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Abstract. Detecting object shape presents significant values to applica-
tions such as Virtual Reality, Augmented Reality and surveillance. Tra-
ditional solutions usually deploy camera on site and apply image process-
ing algorithms to obtain object shape. Wearable solutions require target
to wear some devices, and apply machine learning algorithms to train
and recognize object behaviors. The recent advances in Radio Frequency
(RF) technology offer a device-free solution to detect object shape, how-
ever a number of research challenges exist. This paper presents RF-Eye,
a novel RF-based system to detect object shape without training in in-
door environments. We design and implement Linear Frequency Mod-
ulated baseband signal, making it suitable for detecting object shape.
We also apply the narrow pulse signal reflections and Doppler Frequency
Shift to detect the full image of object shape. We implement RF-Eye on
a Universal Software Radio Peripheral device. Our experimental results
show that RF-Eye achieves 100% successful rate, and it performance is
reliable in complicated cases.
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1 Introduction

Detecting object shape such as human body in a device-free manner, also known
as transceiver-free, plays a significant role in applications such as Virtual Real-
ity (VR), Augmented Reality (AR) and surveillance. One of the most common
technology used for detecting objects shape is video due to its stability and
simplicity [11] [12] [14] [28] [31] [40]. However, video technique usually require
suitable light condition and the line-of-sight (LoS) from camera to object. Other-
wise, the object is hard to be isolated from the background. And it may therefore
result in failure of detecting object shape. Moreover, vision-based solutions in-
troduce an unavoidable problem of user privacy violation, especially in indoor
environment. Radio Frequency (RF) technology would help fill this shortfall in
demand. Although RF-based detection method is comparatively mature in an
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outdoor environment. It remains challenges in indoor environment where can
be complicated due to multi-path effect, i.e., wireless signals will be reflected,
refracted and scattered by indoor objects. Radar and Sonar systems [9] are able
to detect and capture the figure of inanimate object outdoors, e.g., planes. How-
ever, they operate at a very high frequency (i.e., millimeter or sub-millimeter
wave), requiring expensive equipment which can be bulky in size. It also requires
strong transmission power which it may be harmful to human health, making it
almost inapplicable in indoor environments.

The lower frequency RF-based signal will most likely to be chosen in in-
door environment. Most of the existing RF-based technologies in indoor can
only localize and track objects. Several recent attempts [32] [41] apply machine
learning algorithms to recognize human behaviors such as waving hand and
falling down. However, since these solutions leverage heavily on proper training,
and the training cost arises with environment or target changes. Dina Katabi et
al. [1] propose to capture human figure by designing a multi-antenna Frequency
Modulated Carrier Wave (FMCW) radio system. But the whole figure will be
stitched together from a number of segments, i.e., sub figures, requiring multiple
operations to combine partial segments to obtain the full image.

In this paper, we propose RF-Eye, an RF-based system to object shape de-
tection in indoor environments. In our design, we face three major challenges.

First, commodity wireless signal such as WiFi is not suitable for detecting
object shape due to the limitation of its narrow bandwidth (i.e., 20MHz) [29].
Study shows that the image resolution depends much on bandwidth [29]. The
most straightforward way to improve the accuracy of object shape detection
is to deploy higher bandwidth wireless signal. However, indoor wireless radio
usually has limited bandwidth, hence it is tricky to design a wireless radio system
with bandwidth limitation. We implement Linear Frequency Modulated (LFM)
baseband signal on Universal Software Radio Peripheral (USRP) device operates
at 5.8GHz. The instantaneous frequency of this signal is a linear function of
time and the transmitted signal is a narrow pulse. As a result, both bandwidth
and time-width will be improved since they are determined by frequency- and
time-domain characteristics of the signal, respectively. Moreover, we leverage
Quadrature Amplitude Modulation (QAM) to expand the effective bandwidth
to 120MHz. Therefore, it is able to capture relatively clear object shape.

Second, existing methods [1] to detect object shape usually utilize image
mosaic. These approaches typically deploy multiple antennas where each antenna
is responsible of capturing a partial segment, and then combine all the segments
into the full image. However, the assembly process is error prone, and it often
results in assembling segments in wrong positions. Our design principle is to
obtain the full image one time to avoid such error. This task will become more
challenging with only one antenna. In RF-Eye, we use the Doppler frequency
change to achieve the full coverage of object with one antenna. Hence, it is able
to capture object shape in one time.

