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• We propose a systematic approach to support efficient reprogramming of WSN platform.
• The programming language naturally supports loosely coupled programs.
• The compiler significantly reduces the size of data for reprogramming.
• The VM reduces the additional energy consumption incurred by interpretive execution.
• We have evaluated the approach through real reprogramming cases.
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a b s t r a c t

Wireless sensor networks are shifting to application platforms that poses several challenges on
reprogramming efficiency. To better support the efficient reprogramming, this paper proposes a
systematic approach named ReLog which consists of a programming language, a compiler, and a virtual
machine. To make application programs concise and easy to modify, the ReLog language extends from a
traditional logical programming language and makes the extension part have the similar coding style. To
reduce the size of data for reprogramming, the compiler first produces extremely compact executable
code by compiling application programs into high-level representations. It also implements efficient
incremental reprogramming to diminish differences between the current and new executable code. To
mitigate the energy consumption incurred by interpretive execution, the virtual machine optimizes the
executable code aswell as the execution process to improve the runtime efficiency.Wehave implemented
ReLog and evaluated it with respect to real reprogramming cases. Our experimental results show that it is
easy tomodify ReLog programs to satisfy newapplication requirements.Meanwhile, the compiler reduces
the size of executable code by 61.4%–83.2% compared to the existing work. In addition, the lifetime of
sensors running the ReLog virtual machine is close (97.04%–98.31%) to that running the native code.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

Wireless sensor networks (WSNs) have been successful applied
in a variety of applications [27]. In recent years, requirements of
WSN applications become more and more complex. Sensors in
the applications often have different functions or play different
roles [2,1,5,6]. Meanwhile, WSNs of the applications are shifting
from application-specific networks to platforms according to
the following observations. First, multiple applications could be
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deployed in a same physical place.1 Second, applications of the
same physical place often have some common requirements on
WSN such as sensing ability, network size, and even topology.
Therefore, we can extend an existing WSN to support new
applications rather than deploying completely newWSNs.

A WSN platform may support multiple applications during its
lifetime. Therefore, it may change application code on sensors
(i.e., reprogramming)more frequently due to requirements of both

1 Examples include vehicle classification [2] and vehicle weight estimation [1] in
a highway, canopy closure estimation [24], navigation [21], and fire detection [38]
in a forest, energy consumption identification [11] and energy management [10] in
a building, etc.
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deploying new applications and updating existing applications.
Additionally, the size of data for reprogramming2 could be large
in the cases of deploying new applications. Meanwhile, a WSN
platform usually consists of heterogeneous sensors to support
complex application requirements. However, the heterogeneity of
sensors necessitates multiple scripts even for one reprogramming
task.3 These features give rise to challenges of the reprogramming
efficiency. The first challenge rises from energy efficiency. Sensors
of WSN platform are usually powered by batteries. Excessive
energy consumption of sensors due to reprogramming with
large scripts will shorten lifetime of the platform. The second
challenge lies in latency. Sensors of WSN platform need to stop the
executing application completely to dedicate their resources for
reprogramming. Reprogramming with large scripts will increase
the latency of reprogramming process and consequently reduce
the availability of WSN applications, while high availability is
expected by many applications [5,6,21,38]. These two challenges
require efforts to increase the reprogramming efficiency of WSN
platform.

There are many efforts to address these challenges by reduc-
ing the size of script. Part of them leverage on incremental re-
programming. The basic idea of incremental reprogramming is to
transfer the delta to the (binary) code so that energy consump-
tion and latency can be minimized. For example, incremental link-
ing [16], Hermes [28], and R3 [8] use the difference between the
old and new binary code to generate the delta, while dynamic link-
ing [9] and RemoWare [33] leverage on loadable modules which
contain modifications in the application program. These efforts
work well when reprogramming aims to update applications on
homogeneous sensors. However, reprogramming ofWSN platform
may need to deploy new applications on heterogeneous sensors. In
this case, the existing efforts may lose their efficiency due to large
deltas to be transferred.

A promising idea to address this problem is to introduce the
virtual machine (VM). The executable of VM is much smaller
than binary code. In addition, VMs can shield the heterogeneity
of sensors and make the executable same for all sensors. These
features help to reduce the size of script significantly. Efforts
such as Darjeeling [4] and Java Card [32] provide generic VMs for
resource-constrained sensors and have potential to support the
efficient reprogramming of WSN platform. However, these efforts
are not specially designed for this purpose. (1) The imperative
programming languages used in these efforts require professional
skill and enough experience to produce loosely coupled programs.
Users (mainly the domain experts) need to design the programs
elaborately to tackle changes of application requirement with
less modifications. (2) The executables generated by compilers in
these efforts are not compact enough since they are composed
of machine-level operation details. In addition, these compilers
take no endeavor (such as incremental reprogramming) to
further reduce the size of script. (3) Energy consumption
of VM is important for the lifetime of WSN platform. The
main purpose of these efforts is to provide feature-rich VMs
for resource-constrained sensor platforms rather than reducing
energy consumption incurred by interpretive execution.

To address aforementioned problems, we propose a systematic
approach named ReLog which is specially designed to support the
efficient reprogramming ofWSN platform. The proposed approach
consists of three components including a programming language,
a compiler, and a VM. (1) The ReLog language extends from a
traditional logical programming language andmakes the extension

2 We call the data for reprogramming script in this work.
3 This is because the executable code on sensors usually consists of entangled OS

and application code. The OS code for different types of sensors is different.
part keep the similar coding style. This choice makes the ReLog
language naturally support concise and loosely coupled programs.
(2) The ReLog compiler aims to reduce the size of script in
both cases of deploying new applications and updating existing
applications. It can produce extremely compact executables which
are composed of high-level representations without containing
tedious machine-level instructions. To further reduce the script
size, it implements efficient incremental reprogramming with
methods of SGN (system-generated name) based compiling
and executable rearrangement which diminish the difference
between executables. (3) The ReLog VM focuses on reducing the
energy consumption through various optimizations. It provides a
generic optimization on the executable to improve the execution
efficiency. It also adopts methods of program-directed reasoning
and adaptive payload to optimize the execution process for any
specific application.

In summary, this paper makes the following contributions.

• We propose a systematic approach named ReLog which
includes a programming language, a compiler, and a VM to
better support the efficient reprogramming of WSN platform.
We have implemented ReLog and evaluated it with respect to
real reprogramming cases.

• The ReLog language naturally supports concise and loosely
coupled programs. Experimental results show that the ReLog
programs are almost line-by-line translations of application
requirements. Meanwhile, it is easy to modify a ReLog program
to satisfy new application requirements without incurring
modifications of irrelevant parts of the program.

• The ReLog compiler is specially designed for reducing the size
of script. Experimental results show that it reduces the size
of executable by 61.4%–83.2% compared to Darjeeling [4]. In
addition, the optimized delta generation of the compiler further
reduces the size of script by 22.7%–49.6%.

• The ReLog VM takes various optimizations to improve the run-
time efficiency. Experimental results show that it only increases
the CPU energy consumption by 1.74%–4.08% compared to
TinyOS [20]. Additionally, the lifetime of sensors running the
ReLog VM is 97.04%–98.31% of that running the native code.

The rest of the paper is organized as follows. Section 2 surveys
the related work. Section 3 gives an overview of the proposed
approach. Sections 4–6 describe the details of the programming
language, the compiler, and the VM, respectively. Section 7
presents our evaluation results, and Section 8 concludes the paper
and discusses our future work.

2. Related work

We discuss the related work from two perspectives of
programming language and reprogramming approach to justify
our key design choices.

2.1. Programming language

Many existing efforts aim at generating concise programs
of WSN applications. The basic idea in these efforts is to
provide high-level programming abstractions to shield system-
level implementation details.

