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Abstract—Real-time activity recognition using body sensor
networks is an important and challenging task and it has
many potential applications. In this paper, we propose a real-
time, hierarchical model to recognize both simple gestures and
complex activities using a wireless body sensor network. In
this model, we first use a fast, lightweight template matching
algorithm to detect gestures at the sensor node level, and
then use a discriminative pattern based real-time algorithm
to recognize high-level activities at the portable device level.
We evaluate our algorithms over a real-world dataset. The
results show that the proposed system not only achieves good
performance (an average precision of 94.9%, an average recall
of 82.5%, and an average real-time delay of 5.7 seconds), but
also significantly reduces the network communication cost by
60.2%.

Keywords-Real-time activity recognition; gestures and high-
level activities; wireless body sensor networks.

I. INTRODUCTION

Sensor-based human activity recognition has recently

attracted much attention in pervasive computing. In this

paradigm, various sensors are typically attached to a human

body or embedded in the environment. Sensor observations

are collected in the form of continuous sensor data stream,

and the data stream is then interpreted by a recognition

system. The computation usually involves two phases: 1)

sensor observations are used to train an appropriate activity

model; 2) the trained model will then be used to predict

activities for new observations.

Sensor-based activity recognition has many potential ap-

plications, including health care [1], [2], assisted living [3],

sports coaching [4], and interactive games [5], [6]. In the

past few years, many efforts have been devoted to this task in

various domains by researchers and industrial participants.

However, we have not seen many real applications being

deployed in our daily lives. A number of important and

challenging issues still remain unsolved. First, a practical

recognition system should be able to recognize activities in

a real-time manner. The real-time requirement demands for

one-pass algorithms over sensor data streams with a short

real-time delay. Multiple passes are usually not possible due

to a large volumn of sensor data stream arrive continuously

at a processing server. Second, most of the wireless body

sensor networks typically use a star topology in which

data generated from each sensor node are transmitted to

a centralized server for further processing. The network

communication can be very costly due to high sampling

rates of motion sensors such as 3-axis accelerometers. Third,

processing sensor data stream at a fix server may not be

practical since humans often move from one place (e.g.,

home) to another (e.g., office) in their daily lives. In this

scenario, mobile and portable devices are more suitable for

the task, and hence lightweight and portable recognition

solutions are highly desired.

To address the above challenges, in this paper we propose

a hierarchical model to recognize human activity recognition

in real time, which we first identify simple gestures at a sen-

sor node level, and then recognizes high-level activities from

these gestures at the portable node level. Our motivation

is that a high-level activity typically includes a sequence

of physical gestures and ambulation in the execution. For

example, household cleaning can be better derived from

a sequence of hand gestures (i.e., wiping and mopping

patterns), body gestures (i.e., up and down patterns), and

ambulation. In addition, the hierarchical model enables us

to distribute the computation from a centralized server to

individual sensor nodes so that the network communication

cost can be significantly reduced. In this work, we first

design a wireless body sensor network consisting of a

number of wireless sensor nodes attached to a subject for

collecting sensor observations. We then design our real-time

recognition algorithms which operate in two stages. First,

acceleration data are processed immediately at each sensor

node by a fast, lightweight gesture recognition algorithm to

detect the gestures of a subject. This is done by discovering

a template for each simple gesture using an unsupervised

method, and then matching the acceleration data stream with

an appropriate template based on the minimum distance
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which is computed using Dynamic Time Warping (DTW)

[7]. This algorithm outputs the gestures of both hand such

as moving hand up and down [8] and the body such as

walking and running [9]. Second, recognized gestures and

other sensor readings (i.e., RFID tagged object and location)

will be transmitted over the wireless network to a central-

ized device for further processing. We propose a real-time,

discriminative pattern based approach to recognize high-

level, complex activities. We adapt an off-line, Emerging

Pattern based algorithm [10] which is capable of recognizing

both simple activities (e.g., cooking and cleaning [11], [12])

and complex activities (i.e., interleaved [13] and concurrent

activities [14])—to meet the real-time requirement in this

work. We use a real-world dataset and develop a real-time

simulator to evaluate our proposed algorithms. Our experi-

mental studies show that the proposed system is promising

in recognizing both gestures and activities in real time for

mobile devices.