Third, indoor environments are suffered from multi-path phenomenon, which
means the signals indoors are easily reflected, refracted and scattered by indoor
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objects, making the signal at the receiver is the combination of signals along
multiple paths. We aim to apply one directional antenna with a narrow angle.
Thus, signals from other paths not existing in the angle area are easily filtered
out. It has advantages to reduce the effect of multi-path phenomenon, so as
to improve the results. Based on them, we use image processing algorithms to
obtain a more fine-grained object shape.

We implement RF-Eye on USRP device, and conduct extensive experiments
to evaluate system performance on different objects. Our results show that RF-
Eye is able to achieve 100% successful rate to detect object shape. Even for
complicate object such as human body, RF-Eye is able to obtain the shape.

In summary, this paper makes the following contributions.

– We present a novel low frequency RF-based system to detect object shape
in indoor environments without training.

– Our system is able to detect object shape in one go, avoiding the segment
combination problem and reducing multi-path effect. We use one directional
antenna instead of an antenna array to detect complex object shape based
on the narrow pulse signal reflections and Doppler frequency change caused
by object.

– We design Linear Frequency Modulated (LFM) baseband signal based on
USRP operates at 5.8GHz, which essentially leverages on QAM to expand
the effective bandwidth to 120MHz. We leverage image processing algorithm
to improve the results. Results show that RF-Eye is able to detect contoured
shapes of common indoor objects.

The rest of the paper is organized as follows. We first introduce the related
work. In Section 3, we give an overview of our system design and describe the
proposed algorithms. We present our implementation and experiments in Section
4. Finally, we conclude the paper and point out our future work in Section 5.

2 Background

In this section, we discuss various approaches of object shape detection. We
divide the related work into three categories as follows.

Camera-based Approach. Much work [11] [12] [14] [28] [31] [40] has been
done using various cameras, e.g., Multi-View cameras, Moving cameras, and
Time-of-Flight cameras, and they typically utilize image processing algorithms
to capture human figure. Kinect et al. [37] propose to detect human image by
integrating with some infrared sensors when the light is dim. They design a 2−D
head contour model and a 3 − D head surface model. However, this approach
is able to obtain coarse-grained human skeleton only. In general, camera-based
approaches have a limited range of line of sight, and also they do not work in
dark area. In addition, user privacy can be a big concern preventing them from
being widely adopted.

Device-based Approach. Some existing work requires to carry a device
by target. Their main purpose is to track the moving target or identify target
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behaviors [25] [27] [30] [33], rather than obtain target shape. Xsens MVN [27]
can track the motion of human full body using biomechanical models and sensor
fusion algorithms, but it requires the target to wear inertial and magnetic sensors.
The study in [30] can recognize human motion both indoors and outdoors. It
also requires the target to wear ultrasonic and inertial sensors on the garment.
Prakash et al. [25] measure three dimensional motion and orientation of the
target, but the target has to carry RFID passive tags.

Device-free Tracking and Behavior Identification. Several device-free
systems have been proposed to track or analyze target without the requirement of
carrying any device. E-eyes [33] is able to identify human activities in a device-
free manner using WiFi in indoor environments. The work in [38] proposes a
software-base system to obtain high resolution power delay profiles by splicing
the CSI measurements. The work in [2] [3] introduce a system called WiTrack,
which tracks a user’s indoor location by using wireless signal reflections from
human body, even when the user is not in line of sight. However, these systems
aim for tracking user location and activities, not target shape.

Radar and Related Systems. Existing objection imaging systems such as
radar, SAR, ISAR, X-ray, CT, MRI, B-scan [13] [19] [20] [21] [35] [36] [42] [43]
use a special equipment with bulky size and high cost. For example, Radar
systems [4] [6] [9] [43] are able to image the figure of inanimate object outdoors,
e.g., planes. However, they operate at a very high frequency (i.e., millimeter or
sub-millimeter wave), and use professional equipment which is very expensive
and big in size. Furthermore, it requires strong transmission power that it may
be harmful to human health, making it almost inapplicable indoors. X-ray and
CT although can detect human shape indoors, it is harmful to human body [26]
as well.

