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ABSTRACT
Activity recognition is a fundamental research topic for a wide
range of important applications such as fall detection for elderly
people. Existing techniques mainly rely on wearable sensors, which
may not be reliable and practical in real-world situations since peo-
ple often forget to wear these sensors. For this reason, device-
free activity recognition has gained the popularity in recent years.
In this paper, we propose an RFID (radio frequency identifica-
tion) based, device-free posture recognition system. More specif-
ically, we analyze Received Signal Strength Indicator (RSSI) sig-
nal patterns from an RFID tag array, and systematically examine
the impact of tag configuration on system performance. On top of
selected optimal subset of tags, we study the challenges on pos-
ture recognition. Apart from exploring posture classification, we
specially propose to infer posture transitions via Dirichlet Process
Gaussian Mixture Model (DPGMM) based Hidden Markov Model
(HMM), which effectively captures the nature of uncertainty caused
by signal strength varieties during posture transitions. We run a pi-
lot study to evaluate our system with 12 orientation-sensitive pos-
tures and a series of posture change sequences. We conduct exten-
sive experiments in both lab and real-life home environments. The
results demonstrate that our system achieves high accuracy in both
environments, which holds the potential to support assisted living
of elderly people.

Categories and Subject Descriptors
C.4 [Special-Purpose and Application-Based System ]: Realtime
and RFID-based system

Keywords
Activity Recognition, Device-Free, Passive RFID, Posture Detec-
tion, Posture Transition

.

1. INTRODUCTION
Activity recognition is one of the most promising research topics

in pervasive computing applications. With recent advances in em-
bedded sensors and wireless technologies, it has become possible
to develop a wide range of applications such as surveillance [9],
ambient assisted living [20, 6], and remote health monitoring and
intervention. For instance, by monitoring the activities of an older
adult with dementia, we can track how completely and consistently
her/his daily routines are performed and determine when assistance
is needed.

Over the years, significant research work has been devoted to
recognize human activities. Computer vision based approaches are
one of such key solutions. However, such solutions usually de-
mand high computational cost, and the performance depends much
on lighting conditions (e.g., does not work well at night). In ad-
dition, user privacy is a big concern as camera is often considered
intrusive. With the growing maturity of sensor, radio-frequency
identification (RFID), and wireless networking technologies, activ-
ity recognition based on inertial, unobstrusive sensor readings has
become popular [13, 11, 27, 26, 19, 5]. Sensor-based approaches
require user to wear sensor devices which also need regular main-
tenance such as replacing batteries. In addition, these approaches
may not be reliable, especially for older people with cognitive dis-
ability since they tend to forget wearing them. Recent years, we
have seen a growing interest in device-free activity recognition, in
which sensors are deployed to environments rather than worn by
users. Radio signal fluctuations induced by user’s movements can
be analyzed to recognize activities [28, 21, 30, 23, 29]. Existing
device-free systems depend on dense deployment of Zigbee devices
in the environment, which can be costly, and still require battery
maintenance. For example, in [10], the authors set up a system
where a Zigbee transmitter is placed in the center of a room, and
receivers (i.e., sensor array) are placed around the room and close
to wall.

In this paper, we propose a novel device-free posture recogni-
tion system based on RFID. We use passive RFID tags which have
some advantages than battery-powered sensors due to low cost and
maintenance free. Figure 1 illustrates our system setup. First, we
are interested in investigating RFID tag configuration issues from
the system design point of view, particularly the issues on RFID
tag placement (i.e., where and how to place tags) and tag selection
(i.e., finding an optimal set of tags). Due to the complex nature of
radio signals in an indoor environment, these issues can be crucial
to system performance. Existing research findings show that pas-

02%,48,7286�������-XO\��������&RLPEUD��3RUWXJDO
&RS\ULJKW�k������,&67
'2,���������HDL������������������



Figure 1: System overview: a user performs different postures
in a room setting equipped with an RFID array.

sive RFID tags can cause some unpredictable effects if they are not
placed properly, e.g., significant signal loss or fading if two tags
are put in a certain distance [8]. Similar studies have been done
to explore the optimal tag configuration in indoor localization. For
example, a recent study by Wagner et al. [25] shows an optimal tag
placement to alleviate inaccuracy caused by the variability of RSSI.

In our work, we focus on the study in the context of posture
recognition which requires capturing fine-grained body movement
compared to indoor localization. We first study the best possible
tag placement, and examine and eliminate the redundant correla-
tions of tags to find an optimal set of tags. Second, to evaluate the
performance of our pure passive RFID system handling highly dy-
namic variations of RSSI during posture transitions, we propose a
Dirichlet Process Gaussian Mixture Model (DPGMM) with Hid-
den Markov Model (HMM) model to detect a sequence of different
postures (e.g., from sitting to standing to falling), respectively. The
main contributions of this paper are summarized as follows.

• We propose a novel device-free posture recognition system
based on passive RFID tags, which is low-cost, unobtrusive,
and maintenance free. The proposed system has many poten-
tial applications, especially for elderly people or people with
cognitive impairment.

• We investigate both tag placement and selection issues, aim-
ing to discover the basic design principle for deploying our
system in indoor settings. The study determines an optimal
setting of tag array to achieve the best system performance
with less computational demand. We propose and compare
various tag selection techniques (e.g., F statistics, relief F,
random forest, etc) to identify and eliminate redundant tags.

