to 2 for
reducing annotation efforts. Our data collection was done
in a smart home (i.e., a living lab environment). The smart
home consists of a living room, a kitchen, two bedrooms, a
study room, a bathroom, and a store room. Each room,
except the bathroom, is equipped with a video camera for
recording the ground truth. We tagged over 100 day-to-day
objects such as tablespoons, cups, and computer mouse
using HF RFID tags with three different sizes—coin, clip,
and card, as shown in Fig. 4a. Fig. 4b shows a screen shot of
tagged objects in the kitchen. For metal objects such as
kettle, we tagged on its plastic handle. For liquid objects
such as water, we tagged on the faucet with a special plastic
handle to sense the use.

The data collection was deployed naturalistically. We
have two male subjects and both are student volunteers
from a local university. Each day, each subject wore a set
of wearable sensors we developed and performed these
activities at his choice in an order which is close to his
daily practice. Each subject followed his own step to
perform each of these activities, resembling the situation in
his daily routine at his home. Fig. 4 shows some snapshots
of various activities being performed in the kitchen, the
bathroom, and the living room during our data collection.
A set of servers was set up in the living room to log the
trace. All the servers and sensors were synchronized
before data collection. For each user, a trace was logged
and annotated by an annotator who is also a student
volunteer from a local university. The ground truth was
also recorded by video cameras. Data collection was done
over a period of 10 days across two weeks, and we
collected a total number of 420 annotated instances for
both subjects as shown in Table 3. The ratio of number of
multiuser activity instances to number of single-user
activity instances is higher than the result in our survey
in order to have more multiuser activity instances. There
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Fig. 4. Snapshots showing tagged objects and various activities being
performed in our data collection. (a) RFID tags, (b) tagged objects,
(c) making pasta, (d) brushing teeth, (e) having meal, (f) watching TV,
and (g) making coffee.

TABLE 2
Activities Performed in Our Trace Collection

TABLE 3
Number of Instances Collected
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are two cases in multiuser activities—multiuser activity

with collaboration (i.e., two or more users working

together to complete an activity in a cooperative manner,

where each of them performs several steps of the activity)

and multiuser activity with conflict (i.e., two or more users

are involved in an activity in a conflicting manner, where

users compete against each other for the activity).

6.3 Methodology

We use 10-fold cross-validation [29] for our evaluation. We

first divide the entire trace into 10 data sets, then randomly

select nine of them for training and the remaining one for

testing. We evaluate the performance of our algorithm

using time-slice accuracy which is a typical metric used in

time series analysis. The time-slice accuracy represents the

percentage of correctly labeled time slices. The length of

time slice �t is set to 15 seconds as our experiment shows

different �t doest not affect the accuracy much. This time-

slice duration is short enough to provide precise measure-

ments for activity recognition applications. The metric of

the time-slice accuracy is defined as follows:

Accuracy ¼ 1

N

XN
n¼1

½predictedðnÞ ¼¼ ground truthðnÞ�; ð9Þ

where N ¼ T=�t.

6.4 Results

6.4.1 Accuracy Performance

In the first experiment, we evaluate the accuracy perfor-

mance of epMAR with respect to different users and

different activities. The results are summarized in Table 4,

and the detailed breakdown is shown in Fig. 5. The overall

accuracy of both users for both single- and multiuser

activities achieves 89.72 percent, demonstrating that the

epMAR recognizer is effective for recognizing activities in a

multiuser scenario. Table 4 also shows that the accuracy of

multiuser activity is higher than that of single-user activity

for both users. We analyze this phenomenon and suggest
the reason as follows:

In a multiuser activity, each user usually performs only
partial steps of this activity, resulting in the EPs of the
multiuser activity are subsets of the EPs of the single-user
activity. A test instance is likely to contain more EPs of a
multiuser activity than its corresponding single-user activ-
ity, hence, the score of the multiuser activity tends to be
higher. However, although the result is in favor of
multiuser activities, an error in labeling for one user will
not influence others as the test data are labeled separately.

6.4.2 Model Analysis

We conduct a number of experiments to analyze our system
model in details. First, we evaluate the effect of boundary
detection. Fig. 6 shows that epMAR with the boundary
detection algorithm achieves 18.2 percent higher than that
without the algorithm. This result demonstrates that the
boundary detection algorithm works well to resegment and
adjust the boundary of two labeled activities, and improves
accuracy significantly.