Device-free Target Shape Capturing Systems. Huang et al. [15] explore
the feasibility of imaging with Wi-Fi signal by leveraging the multipath prop-
agation method. This approach results in wireless signals light up the objects.
Then, the reflection of untagged objects is used for imaging. However, due to
the limitations of WiFi signal such as the narrow band property, their work can
only distinguish whether there is a target or not without imaging a rough pic-
ture. Dina et al. [1] propose an approach to capture the human’s coarse skeleton
figure when they stand behind a wall without wearing any device. Their system
firstly collects the reflection signal from the target, then catches the different
segments of human body parts. Finally, it stitches every part to form a whole
image. However, the target figure cannot be figured out in one go as the entire
target image is concatenated by several sub-images. How to assemble sub-images
correctly remains unsolved. Tyler et al. [24] propose to image low Radar Cross
Section (RCS) objects, fast moving objects in free-space and a human-shape ob-
ject behind a 10cm-thick solid concrete wall with an Ultra Wide Band (UWB)
Multiple-Input Multiple-Output (MIMO) phased array radar system. However,
it aims to track a moving human target, not capture human shape.
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Fig. 1: Design Overview

3 Methodology

In this section, we first point out the challenges of capturing target shape by
using RF-based technologies. We then introduce our solution to address each of
the challenges. We finally present the detail algorithms to implement our ideas.

3.1 Challenge

We discover two key challenges: 1) how to choose and implement radio signal,
making it applicable to capture target shape in indoor environments, and 2) how
to design an algorithm which is able to obtain fine-grained target shape in one
go.

Challenge 1 We first consider how to select radio signal. It is known that differ-
ent radio signals have different roles [29]. Only when high frequency wavelength
is comparable to the roughness of the surface, the human body becomes a scatter
as opposed to a reflector [5] [8] [16]. However, it is difficult and costly to apply
high frequency wave in indoor environments.

On the other hand, commodity WiFi signal is originally designed for effec-
tive data transmission by using specific modulation methods, e.g., Orthogonal
Frequency Division Multiplexing (OFDM) [38] [39]. Studies show that the effec-
tiveness of capturing target shape depends much on bandwidth [29]. Due to its
narrow bandwidth of WiFi, it is hence not suitable for capturing target shape.

Challenge 2 It is difficult to capture target shape using RF reflected signals.
Although human skeleton figure can be captured in [1], their system needs to
concatenate several sub-image to assembly the entire target image. We aim to
design a system which is able to obtain target shape in one go without training.

3.2 Our Design Principles

We now present the proposed design principles in this section.
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Fig. 2: LFM Signal

Linear Frequency Modulation According to signal and system theory [23],
the product of time-width and bandwidth is a constant. The range resolution
of capturing target shape depends on bandwidth B, which is (C/2B) (C is the
speed of light). The bandwidth of the signal is a constant. In order to achieve both
large time-width and bandwidth, we use Linear Frequency Modulation (LFM),
i.e., a pulse compression method [18] [34]. In LFM, the radio frequency will
increase with time. In order to expand the effective bandwidth, we also leverage
Quadrature Amplitude Modulation (QAM), which is an amplitude modulation
on two orthogonal carriers.

Doppler Frequency Shift When LFM signal is transmitted, different parts
of the target will reflect the narrow pulse signal. Since target rotation/moving
will cause Doppler frequency shift, such changes can be used to capture target
shape. With Doppler effect, we are able to capture fine-grained target shape
with different states, provided the target rotates or moves during capturing. If
the target is moving, we can apply moving compensation to capture its shape.
If the target is static, we may move the antenna and apply a similar approach
to obtain its shape.

3.3 Design Overview

Figure 1 gives an overview of our system design. We first implement the LFM
signal, and each LFM pulse signal contains a number of sub-pulse signals. We
then leverage Quadrature Amplitude Modulation (QAM) to modulate the LFM
signal. QAM is an amplitude modulation on two orthogonal carriers. The quadra-
ture amplitude modulation signal has two carriers of the same frequency, but
the phase difference is 90 degrees. One signal is called I signal, which represents
in phase. Another signal is called Q signal, which represents orthogonal to I
signal. When the radio signal is transmitted, it will be reflected by the target
and received by the receiver. After demodulation by the receiver, we use Nyquist
sampling [29] on the base frequency signal to obtain IQ data. Finally, we design
our algorithm to obtain target shape.
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Fig. 3: Schematic of Range Sidelobes
Fig. 4: Basic Idea of Capturing Tar-
get Shape

3.4 Linear Frequency Modulated (LFM) Signal Implementation

In Linear Frequency Modulated (LFM) signal, the instantaneous frequency is a
linear function of time. The LFM signal S(t) can be represented as follows.