• We deploy our system in an indoor setting, and conduct ex-
periments to validate our system. The experimental results
with a single subject in both a lab and a home settings show
that the system achieves an accuracy of 98% on average for
9 tags and one reader in dealing with steady posture recog-
nition, and over 70% accuracy in dealing with a sequence
of posture transitions, which result in more disturbance and
noisy data of RSSI. Our experimental results demonstrate
that the proposed system has good potential to be developed
further and deployed in practice.

The rest of the paper is organized as follows. In Section 2, we
discuss some potential applications, and present our key observa-

Figure 2: An illustraton of fall of an older resident

tions to motivate our work. We describe the system design in Sec-
tion 3. In Section 4, we report our experimental results. We review
the related work in Section 5 and wrap up the paper in Section 6.

2. BACKGROUND
In this section, we first discuss several representative applica-

tions that can benefit from our system. We then formulate the re-
search problem.

2.1 Application Scenario
The system we present in this paper can be applied to posture

monitoring and activity recognition in general, particularly for el-
derly people or people with cognitive impairment. Figure 2 illus-
trates a home scenario where an older adult accidentally falls down,
and the system detects this abnormal action and sends an alarm im-
mediately to caregiver for assistance.

2.2 Observations and Problem Formulation
Figure 1 depicts a typical system setup in a room setting, where

an RFID tag array is deployed on the wall, and RFID antenna are
placed on the other side, facing these tags. When a person performs
different activities in the room, the system collects RSSI values and
discovers varied fluctuation patterns. The motivation of our work
arises from the following observations.

It is known that RSSI signal exhibits a variety of complicated
phenomena in indoor environments due to signal reflection, diffrac-
tion, and scattering. This is often affected by the propagation en-
vironment, the tagged object properties, and human movements in
the signal coverage area. It is difficult to model RSSI signal approx-
imately by a location-dependent path loss model. Figure 3 shows
RSSI signal values of passive RFID tags, which fluctuate with dif-
ferent postures. Although RSSI shows uncertainty and non-linear
distributed patterns, we discover that the variations of RSSI val-
ues allow us to distinguish different postures. Figure 4 shows the
distinctive changes of RSSI values of the tag array (e.g., 9 passive
RFID tags) according to different postures that a subject performs.

From these observations, we believe that RSSI signals of passive
RFID tags embody different patterns for different postures, which
can be further exploited for our posture recognition task. We there-
fore formulate our problem in this work as follows.

Let O ⊂ Rd (d is the number of tags) be the domain of observ-
able RSSI o and L ∈ {1, ...,K} ⊂ R be the domain of output
posture label l. Suppose we have n RSSI and posture label pairs
{(oi, li)|oi ∈ O, li ∈ L, i = 1, ..., n}. The training dataset can be
represented as:

O = [o1, ...,on] ∈ Rd×n

l = [l1, ..., ln]
T ∈ Rn

(1)
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Figure 3: (a) Histogram of RSSI from posture sitting leaning
left; (b) Histogram of RSSI from posture sitting leaning right

Figure 4: Different RSSI patterns of different postures

In this paper, we are interested to investigate the following two
questions.

PROBLEM 1 (TAG PLACEMENT AND SELECTION). Given an
RFID tag array, how to place them in a room setting and find the
optimal subset of tags to achieve the best performance.

PROBLEM 2 (POSTURE RECOGNITION). Given the RSSI val-
ues we observe, how to recognize a subject’s postures.

3. THE PROPOSED APPROACH
In this section, we first present the tag placement and selection,

followed by the technical details on the posture recognition.

3.1 Tag Placement and Selection
Tag Placement. To realize posture recognition, the first essential
challenge for us is how to set up tags in an indoor setting to ob-
tain the best performance. We first describe some intuitions of tag
placement in this work. There are two main reasons why we place
tags as an array:

• We conduct empirical studies on different forms of placing
tags, such as arranging tags as a single line on the wall. Ac-
cording to our results, single-line tag placement is capable
of capturing signal variations, but it may fail to detect fine-
grained body movements, such as sitting leaning right or left.
Furthermore, it is also not sensitive to capture the signal vari-
ations caused by subjects with different heights.

• To achieve better accuracy and higher sensitivity, we increase
single-line tag placement to multiple lines, eventually form-
ing an array. Different lines correspond to different parts
of human body. For instance, the upper line of tags would
be expected to reflect the variations from upper human body
like waving arms or shaking head, and the middle line of tags
would be more sensitive to movements of torso, and the bot-
tom line of tags are supposed to have more response to lower
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Figure 5: Illustration of RSSI fluctuations of falling right and
falling left: RSSIs of tag 1, tag 2 and tag 3 (top) and RSSIs of
tag 7, tag 8 and tag 9.

body movements such as falling etc. In this way, we may
perform more robust posture recognition with the collected
full spectrum of RSSI variations.

As shown in Figure 5, the top one shows the RSSI fluctuations of
three tags (tag 1, tag 2 and tag 3 are placed as a single line shown
in Figure 13) and the lines indicate RSSI variations of falling right,
and dash lines indicate RSSI variations of falling left. The bottom
one shows the RSSI fluctuations of three tags (tag 7, tag 8 and tag
9 are arranged as a single line) and the solid lines indicate RSSI
variations of sitting right, and dash lines indicate RSSI variations
of sitting left. We can observe the fluctuations of tag 1, tag 2 and
tag 3 are not quite helpful for reflecting different orientation falls
as they do not show significant difference, on the other hand, tag 7,
tag 8 and tag 9 can distinguish falling right and falling left better.
The reason lies in fall action happens on the lower body, the lower
location of tag 7, tag 8 and tag 9 can be more sensitive to such
actions compared with tag 1, tag 2 and tag 3 in upper location. To
capture the RSSI variations in all aspects, we use multiple lined
up tags forming a tag array in this work. Existing works such as
[10] also show that placing sensors as an array can realize activity
recognition with good accuracy.