Next, we evaluate the contribution of each type of
sensors with respect to accuracy. We have mainly four
types of sensors—accelerometer, audio, RFID tagged object,
and location. In this experiment, each time we generate a
new data set by removing one type of sensor data from the
raw data set, and then recompute the features and reapply
our epMAR algorithm to obtain the accuracy using the
same methodology. This process is repeated for all the four
types of sensors. As shown in Fig. 7, tagged object plays the
most important role in our system, followed by location,
accelerometer, and audio. It should be noted that the
contribution of each type of sensors may vary from one
activity to another and from one scenario to another. In a
home setting, many day-to-day activities are associated
with unique sets of objects, and hence extracting the EPs
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from those object sets plays the most important role in
activity classification. Location also plays an important role
since home activities are typically bound to specific
locations at the room granularity, e.g., making a meal
occurs merely in the kitchen. In addition, accelerometer and
audio play the least important roles since many home
activities share similar motion and audio patterns.

6.4.3 Parameter Analysis

There are two mining parameters in the experiment. The
first one is min support (i.e., the minimum support thresh-
old), and it is defined as an integer. The support sum of a
frequent item set in all classes must be no less than min
support. The second parameter is �, and it is also defined as
an integer. The support sum of an item set in all the
minority classes must be no larger than �. The EPs of an
activity Ai are item sets that the support sum in all activities
is no less than min support, and the support sum in all non-
Ai activities are no larger than �. Fig. 8 shows the effect of
different parameter pairs with respect to the overall
accuracy when they are set to the typical values. All the
parameter pair achieve similar results with a maximum
variation of 1.89 percent. We observe a smooth accuracy
plane from the figure. It implies that the epMAR algorithm
is not sensitive to the tuning of mining parameters.

We then evaluate the effect of coefficients (i.e., c1, c2, c3,
and c4,) in our activity model. As we discussed in
Section 5.3, each coefficient represents the weight of a score
element (i.e., EP, coverage, activity-correlation, and user
interaction). These coefficients reveal the habit of a person
and the inherent patterns when performing activities. The
optimal set of coefficients may vary from person to person
and time to time. Investigating the effect of these coefficients
with respect to different persons over different time has an
important implication to personalized activity recognition

and can be complex, hence we leave for our future work. In
this experiment, we focus on studying their effects on a
generalized activity model which intends to be applied to
all the users. The experiment starts from setting a baseline
value of 1 for all the four coefficients, and then varies the
value of each of the coefficients, respectively. Table 5 shows
the overall accuracies using different sets of coefficients.
The coefficient set (1.0, 1.5, 1.0, 1.0) (i.e., the weight of the
Sliding-window Coverage score is higher than the rest)
achieves the best overall performance, and it reveals that
both subjects seem to always perform their activities
constantly (i.e., a constant duration for the same activity).
This phenomenon matches the ground truth quite well.

6.4.4 Accuracy Comparison

As mentioned in the related work, CHMM is a typical
technique to recognize multiuser activities in computer
vision. CHMM extends HMM and it is designed for
modeling interacting processes [32]. To capture the interac-
tion between users over time, the coupling connects time
slices with a conditional probability of transition, resulting
in a structure with the crosswork of links as shown in Fig. 9,
where the circle nodes represent the hidden states (i.e.,
activity labels) and the square nodes represent the
observations (i.e., feature vectors).

We compare epMAR with CHMM. Both epMAR and
CHMM were evaluated on the same training and testing
data sets generated using 10-fold cross-validation, contain-
ing both single- and multiuser activities for both users.
When CHMM is used to recognize single-user activities, the
inner-chain state transition probabilities are set to zero,
turning a CHMM into two basic HMMs. Fig. 10 shows the
comparison result for all the 10 data sets. The overall
accuracy of epMAR is 89.72 percent, outperforming CHMM.
This result shows that an EP-based model is more effective
than a temporal probabilistic model. It demonstrates that in
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Fig. 10. Accuracy comparison.
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the circumstance of relatively small training dataset, mining
the differences between classes is more efficient for
constructing a discriminative model for multiuser activity
recognition. CHMM is a directed graph-based probabilistic
model, a prediction error made in one state may cause a
series of errors in the state sequence. During this experi-
ment, we notice that epMAR falls back to the correct state
more quickly than CHMM when a misprediction occurs,
demonstrating epMAR is more fault tolerant. We illustrate a
misdetection case in the snapshot we take as shown in
Fig. 11. The x-axis indicates time steps and the y-axis
indicates all the 21 activities in our data set collected (their
IDs are idential to the IDs in Table 2). In this snapshot, while
the ground truth is changed from activities 6 to 12 at time
point 11,345, epMAR turns into the correct state after
nine time points while CHMM does so after 125 time points.