S(t) = rect(
t

T
)ej(2πf0t+πkt2) (1)

where t is the time variable, T is the total time length, k is the linear frequency
modulation parameter and f0 is the starting frequency, and its value is set to
5.68GHz.

Figure 2 depicts the LFM signal. We can see that the real and imaginary
parts of the signal function are both the oscillatory functions of time, and the
oscillation frequency increases gradually as the time increases. The signal pulse
phase is represented by ϕ(t) = πkt2, which is a quadratic function of time. The
instantaneous frequency f after the time is differentiated is depicted as

f =
1

2π

dϕ(t)

dt
=

1

2π

d(πkt2)

dt
(2)

Therefore, the frequency is a linear function of time t, the slope is k, as shown
in Figure 2(d).

3.5 Reduce the effect of sidelobe

The presence of the sidelobes, as shown in Figure 3 will obscure the resolution
of the neighboring target, resulting in decreasing the signal detection capability
and increasing false alarm.

When the desired narrow pulse is obtained by LFM, which is one of the pulse
compression methods, the received pulse strength will decrease significantly due
to strong clutter, noise and other factors. A series of range sidelobes, whose
amplitude is lower than narrow pulse, often appear on both sides of the main-
lobe [17] as a result of these factors. The presence of range sidelobes will obscure
the resolution of the neighboring target, and reduce the signal detection ca-
pability of small target. The false alarm rate will be high without suppressing
sidelobes disturbance. A matched filter based on weighted processing, i.e., a win-
dow technique, can be used to suppress high range sidelobes. Window techniques



8 Weiling Zheng, Dian Zhang, Peng Ji, and Tao Gu

(a) The Segmentation Processing (b) Capturing Target Shape

Fig. 5: Illustration of Algorithm

can reduce the spectral leakage when the digital signal is processed for discrete
spectrum analysis.

Both the Hamming Window and the Hanning Window are improved ascend-
ing cosine window but with different Weighting Coefficient. The Hamming Win-
dow has a better inhibition of spectral leakage than the Hanning Window [17].
Therefore, we utilize the Hamming Window to suppress high range sidelobes.

The time domain of the Hamming Window function can be expressed as
follows.

w(kh) = 0.54− 0.46 cos(
2πkh
N − 1

) kh = 1, 2, . . . , N (3)

where N is the length of the window.

3.6 Modulation and Demodulation

In the design of signal modulation and demodulation, we leverage Quadrature
Amplitude Modulation (QAM) to modulate LFM signal. QAM is an amplitude
modulation on two orthogonal carriers of the same frequency, but the phase
difference is 90 degrees (quarter cycle, from the integral term). One signal is
called I signal, which represents in phase. Another signal is called Q signal,
which represents orthogonal to I signal. From a mathematical point of view,
these two signals can be expressed as a sine function and a cosine function,
respectively. Therefore, Equation 1 can also be expressed as follows.

I(t) = cos(2πf0t+ πkt2)rect(
t

T
)

Q(t) = sin(2πf0t+ πkt2)rect(
t

T
)

(4)

Figure 6 illustrates the procedure for both modulation and demodulation.
The two orthogonal signals are obtained from after the LFM signals multiply by
in-phase signal and quadrature signal of the carrier signal, respectively. They are
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Fig. 6: Schematic of IQ modulation and
Demodulation

Fig. 7: Illustration of Our Experi-
ments

stacked as modulated signal at the time of transmission. After reflecting from
the target, the time-domain sampling signals will be obtained by quadrature
demodulation to received signal, and recorded as digital data.

In detail, in the modulation step, the signal Sb(t) = I(t)+jQ(t) is modulated
on the frequency carrier. I signal is multiplied by cos(2πf0t), while Q signal is
multiplied by sin(2πf0t). The output signal is then

Sc(t) = I(t)cos(2πf0t)−Q(t)sin(2πf0t)

= I(t)cos(ω0t)−Q(t)sin(ω0t)
(5)

When the receiver receives Sc(t) = I(t)+ jQ(t), the I signal can be obtained
by multiplying cos(2πω0t). Then the I signal can be calculated by the integral
result as follows.

2

T

∫ T
2

−T
2

[I(t)cos(ω0t)−Q(t)sin(ω0t)cos(ω0t)]dt

=
2

T

∫ T
2

−T
2

I(t)cos2(ω0t)−Q(t)sin(ω0t)cos(ω0t)dt

=
2

T
· I(t)

2
· T

= I(t) (6)

The other Q signal can be calculated similarly.