Regiment [26] and Abstract Regions [36] use tuple-space-like
abstractions to facilitate data sharing and aggregation within a
group of sensors. TinyDB [22] and AQL [35] provide database-like
abstractions to facilitate data filtering and collection. µSETL [13]
introduces the set abstraction to simplify data operations among
sensors. However, these efforts pay less attention to make pro-
grams easy to modify. Changes to application requirement may



134 X. Zhu et al. / J. Parallel Distrib. Comput. 102 (2017) 132–148
incur overhead of modifying irrelevant parts of the program. Dif-
ferent from these efforts, the ReLog language inherits the logical
programming paradigm and naturally supports loosely coupled
programs. Snlog [7] also extends from a traditional logical pro-
gramming language. However, it allowsusers to implement a pred-
icate with an external module which is written with an imperative
language. Different from snlog, the ReLog language chooses to
make the coding style of the extension part be similar with that
of the logical part. This choice facilitates easy modifications of
ReLog programs. To better support the efficient reprogramming,
we make some important improvements on the previous version
of the ReLog language [40]. Particularly, we allow users to spec-
ify attributes of a predicate when declaring (rather than using) the
predicate.We alsomake the coding style of the extension part uni-
form and similar to that of the logical part. These improvements
make the ReLog programs more concise and easy to modify.

2.2. Reprogramming approach

Efficient reprogramming of WSN applications has been an
important research theme in the community formany years. Many
existing efforts aim to improve the reprogramming efficiency
by reducing the size of script. These efforts can be divided into
two categories. The first category adopts the idea of incremental
reprogramming, while the second category leverages on VMs. We
give the detailed discussions of each category as follows.

2.2.1. Incremental reprogramming
Many efforts improve the efficiency of updating binary code on

sensors through incremental reprogramming. These efforts can be
divided into two classes.

Efforts in the first class implement the incremental reprogram-
ming by comparing binary code directly. Incremental network re-
programming [15] uses block-level comparison to generate the
delta between the old and new binary code. However, it did not
consider the problem of code (functions and global variables) shift
whichmay significantly increase the size of delta. Incremental link-
ing [16] tries to solve the function shift by providing a slop after
each function. A function can use its slop to grow without chang-
ing its location. However, the efficiency of this method is subject
to the room of slop. Hermes [28] adopts the indirection table to
mitigate the effects of function shift. Additionally, it also solves the
global variable shift by pinning down global variables to their ex-
isting locations. Different fromHermes, R3 [8] solves the code shift
problem by replacing physical addresses in binary code with sym-
bolic indexes. Efforts in the second class implement the incremen-
tal reprogramming through loadablemodules. Dynamic linking [9]
and FlexCup [23] use binary code of the changed module as the
delta. The binary code contains a symbol table and a relocation ta-
ble to support dynamic linking of themodule on sensors. However,
the size of module is usually large. To address this problem, Re-
moWare [33] optimizes the binary code of a module by removing
useless sections (e.g., debugging section) as well as headers of re-
served sections.

The efficiency of these efforts is subject to the difference
between the old and new binary code. Therefore, in the case of
deploying new applications, the large size of script makes these
efforts inefficient. Different from these efforts, ReLog leverages on
the compact executable of VM to efficiently address this problem.

2.2.2. Virtual machine
Virtual machines can abstract underlying sensor platforms and

provide much smaller executables. Therefore, they have potential
to enable the efficient reprogramming of WSN platform.
Mate [18] and ASVM [19] provide application-specific VMs
which are optimized for a specific problem domain. These VMs
provide instructions abstracting from common operations of the
problem domain. VM* [17] proposes synthesis of the VMs tailored
for specific applications. Application-specific VMs can support
highly compact executables. However, the VMs themselves often
need to update when deploying applications of other problem
domains on the WSN platform. Since VMs are implemented
by binary code which often entangles with the OS code on
sensors, updating the VMs usually requires large scripts and
significantly reduces the reprogramming efficiency. Different from
these efforts, ReLog provides a generic VM to support a wide
range of WSN applications. This choice allows ReLog to improve
the reprogramming efficiency by only focusing on the application
layer.

Java Card [32] and Darjeeling [4] are also generic VMs. Java
Card is specially designed for resource-constrained devices. It
proposes a modified instruction set to execute Java programs on
these devices. Darjeeling proposes a more powerful VM by adding
features such as multi-threading and efficient garbage collection.
However, these efforts are not specially designed for the efficient
reprogramming of WSN platform. First, it is not easy for novice
programmers towrite loosely coupled programswith these efforts.
Second, executables of these efforts are not compact enough
since they are composed of machine-level operation details. In
addition, these efforts take no endeavor to further reduce the
size of script. Third, these efforts are not specially optimized for
reducing additional energy consumption incurred by interpretive
execution of VM. Different from these efforts, ReLog leverages on
the logical programming paradigm to naturally support concise
and loosely coupled programs. Meanwhile, it focuses on reducing
the script size by generating extremely compact executables and
implementing efficient incremental reprogramming. In addition,
ReLog takes several optimizations on the executable as well as
the execution process to reduce the energy consumption of VM at
runtime.

3. Overview

To provide the efficient reprogramming of WSN platform, we
propose a systematic approach named ReLog which combines a
programming language, a compiler, and a VM. Fig. 1 gives an
overview of ReLog and the main concerns of each component.

The ReLog language mainly focuses on the following two
aspects. (1) As a language for WSN platform, it provides suitable
constructs to program a wide range of WSN applications. The
ReLog language considers a WSN application as the combination
of data processing and system operations. It uses constructs of
fact and rule from the traditional logical programming language
to deal with data processing, and extends with constructs of
event and action to handle system operations. These constructs are
suitable for programming WSN applications. (2) As a language for
reprogramming, it also facilitates to modify application programs.
On one hand, the constructs of the ReLog language shield system-
level implementation details. On the other hand, the organization
of these constructs inherits the loose coupling nature of the logical
programming language. These featuresmake application programs
easy to modify.

The compiler in ReLog endeavors to reduce the size of script
by focusing on the executable design and the delta generation.
(1) To make the executable compact, we take the compactness
as the main principle of the executable design. In particular, the
compiler chooses to compile application programs into extremely
high-level intermediate representations which contain no detail
about machine-level operations. This design choice significantly
reduces the size of executable. (2) To reduce the size of delta,
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Fig. 1. Overview of the ReLog approach.
we aim to reduce the difference between the old and new
executables. Since the difference may be increased due to changes
of system-generated names and code shift, the compiler introduces
SGN-based compiling to make the same predicate have the same
system-generated name in different executables. Meanwhile, it
adopts executable rearrangement to make the unchanged part of
different executables be in the same location.

The VM in ReLog improves runtime efficiency from the
following two aspects. (1) It first optimizes the executable to
make it support efficient execution. Since the compiler focuses
on the compactness of executable, it encodes some information
required by the execution process implicitly in the executable.
Therefore, the VM optimizes the executable by extracting the
information and storing it explicitlywith additional fields and lists.
This optimization significantly improves the execution efficiency.
(2) The VM also provides application-specific optimizations at
runtime. Since the VM needs to support different applications,
it has to adopt a generic reasoner and predefined payloads
which may be not efficient enough for a specific application.
To address these problems, the VM first takes program-directed
reasoning which allows users to guide the reasoning process for
an application. It also introduces adaptive payload to provide
application-specific payloads according to the requirement of the
executing application.

4. Programming language

The ReLog language aims to support programming of popular
WSN applications and make modifications of these programs
easily. According to surveys on WSN applications [27,25], we
found that most of the applications consist of uncomplicated data
processing and limited system operations. The ReLog language is
designed to target these applications.