In summary, the paper makes the following contributions:

• To the best of our knowledge, this paper presents the

first formal study of a real-time, hierarchical recogni-

tion model to recognize both physical, simple gestures

and high-level, complex activities using a wireless body

sensor network.

• The proposed algorithms are properly designed with

respect to not only the real-time constraint, but also

the lightweight constraint so that they can be deployed

at sensor nodes and mobile devices.

• We conduct comprehensive experiments, and the results

show that our algorithms achieve not only good perfor-

mance in terms of recognition accuracy and real-time

delay, but also better communication efficiency.

The rest of the paper is organized as follows. Section 2

discusses the related work. In Section 3, we present our body

sensor network and provide an overview of our proposed

system. We present our algorithm for gesture recognition in

Section 4, followed by the algorithm for high-level activity

recognition in Section 5. Section 6 reports our empirical

studies, and finally Section 7 concludes the paper.

II. RELATED WORK

Researchers are recently interested in recognizing activi-

ties using wireless body sensor networks. In such a sensor

network, various sensors are used to directly measure user’s

movement (e.g., 3-axis accelerometer), the living environ-

ment (e.g., temperature, humidity and light sensors), object

use (e.g., wrist worn RFID sensor) and user location (e.g.,

indoor location sensor).

Most of the existing work [8]–[17] in gesture or activity

recognition are done in an off-line manner. There are some

recent work focusing on real-time activity recognition. Tapia

et al. [18] proposed a real-time algorithm based on decision

tree for recognition of physical activities (i.e., gestures).

The sensor readings from 3-axis accelerometer sensors are

Figure 1. Our body sensor network, (a) an IMOTE2 mote, (b) an RFID
reader mote.

transmitted wirelessly to a laptop computer for processing.

A C4.5 classifier is first trained, and then used to recognize

gymnasium activities in real time. Krishnan et al. [19]

proposed an AdaBoost algorithm based on decision stumps

for real-time classification of gestures (i.e., walking, sitting

and running) using 3-axis accelerometer sensors. He et al.

[20] presented a Hidden Markov Model approach for real-

time activity classification using acceleration data collected

from a wearable wireless sensor network. The model is used

to classify a number of gestures such as standing, sitting, and

falling.

Some recent work has been done to recognize ges-

tures or activities in real time on resource-constraint de-

vices. Györbı́ró [21] presented a real-time mobile activity

recognition system consisting of wireless body sensors, a

smartphone, and a desktop workstation. A sensor node has

an accelerometer, a magnetometer, and a gyroscope. They

proposed a recognition model based on feed-forward back-

propagation neural networks which are first trained at a

desktop workstation, and then run at the smartphone to

recognize six different gestures. Liu et al. [22] proposed

an efficient gesture recognition method based on a single

accelerometer using DTW. They first define a vocabulary of

known gestures based on training, then use these pre-defined

templates for recognizing hand gestures.

Different from the above work which use a single layer

model (i.e., a single point for data stream processing) for

activity recognition, we propose a distributed approach in

which the computation is divided to gesture recognition at

sensor nodes and high-level activity recognition at a mobile

device. Similar to the DTW-based hand gesture recognition

algorithm proposed in [22], we use a similar approach

to compute the distance of a test instance and a gesture

template. However, their pre-defined templates are obtained

by a training process in a supervised manner whereas we
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Figure 2. Overview of our real-time, hierarchical recognition model

obtain various hand and body gesture templates using an

unsupervised method. The evaluation of existing activity

recognition systems mainly focused on accuracy and real-

time performance. In addition to these measurements, we

evaluate the communication efficiency and the portability of

our system which are important for real-life deployment.