Tag Selection. With the placement of tag array on the wall, we
now focus on studying the correlations between tags while detect-
ing postures. As shown in Figure 6 (a), the RSSI values of tag 1
and tag 2 are highly correlated with each other, implying that one
of them is redundant. Figure 6 (b) illustrates that RSSI values of
tag 1 and tag 9 successfully divide the RSSI data space from the
series of postures like standing straight, sitting straight, and lying
on bed. We also examine the redundant correlations among three
tags. For example, Figure 6 (d) shows that the RSSI values of tag 3,
tag 5 and tag 9 can distinguish the listed postures, while the RSSI
values of tag 3, tag 4 and tag 6 are highly correlated, as shown in
Figure 6 (c).

From above observations, to eliminate the redundancy and iden-
tify discriminative usefulness of tags and choose the most appropri-
ate selection method to validate our proposed system, we examine
a series of techniques to select a salient subset of tags to determine
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Figure 6: Illustrative examples of tag correlations

the optimal tag array configuration in our system.

F-Statistics. It is to measure the discrimination of multiple sets of
real numbers and is calculated using:

Fi =

∑l
j=1(ō

j
i − ōi)

2

∑l
j=1

1
nj − 1

∑nj

k=1(o
j
k,i − ōj

i )
2

(2)

where l is the number of posture classes, nj is the number of sam-
ples in jth posture class. ōi denotes the mean value of tag i in the
training dataset. ōj

i is the mean value of ith tag in the jth posture
class. The numerator indicates the discrimination between posi-
tive and negative sets, and the denominator indicates the one within
each of the two sets. The larger the F-score is, the more likely this
tag is discriminative in posture recognition.

Relief F. This technique estimates the relevance of features accord-
ing to how well their values distinguish between the data points of
the same and different posture classes that are close each other. It
computes a weight for each tag to quantify its merit. This weight
is updated for the RSSI samples presented in each posture class,
according to the evaluation function:

wi = wi +
∑

j∈L,j #=l(oi)

P (lj)
1− P (lj)

|oi − nearmissji (oi)|

− |oi − nearhiti(oi)|
(3)

where l is the number of posture classes. nearmissj(oi) and
nearhiti(oi) denote the nearest RSSI samples to oi from the same
and different posture classes, respectively.

Random Forest. Random forest (RF) is a classification method [4],
which also provides feature importance. The basic idea is that a
forest contains many decision trees, each of which is constructed
by instances with randomly sampled RSSIs. The prediction is made
by a majority vote of decision trees. To obtain tag importance, we
split the training sets into two parts. By training the first part and
predicting the second, we obtain an accuracy value. For the jth tag,
we randomly shuffle its values in the second set and obtain another
accuracy value. The difference between the two accuracy values
indicate the importance of the jth tag.

Multinomial Logistic Regression with !1 Regularization. !1 regu-

larization uses a penalty term that shapes the sum of the absolute
values of parameters to be small, which usually leads to a sparse pa-
rameter vector. In this work, we integrate the !1 regularization into
linear classifier in the objective term. Given our multi-class posture
recognition problem, we combine the !1 regularization with multi-
nomial logistic regression, which models the conditional probabil-
ity Pw(lj = ∓1|o). The prime problem with !1 regularization can
be calculated by optimizing the log likelihood:

min
w

K∑

k=1

||wk||1−
n∑

i=1

K∑

k=1

likw
T
k oi+

n∑

i=1

log
( K∑

k=1

exp(wT
k oi)

)

(4)
RFID tags can then be selected by considering the obtained weight
vector w.

Least Square with !1 Regularization. It can be represented as:

min
w∈Rd

1
2
||l−Ow||22 + λ||w||1 (5)

where l = {l1, ..., ln} is the posture labels of training RSSI sam-
ples, O = {o1, ...,on} is all training RSSI samples, w = [w1, ..., wd]

T

denotes the regression coefficients, wi corresponds to the regres-
sion coefficient of the ith tag, λ is the regularization parameter.
Same as the multinomial case, ||w||1 regularization tends to pro-
duce a sparse solution (i.e., the regression coefficients of irrelevant
tags are or close to zero), which indicates the importance of each
tag. We also study the !2,1 regularization, which is formulated as:

min
w∈Rd

1
2
||l−Ow||22 + λ||w||2,1 (6)

where ||w||2,1 =
∑n

i=1

√∑K
j=1 w

2
ij .

After performing the selection process, all tags are ordered based
on their importance and a subset of tags is selected based on a user-
defined threshold of top-N (N < d) tags.