Logical programming paradigm promotes clean and concise
specifications of application requirements and leads to code that is
significantly easier to specify and adapt. Consequently, logical pro-
gramming languages have been successfully applied for develop-
ingWSN applications [7,29,37,12]. Datalog is a well-known logical
programming language. Meanwhile, it has shown its potential
to deal well with data processing of WSN applications [7,29].
Therefore, the ReLog language chooses to extend from Datalog.
However, designing the extension part of the language bears the
following challenges. (1) The first challenge rises from the suitable
way to describe the system operations. To address this challenge,
we analyze WSN application requirements and provide the con-
structs of event and action for users to program the system opera-
tions in a familiar event-driven way. (2) The second challenge lies
in the management of application data (i.e., facts in logical pro-
grams). Since data in WSN applications is often highly dynamic,
it may place a burden for users to implement the fact manage-
ment manually in the program. Therefore, we provide attributes
which help to manage facts automatically according to predefined
policies. (3) The third challenge is the consistency of coding style.
The extension code needs to keep the features of conciseness and
ease-of-modification. Therefore, wemake the constructs in the ex-
tension part contain no system-level implementation detail and
organize these constructs in a loosely coupled structure.
Listing 1 An example of the ReLog program
1: # sys_dutyCycle = 10
2:
3: Predicate:
4: address@unique.
5: seqNum@unique.
6: message@volatile:t1.
7: reading@volatile:t1.
8:
9: Clause:

10: address(sys_nodeID).
11: seqNum(0).
12: seqNum(N+1) :- seqNum(N)@passive, reading(Value).
13: message(Src, N, Value):- reading(Value)@passive, address(Src)@passive,

seqNum(N).
14:
15: Shell:
16: boot() → setTimerMilli(t1, 5000, sys_infinity).
17: t1() → insert(reading(sense(sys_thermometer))).
18: generate(message(Src, N, Temperature)) → send(1, <Src, N,

Temperature>).
19: receive(2, <NewAddr>) → insert(address(NewAddr)).

We illustrate the ReLog language [30] by going through an
example of the ReLog program shown in Listing 1. This program
describes an application which collects temperature values of the
environment. Each sensor in this application samples and sends
back a temperature value alongwith the sensor’s ID and a sequence
number every 5 s.

4.1. Introduction to the relog language

A typical ReLog program consists of three parts including pred-
icate, clause, and shell. The constructs in these parts are feasible to
describe common application requirements. However, they cannot
provide customized configurations such as communication chan-
nel and duty cycle. To increase the flexibility, the ReLog language
allows users to specify some configurations through optional an-
notations.

Annotations used for specifying configurations should be at the
beginning of the program. They all start with the symbol ‘#’ and
have parameters with the same prefix of ‘sys_’. For example, the
annotation in the first line of the example indicates that the sensor
sets duty cycle to 10%.

4.1.1. Predicate
Unlike traditional logical programming languages, the ReLog

language requires users to declare predicates explicitly. This is
because these explicit declarations can help users to manage
facts of the predicates automatically. Each declaration consists of
two parts: a predicate name which is syntactically an identifier
beginningwith a lower-case letter, and an optional attributewhich
specifies the policy of the fact management.

Due to memory limitation in sensors, the out-of-date facts
should be cleared from time to time. It is difficult for users to
manage facts of each predicate manually. In WSN applications, we
observe that most of the application data has predicable lifetime.
For example, a temperature value sensed from an environment
is only valid in its sampling period. This observation inspires
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us to create some predefined data management policies through
attributes. Particularly, (1) the @unique attribute (lines 4 and 5)
indicates that a fact will be deleted if a new fact of the same
predicate comes. (2) The @volatile : IDtimer attribute (lines 6 and 7)
indicates that all facts of a predicatewill be deleted if the associated
timer fires.

4.1.2. Fact and rule
Before introducing fact and rule, we first give definitions of

constant, variable, term, and atom. A constant is either an integer, a
real number, or a system-defined string with the prefix of ‘sys_’. A
variable is an identifier which begins with an up-case letter. A term
is either a variable, a constant, or a compound term of a function
or an arithmetic expressionwhich uses terms as parameters, while
an atom is a predicate with parameters of terms.

The ReLog language uses facts and rules to deal with data
processing in WSN applications. Facts are used to represent
application data. A fact is an atomwith all parameters of constants.
For example, the fact address(sys_nodeID) (line 10) represents
that the address of a sensor in the application is the sensor’s ID.
Rules are used to implement data calculations. A rule consists of a
deduction symbol (:-), an atom on the left side of the symbol called
the head, and one or more atoms on the right side called the body.
The body defines some preconditions, which if true, instantiates
the head to a fact. For example, the rule in line 13 creates a fact of
message if there exist the facts of reading, address, and seqNum. A
predicate in the body of a rule may contain the @passive attribute
(lines 12 and 13), which indicates that the arrival of new facts of
this predicate will not trigger the evaluation of the rule.

4.1.3. Event and action
The ReLog language uses events and actions to handle system

operations. Each statement in the shell part consists of an event
and one or more actions that appear on the left side and right
side of the statement’s triggering symbol (‘→’), respectively. The
action(s) will be triggered to execute if the associated event occurs.
For example, the statement in line 18 indicates that if a new fact
of message arrives, the content of the fact will be sent to the base
station. Each variable in the actionwill be initializedwith the value
of the variable with the same name in the event.

There are four types of events in the ReLog language. (1) The
boot event (line 16) occurs when the execution starts. This event
facilitates the initialization of the execution. (2) The timer event
(line 17) occurs when the associated timer fires. The timer’s ID is
used to differentiate different timer events. (3) The fact generation
event (line 18) occurs when a new fact of the predicate in the
event is generated. The variables of the atom in the event will be
initialized with the constants in the newly generated fact. (4) The
message receiving event (line 19) occurs when an associated
message is received. This event consists of two parts. The first part
is the message type which is used to differentiate different types
of messages, while the second part indicates the payload in the
received message.

Various actions are provided for users to program WSN
applications. These actions can be roughly divided into two classes.
(1) Actions in the first class manipulate various devices in a sensor
such as timer, radio, sensing devices, and serial ports (e.g., ADC and
GPIO). The ReLog language provides multiple actions for a device
to facilitate the programming. For example, two send actions are
provided to sendmessages through the radio. The first one (line 18)
only requires the message’s payload. It will send the message
back to the base station through the built-in routing protocol. The
second one has one more parameter of an address. It will send
the message directly to a neighboring sensor with the address.
(2) Actions in the second class manipulate facts of a program. For
example, the insert action (lines 17 and 19) inserts a fact to the fact
repository.

To maintain the consistency of coding style, events and actions
in ReLog programs contain no system-level implementation detail.
In addition, the statements in the shell part are almost uncoupled
with each other and independent of their orders. Meanwhile, the
coupling between these statements and clauses (facts and rules)
is the same as that among clauses. These features ensure that the
code in the extension part keeps concise and easy to modify.

4.2. Illustration of the program

We now walk through the program in Listing 1 to explain how
the program works. When the execution starts, the boot event
occurs and triggers a timer setting action. This action sets a timer t1
whichwill fire every 5000ms continuously (line 16).When t1 fires,
the insert action uses the temperature sensing value to generate
a reading fact and inserts it to the fact repository (line 17). The
reading fact triggers the evaluation of the first rule to generate an
seqNum fact which will then trigger the evaluation of the second
rule to generate amessage fact (lines 12 and 13).When themessage
fact is generated, the fact generation event occurs and triggers the
send action to send the content of the fact to the base station
(line 18). If a sensor receives a message of type 2, the message
receiving event occurs and triggers the insert action to generate a
new address fact and replace the current one in the fact repository
(line 19).