III. BODY SENSOR NETWORK DESIGN AND SYSTEM

OVERVIEW

We design a wireless body sensor network as shown in

Fig. 1. It consists of five sensor nodes—three IMOTE2

motes and two RFID reader motes. An IMOTE2 mote

is located on each wrist and the body of a subject to

capture hand and body movement; it consists of an IPR2400

processor/radio board and an ITS400 sensor board with a tri-

axis accelerometer, as shown in Fig. 1(a). An RFID reader

mote is located on each hand to capture object use; it consists

of a MICA2Dot mote and a coin-size short-range RFID

reader, as shown in Fig. 1(b). An RFID reader mote is

able to detect the presence of a tagged object within a few

centimeters. In addition, detecting user location at room-

level granularity is done in a simple way that an UHF RFID

reader is located in each room to sense the proximity of a

subject wearing an UHF tag. The sensor data captured by

these motes can be transferred to sink nodes and logged in

servers.

Figure 2 gives an overview of our real-time activity

recognition system. The system operates in two stages—

gesture recognition at sensor nodes and activity recognition

at a mobile device. First, each IMOTE2 mote processes its

acceleration data to recognize hand or body gestures by a

fast and lightweight template matching algorithm. This is

done by first obtaining a specific template for each gesture

pattern using an unsupervised method, then matching a test

instance obtained by applying a sliding window over the

data stream with each possible template. A match is found

when the distance between the test instance and a template

is minimum, and then the test instance will be assigned

with the corresponding template label. We compute the

distance using Dynamic Time Warping which is an efficient,

lightweight algorithm to match two time series samples.

Next, recognized gestures, tagged objects and user locations

from each node will be transmitted over the wireless network

to a centralized device. These data will be synchronized and

processed to generate a discrete vector stream with a fix

time interval. We then apply a discriminative pattern based

approach to recognize complex, high-level activities in real

time. A bitmap is used to temporarily hold the data before

they can be recognized. When a new vector comes, we map

items in the vector into the bitmap and compute the score

between the input data and discriminative patterns mined for

each class Ci. If the score of one class exceeds a predefined

threshold, we output that class as the recognized activity and

clear the bitmap.

IV. GESTURE RECOGNITION

This section describes how we process acceleration data

at the sensor node level to recognize the hand and body

gestures of a subject.

A. Sensor Data Collection

In our body sensor network, we use three IMOTE2 motes

with 3-axis accelerometers—one on each wrist to capture the

hand motion patterns; one on the body to capture the body

motion patterns. An acceleration data stream is generated at

each node with a constant sampling rate, the data format is

shown as follows:

[time stamp] < sensor id >< x >< y >< z >
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where time stamp denotes time stamp, sensor id denotes

sensor node ID, x, y and z are acceleration readings on

the three different directions and they can be decoded in a

12-bits resolution ranging from -2g to +2g. These data can

be transformed to a three dimensional stream of integers

containing readings of the three axes using a simple parser.

A sample taken from the data stream we collected is shown

as follows:

[12/08/2008 13 : 22 : 24 : 765] 163 −664 −306 612

In this example, 163 represents the sensor ID on the subject’s

right hand.

B. Gesture Templates

To recognize various gestures over acceleration data, we

first need to define a set of gesture templates for left hand,

right hand and body, respectively. A common way to obtain

these templates is based on supervised learning, e.g., the

work done in [22]. Using this method, the training data for

different hand and body gestures is collected and assigned

with proper labels, and will then be used to define a template

for each gesture. However, in real deployment, labeling

training data for hand and body gestures can be very time

consuming since an annotator has to analyze the video

record for each gesture, and sometime it is not possible

if hand motions are blocked from the video camera. In

addition, the accuracy of labeling various gestures remains

uncertain because there is no common vocabulary for all the

gestures performed in real life.

In this work, we propose an unsupervised method to

discover gesture patterns. We use a K-Medoids clustering

method to discover these template gestures. This method

finds the k representative instances which best represent

the clusters. The number of clusters is set to five for body

gestures and ten for each hand in our study. The intuition

behind this setting is that we observe ten typical patterns for

hand movements—moving forward, backward, left, right,

left and up, left and down, right and up, right and down.

Similarly for the body gestures, there exist typically five

patterns—moving up, sitting down (contain both moving

down and backward), moving left, right and forward.