3.2 Steady Posture Recognition
We now move to the posture recognition. We use SVM (support

vector machine) with linear kernel to perform steady posture classi-
fication. SVM aims at finding the decision boundary via maximiz-
ing the distance from the closet sample to the boundary hyperplane.
When there are limited training data available, SVM usually out-
performs the traditional parameter estimation methods which are
based on the Law of Large Numbers. This is mainly due to the
fact that SVM benefits from the structural risk minimization prin-
ciple and the avoidance of overfitting by its soft margin. For pos-
ture recognition, SVM classifies postures based on the fact that the
smaller the distance between two RSSI samples, the higher proba-
bility they belongs to a same posture. SVM method works directly
with RSSI using the kernel functions. The topology implicit in sets
of RSSI and the postures can be exploited in the construction of
possibly non-Euclidean function spaces that are useful for posture
estimation. Given the sequence of training RSSI and correspond-
ing posture labels O = {(o1, li), ..., (on, ln)}, where o ∈ Rd and
l ∈ {1, ...,K}, the objective function can be formulated as:

min
w,b,ξ

wTw + C
n∑

i=1

ξi

s.t. li(wTφ(oi) + b) ≥ 1− ξi, i = 1, 2, ..., n

ξi ≥ 0, i = 1, 2, ..., n

(7)

where ξi is a slack variable, C is the penalty of error term, K(oi,oj) =
φ(oi)

Tφ(oj) is the kernel function.



The prime problem of optimization in Equation 7 can be con-
verted to solve its duality using Lagrange multiplier. Thus, Equa-
tion 7 can be reformulated as:

L(w, b, ξ,α, µ) =

wTw + C
n∑

i

ξi −
n∑

i=1

αi(li(woi + b)− 1 + ξi) +
n∑

i=1

µiξi

(8)

where α = (α1, ...,αn)
T and µ = (µ1, ..., µn)

T is the Lagrange
multipliers. To solve Equation 8, we can maximize the minimiza-
tion of duality as:

max
α,µ

min
w,b,ξ

L(w, b, ξ,α, µ) (9)

The technical details and the mathematical theory can be found in
[7]. Three widely used kernels are explored in our work, including
the linear kernel, the polynomial kernel, and the Gaussian kernel:

• Linear kernel. K(oi,oj) = oT
i oj

• Gaussian kernel. K(oi,oj) = exp(− ||oi − oj ||2

2σ2
)

• Polynomial kernel. K(oi,oj) = (oi · oj + 1)p

With the model learned, we can recognize the posture class for a
given testing RSSI o∗.

3.3 Posture Transition Detection
Apart from evaluating recognition accuracy of identifying static

postures using passive tag array, we specially study the perfor-
mance of detecting posture transitions as RSSI values become harder
to interpret due to more disturbance and noise during posture tran-
sitions (e.g., from standing straight to falling to the ground). We
propose a HMM based approach, which has shown a powerful per-
formance in handling posture sequences. Specially, our goal is to
determine the conditional probability P (lk|oi) given a new coming
sample o.

Given observation sequences of RSSI O = {o1, ...,oT }, and
posture states denoted by posture label sequence l = {l1, ..., lT },
the HMM models the sequence of observable RSSI O = {o1, ...,oT }
by assuming that there is an underlying sequence of different pos-
tures l = {l1, ..., lT } drawn from a finite posture set. In our pos-
ture transition recognition problem, each observation ot is the RSSI
vector, and each state lt is the posture label (e.g., sitting).

HMM makes two assumptions: i) each posture performed at t
only depends on its immediate previous posture at time t − 1, and
ii) each observable RSSI ot only depends on the current performed
posture lt, which are formulated respectively as:

p(lt|lt−1,ot−1, ..., l1,o1) = p(lt|lt−1), t = 1, 2, ..., T (10)

p(ot|lT ,oT , ..., lt+1,ot+1, ..., l1,o1) = p(ot|lt) (11)

With the assumptions, we can model the joint probability of pos-
ture sequence l and observable RSSI sequence O as:

p(l,O) =
T∏

t=1

p(lt|lt−1)p(ot|lt) (12)

where p(lt|lt−1) is the transition probability indicating the likeli-
hood the subject changes from posture lt−1 to posture lt, which
is defined by considering the predefined posture transitions appli-
cations. For example, people can transit from sitting to standing,
but can not transit from lying in bed to falling on ground directly,

Figure 7: Comparison on traditional GMM with DPGMM over
two dimensional RSSI
whilst they can transit from lying in bed to sitting then to falling on
ground. We denote the state transition probability distribution as
A = {aij}:

aij = p(lt+1 = lj |lt = li) (13)

On the other hand, p(ot|lt) denotes the observation distribution
drawn by different postures. We assume RSSI distribution gen-
erated by each posture as a Gaussian mixture model, which is a
weighted sum of m component Gaussian densities. It can be de-
fined as B = {bt(i)}:

bt(i) = p(ot|lt = li)

=
Mi∑

m=1

πi,mN(ot, µi,m,Σi,m)

= p(ot|µm,Σm) =
1

(2π)D/2Σ1/2
m

exp

(
− 1

2
(ot − µm)TΣ−1

m (ot − µm)
)

(14)

where o is d dimensional continuous RSSI observations (d is the
number of tags in the deployment) and π is the mixture weights
and p(ot|µm,Σm) is the component Gaussian distribution.

The traditional GMM learning process with Expectation - Maxi-
mization (EM) limits to determination of how many gaussian com-
ponents in the GMM. We adopt the Dirichlet Process Gaussian
Mixture Model (DPGMM) in observation probability distribution
in this work. It uses the Dirichlet process as a prior over the dis-
tribution of the parameters and there is no need to explicitly de-
clare the number of components. The approximate inference algo-
rithm uses a truncated distribution with a fixed maximum number
of components, but almost always the number of components actu-
ally used depends on the data.