5. Compiler

To increase the reprogramming efficiency, the ReLog compiler
aims to reduce the size of both executable and delta. The main
challenge to achieve compact executables is the universality of the
executable design. Since a WSN platform is supposed to support
different WSN applications, the design needs to keep executables
compact for all these applications. To address this challenge,
the ReLog compiler generates the executable by translating the
constructs of a program (i.e., predicates, variables, constants, etc.)
into internal representations including their names and special
attributes. Therefore, the size of the executable is only determined
by the scale of the application program. Since ReLog programs are
usually concise, this design works well for WSN applications.

There are two challenges to reduce the size of delta. (1) The
first challenge rises from changes of system-generated names.
Predicates have system-generated names in the executable. For
the same predicate in two programs, the change of the predicate’s
system-generated name often incurs a large range of differences
between the two executables. To reduce these differences, the
compiler uses SGN-based compiling to ensure the same predicate
has the same system-generated name in different executables.
(2) The second challenge lies in code shift. Updating a program
may incur severe code shift in the executable. To address this
challenge, the ReLog compiler first divides the executable into
several lists. Changes in one list will not incur code shift in other
lists. In addition, it also introduces executable rearrangement to pin
down the unchanged part of the executable in the original location.

We now give an overview of the ReLog compiler as shown in
Fig. 2. The compiler contains three components including a lexical
analyzer and a syntax parser, an executable generator, and a delta
generator. If reprogramming aims to deploy a new application,
the compiler will compile the new program into the executable
directly. Otherwise, the compiler will generate a delta according
to executables of the current and updated programs. We discuss
these two tasks in detail as follows.
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Fig. 2. Overview of the ReLog compiler.
Fig. 3. Illustration of the executable.
5.1. Executable design

Fig. 3 illustrates fragments of the executable for the program in
Listing 1.4 Similar to the program, the executable mainly contains
three parts including predicate, clause, and shell.

5.1.1. Predicate
The predicate part has only one list which is shown in Fig. 3(a).

In this list, each predicate has an item which records its name,
attribute, and statement index (indexst ). The attribute is used
to specify the fact management policy. It is stored with a 8-bit
integer. The first 3 bits indicate the type of the attribute, while
the last 5 bits indicate the timer’s ID if necessary. The indexst
of a predicate indicates indexes of the shell statements which
contain fact generation events of this predicate. We use a 16-bit
bitmap to represent the indexst of a predicate. Specifically, the ith
bit represents the ith shell statement, and value 1 represents the
shell statement which contains the fact generation event of this
predicate. For example, the indexst value of the predicate message
is 0000 0000 0000 0100, which means the third shell statement

4 For ease of understanding, we do not use internal representations (pure
integers) in Fig. 3.
(line 18 of the program in Listing 1) contains the fact generation
event of message. Whenever a new fact of message is generated,
actions in this shell statement will be executed.

5.1.2. Clause
The clause part typically contains a fact token list and a

rule token list as shown in Fig. 3(b). The fact token list records
types and names of elements of each fact. For example, the fact
address(sys_nodeID)has twoelements including apredicate named
address and a system-defined string of sys_nodeID.

The rule token list records types, names, and lengths of
elements of each rule. The first two fields are the same as that of
the fact token list. An exception is that a predicate in the rule token
list may have two types including the predicate and the predicatep.
The latter one indicates the type of a predicate with the @passive
attribute. The third field (length) of an element specifies its scope
in the syntax. For example, the length of a variable or a constant is
1, while the length of a predicate or a function name should include
lengths of all the parameters. Different from the fact token list, the
rule token list introduces a separator named EoR (end of rule) at the
end of each rule to separate rules. With length attributes and EoR
separators, the VM can restore the syntax structure of each rule
efficiently.
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5.1.3. Shell
The shell part includes an action token list and at most two

event lists as shown in Fig. 3(c). In the timer event list, each timer
has an item which records its name, parameters, and statement
index (indexst ). The first two parameters (interval1 and interval2)
specify the interval value of a timer. If values of these two
parameters are equal, they represent a fixed interval. Otherwise,
they represent the lower and upper bounds of a random interval,
respectively. The third parameter (count) specifies the number of
times a timer will fire. The sys_infinity value indicates that a timer
will fire continuously. The indexst of a timer indicates indexes of
the shell statements which contain actions to be executed if the
timer fires. Themessage receiving event list recordsmessage types
and statement indexes (indexst ) of messages. Each item of this list
indicates indexes of the shell statements which contain actions
to be executed when a certain type of message is received. Note
that statement indexes in these two lists are represented by 16-bit
integers just as which in the predicate list.

The action token list records types, names, and optional
arguments of elements of each action. Similar to the rule token list,
the action token list uses a separator named EoS (end of statement)
to separate actions of different statements. Another special
separator named SoS (suspension of statement) is introduced after
each sense function. It will suspend execution of the statement
until the sensing value is returned.

We propose several optimizations in the ReLog compiler to
reduce the code size of the shell part. (1) It deletes the boot
event list by making actions triggered by the boot event be at
the beginning of the action token list. In addition, it deletes the
fact generation event list and merges its content (i.e., statement
indexes of predicates) to the predicate list. (2) It removes the length
field in the action token list. This is because actions in the shell part
only have parameters of variable, constant, and built-in function.
The VM does not need the length of element to restore the syntax
structure. (3) It moves parameters of timers from the action token
list to the timer event list. This choice can reduce the space for
storing these parameters5 and share parameters of each timer to
all actions in the action token list. (4) It compresses some tokens in
the action token list by adding the field of argument. For example,
we can use one token ‘Function sense thermometer ’ to represent
the sense function and its parameter. Although some elements
(e.g., variables, constants) have no argument, the compression can
often reduce the size of the action token list since compressible
actions and functions occur frequently in ReLog programs.

5.2. Delta generation

The ReLog compiler will generate deltas if reprogramming aims
to update existing applications. The delta generation contains
three important steps including SGN-based compiling, executable
rearrangement, and list-level comparison.

5.2.1. SGN-based compiling
In ReLog programs, a predicate may appear in all of the

predicate part, the clause part, and the shell part. This implies that
any change in the predicate’s system-generated name may incur a
large range of modifications in the executable.

The traditional compiling cannot guarantee to assign the same
system-generated name to a predicate which appears in both the
current and the updated programs. We use Fig. 4(a) to illustrate
this issue. Suppose the current program has three predicates

5 This is because the timer event list does not need to record types and names of
these parameters.
of predicate1, predicate2, and predicate3. The system-generated
names of these predicates are p1, p2, and p3, respectively. If the
updated program deletes predicate1 and adds a new predicate of
predicate4, the traditional compiling will assign the names of p1,
p2, p3 to the predicates of predicate2, predicate3, and predicate4,
respectively. As a result, the same predicates (predicate2 and
predicate3) have different system-generated names in executables
of the two programs.

To address this problem, we introduce the SGN-based compil-
ing to compile different versions of an application program. In par-
ticular, when compiling a new application program, the compiler
creates a global SGN list which contains mappings of predicates
in the program and theirs system-generated names in the exe-
cutable. When compiling an updated version of the program, the
compiler searches the global SGN list before assigning a name to
a predicate. If the list has recorded the predicate, the compiler as-
signs the system-generated name in the list to the predicate. Oth-
erwise, the compiler first generates a new name different from all
the names in the list and assigns this name to the predicate. After
that, the compiler updates the global SGN list by adding a map-
ping of this predicate and its system-generated name. As a result,
the compiler can guarantee that the same predicate has the same
system-generated name in executables of different versions of an
application program. Fig. 4(b) gives an example of the SGN-based
compiling. In this example, the compiler searches the global SGN
list and assigns p2 and p3 to predicates predicate2 and predicate3,
respectively. Since there is no record of predicate4 in the list, the
compiler generates a new name p4 (different from all the system-
generated names in the list) and assigns it to predicate4. After that,
the compiler updates the global SGN list by adding predicate4 and
its system-generated name p4 to the list.