C. Identifying Gestures

We apply a template matching algorithm to identify the

gestures from the acceleration data stream based on the

templates we obtained. To get test instances, we use a

sliding window with the fix length of 1 second to segment

the data stream. For each instance obtained, we match the

instance with the pre-defined templates using DTW. DTW

is a classic dynamic programming based algorithm to match

two time series with temporal dynamics which had shown its

effectiveness in recognizing hand gestures using a predefined

vocabulary [22]. We use the Euclidean distance as the func-

tion of calculating the distance between two time samples. A

Templates
T1, T2, ..., Tn

Fixed window of 1s

Stream of acceleration data

Distance between T1
by DTW

Distance between Tn
by DTW

Select the gesture 
with minimun distance

Figure 3. Gesture recognition using DTW.

match is found when the distance between the test instance

and a gesture template is minimum, and then the test instance

will be assigned with the corresponding template label. The

process of our template matching algorithm is illustrated in

Fig. 3.

D. Time and Space Complexity analysis

We analyze the time and space complexity for our tem-
plate matching algorithm. Let S[1...M ] and T [1...N ] denote

two time series, n denotes the number of templates. The

time and space complexity of matching S and T are both

O(M ·N). The total time complexity of recognition is thus

O(n ·M ·N), the space complexity is O(M ·N).

V. COMPLEX AND HIGH-LEVEL ACTIVITY

RECOGNITION

The recognized gestures, tagged objects and user locations

from each each node will be transmitted over the wireless

network to a centralized device for recognizing complex,

high-level activities. We adapt an of ine, Emerging Pattern

based algorithm [10] to real-time requirements in this work.

In this section, we first give the background of Emerging

Pattern, and then describe how to use Emerging Pattern to

recognize complex, high-level activities in real time.

A. Background of Emerging Pattern

Emerging Pattern (EP) describes significant differences

between different classes of data [23]. An EP is a set of

items, and it occurs frequently in one class and rarely in

all the other classes. The class in which an EP occurs the

most frequently is called the class of the EP. An EP can be

viewed as a representative pattern of its class. If an instance

contains an EP, then it is very likely that the instance belongs

to the class of the EP. EPs have been successfully applied

in various domains for gene classification [24] and off-line

activity recognition [10], [25].

Formally, an EP is defined as follows. Let D =
{t1, t2, · · · , tn} be a dataset containing a set of instances,

and each instance is a set of items. In our case, an item can

be a user gesture, an object touched by users or the location

of the user. Each instance has a class label which indicates

the activity of the user. Let C = {C1, C2, · · · , Ck} be the set

of class labels. A pattern X is an itemset, and its support
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in D is defined as the proportion of instances in D that

contain it, denoted as suppD(X) = |{t|X ⊆ t, t ∈ D}|/|D|.
The discriminative power of an itemset X is measured by

the ratio of the support of X in the dataset of target class

c to the support of X in all the other classes, denoted as

GrowthRateD(X) =
⎧⎪⎪⎨
⎪⎪⎩

0, if suppDc
(X) = 0

∞, if suppDc
(X) > 0 and

suppD(X) = suppDc(X)
suppDc (X)

suppD(X)−suppDc (X) , otherwise

where c is the class of X , and Dc is the set of instances

belonging to class c.

Definition 1 [Emerging Pattern] Given a labeled dataset

D, if suppD(X) ≥ min sup and GrowthRateD(X) ≥ ρ,

then X is called a ρ−EmergingPattern, where min sup
is a predefined minimum support threshold and ρ is a

predefined minimum growth rate threshold.

B. Mining Emerging Patterns

To use EPs for activity recognition, we first obtain a set of

EPs for each activity class. This is done by mining EPs from

a training dataset containing labeled activity instances. For

each activity Ci, we mine a set of EPs that occur frequently

in Ci, but rarely in other classes. We denote this set of EPs

as EPCi
. We discover the EPs by an efficient algorithm

described in [26]. An example of EP for the brushing hair
activity is shown as follows.

{object@comb, gesture@body forward,

gesture@right forward upward,

gesture@left forward, location@bathroom,

object@detangling spray}
There are usually many EPs with different growth rates

being discovered for each activity. To reduce the computa-

tion cost, we only select the EPs with the growth rate of +∞
(i.e., the maximum discriminative power) for our recognition

algorithm described in the next section.