We use two-dimensional RSSI from our dataset to show the ad-
vantage of DPGMM over GMM (in Figure 7). GMM with EM
learning splits Gaussian components arbitrarily, for example, the
two clusters are eventually divided into five clusters in some con-
vergences. Thus it does not reach a good fit even we use AIC
(Akaike Information Criterion) [1] as model selection criteria, while
the Dirichlet Process GMM model effectively only uses as many as
needed for a good fit without defining number of guassian compo-
nents, it can accurately nail down two clusters and converges to a
good fit automatically in this case. More details can be referred to
[3].

Our goal of detecting postures in the context of HMM is as fol-
lows. Given a sequence of RSSI observations o1, ...,oT , what is
the most likely sequence of postures that produce such observa-
tions? We adopt the Viterbi algorithm to find the most likely state
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Figure 8: (a) RFID tags/reader/antenna (b) Lab setting (left) and Bedroom setting (right)

sequence in HMM. Formally, given a continuous sequence of RSSI
observations o1...oT and learned HMM (shown in Equation 12),
we aim to find the most likely posture sequence l1...lT :

δt(j) = max
l1...lt−1

p(lt = j, lt−1, ...l1,ot, ...,o1|A,B) (15)

where A and B can be calculated from Equation 13 and Equa-
tion 14. By induction, we can have:

δ1(j) = b1(oj)

δt+1(j) = max
1≤j≤N

δt−1(j)aijbt(ot+1), j = 1, ...,K (16)

4. EXPERIMENTS
This section reports our experimental studies in both lab and real-

world residential environments. First, we describe the experimental
settings, and then we report the results.

4.1 Experimental Settings
Hardware Setup. We used one Alien 9900+ RFID reader, one cir-
cular antenna and Squig inlay passive RFID tags in our experi-
ments (see Figure 8 (a)). The tag array containing nine tags was
placed at a 3 × 3 grid points on a wall where each grid is roughly
0.58m × 0.58m. We name this wall the active testing area in this
paper. The antenna was arranged in ≈ 1.3m height facing the ac-
tive testing area in ≈ 70◦ (see Figure 8 (b)). The subject performed
different predefined postures between the wall and the antenna, and
the corresponding sequence of RSSI were collected at a sampling
rate of 0.5 second.

Sampling Rate. Passive RFID tags tend to be noisy even in a lab
environment. For example, one challenge in existing RFID systems
is false negative readings, caused by missed detections (i.e., a tag in
the antenna’s reading range not detected). In addition, RSSI data is
much sensitive to environments, e.g., some disturbance from envi-
ronment can cause RSSI fluctuations. Appropriate sampling rates
can reduce the aforementioned problems. Too small sampling rates
make our method more sensitive to the noise of RFID readings,
while too big sampling rates blur the inter-class posture bound-
aries. In our implementation, we collected the continuous RSSI
data streams at the sampling rate of ≈ 0.5 second.

Data Acquisition. We ran a pilot study to evaluate the performance
of our system. For collecting the training dataset, we conducted a
series of experiments in which a subject entered the active testing
area and performed various pre-arranged postures, such as stand-
ing, lying on ground, lying in bed, and falling. Three subjects (two
males and one female) participated in the experiments and each per-
formed the set of 12 fine-grained postures (Figure 9). The subjects

Figure 9: Predefined orientation-sensitive postures

Figure 10: An example of posture transition sequence

also performed different predefined posture sequences for evaluat-
ing posture transition detection. The timing of all the movements
was determined beforehand so that the data can later be compared
to the actual timing of the postures.

The task of the steady posture classification is to model how the
signal strengths are distributed when the subject performs different
postures. Each subject stands in the active testing area which is
between the antenna and the wall deployed with passive RFID tags.
We first measured the RSSI values for all tags when the testing area
is empty. Then each subject stood in the area and performed the 12
predefined postures.

For collecting the posture transition dataset, we designed eight
different posture sequences to simulate the posture sequences in
real world (see Figure 10) and collected them using two strategies.
In the first strategy, the subject performed and held each posture for



Figure 11: System interface

30 seconds and then performed next posture in the order as prede-
fined in the sequence. In the second strategy, the subject performed
and held each posture for 60 seconds and then performed the next
posture in the order as predefined in the sequence. Figure 11 shows
a system interface for our proposed approach, which integrates data
collection, annotation and monitoring.

4.2 Results
To evaluate the effectiveness of the proposed tag selection, we

adopted a person-dependent 10-fold cross-validation strategy. For
the person-dependent evaluation, we use partial samples of a sub-
ject for testing and use the remaining samples of the same partici-
pant for training.

4.2.1 Impact on Tag Selection
To evaluate the impact of tag selection, we sorted the tag im-

portance calculated from six selection approaches (Section 3.1) in
descend order, and compared the recognition accuracy using SVM
with linear kernel by choosing top N tags (N is from 1 to 9 (full
set)). Figure 12 (a) shows the comparison results over top N tags
in the lab environment, and Figure 13 (b) shows the results in the
bedroom environment.

In both cases, the performance is influenced by the selected tags.
Posture classification accuracy does not improve much after top 5
selected tags using all selection criteria, and reaches the best point
(99.18%) with Relief-F selection when top-7 tags are selected com-
pared to 99.04% without tag selection (full set of tags). In the bed-
room case, the impact of tag selection on performance is more ob-
vious. The accuracy is the best when only seven tags are selected,
and the performance even slightly drops when more tags are added.
From the results, we can see that the tag selection does improve the
overall performance in both lab and bedroom environments by dis-
tinguishing the salient tags, only subset of intuitively placed tags
shows their usefulness and discrimination via implicating the intra-
person variability on different postures. The rest of tags degrade
the overall performance due to failing to capture the inter-class and
intra-class variability. Figure 13 shows an example of optimal tag
deployments from our experiments.