5.2.2. Executable rearrangement
Modifying a program may incur severe code shift in the rule

token list and the action token list. The code shift often leads to
a large range of differences between executables. We introduce
executable rearrangement to address this issue and use the rule
token list as an example to illustrate this method.

For rule token lists (Lcurrent and Lupdated) of the two executables,
executable rearrangement operates in the following steps. (1) It
marks the unchanged rules in Lupdated by comparing Lcurrent and
Lupdated. (2) For these unchanged rules, it rearranges them in
Lupdated according to their locations in Lcurrent . This rearrangement
often causes discrete blocks of free space in Lupdated. (3) For other
(changed) rules, it rearranges them with these free blocks by
following the best-fit principle. That means it places each rule in
the smallest block in which the rule will fit. If there exists any
rule failing in the allocation, the compiler gives up the executable
rearrangement.

An illustrated example is shown in Fig. 5. The current program
in the example has three rules of rule1, rule2, and rule3, while the
updated programmodifies rule1, deletes rule2, and adds a new rule
of rule4. In the initial arrangement of the rules in Lupdated, rule3
shifts due to the expansion of rule1 and the deletion of rule2 as
shown in Fig. 5(a). In the optimized arrangement, the executable
rearrangement keeps the location of rule3 in Lupdated be the same as
that in Lcurrent . As a result, it solves the code shift problem as shown
in Fig. 5(b).

5.2.3. List-level comparison
The ReLog compiler generates a delta by comparing lists in

the old and new executables.6 The delta usually consists of a

6 We do not compare fact token lists since the fact token list is quite dynamic
during the execution. Instead, we just replace the current fact token lists on sensors
with the new one.
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Fig. 4. Illustration of traditional compiling and SGN-based compiling.
Fig. 5. Illustration of executable rearrangement.
header and several segments. The header contains information of
the program’s version and the length of the delta. Each segment
consists of a preamble as well as reconstructing instructions (and
their data). The preamble indicates the objective list, while the
reconstructing instructions are used to update the list.

The compiler uses the diff algorithm to generate reconstructing
instructions of each list. These instructions have the uniform form
of ⟨type, indexstart , indexend⟩. There are three types of instructions
including add, change, and remove. The first two are used for
adding new items to a list and changing the current items of a list,
respectively. Following these instructions in a segment are their
required data. The last type of instructions is used for removing
current items from a list. Reconstructing instructions generated
by diff are arranged reversely in a segment. This arrangement
guarantees that execution of the current instruction will not affect
indexes in unexecuted instructions.

6. Virtual machine

The ReLogVMaims to improve the runtime efficiency. There are
three challenges we are facing in our design. (1) The first challenge
rises from the inefficient data locating process. To reduce the
size, the executable generated by the compiler contains only the
most necessary information. This feature makes the data locating
process full of list traversing operations, which incurs significant
overhead. To address this challenge, we choose to optimize the
executable by adding additional fields and lists to build links
before execution. These links can help the execution process to
locate data much more efficiently. (2) The second challenge lies
in the unnecessary rule evaluations. The VM adopts a generic
reasoner which has the complete logic for evaluating rules. This
choice can reduce the size of executable since no logic of the rule
evaluation is required in the executable. However, it may incur
some unnecessary rule evaluations since the reasoning process
is not optimized for any specific application. To address this
challenge, we introduce program-directed reasoning which allows
programmers to provide some directions for the reasoner. With
these directions, the reasoner can customize the reasoning process
to eliminate unnecessary rule evaluations. (3) The third challenge
lies in the inefficient predefined payloads. Since payloads of WSN
applications are unpredictable, the VM has to provide predefined
payloads which are long enough to satisfy different applications.
This choice may lead to idle fields in the predefined payloads for
some applications. Therefore, the VM introduces adaptive payload
which can remove the idle fields at runtime according to the
executing application’s requirement.

Fig. 6 gives an overview of the ReLog VM. The VM can be
divided into two parts according to their functions. (1) The
first part contains two components including an executable
builder and an executable optimizer. They are used to provide
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Fig. 6. Overview of the ReLog virtual machine.
optimized executables for the VM. (2) The second part consists
of a configurator and an interpreter. They are responsible for
running the optimized executables. We give detailed discussions
of important components in these two parts as follows.

6.1. Executable optimizer

With the original executable, the VM has to locate data in lists
through inefficient traversing operations. To address this problem,
the executable optimizer builds links in the executable by adding
additional fields and lists. These links can help the VM to locate
data through efficient addressing operations. Fig. 7 illustrates the
fragment of optimizations on the executable in Fig. 3. We give
detailed explanations of these optimizations as follows.

During the rule evaluation, the reasoner needs to find out the
facts of a predicate. With the original executable, the reasoner
has to traverse the fact token list to locate these facts. To reduce
the overhead, (1) the executable optimizer first adds a fact list
to the executable. The fact list contains two fields: the index field
indicates the location of a fact in the fact token list, while the next
field is the index of the next fact of the same predicate in this list.
After that, (2) the executable optimizer adds a new field of indexf
to the predicate list. The indexf of a predicate indicates the index of
the predicate’s first fact in the fact list. With these optimizations,
the reasoner can locate all facts of a predicate in the fact token list
efficiently. For example, the predicate seqNum has a fact starting at
the index of 3 in the fact token list. The reasoner can locate the fact
using only twice addressing operations.

When a new fact comes, the reasoner needs to find out the
rules to evaluate. With the original executable, the reasoner has to
traverse the rule token list to locate the rules whose bodies contain
the predicate associated with the fact. To reduce the overhead,
(1) the executable optimizer first adds a rule list to the executable.
The ith item of this list indicates the starting index of the ith rule
in the rule token list. After that, (2) a new field named indexr is
added to the predicate list. The indexr of a predicate (represented
by a 16-bit bitmap) indicates indexes of items in the rule list. The ith
bit represents the ith item and value 1 represents the target item.
With these optimizations, the reasoner can locate the rules to be
evaluated in the rule token list efficiently when a fact comes. For
example, a new fact of the predicate seqNumwill trigger evaluation
of the rule starting at the index of 10 in the rule token list. With the
optimized executable, the reasoner can locate this rule using only
twice addressing operations.

When a new fact is generated, the executor needs to find out
the shell statements to execute. With the original executable, the
executor needs to traverse the action token list to locate these
statements. To reduce the overhead, (1) the executable optimizer
first adds a statement list to the executable. The ith item of this list
indicates the starting index of the ith shell statement in the action
token list. Meanwhile, (2) the indexst of a predicate (represented
by a 16-bit bitmap) changes to indicate indexes of items in the
statement list. The ith bit represents the ith item and value 1
represents the target item. With these optimizations, the executor
can locate shell statements in the action token list efficiently when
a new fact is generated. For example, a newly generated fact of
the predicatemessagewill trigger execution of the shell statement
starting at the index of 7 in the action token list.With the optimized
executable, the executor can locate the statement using only twice
addressing operations.

6.2. Interpreter

The optimized executable will then be sent to the interpreter to
execute. As shown in Fig. 8, the interpreter consists of a reasoner
and an executor.

The reasoner contains two components including an inference
engine and a fact manager. The inference engine evaluates rules
using the forward chaining method. This method starts the
evaluation of a rule from existing facts to extract new facts until
no new fact can be derived. Besides managing (i.e., inserting,
replacing, and deleting) facts, the fact manager has two additional
tasks. (1) It triggers the inference engine to evaluate rules
according to newly generated facts and user-provided directions.
(2) It calls the event handler to deal with fact generation events
according to facts derived by the inference engine.

The executor consists of an event handler and an action
executor. The event handler deals with four types of events
including application booting, timer firing, message receiving, and
fact generation. It triggers the action executor to execute particular
actions according to different events. The action executor is
responsible for executing various actions including calling the fact
manager to process new facts.

We discuss important technical details of the interpreter as
follows.