C. EP-based Real-time Activity Recognition

The of ine recognition algorithm [10] use EPs to recog-

nize complex, high-level activities. Such activities can be

performed in a sequential (i.e., one activity after another),

interleaved (switching between the steps of two or more

activities), or concurrent (i.e., performing two or more

activities simultaneously) manners. Although it is effective,

it works off-line and there are at least two scans over the data

stream. In real-time activity recognition, multiple scans are

not possible. Thus, this algorithm cannot be directly applied

in this case. We extend this algorithm and design a fast EP-

based algorithm for real-time activity recognition as follows.

First, gesture, object and location data will be synchro-

nized and processed to generate a discrete vector stream with

a one second interval. A vector has the following form:

< body gesture, left gesture, right gesture,

left object, right object, location >

We then map every item in a vector to an integer. A bitmap

is used to hold the items that have appeared so far. The ith
bit in the bitmap is 1 if item i has appeared, otherwise, it is

0. Initially, all the bits in bitmap are set to 0. When a new

vector is generated, all the bits corresponding to the items

in the vector are set to 1.

Next, given the bitmap contains an EP, say X , which

belongs to activity class Ci, we define a score function to

measure the contribution of X as follows.

Score(Ci, bitmap) =
∑

X⊆bitmap,class(X)=Ci

GrowthRate(X)
GrowthRate(X) + 1

(1)

where class(X) is the class of X . This score provides an

indication of the conditional probability that the activity

class is Ci, given it contains X [27]. If there exists an

activity C such that Score(C, bitmap) is higher than a

predefined threshold, then class C will be the output as the

recognized activity and the bitmap is cleared by setting all

the bits to 0. If the scores for all the possible activities are

below the threshold, then it outputs nothing and waits for

a new vector. The computation is done recursively until the

end of the sensor data stream. The entire process is described

in Algorithm 1.

Algorithm 1 EP-based Real-time Algorithm

Input: a feature vector sequence V = {v1, v2, ..., vT } with

a length of T;

activities {C1, C2, · · · , Cm}.
Output: recognized activity sequence.

1: Bitmap bitmap;

2: for t = 1 to T
3: for each item in vt

4: bitmap[key(item)] = 1;

5: end for
6: for i = 1 to m
7: if Score(Ci, bitmap) > threshold then
8: Recognize the current activity as Ci;

9: Set all elements in the bitmap to 0;

10: end if
11: end for
12: end for

4747
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Table I
ACTIVITIES PERFORMED

0 making coffee 13 ironing

1 making tea 14 eating meal

2 making oatmeal 15 drinking

3 frying eggs 16 taking medication

4 making a drink 17 cleaning a dining table

5 applying makeup 18 vacuuming

6 brushing hair 19 taking out trash

7 shaving 20 using phone

8 toileting 21 watching TV

9 brushing teeth 22 watching DVD/movies

10 washing hands 23 using computer

11 washing face 24 reading book/magazine

12 washing clothes 25 listening music/radio

D. Time and space complexity analysis

Let V [1...n] be the whole input vector sequence generated

in the previous step, k be the number of activities in our

system. Every time an input vector comes, we compute the

score for each of the k activities. Let m be the number of

EPs mined and l be the average number of items contained

in EPs. The time complexity of matching EPs with items

stored in the bitmap is O(m · l). After all the EPs have

been checked, we check which class has a score no less

than the threshold. The cost of this step, is O(k). Since we

only make one pass through the input vector sequence, the

time complexity of recognizing the whole sequence is then

O((m · l + k) · n).
Let N be the total number of items in our system. The

space cost by holding the bitmap is Θ(N). The space cost

for holding the mined EPs is Θ(m · l).
VI. EMPIRICAL STUDIES

We evaluate our proposed system in this section. We

are interested in several aspects of performance evaluation.

The fundamental question is how accurately we can recog-
nize activities. Since the proposed hierarchical recognition

system aims for real-time recognition at sensor nodes and

mobile devices, it is critical to know how fast we recognize
both simple gestures and high-level activities; and how much
resources are required to run the system. Finally, reducing

the network communication cost is one of the goals in our

design, hence we will find out how the entire network traffic
can be reduced using our model.

A. Real-world Dataset

We use the activity dataset collected in our previous work

[10]. The data collection was done by four volunteers in a

smart home over a period of two weeks. Each day, one of

the volunteers wore a set of wireless sensors (shown in Fig.