4.2.2 Steady Posture Classification
To study the feasibility of our approach and its sensitivity to the

size of training data after selecting tags, we further evaluated the
posture classification with varying training ratios in terms of tag
selection and no tag selection. As shown in Figure 14, our ap-
proach performs well even only with 10% the training size, the
accuracy reaches over 90% in both cases. The accuracy increases
with larger training size. However, when the training size is around
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Figure 12: Posture classification comparison with Top N tag
selection in (a) lab and (b) bedroom environments

Figure 13: An example on tags selection

60% ∼ 70%, the accuracy begin to decrease. We can see that the
overall accuracy is consistently better with the tag selection strat-
egy compared with the case without tag selection.

We look closely at the results of the confusion matrices in both
lab and bedroom cases with the selected subset of tags and 10%
training ratio given in Table 1 and Table 2, respectively. Generally,
only a few samples of postures, i.e., standing free (with ID of 1)
and standing straight (with ID of 2), misclassified in the lab en-
vironment. In the bedroom environment, falling right (with ID of
11) and falling left (with ID of 12) are misclassified, whilst they are
accurately classified in the lab environment. It should be noted that
the performance on classifying orientation-sensitive postures still
reaches over 98% in the bedroom environment.

4.2.3 Posture Transition Detection
To evaluate the performance of detecting sequential postures, we



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Training Ratio

A
cc

ur
ac

y

Lab

Without Tag Selection
With Tag Selection

(a) Lab environment

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Training Ratio

A
cc

ur
ac

y

Bedroom

Without Tag Selection
With Tag Selection

(b) Bedroom environment

Figure 14: Accuracy comparison with and without tag selection
using different training sizes: (a) lab and (b) bedroom

performed posture classification over a series of posture transitions
and measured how accurately our approach can recognize a posture
given new coming RSSI values, as well as how timely our approach
can recognize the posture.

Passive RFID tags are highly sensitive to disturbance, especially
when posture changes. The RSSI fluctuation result from posture
transition exhibits some uncertainty. To cope with the impact of
this disturbance, we adopted a forward calibration mechanism to
calibrate the RSSI streams before detecting posture change [22].
We used a sliding time averaging window to smooth RSSI values.
The calibrated RSSI stream o′

t at time t can be calculated as:

ô′
t =

∑t+|w|−1
i=t o′

i

|w| (17)

where |w| is the window size. To determine the best window size
in this work, we evaluated the performance of both lab and bed-
room settings with and without tag selection strategy by varying
the window size. Figure 15 shows the results.

From the figure, we can see that the performance does not con-
sistently improve when increasing window size, instead, when the
window size is 2, the performance in both settings reached the best
result. We further compared the performance in terms of differ-
ent duration a posture is held. Figure 15 shows the results under
two durations (30 and 60 seconds) with and without tag selection.
From the results, we can see that the longer the posture is held by
the subject, the better accuracy can be achieved. The reason is that
a longer posture holding time can eliminate both inter-class and
intra-class variations, to which RSSI are especially sensitive in rec-

Table 1: Confusion matrix with tag selection in lab
ID 1 2 3 4 5 6 7 8 9 10 11 12
1 35 2
2 1 34
3 39
4 36
5 36
6 36
7 39
8 36
9 37
10 36
11 36
12 36

Table 2: Confusion matrix with tag selection in bedroom
ID 1 2 3 4 5 6 7 8 9 10 11 12
1 35 1
2 1 34
3 36
4 36
5 36
6 36
7 39
8 36
9 37

10 36
11 35 2
12 1 35

ognizing postures. We also can see that the performance using the
tag selection strategy significantly outperforms the one without tag
selection. The results from steady posture classification and posture
transitions detection consistently indicate that an optimal subset of
tags can more discriminatingly recognize postures compared with
full set of tags. The subset tags have the dominant impact.

Fast detecting posture transition is critical, particularly for aged
care applications. For example, for fall detection, we can send an
alert and notify caregivers as quickly as possible to offer medical
assistance for elderly people when a fall occurs. The results from
our experiments show that the proposed method promptly detects
posture transition. Interested readers are referred to our demo1.

4.2.4 Recognition Delay
We now evaluate how quickly our system detects the transition of

a person from one posture to the other. Our system has 3.5 seconds
recognition latency, which results from two main factors. Firstly,
our system evaluates subject’s postures every 0.5 seconds using the
latest 2 seconds of RSSI stream. In other words, if the current
system time is at timestamp t, our system will produce the predicted
posture in the [t− 2, t− 1] seconds, and [t− 1, t] seconds is used
to backtrack check if the predicted label complies with predefined
rules. For instance, assume that the label is estimated as: lying on
bed at [t−2, t−1] interval, if the predicted label in interval [t−1, t]
is nobody, our system will determine the subject is still lying on
bed. Secondly, the RSSI collector is programmed with a timer to
poll the RSSI with a predefined order of transmission, which needs
to take around 1 second to complete a new measurement with no
workarounds. From Figure 16, we can see that our system promptly
detects posture transition with slight latency.

We can see that the overall performance at home environment is
a little bit lower than the lab environment (due to furnitures etc).
However, it still achieves over 98% accuracy for steady posture
classification and 70% for the overall posture transition detection.