6.2.1. Execution mechanism
The execution process of a WSN application may be often

interrupted by various events. It is not trivial for the interpreter
to correctly deal with these interruptions. For example, suppose
the reasoner needs to evaluate a rule q(X):- p(X, Y ), X == Y
with a fact p(3, 7). It first needs to assign integers 3 and 7 to the
variables X and Y of the atom p(X, Y ), respectively. After assigning
3 to the variable X , the reasoner is interrupted by a message
receiving event. The event handling result may replace the current
fact p(3, 7)with a new fact p(7, 3). Then the reasoner continues the
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Fig. 7. Illustration of optimizing the executable through building links.
Fig. 8. Architecture of the interpreter.
evaluation with the new fact p(7, 3) and assigns 3 to the variable
Y . Since the values of X and Y are equal, an erroneous fact q(3) is
derived from this rule evaluation.

To address this problem, the interpreter leverages on the task
mechanism to organize the execution. This mechanism has two
important features. (1) Tasks are scheduled on the FIFO basis. A
task is executed to the completion before another runs. (2) Events
have higher priority than tasks. They can interrupt the execution
of tasks. With this mechanism, the interpreter uses tasks
to encapsulate rule evaluations, fact operations, and action
executions. Events can be responded instantly since they can
interrupt the execution of tasks. However, the interpreter will
encapsulate actions triggered by these events as new tasks rather
than executing actions immediately.

With the task mechanism, the fact replacing operation in the
above example will not be executed during the rule evaluation.
Therefore, this mechanism makes the execution process correct.

6.2.2. Program-directed reasoning
The reasoner may incur some unnecessary rule evaluations

during the reasoning process. For example, suppose we have a rule
min(X) :- value(X),min(Y ), X < Y for finding theminimum value
and a unique fact min(5) indicating the current minimum value.
If a fact value(3) comes, the reasoner needs to evaluate the rule
and a new fact min(3) will be derived. This new fact will trigger
the reasoner to evaluate the rule again. However, it is obvious that
the rule evaluation with the facts of value(3) and min(3) will not
generate a new fact. Therefore, this rule evaluation is unnecessary.

To address this problem, users can provide some directions
in the program for the reasoner to optimize the reasoning
process. Particularly, they can mark any predicate in the body
of a rule with the @passive attribute to prevent unnecessary
or unwanted evaluations. This attribute will stop the arrival of
new facts of a predicate to trigger the evaluation of the rule.
For example, we can add the @passive attribute to the rule as
min(X) :- value(X),min(Y )@passive, X < Y . In this case, the new
fact min(3) will not trigger the rule evaluation.

6.2.3. Adaptive payload
WSN applications usually have different requirements (i.e., for-

mats and lengths) on payloads. Since these requirements are not
predictable, the interpreter cannot provide payloads for appli-
cations in advance. A possible solution is to provide predefined
payloadswith common formats and sufficient space (e.g., themax-
imum length of payload). Therefore, we provide two predefined
payloads. The first one contains 12 data fields of 16-bit integer.
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Fig. 9. Sensor network of the iLab application.
It can satisfy requirements of most of WSN applications such as
transmitting sensing data, sequence numbers and node addresses.
The second one contains 6 data fields of 32-bit integer. It can deal
with special requirements of some applications. Message types are
used to differentiate them. The message types from 0–99 indicate
the first payload, while the message types from 100–199 indicate
the second one.

Although this solution works, it often leads to many idle fields
in the predefined payloads. For example, payload in the send action
in Listing 1 uses only three fields. That meansmost of the fields are
useless andwaste considerable energy for transmission. To address
this problem, the interpreter introduces the adaptive payload
which can customize predefinedpayloads for a specific application.
Particularly, it can remove idle fields in the predefined payloads
at runtime according to the applications’ requirements. With this
method, the interpreter can provide appropriate payloads for
applications.

7. Evaluation

We follows the goal-question-metric (GQM) approach [31] to
evaluate the performance of ReLog. The GQM approach conducts
experiments from three layers. The conception layer (Goal)
specifies goals of the experiments, the operation layer (Question)
describes questions to achieve the goals, while the quantification
layer (Metric) includes metrics to answer the questions.

The goal of ReLog is to support the efficient reprogramming
of WSN platform. To achieve this goal, we first need to answer
the following two questions. Q1, how does ReLog affect the
reprogramming efficiency when deploying new applications?
Q2, how does ReLog affect the reprogramming efficiency when
updating existing applications? Meanwhile, since ReLog is a VM-
based approach, the interpretive execution may incur side-effects
on energy consumption and application results. Therefore, we also
need to answer the third question. Q3, how does ReLog affect the
execution of WSN applications?

To answer Q1, we first measure the energy consumption (M1)
and the latency (M2) of disseminating the complete executable.
These two metrics directly show the reprogramming efficiency of
deploying new applications. In addition, we also measure the scale
of application program (M3) as well as the size of executable (M4)
since these metrics strongly affect the reprogramming efficiency
of deploying new applications. Note that some existing efforts use
lines of code to quantify the metric M3. However, a host of factors
can influence M3 such as programming paradigm, abstraction
level, and even programmers’ skill. This simple quantification
cannot exhibit these factors sufficiently. Instead, we choose to give
complete programs to represent this metric.

To answer Q2, we first measure the energy consumption (M1)
and the latency (M2) of disseminating the delta. These twometrics
directly show the reprogramming efficiency of updating existing
applications. In addition, we also measure the scale of program
modification (M5) as well as the size of delta (M6). These two
metrics strongly affect the reprogramming efficiency of updating
existing applications. We choose to give fragments containing
modifications of application programs to represent the metric M5.

To answer Q3, we first measure the CPU energy consumption
(M7) of executing application code. We then measure the lifetime
of sensors (M8) in practice by running applications on them until
they run out of batteries. These two metrics reflect the energy
efficiency of code execution. In addition, we also measure the total
packet reception ratio of sensors (M9) to demonstrate the results
of code execution of a data collection application.

We organize experimental results of these metrics into four
parts including program (containing results of M3 and M5),
script (containing results of M4 and M6), disseminating process
(containing results of M1 and M2), and application execution
(containing results of M7, M8, and M9).

7.1. Application scenario and reprogramming cases

To evaluate the performance of ReLog, we have implemented
the approach and evaluated it with respect to the natural software
evolution of an intelligent lab application, named iLab. iLab
aims at automatically creating and maintaining a comfortable
and green working environment. It detects indoor environment
such as brightness, temperature and air quality, and adjusts
the environment to satisfy customized user requirements and
promotes healthy and greenworking style (e.g., pulling off curtains
rather than switching lights on). One key component of this
application is the sensor network platform which collects indoor
environment information. The platform consists of four types of
sensors as shown in Fig. 9. 16 active infrared sensors (AI sensors)
detectwhether seats are being occupied.7 16 temperature and light
intensity sensors (TL sensors) provide temperature and brightness
values around seats. Two CO2 sensors as well as a HCHO and PM2.5
sensor provide indoor air quality.

We use the programs on AI sensors as an example to
demonstrate the reprogramming cases. These cases consider an

7 Note that each AI sensor has two active infrared sensing devices.
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original program and a series of updates that the program had
actually gone through during refinement of the application.
Case 1: The original program requires the AI sensors to send
sensing values to the base station every 5 s.
Case 2: The original program is inefficient since the application
only concerns data about the occupied seats. To improve the
efficiency, a new program is created to request each AI sensor to
send back its sensing values only if the monitored seat is occupied.
Case 3: In the previous program, an AI sensor may report false
states of a seat accidentally (e.g., due to people passing). To address
this issue, a new program requires each AI sensor to calculate the
state of a seat according to three consecutive sensing values. Only
the three equivalent sensing values can derive a stable state of a
seat. To further improve the efficiency, an AI sensor is allowed to
send back the stable state of a seat only if the state changes.
Case 4: Sensing values of TL sensors are useless if the seats are not
being used. To address this problem, a new program requires each
AI sensor to send the changed state of a seat to its associated TL
sensor. With this state, a TL sensor can then decide when to send
back its sensing values.