3.7 Algorithm to Capture Target Shape

In this subsection, we present our algorithm to capture target shape.
Based on the radio implementation, the transmitted signal is a narrow pulse.

A certain part of the target object will reflect or scatter the narrow pulse signal.
We refer such point as the target reflection (scattering) point. If the target
rotates, it will produce a micro-Doppler shift. Accordingly, for one reflected
(scattered) narrow pulse signal received by the receiver, we may form one point



10 Weiling Zheng, Dian Zhang, Peng Ji, and Tao Gu

of the target shape. Since there are a large number of such reflected (scattered)
narrow pulse signals, we can eventually obtain the entire target shape.

As shown in Figure 4, the point T is the transmitter. Along the Line-of-
Sight (LOS) path from the transmitter to the target two-dimensional plane, the
intersection point on the plane is the center of the coordinates, which is (x0, y0).
The LOS distance is R0. Suppose that the target will rotate along the y axis
(can be easily extended to other direction), the surface parallel to the plane
formed by the y axis and the z axis is called Equal-Doppler Surface (parallel to
the LOS), since each surface will cause same Doppler frequency change for the
signals. Also, the surface parallel to the plane formed by the x axis and the y
axis is called Equidistant Surface (vertical to the LOS).

For a certain reflection (scattering) point P (xp, yp) on the target, the distance
R from transceiver to this point can be represented below.

R ∼= R0 + x0sinωt+ y0cosωt (7)

The Doppler Frequency fd is calculated as

fd =
2ν

λ
=

2dr

λdt
=

2xω

λ
cosωt− 2yω

λ
sinωt (8)

According to Equations 7 and 8, when either t or the rotation angle △φ = ωt
is very small, we can do the following linear approximation.

R ∼= R0 + yfd =
2xω

λ
(9)

From the above equation, suppose △x is the required Azimuth resolution
(target capturing accuracy), we can conclude that the Doppler resolution should
reach

△fd =
2ω

λ
△x (10)

The real Doppler resolution determined by coherent processing time △fd = 1
T ,

combining Equation 10, we have real Azimuth resolution ρ0 as

ρ0 =
λ

2ωT
=

λ

2△φ
= △x (11)

△φ is the rotation angles within the coherent processing time T , wavelength λ
is determined by the carrier frequency. From this Azimuth resolution is directly
proportional to carrier frequency and rotation angles △φ. Azimuth resolution
improved with the coherent accumulative rotation angles increases within the
limit in the range-doppler imaging method. Excessive rotation angles △φ may
cause a blurring effect to the image of target shape since the reflection (scatter-
ing) point which has long distance to the reference rotation center moves over a
resolution unit.

The signals to a discrete Doppler domain by Fourier transform. Thus, we
can obtain the one-dimensional Doppler spectrum of the target. When the wave-
length is fixed, the Doppler frequency change caused by the different position i
of target can be used to achieve the ranging profile of signals at position i.



Title Suppressed Due to Excessive Length 11

Our algorithm of capturing target shape is based on Short-time Fourier
Transform [23]. It can use the time-frequency joint function to describe the
density and intensity of the signal at each time and frequency point. The detail
is listed as follows.

We therefore use the time-domain analysis method in the shape capturing
process since range-Doppler shape can be obtained by analysing the frequency
component of the giving signal at various time based on time-frequency trans-
form without compensating for complex translational components. Our algo-
rithm of capturing target shape is based on Short-time Fourier Transform [23].
We use the time-frequency joint function to describe the density and intensity of
the signal at each time and frequency point. The detail is described as follows.

Suppose we capture the target shape into two-
dimensions, and in a time period P in total we have received M number of
reflected (scattered) narrow pulse signals. For each signal i, there are N number
of sub pulse signals. We divide the time period P into several shorter series, whose
time length is ∆t. Then we use the Fourier transform method to describe the
frequency component of the signal. This segmentation is achieved by multiplying
the sliding window w(t) and the signal s(t), which can be represented as follows.

S(t, ω) =

∫ +∞

−∞
s(τ)w(τ − t)e−jωτdt (12)

During each sampling period ∆t, The time-frequency distribution of different
pulse are combined together. Thus, we can obtain the instantaneous ranging
profile of each reflection (scattering) point. As shown in Figure 5, in total, we
have M number of ranging profiles corresponding to M number of reflected
(scattered) narrow pulse signals. For each ranging profile in each sampling period
∆t, there are N number of ranging units (Azimuth Profiles) corresponding to N
sub-pulse signals. Then the azimuth Doppler analysis of each ranging profile is
carried out, we may get the two-dimensional image of the target.