1http://www.cs.adelaide.edu.au/~lina/#demo
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Figure 15: Performance comparison on different window sizes
using 30s and 60s strategies without and with tag selection in
(a) lab environment, (b) bedroom environment
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Figure 16: Recognition latency: blue dot vertical line indicates
the ground-truth time point of posture transition, pink dot ver-
tical line indicates the recognition time point detected by our
system.

5. RELATED WORK
The goal of activity recognition is to detect human physical ac-

tivities from the data collected through various sensors. There are
generally two main research directions: i) to augment people, on
whom sensors and RFID tags are attached, and ii) to augment the
environment, where sensors are deployed inside the environment
and people do not have to carry them.

Wearable sensors such as accelerometers and gyroscopes are com-
monly used for recognizing activities [15, 2, 18]. For example,
the authors in [12] design a network of three-axis accelerometers
distributed over a user’s body. Activities can then be inferred by
learning information provided by accelerometers about the orien-

tation and movement of the corresponding body parts. However,
such approaches have obvious disadvantages including discomfort
of wires attached to the body as well as the irritability that comes
from wearing sensors for a long duration. Recently, researchers
are exploring smart phones equipped with accelerometers and gy-
roscopes to recognize activities and gesture patterns [16, 17]. Kr-
ishnan et al. [14] propose an activity inference approach based on
motion sensors installed in a home environment.

Apart from sensors, RFID has been increasingly explored in the
area of human activity recognition. Some research efforts propose
to realize activity recognition by combining RFID passive tags with
traditional sensors (e.g., accelerometers). In this way, daily activ-
ities are inferred from the traces of object usage via various clas-
sification algorithms such as Hidden Markov Model, boosting and
Bayesian networks [24, 5]. Other efforts dedicate to exploit the
potential of using “pure” RFID techniques for activity recognition.
For example, Wang et al. [26] use RFID radio patterns to extract
both spatial and temporal features, which are in turn used to char-
acterize various activities. However, these research efforts require
people to carry RFID tags or even readers (e.g., wearing a bracelet).

There are recent research efforts focusing on exploring device-
free activity recognition. Such approaches exploit radio transmit-
ters installed in environments, and people are free from carrying
any receiver or transmitter. Most device-free approaches concen-
trate on analyzing and learning distribution of received signal strength
or radio links. Youssef et al. [28] propose to localize people by
analyzing wireless signal strength moving average and variance.
Zhang et al. [29] develop a tag-free sensing approach using RFID
tag array. However, most of these efforts focus on localization and
tracking, not on activity recognition. Only very recently, the au-
thors of [10] and [23] propose device-free activity recognition using
sensor arrays. Compared to these work, our passive RFID-based
system has many advantages such as low cost and maintenance
free. To the best of our knowledge, our work is the very first of
few on investigating device-free human activity recognition using
passive RFID tags.

6. CONCLUSION
In this paper, we proposed a device-free posture monitoring sys-

tem for elderly people, by exploiting low-cost passive RFID tags.
We focus our study on tag configuration issues, especially tag place-
ment and selection, for achieving the best trade-off between per-
formance and cost. We systematically study these issues by using
different configuration settings and applying various tag selection
methods. We also propose a Dirichlet Process Gaussian Mixture
Model with the Hidden Markov model to recognize different pos-
tures. We conducted extensive empirical studies and our findings
are briefly summarized as follows.

• Our system detects 12 orientation-sensitive postures (see Fig-
ure 9), with an accuracy of 99% and 72% in terms of steady
posture recognition and posture transition detection, respec-
tively, in a lab environment, and over 98% and 70%, in a
real-life home environment.

• It is interesting to find out that more tags deployed in the
testing area do not help improve the performance, which ac-
tually decreases the recognition accuracy. From our knowl-
edge, our work is the first to investigate a number of possible
techniques for tag configuration in posture recognition.

There are two main directions for our future work. Firstly, we
will further study tags correlation in terms of temporal and spatial
features, e.g., strength variation and coverage, etc, which can be



used to build a more robust tag coverage model. Secondly, we view
our work presented in this paper the first step toward recognizing
high-level activities. There are in general three types of activities
on top of postures: i) action, which consists of multiple postures
for a single person with temporal dimension, e.g., “walking”; ii)
interaction, which involves two or more persons, e.g., two people
are shaking hands; and iii) group activity, which is performed by a
group of people, e.g., having a meeting. Identifying these complex
activities is another main goal of our future work.

7. REFERENCES
[1] H. Akaike. A new look at the statistical model identification.

Automatic Control, IEEE Transactions on, 19(6):716–723,
1974.

[2] L. Bao and S. S. Intille. Activity recognition from
user-annotated acceleration data. In Proceedings of 2nd
International Conference on Pervasive Computing
(PERVASIVE), pages 1–17. Springer, 2004.

[3] D. M. Blei, M. I. Jordan, et al. Variational inference for
dirichlet process mixtures. Bayesian analysis, 1(1):121–143,
2006.

[4] L. Breiman. Random forests. Machine Learning, 45(1):5–32,
2001.

[5] M. Buettner, R. Prasad, M. Philipose, and D. Wetherall.
Recognizing daily activities with rfid-based sensors. In Proc.
of 11th ACM Intl. Conference on Ubiquitous Computing
(UbiComp), pages 51–60, 2009.