Case 1 presents the original program in iLab. Cases 2 and
4 represent small and moderate updates, respectively. Case 3
represents a huge update which can be seen as deploying a new
program.

7.2. Program

We illustrate conciseness and ease-of-modification of ReLog
programs using the four reprogramming cases. Specifically, we
use the programs of cases 1 and 3 to demonstrate the scale of
complete ReLog programs when dealing with various application
requirements. We then use the programs of cases 2 and 4 to
demonstrate the scale of program modifications when addressing
different types of updates.

7.2.1. Scale of application program

Listing 2 The ReLog program of case 1
1: # sys_dutyCycle = 10
2:
3: Predicate:
4: msg@unique. infrared1@volatile:t1. infrared2@volatile:t1.
5:
6: Clause:
7: msg(sys_nodeID, 0, 0, 0).
8: msg(Addr, X, Y, N+1):- infrared1(X)@passive, infrared2(Y),

msg(Addr, X1, Y1, N)@passive.
9:

10: Shell:
11: boot() → setTimerMilli(t1, 5000, sys_infinity).
12: t1() → insert(infrared1(sense(sys_GPIO2))), insert(infrared2(sense

(sys_GPIO3))).
13: generate(msg(Addr, X, Y, N)) → send(1, <Addr, X, Y, N>).

Listing 2 gives the ReLog program of case 1 which has simple
application logic. In this program, a sensor gets sensing values from
GPIO interfaces every 5 s (lines 11 and 12). These sensing values
are used to generate a new message with the sensor’s ID and an
increased sequence number (line 8). The sensor then sends the new
message to the base station (line 13).

Listing 3 gives the ReLog program of case 3 which has more
complex application logic. For an active infrared sensing device, the
sensor gets the sensing value every 5 s (lines 20 and 21). The sens-
ing value is then comparedwith the current state of the seat. If they
indicate the same state, the counter decreases (line 9). Otherwise,
the sensor initializes the current state with the sensing value (line
10). If the countering number is equal to 0 and the current state
Listing 3 The ReLog program of case 3
1: # sys_dutyCycle = 10
2:
3: Predicate:
4: infrared1@volatile:t1. cntState1@unique. state1@unique.

msg1@unique.
5: infrared2@volatile:t1. cntState2@unique. state2@unique.

msg2@unique.
6:
7: Clause:
8: cntState1(3, 0). state1(0).
9: cntState1(N-1, Sc) :- cntState1(N, Sc)@passive, infrared1(Sr), Sc == Sr.

10: cntState1(3, Sr) :- cntState1(N, Sc)@passive, infrared1(Sr), Sc != Sr.
11: state1(Sc) :- cntState1(N, Sc), N == 0, state1(S)@passive, S != Sc.
12: msg1(sys_nodeID, 1, S) :- state1(S).
13: cntState2(3, 0). state2(0).
14: cntState2(N-1, Sc) :- cntState2(N, Sc)@passive, infrared2(Sr), Sc == Sr.
15: cntState2(3, Sr) :- cntState2(N, Sc)@passive, infrared2(Sr), Sc != Sr.
16: state2(Sc) :- cntState2(N, Sc), N == 0, state2(S)@passive, S != Sc.
17: msg2(sys_nodeID, 2, S) :- state2(S).
18:
19: Shell:
20: boot() → setTimerMilli(t1, 5000, sys_infinity).
21: t1() → insert(infrared1(sense(sys_GPIO2)), infrared2(sense(sys_GPIO3))).
22: generate(msg1(Addr, ID, S)) → insert(cntState1(3, S)), send(1, <Addr, ID,

S>).
23: generate(msg2(Addr, ID, S)) → insert(cntState2(3, S)), send(1, <Addr, ID,

S>).

is different from the stable state, the stable state changes its value
to which of the current state (line 11). The changed state is used
to generate a new message with IDs of the sensor and the sensing
device (line 12). The sensor then sends themessage to the base sta-
tion and initializes the counter of the current state (line 22). Similar
steps (lines 14–17, 23) are applied to the other sensing device.

From these two programs, we find that both of them are almost
line-by-line translations of application requirements. They directly
map application requirements into high-level descriptions with-
out involving system-level implementation details. The results in-
dicate that the ReLog language is able to help users to get concises
programs.

7.2.2. Scale of program modification

Listing 4Modifications in the ReLog program of case 2
1: ...
2: Clause:
3: ...
4: msg(Addr, 1, V, N+1):- infrared1(V), msg(Addr, ID, V1, N)@passive, V == 1.
5: msg(Addr, 2, V, N+1):- infrared2(V), msg(Addr, ID, V2, N)@passive, V == 1.
6: ...

Listing 4 shows modifications in the program of case 2.
According to the newapplication requirement in case 2,we replace
the original rule (line 8 in Listing 2)with two new rules (lines 4 and
5) in the program. These new rules indicate that sensing values can
be used to generatemessages only if themonitored seats are being
used (i.e., sensing values equal to 1).

Listing 5 givesmodifications in the programof case 4. According
to the new application requirement in case 4, we modify the
boot event statement and add two predicates as well as a rule
to calculate the modulus of the sensor’s ID (lines 13, 3, 6). This
modulus is used to calculate addresses of the sensor’s associated
TL sensors when generating messages (lines 8 and 10). The sensor
then uses these addresses to send themessages to its associated TL
sensors (lines 15 and 16).

These two fragments show that it is easy to modify ReLog
programs to satisfy new application requirements. Further,
changes of application requirements will not incur modifications
of irrelevant parts of the programs. The results provide compelling
evidence that the ReLog language naturally supports loosely
coupled programs which can be modified easily.
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Listing 5 Modifications in the ReLog program of case 4
1: ...
2: Predicate:
3: address. modulus. ...
4:
5: Clause:
6: modulus(NodeID % 2) :- address(NodeID).
7: ...
8: msg1(sys_nodeID - 1 - Mod, S) :- state1(S), modulus(Mod)@passive.
9: ...

10: msg2(sys_nodeID + 2 - Mod, S) :- state2(S), modulus(Mod)@passive.
11:
12: Shell:
13: boot()→ setTimerMilli(t1, 5000, sys_infinity), insert(address(sys_nodeID)).

14: ...
15: generate(msg1(Addr, S)) → insert(cntState1(3, S)), send(Addr, 1, <Addr,

S>).
16: generate(msg2(Addr, S)) → insert(cntState2(3, S)), send(Addr, 1, <Addr,

S>).

7.3. Script

Wemeasure the sizes of scripts of all the reprogramming cases.
Particularly, we measure the sizes of executables of all the four
cases aswell as the sizes of deltas of the last three cases.We choose
Darjeeling [4] for comparison since it also provides a generic VM.

7.3.1. Size of executable
Fig. 10 shows the sizes of executables of the four cases. The

results show that ReLog reduces the script size by 61.4%–83.2%
compared to Darjeeling [4]. This is because the executables of
ReLog only contain high-level intermediate representations with
no machine-level instruction. The size of the executable is only
determined by the scale of its source program.

7.3.2. Size of delta
Fig. 11 shows the sizes of deltas in the last three cases.

Compared to the complete executables, the deltas further reduce
the script size by 43.4%, 22.7%, and 49.6% of the three cases,
respectively. These results show that the adoption of incremental
reprogramming can achieve significant reduction on the script size
for small and moderate updates (cases 2 and 4). Additionally, it
also works well even for the huge update (case 3). The ReLog
compiler takes several optimizations during the delta generation.
To evaluate effects of these optimizations, Fig. 11 also gives the
sizes of deltas without these optimizations. The results show that
the optimizations reduce the size of delta by 9.3% and 30.4% of
cases 3 and 4, respectively. They did not work for case 2 for the
following two reasons. (1) Predicates in the program of case 2 are
unchanged, so as their system-generated names. (2) There is no
need to rearrange rule tokens in the executable since rules in the
program of case 2 are totally new.