Figure 7. Precision and recall (The numbers in the X-axis are identical
to the numbers in Table I)

1) and performed a list of 26 activities, as summarized in

Table I. There was only one subject performing activities

at any given time. The dataset contains both simple and

complex activity cases across a variety of activities in a

real-world situation. Out of 26 sequential activities, there

are 15 interleaved activities (e.g., using computer and using
phone can be performed in an interleaved manner), and

16 concurrent activities (e.g., brushing teeth while listening
music/radio can be performed concurrently). There is a total

number of 532 activity instances, and only sequential activity

instances will be used for training our EP-based activity

model.

B. Real-time Simulator

We build a real-time simulator to simulate the behavior

of each sensor node, e.g., generation of continuous sensor

data stream. There are a total number of six sensor nodes—

three accelerometers, two RFID wristband readers and one

location sensor. Each sensor node is able to generate sensor

readings at an adjustable sampling rate. We implemented the

gesture recognition algorithm at each accelerometer sensor

node using the simulator. The recognized gestures together

with objects and locations will be transferred continuously to

a simulated mobile device in which the EP-based real-time

recognition algorithm runs to recognize complex, high-level

activities.

C. Accuracy Performance

To evaluate the gesture recognition algorithm, Table II

shows the gesture templates we discovered from the acceler-

ation data stream of a subject’s left hand using our clustering

method. To visualize the gesture templates obtained in Table

II, we show the traces of the left-hand movements in a

3-D space in Fig. 4, assuming the initial position of the

hand is at the origin of the coordinate system. Through

the 3-D visualization, it will be easily to figure out what

each template represents in a physical world. Basically,
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Table II
TEMPLATES OF LEFT HAND GESTURES

x :< −216,−42,−36 > y :< 249,−48, 0 > z :< 815, 985, 988 >

x :< 66,−95 > y :< 1008, 1001 > z :< 145,−82 >

x :< 605, 455, 442, 389 > y :< 710, 555, 442, 442 > z :< 566, 782, 796, 719 >

x :< 241, 92, 658 > y :< −269,−395,−70 > z :< 862, 749, 717 >

x :< −141,−169 > y :< 736, 828 > z :< −668,−562 >

x :< −922,−972 > y :< 283, 38 > z :< 284, 220 >

x :< 80,−40,−87 > y :< 491, 665, 905 > z :< 852, 812, 580 >

x :< 901, 879, 935 > y :< 146,−5, 44 > z :< 458, 316, 372 >

x :< 871, 905, 880, 853, 802 > y :< 469, 489, 495, 565, 572 > z :< −260,−260,−183,−255,−202 >

x :< −4,−21,−18, 82,−175, 7 > y :< −896,−1103,−1054,−1168,−963,−1114 > z :< 96, 138, 133, 93, 52, 82 >

Figure 4. Traces of templates for left hand
gestures.

Figure 5. Traces of templates for right hand
gestures.

Figure 6. Traces of templates for body gestures.

these templates represent the different directions of left-

hand movement in a physical space. Gestures 1, 3, 4 and 7

basically represent that the hand moves upward. By taking

a closer look at the figure, gesture 1 represents moving
straight up, gesture 7 represents moving up and right,
gesture 4 represents moving up and left (i.e., opposite to

gesture 7), and gesture 3 represents moving up and forward.

Gestures 8 and 9 basically represent that the hand moves

forward. While gesture 8 represents moving forward and left,
gesture 9 represents moving forward. The rest of gestures

are quite obvious, gesture 2 represents moving right, gesture

10 represents moving left and gesture 6 represents moving
back. Gesture 5 represents putting down in which the hand

movement patterns involve both moving down and moving
back. It matches the natural pattern well since our arm

is actually turning around the shoulder rather than going

straight down when we put down our hands. Similarly for

the right hand, as shown in Fig. 5, gesture 1 and 8 basically

represent moving up and left. Gesture 7 represents moving
forward and left. Gesture 9 and 10 represent moving up and
back. Gesture 2 represents moving back. Gesture 5 represents

putting down. Gesture 4 represents the hand movement

of moving up. Gesture 3 represents moving up and right.