[6] D. Cook and M. Schmitter-Edgecombe. Assessing the
quality of activities in a smart environment. Methods of
Information in Medicine, 48(5):480, 2009.

[7] C. Cortes and V. Vapnik. Support-vector networks. Machine
Learning, 20(3):273–297, 1995.

[8] J. Han, C. Qian, D. Ma, X. Wang, J. Zhao, P. Zhang, W. Xi,
and Z. Jiang. Twins: device-free object tracking using
passive tags. In Proc. of IEEE Intl. Conference on Computer
Communications (INFOCOM), 2014.

[9] T. He et al. Vigilnet: An integrated sensor network system
for energy-efficient surveillance. ACM Transactions on
Sensor Networks (TOSN), 2(1):1–38, 2006.

[10] J. Hong and T. Ohtsuki. Ambient intelligence sensing using
array sensor: device-free radio based approach. In Proc. of
ACM Conference on Pervasive and Ubiquitous Computing
Adjunct Publication, 2013.

[11] S. Intille et al. Using a live-in laboratory for ubiquitous
computing research. In Proc. of Intl. Conf. on Pervasive
Computing (PERVASIVE). 2006.

[12] N. Kern, B. Schiele, H. Junker, P. Lukowicz, and G. Tröster.
Wearable sensing to annotate meeting recordings. Personal
and Ubiquitous Computing, 7(5):263–274, 2003.

[13] N. Kern, B. Schiele, and A. Schmidt. Multi-sensor activity
context detection for wearable computing. In Proc. of the 1st
European Symposium on Ambient Intelligence (EUSAI),
pages 220–232. 2003.

[14] N. C. Krishnan and D. J. Cook. Activity recognition on
streaming sensor data. Pervasive and Mobile Computing,
10:138–154, 2014.

[15] N. C. Krishnan and S. Panchanathan. Analysis of low
resolution accelerometer data for continuous human activity
recognition. In Proceedings of IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 3337–3340. IEEE, 2008.

[16] J. R. Kwapisz, G. M. Weiss, and S. A. Moore. Activity
recognition using cell phone accelerometers. ACM SIGKDD
Explorations Newsletter, 12(2):74–82, 2011.

[17] N. D. Lane et al. Bewell: A smartphone application to
monitor, model and promote wellbeing. In Proc. of 5th Intl.
ICST Conference on Pervasive Computing Technologies for
Healthcare, pages 23–26, 2011.

[18] P. Lukowicz, H. Junker, M. Stäger, T. von Bueren, and
G. Tröster. Wearnet: A distributed multi-sensor system for
context aware wearables. In Proceedings of ACM
International Conference on Pervasive and Ubiquitous
Computing (UbiComp), pages 361–370. Springer, 2002.

[19] D. Minnen, T. Starner, I. Essa, and C. Isbell. Discovering
characteristic actions from on-body sensor data. In Proc. of
10th IEEE International Symposium on Wearable Computers
(ISWC), pages 11–18, 2006.

[20] M. Philipose et al. Inferring activities from interactions with
objects. IEEE Pervasive Computing, 3(4):50–57, 2004.

[21] M. Seifeldin, A. Saeed, A. E. Kosba, A. El-Keyi, and
M. Youssef. Nuzzer: A large-scale device-free passive
localization system for wireless environments. IEEE
Transactions on Mobile Computing (TMC),
12(7):1321–1334, 2013.

[22] M. Seifeldin and M. Youssef. A deterministic large-scale
device-free passive localization system for wireless
environments. In Proc. of the 3rd Intl. Conference on
Pervasive Technologies Related to Assistive Environments,
2010.

[23] S. Sigg, M. Scholz, S. Shi, Y. Ji, and M. Beigl. Rf-sensing of
activities from non-cooperative subjects in device-free
recognition systems using ambient and local signals. IEEE
Transactions on Mobile Computing (TMC), 13(4):907–920,
2014.

[24] M. Stikic et al. Adl recognition based on the combination of
rfid and accelerometer sensing. In Proc. of Intl. Conference
Pervasive Computing Technologies for Healthcare, 2008.

[25] S. Wagner et al. On optimal tag placement for indoor
localization. In Proc. of IEEE Intl. Conference on Pervasive
Computing and Communications (PerCom), pages 162–170,
2012.

[26] L. Wang, T. Gu, H. Xie, X. Tao, J. Lu, and Y. Huang. A
wearable rfid system for real-time activity recognition using
radio patterns. In Proc. of the 10th International Conference
on Mobile and Ubiquitous Systems: Computing, Networking
and Services (MobiQuitous), 2013.

[27] J. A. Ward et al. Activity recognition of assembly tasks using
body-worn microphones and accelerometers. IEEE Trans. on
Pattern Analysis and Machine Intelligence (TPAMI),
28(10):1553–1567, 2006.

[28] M. Youssef, M. Mah, and A. Agrawala. Challenges:
device-free passive localization for wireless environments. In
Proc. of 13th ACM Intl. Conference on Mobile Computing
and Networking (MobiCom), 2007.

[29] D. Zhang, J. Zhou, M. Guo, J. Cao, and T. Li. Tasa: tag-free
activity sensing using rfid tag arrays. IEEE Transactions on
Parallel and Distributed Systems (TPDS), 22(4):558–570,
2011.

[30] D. Zhang et al. Rass: A real-time, accurate and scalable
system for tracking transceiver-free objects. In Proc. of IEEE
Intl. Conference on Pervasive Computing and
Communications (PerCom), 2011.