Through the above solution, the two-dimensional ranging-Doppler image is
transformed into a three-dimensional time-ranging-Doppler stereogram. Then we
take the sample time into account, you can get a ranging-Doppler image along
the time series. Thus, in each of the individual time sample, we may provides a
high-resolution image. Then we sort the reflection (scattering) signal according
to its ranging profile, time-frequency distribution of signal s is s(t).

Then we combine all the Doppler spectra of the signals at one time, to achieve
the target shape.

In coherent processing time, the object has a center of rotation, then the
reflection (scattering) signal is received in the range unit z could be expressed
as follows:

SR(t)|z =

Nk∑
k=1

Ake
−j4π(Bw(n−1)/N+f0)r(t)/c (13)

where Nk is the number of reflection (scattering) points of this range unit, Ak

is the amplitude of the Kth reflection (scattering) point (xk, yk) on the target.
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Fig. 8: Implementation Result of LFM Signal

As Figure 5 depicted, the reflection (scattering) signal can be divided into
a range of short time series, then its frequency components can be described
by using Fourier Transform. The segmentation processing is implemented by
multiplying a sliding window w(t) and signal. On one hand, the length of the
window function determines the resolution of time-domain frequency; on the
other hand, the shape of the window function determines the sidelobe level
and the resolution of frequency-domain. Here, the Hamming window is more
adaptable to a further experiment [17] [29].

According to Equation 10, the Doppler of reflection (scattering) wave is in-
dependent of temporal variations, hence we can get time-domain distribution of
current range unit signal by performing the following windowed fourier trans-
form, combining Equation 12.

S(t, ω) =

∫ +∞

−∞
sR(τ)w(τ − t)e−jωτdt (14)

For moment t, the STFT to the signal SR(t)|z is tantamount to Fourier
Transform to the value of signal multiply by moment t-centred Window Function
w(τ − t). Because of the signal at this window segment can be approximated as
steady and time-invariant. The time-frequency distribution of the signal could be
obtained using Equation 13. There are considerable time-frequency distribution
of pulse at the same moment. We will get the instantaneous range profile of
each reflection (scattering) signal at different moment if we grouping these time-
frequency distribution. In the final step, Doppler analysis of the instantaneous
range profile uses Fourier Transform along the range unit can display the two-
dimensional shape of the target object.

3.8 Operator Selection to Detect Image Edge

According to previous approach, we may get the target’s RF shape. The captur-
ing image of target object has a relatively clear center and a hazy outer edge.
Using edge detection operators can adaptively estimate the edge points of tar-
get shape so as to extract and clarify the edge. The operator we have chosen is
Prewitt Operator [22].
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(a) The Photo of Metal
Circle
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Metal Rectangle
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(f) shape capturing
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Fig. 9: RF-Eye Result of different Target Shape

Mathematically, the operator uses two kernels, which are convolved with the
original image, to calculate approximations of the derivatives. Suppose Ia is the
source image. Gx and Gy contain horizontal and vertical derivative approxima-
tions of Ia, respectively.

Gx =

−1 0 +1
−1 0 +1
−1 0 +1

 ∗ IaGy =

−1 −1 −1
0 0 0
+1 +1 +1

 ∗ Ia (15)

At each point in the image, the resulting gradient approximations can be
combined to give the gradient magnitude, using

G =

√
Gx

2 +Gy
2 (16)

Therefore, edge detection of the target can be realized.

4 Evaluation

We now move to implement and evaluate RF-Eye. In this section, we first intro-
duce our experimental setup and the LFM radio implementation. We the present
the result of LFM signal and also the result of capturing different target shapes.
Finally, we discuss the impact of key factors affecting system performance.

4.1 Experiment Setup and Radio Implementation

Our prototype system consists of two components: hardware and software com-
ponents.
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Hardware Component: We implement our system on a USRP (Universal Soft-
ware Radio Peripheral) platform with a directional antennas. NIUSRP−2953R
software radio generates a 5.8GHz modulated signal with the maximum band-
width of 120Mhz. The transmission power is set to 30mW . In our experiments,
we use only one off-the-shelf parabolic antenna. The antenna has a 32dbi gain
and 6◦ horizontal beam width and vertical beam width. Our RF-Eye system
generates a frequency chip which repeatedly sweep the band 5.68 ∼ 5.8GHz.