Finally, Gesture 6 represents moving up and forward.
We obtain similar results for the templates of body ges-

tures, as visualized in Fig. 6. Obviously, gestures 1 to 5

represent body moving up, moving left, sitting down, moving
forward and moving right, respectively. It is interesting

to analyze gesture 3 which involves two directions of the

body movement, i.e., both backward and downward. Such

movement pattern is likely to happen when we sit down. In

the case, our body not only goes downward, but also goes

backward when we lean our knees towards a chair.
We then evaluate the accuracy performance of recognizing

complex, high-level activities. We use two common met-

rics for evaluating real-time activity recognition systems—

precision and recall. Precision is the probability that a

given inference about that activity is correct, i.e., TP
TP+FP .

Recall is the probability that an activity recognition system

correctly infers a given true activity, i.e., TP
TP+FN . We use

ten-fold cross-validation [28] for our evaluation. Figure 7

shows the precisions and recalls for all the 26 activities. On

average, our system achieves a precision of 94.9% and a

recall of 82.5%.
To analyze the result in detail, we present the confu-

sion matrix as shown in Table III. The columns show the

predicted activities, and the rows show the ground-truth
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Table III
CONFUSION MATRIX.

Ground Truth Activities
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Pr
ed

ic
te

d
A

ct
iv

iti
es

0 4

1 1 15

2 10

3 11

4 17

5 21

6 24

7 14

8 11

9 22 1

10 1 39

11 22

12 14

13 20

14 18 16

15 18 1 2

16 3 5 20

17 15

18 15

19 1 12

20 1 45

21 1 27 1

22 12

23 1 23

24 1 41

25 1 1 1 1 55

miss 10 6 5 3 2 1 1 9 6 3 5 5 7 7 1 1 18 5 2 1 8

activities. The last row shows the number of instances that is

miss detected for each activity. From the confusion matrix,

we observe two main cases as shown as follows.

Miss detection: This is the case which an activity instance

performed by a subject is not detected by the system. For

example, for making coffee (i.e., activity 0 in the table),

only four of fifteen instances is correctly recognized while

ten instances are missed. The missing rate is 66.7%. This

leads to a lower recall for this activity. By analyzing the

ground truth, we found that making coffee is often performed

with another activity such as making tea or using phone in

an interleaved manner. For example, a case in the dataset

shows the phone rang in the middle of making coffee, and

the subject then paused making coffee and went to pick up

the phone. When the system recognizes the using phone
activity, it clears the bitmap resulting in a loss of the initial

data for making coffee. Hence, when the subject came back

for making coffee again, the system may no long recognize it

since some data are lost. This example shows that our real-

time EP-based algorithm has certain limitation in dealing

with more complex cases such as interleaved activities.

False detection: This is the case which an activity is

recognized as another activity. For example, 50% of cleaning
a dining table is recognized as eating meal, resulting in

a lower precision for eating meal and a lower recall for

cleaning a dinning table. It probably can be explained as

follows. These two activities share many common features,

i.e., they are performed using similar objects, with similar

gestures, and in the same location. With the existing sensor

features, it is difficult to discriminate these two activities.

One possible solution is to make use of the sequence

information of hand and body gestures and objects which

we leave for our future work.

D. Real-time Recognition Delay and Storage Cost

In this experiment, we evaluate the real-time recognition

delay and storage cost of our system. The real-time delay

(i.e., runtime) measures, for a particular activity, the time

from the generation of the first sensor reading to the recog-

nition of an activity label. The result show that our light-

weight gesture recognition algorithm has a real-time delay of

25.5 μs on the sensor node. The storage cost of the gesture

recognition algorithm consists of 2.4 KB for storing gesture

templates and 64 B for storing the algorithm. The result

implies that it is feasible to deploy gesture recognition at

the sensor node level.

The real-time recognition delay of the EP-based real-

time activity recognition algorithm is 5.7 s and the storage

cost is less than 10 MB. This result shows the potential to

deploy this algorithm in a mobile device such as a PDA or

a smartphone.
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E. Communication Cost Analysis

In this experiment, we analyze how the network commu-

nication cost can be reduced using our hierarchical activ-

ity recognition model. We compare the recognition model

with and without a hierarchical design. In a single layer

recognition model, all the sensor readings generated at each

accelerometer node will be transferred over wireless links.