6.4.5 Training Data Comparison

We evaluate the influence of the amount of training data on
accuracy and compare both epMAR and CHMM. We set up
the experiments as follows: For the 10 sub data sets
obtained, we randomly select one sub data set for testing,
and select the remaining sub data sets for training. Initially,
we select one training sub data set, we then increase the
training data set by each time adding one more sub data set
until all the remaining sub data sets are used. The result in
Fig. 12 shows that more training data sets achieve better
accuracy and the most training data sets achieves the
highest accuracy. The figure also shows that epMAR

requires less training data to achieve the same accuracy as
compared to CHMM. This result indicates that epMAR has
better applicability than CHMM.

6.4.6 Scalability Comparison

We evaluate the scalability of epMAR and compare it
with CHMM. The original data set contains only two data
streams corresponding to the two users. To generate the
data for more users, we randomly select the instances
from these two data sets and generate the synthetic
testing data sets for 3, 5, 7, 10, and 15 users, respectively.
The number of instances for each user in each of these
data sets is close. We then run epMAR and CHMM, and
the runtime results are shown in Fig. 13. Note that while
the x-axis is in a linear scale, the y-axis is in a logarithmic
scale. For CHMM, we obtained the results of 2 and 3
users only. As expected, the runtime of CHMM is much
higher than that of epMAR. To analyze, in a 2-chain
CHMM, the time complexity is OðTQ4Þ, where T is time
and Q is the possible values of a state. For a n-chain
CHMM, the time complexity is then O½TQ2n�. As analyzed
in Section 5.5, the time complexity of epMAR for n users
is l � C2

n � ðm �OðSÞ þOðBÞÞ. Fig. 13 also shows that the
proximity-based filtering technique greatly reduces the
runtime of epMAR, making epMAR more practical for
real deployment. Note that this technique can work with
any other multiuser activity recognition systems to
improve scalability.

6.4.7 Noise Resistance Comparison

We evaluate the noise resistance ability of epMAR and
compare it with CHMM. Noise in sensor-based activity
recognition can be errors in sensor readings caused by RF
interference, corrupted tag IDs due to sensor malfunction,
the tag ID of a nearby object since objects may be placed
close to each other, and background readings such as audio
information generated from other users or the environ-
ment. To generate noise, we randomly pick sensor readings
such as tag IDs and location data, and insert these readings
into the existing data set (note that the existing data set
already contains some noise). We then test epMAR and
CHMM on data sets with a noise ratio from 0 to 20 percent.
The result is shown in Fig. 14. While the accuracies of both
models decrease when the noise ratio increased, the
gradient of epMAR is much better than that of CHMM.
The result probably can be explained as follows: Typically,
noise in sensor-based activity recognition has a random
distribution. Our EP-based activity model mines the
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Fig. 11. A case of misdetection.

Fig. 12. Training data comparison.

Fig. 13. Scalability comparison.
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differences of classes, hence random noise can be easily
eliminated. epMAR is more resistant to noise than CHMM,
and this feature has a particular merit to sensor-based
multiuser activity recognition.

7 CONCLUSIONS AND FUTURE WORK

This paper presents the first formal study of using a body
sensor network for multiuser activity recognition in a smart
home environment. We develop a wireless body sensor
network and propose a novel pattern-based approach to
recognize both single- and multiuser activities. The results
demonstrate that epMAR outperforms CHMM in terms of
accuracy, applicability, scalability, and robustness.

As an initial exploration, we demonstrate the effective
use of a body sensor network in recognizing multiuser
activities. While our result is promising, the design of our
sensor network is still premature and far from real-life
deployment. The results we obtained are not prefect due to
the limitations in wireless and sensing technologies. For
future work, we have several directions. First, the types of
sensor observations captured are limited. Leveraging on the
fast-growing wireless and sensing technologies, we will
seek to further develop our sensor nodes to integrate more
sensor modalities. Second, data collection in this work was
done by two users in a “mock” scenario. A more natural
collection done by real users and more than two users are
desired. Finally, real-life activities are often more complex
than the cases studied in this paper. For example, time-
correlated multiuser activities (i.e., one user performs an
activity at one point of time and another user continues the
activity at another point of time), interleaved activities (i.e.,
switching between the steps of two or more activities), and
concurrent activities (i.e., performing two or more activities
simultaneously). Investigating such complex cases can be
very challenging while we consider both single- and
multiuser activities at the same time, and hence in-depth
studies are required.
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