Software Component: We implement the signal processing algorithm in MAT-
LAB on a commercial Lenovo desktop computer with a 3.3Ghz Intel i5 processor
and 16GB of RAM.

Radio Implementation: We implement the LFM signal based on the USRP
platform. Figure 8 shows our implementation results. The x axis in the figure is
the time domain, and the y axis is the amplitude of the signal. We observe that
the frequency increases with time.

4.2 Result of Capturing Target Shape

In this section, we show the result of our first experiment to capture the target
shape, concerning both regular and complex target shapes.

In total, we perform 20 rounds of different target tests, including different
targets with different shapes. Figure 9(a) shows one original shape of the test
target: a mental circle with a diameter of 65cm. Figure 9(b) shows another
original shape of test target: a mental rectangle with a side length of 80cm.
Figure 9(d) and Figure 9(e) show the RF-Eye results, respectively. We observe
that our system perform accurately to identify the shapes.

Next, we perform an experiment with complex shape. Human body is widely
regarded as an irregular object with complex geometry shape, and Figure 9(c)
shows the result of a human target. From the image result shown in Figure 9(f),
we see that RF-Eye is able to identify the complete human image successfully.
The imaging result clearly present the complete human shape with clear body
parts, e.g., the head, arms and legs. We may even observe the gesture from the
imaging obtained.

In summary, our RF-Eye system is able to successfully recognize target shape,
even its shape is complex.

4.3 The Impact of Sampled Signal Pulse Number

The number of pulse signals M is a key parameter in our algorithm to decide the
target shape resolution. If this value is set too low, the accuracy will be affected.
If this value is set too high, the latency will increase.

Therefore, for each target shape, we test the signal sample numbers from
1000 to 15000, to obtain the capturing result. Figure 10(a) ∼ Figure 10(f) shows
the imaging results of the circle with different sampled signal pulse number,
respectively. We can observe, when the sampled number increases, the edge is
more clear. Similarly, Figure 11(a) ∼ Figure 11(f) shows the imaging results of
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(a) 1000 Sampled
Pulse Signals

(b) 3000 Sampled
Pulse Signals

(c) 6000 Sampled
Pulse Signals

(d) 9000 Sampled
Pulse Signals

(e) 12000 Sampled
Pulse Signals

(f) 15000 Sampled
Pulse Signals

Fig. 10: Impact of Sampled Pulse Signal Number on Circular Target

the rectangle with different sampled signal pulse number, respectively. We can
see that, the rectangle result is more influenced by sampled signal pulse number
since it is harder to get a very clear edge at the corner of the rectangle compared
to other parts. The reason may be due to that less reflected signals by the sharp
corner will enter the acceptable range of the directional antenna.

For more complex human target, we increase the sample range accordingly.
The sampled signal pulse number varies from 1000 to 30000. Figure 12(a) ∼ Fig-
ure 12(e) show the imaging results of the human target with 1000, 5000, 10000,
and 30000 signal sample numbers, respectively. We can see that, as the sampled
signal pulse number increase, the body part becomes more clearly, especially for
the limbs. When the sampled number is 1000 as shown in Figure 12(a), we may
roughly recognize it is a human, but limb parts are blurry. When the sampled
number increases to 30000 as shown in Figure 12(d), we are able to see the head,
arms and legs very clearly.

4.4 Impact of Window Functions

In this section, we investigate how window functions will influence the experi-
ment results. Choosing an appropriate window function may reduce the size of
the side lobe of leakage and improve the frequency resolution capability, resulting
in more clear images.

In order to investigate how the window functions will influence the results,
we perform several experiments based on the imaging result of human target,
utilizing four typical window functions, Kaiser Window, Hanning Window, Ham-
ming Window and Blackman Window. Figure 13 shows the imaging results after
processing by these four windows, respectively. We observe that, actually there
are no big difference for the results. Therefore, in our experiment, we utilize
Hamming Window by default.
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(a) 1000 Sampled
Pulse Signals