The total amount of data transmitted on the network in one

second can be computed as follows.

D =
n∑

i=1

�fi · pi

mi
� · (mi + oi) (2)

where n is the number of sensor nodes, fi is the sampling

rate of the ith sensor node, mi is the designed payload size

for each packet, pi is the size of each reading of the ith
sensor and oi is the overhead of sensor node i sending a

packet. It is clear that fi ·pi computes the total size of sensor

readings of ith sensor node that is to be transmitted for each

second. By taking the ceiling of fi·pi

mi
, we get the number of

packets that is sent by the ith node in one second. Finally, by

multiplying the number of the packets and the size of each

packet, which can be easily computed by mi+oi, we get the

total number of bits transmitted for sending the ith sensor

node’s data in one second. Finally, the data transmitted in

the entire network in one second is the sum of the data

transmitted for all sensor nodes.

We have three accelerometers, two RFID sensors and one

location sensor in our system. ZigBee radio is used by the

sensors for wireless data transmission. The packet header

size for ZigBee / IEEE 802.15.4 protocol is 120 bits. Each

accelerometer sensor node has an average sampling rate of

8 Hz. Each reading has a size of three 16-bit integers (i.e.,

readings on the three axes) which is 48 bits in total. The

packet payload size is set to be 10 readings which is 480

bits. Each RFID sensor or location sensor has a sampling

rate of 1 Hz. Each reading has a size of 64 bits, which is

the size of one tag ID. The packet payload size is set to 64

bits. Thus, the total amount of data transmitted in the entire

system in one second is 2352 bits according to Equation 2.

In our hierarchical recognition model, we only need to

transfer 1 byte of data containing a gesture label in every

one second over wireless links since the acceleration data

stream is processed immediately by the gesture recognition

algorithm. The total amount of data transmitted for each

accelerometer in one second is 128 bits (8 bits for the

gesture label and 120 bits for the packet header). While

the RFID and the location sensors remaining the same,

the total amount of bits transmitted in the system in one

second is reduced to 936 bits. Hence, we reduce the total

communication cost by 60.2%. Through the above analysis,

we demonstrate that a hierarchical recognition model is

more appropriate for real-time activity recognition using

a wireless sensor network which typically has a limited

network bandwidth.

VII. CONCLUSION

In conclusion, this paper proposes a real-time, hierar-

chical model based on a wireless body sensor network to

recognize human activities from physical, simple gestures

to complex, high-level activities. At the sensor node level,

acceleration data are processed immediately by a fast and

lightweight gesture recognition algorithm for recognizing

both hand and body gestures. The recognized gestures,

object and location information will be transferred to a

centralized device, and then processed by an EP-based real-

time algorithm to recognize complex high-level activities.

Our experimental studies show the proposed system achieves

good performance in accuracy and real-time recognition

delay, and better communication efficiency.

While the real-time, hierarchical model presented in this

paper is promising, the entire system is still premature and

far from real-life deployment. One limitation of our system

is that although it shows a low average delay in recognition,

it is not guaranteed that the system can always respect the

real-time constraints given by the users. Another limitation

is that we assume a perfect link qulaity which involves no

packet loss and all nodes are working under a globle clock.

In real life, the link quality may vary, the clock may drift

among sensor nodes. These constraints are important factors

that affect the system’s delay and accuracy.

In our future work, we plan to extend this work in sev-

eral directions. First, we will further develop our proposed

algorithms to investigate the upper bound of the system’s

runtime which guarantees the real-time performance. Sec-

ond, we plan to deploy our algorithms in sensor nodes

and mobile devices for real-life trials, and conduct more

evaluations to study its real-time behaviors and investigate its

limitations. Finally, the types of sensor observations captured

are limited. Leveraging on the fast-growing wireless and

sensing technologies, we will seek to further develop our

sensor nodes to integrate more sensor modalities such as

physiological sensors, pressure sensor, and possibly integrate

RFID tags or readers with motes as suggested in [29] to

improve robustness.
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