7.4. Dissemination process

We measure energy consumption and latencies of disseminat-
ing scripts of the four cases via simulations. These simulations
consider different data dissemination protocols (T2C [39] and Mc-
Torrent [14]) as well as different sensor networks (i.e., grids of
5×10, 5×20, and 5×30 nodes). We alsomeasure the latencies of
disseminating these scripts on the iLab sensor network platform.

The scripts are first divided into a number of pages. Each page
includes 10 packets and the size of payload in each packet is 25
bytes. With these settings, the scripts in Darjeeling need 4, 5, 6,
and 6 pages for the four cases, respectively, while the scripts in
ReLog need 1, 1, 2, and 2 pages, respectively.Weuse the Castalia [3]
Fig. 10. Sizes of executables in the four reprogramming cases.

Fig. 11. Sizes of deltas in the last three reprogramming cases.

simulator since it provides realistic wireless channels and radio
models as well as realistic node behaviors such as clock drift.

To better show the experimental results, we provide confidence
intervals for each of the average values. All these confidence
intervals are shown with 90% confidence level. This confidence
level is also used in T2C [39] and McTorrent [14].

7.4.1. Energy consumption of dissemination process
Fig. 12 shows the total energy consumption of disseminating

the scripts in grids of 50, 100, and 150 nodes with T2C.
Compared toDarjeeling, ReLog reduces the energy consumption by
28.66%–36.09%, 23.55%–28.37%, and 17.52%–24.83%, respectively.
Fig. 13 shows the total energy consumption of disseminating the
scripts in the three grids with McTorrent. Compared to Darjeeling,
ReLog also reduces the energy consumption by 38.73%–46.18%,
19.54%–28.51%, and 16.53%–23.85%, respectively. These results
show that the smaller scripts of ReLog have better performance on
the energy consumption of the dissemination processes.

7.4.2. Latency of dissemination process
Fig. 14 shows the latencies of disseminating the scripts in grids

of 50, 100, and 150 nodes with T2C. Compared to Darjeeling,
ReLog reduces the latency by 34.47%–43.98%, 31.65%–38.59%,
and 20.66%–32.84%, respectively. Fig. 15 shows the latencies of
disseminating the scripts in the three grids with McTorrent.
Compared to Darjeeling, ReLog also reduces the latency by
38.69%–47.18%, 19.54%–25.89%, and 16.55%–23.34%, respectively.
Fig. 16 shows the latencies of disseminating the scripts to the
AI sensors of the iLab sensor network platform. We only use
T2C in this experiment since it supports the target-specified
disseminationwhich can disseminate scripts to the AI sensors only.
The results show that ReLog reduces the latency by 46.52%–57.5%
compared to Darjeeling. These results suggest that the smaller
scripts of ReLog can also reduce the latencies of the dissemination
processes.

7.5. Application execution

Wemeasure the CPU energy consumption by running programs
of the four cases through simulations. We choose the Avrora [34]
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Fig. 12. Total energy consumption of disseminating the scripts in various networks with T2C.
Fig. 13. Total energy consumption of disseminating the scripts in various networks with McTorrent.
Fig. 14. Latencies of disseminating the scripts in various networks with T2C.
Fig. 15. Latencies of disseminating the scripts in various networks with McTorrent.
Fig. 16. Latencies of disseminating the scripts to the active infrared sensors.
simulator since it can provide accurate statistic data in detail.
We measure the lifetime of sensors by counting the number of
their transmitted packets before their batteries are exhausted. We
choose the programof case 4 since it hasmore complex application
logic. We also measure the total packet reception ratio of the AI
sensors using the program of case 1. We choose TinyOS [20] for
comparison in these experiments since it can provide native code
which has high execution efficiency.

7.5.1. CPU energy consumption
We make programs of the four cases send messages directly

(not through the routing protocol) in each sampling slot to get
comparable results. We run each simulation for 1000, 2000, and



146 X. Zhu et al. / J. Parallel Distrib. Comput. 102 (2017) 132–148
Fig. 17. Total packet reception ratios of different slots.

3000 s. Fig. 18 shows the CPU energy consumption of TinyOS [20]
and ReLog of the four cases for 2000 s. Compared to TinyOS, ReLog
increases the CPU energy consumption by 1.74%, 2.23%, 3.76%, and
4.08%, respectively. The results show that the additional overhead
incurred by interpretive execution is acceptable. We obtain much
similar results for the other two experiments running for 1000 and
3000 s.

7.5.2. Sensor lifetime
We use two telosB sensors (sensor 1 and sensor 2) and each

of them equips a lithium battery with a capacity of 750 mAh. To
analyze the impact of battery’s lifetime, the battery of sensor 1
is almost new while the battery of sensor 2 has been used for
nearly 11 months. For each sensor, we repeat the experiments
four times for TinyOS and ReLog, respectively. We alternate the
experiments of TinyOS and ReLog on each sensor to achieve fair
results. Fig. 19 gives the number of transmitted packets of the two
sensors. For sensors 1 and 2, the number of transmitted packets
of ReLog is 97.66%–98.22% and 97.04%–98.31% of that of TinyOS,
respectively. The results suggest that the additional overhead of
VM is acceptable.
7.5.3. Packet collection ratio
We run the data collection application in the same period

of time of two consecutive working days and count the packet
reception ratios of different slots. Fig. 17 shows the packet
reception ratios of different slots of TinyOS and ReLog. The results
show that TinyOS and ReLog perform nearly identically, with
absolute differences of less than 0.5%. An interesting phenomenon
is that the packet reception ratios of TinyOS and ReLog have
similar variations with time. This is because slots of working
hours (i.e., 9:00–11:00, 13:00–15:00, and 15:00–17:00) havemore
interference (mainly due to Wi-Fi devices) than which of other
hours (i.e., 7:00–9:00 and 11:00–13:00) in the lab.

8. Conclusions

This paper proposes ReLog, a systemic approach which aims to
better support efficient reprogramming of WSN platform. ReLog
consists of a programming language, a compiler, and a VM.
By inheriting the logical programming paradigm and providing
high-level programming abstractions, the ReLog language can
support concises programs with the loosely coupled structure.
With the specially designed executable and the optimized delta
generation, the compiler can significantly reduce the script size
in reprogramming cases of both deploying new applications and
updating existing applications. By optimizing the executable as
well as the execution process, the VM can efficiently diminish the
additional energy consumption incurred by interpretive execution.
We have implemented ReLog and evaluated it with respect to
real reprogramming cases. Experimental results show that ReLog
can significantly improve the reprogramming efficiency of WSN
platform.

For our futurework, we attempt to improve the flexibility of the
ReLog language by providing interfaces for user-defined functions.
The logical programming language is not well suited to some
tasks such as image processing and signal filtering. User-defined
functions facilitate users to implement these tasks with other
Fig. 18. CPU energy consumption in various states through simulation.
Fig. 19. Number of packets transmitted by two sensors.



X. Zhu et al. / J. Parallel Distrib. Comput. 102 (2017) 132–148 147
programming languages. Different from snlog [26], ReLog adds
these user-defined functions to the implementation of VM rather
than application programs. Therefore, the programs still keep both
conciseness and ease-of-modification features. A consequential
problem of the improvement is that the ReLog VM requires the
capability to update itself. In the future version of ReLog, we
plan to improve the ReLog VM by making it support loading and
registering user-defined functions dynamically.
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