(b) 3000 Sampled
Pulse Signals

(c) 6000 Sampled
Pulse Signals

(d) 9000 Sampled
Pulse Signals

(e) 12000 Sampled
Pulse Signals

(f) 15000 Sampled
Pulse Signals

Fig. 11: Impact of Sampled Pulse Signal Number on Rectangular Target

(a) 1000 Sampled
Pulse Signals

(b) 5000 Sampled
Pulse Signals

(c) 10000 Sampled
Pulse Signals

(d) 30000 Sampled
Pulse Signals

Fig. 12: Impact of Sampled Pulse Signal Number on Human Target

4.5 Edge Detection Algorithm Comparison

To capture the image of a target shape in one go, we perform the Prewitt al-
gorithm to highlight the edge of the shape and obtain a clearer contour shape
of the target. In this section, we compare our algorithm with others such as
Roberts and Sobel algorithm [7] [10]. Figure 14 and Figure 15 show the circle
and rectangle results before and after using image processing algorithms, respec-
tively. It is obvious to see that, when leveraging Prewitt and Sobel Operator,
the contour shape presents the clearest image. The Roberts Operator does not
work as good as Sobel and Prewitt. And Prewitt operator is a little bit better.
Therefore, we choose Prewitt operator by default to obtain the shape edge of
the RF-Eye image.

4.6 Latency

The latency of RF-Eye depends on the time of both signal sampling acquisition
and target shape capturing. The time cost of the signal sampling acquisition
can be negligible since RF-Eye captures millions of sampling data within 1ms
through the USRP based system. The time cost of the second part depends
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(a) RF Result
When Using Kaiser

Window

(b) RF Result
When Using

Hanning Window

(c) RF Result
When Using

Hamming Window

(d) RF Result
When Using

Blackman Window

Fig. 13: Comparison of Different Window Function

(a) RF-Eye Result
of Circle

(b) Sobel Operator (c) Roberts
Operator

(d) Prewitt
Operator

Fig. 14: Comparison of Different Edge Operator (circle

on the number of sampling data and the performance of the system. Figure 16
shows the latency of RF-Eye. As shown in the figure, based on the hardware we
introduced before in the experimental setup section, the latency of RF-Eye is
about 23s when the number of sampling data is 1000. The latency of RF-Eye
is about 237s while the number of sampling data is 10000. The latency surely
will decrease if we use a high-performance computer or reduce the number of
sampling data.

In order to get a clear trade-off between accuracy and latency, in real-world
scenarios, users may choose preferred number of sampling data to achieve their
desired results.

5 Discussion

In this section, we review several critical decisions in our current design, and
also discuss the limitations of our system.

5.1 How to Choose Carrier Frequency

Actually, RF-Eye is adaptive to other carrier frequency like the 2.4GHz. In
such scenario, the bandwidth also can be expanded far greater than 20MHz.
The current upper bound is 120MHz, which is limited by the USRP hardware
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(a) RF-Eye Result
of Rectangle

(b) Sobel Operator (c) Roberts
Operator

(d) Prewitt
Operator

Fig. 15: Comparison of Different Edge Operator (rectangle)

Fig. 16: The latency of RF-Eye

features. It can be further expanded using other hardware. Why in this work
we choose the carrier frequency as 5.8GHZ, is due to the following reason.
Compare to the wavelength 11.6cm of 2.4GHz, the wavelength of 5.8GHZ is
4.8cm, making it not so easier to diffract small size targets or the small parts of
the target, e.g., the human hand or limb. The signal can be reflected effectively
and we can get the shape results more accurately. If users aim to capture the
target with larger size, they may choose 2.4GHz to apply our approach similarly.

5.2 Antenna Rotation

RF-Eye uses the narrow pulse signal reflections and Doppler frequency change
caused by the rotate target to get the target shape. The limitation is the tar-
get will rotate in the real scenario. In reality, there are many possible ways to
overcome such limitation. For example, if moving compensation are considered,
our system is easily to be extend to moving target. Even for the static target,
we may choose to move the antenna instead and apply the same approach. But
this work is our first try, it can be further investigated in our future work.
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6 Conclusion & Future Work

This paper presents RF-Eye, an RF-based system to capture complete target
shape in indoor environments without training. Different from existing systems,
RF-Eye exploits the basic characteristics of electromagnetic waves and imple-
ments a customized radio to efficiently capture complete target shape in one go.
We use the narrow pulse signal reflections and Doppler frequency shift by the
target to get the target image, and utilize image processing approach to obtain
the shape of the target. Our experimental results show that RF-Eye successfully
recognizes target shape (i.e., the successful recognition ratio reaches 100%). We
also demonstrate that even for complicate targets our system is able to recognize
and obtain its shape.

In our future work, we will investigate the impact of the bandwidth on the
shape result. Second, we may change to other carrier frequency. At last, we
will perform experiment to capture the shape of static target, we can move the
antenna instead by applying the similar approach.
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