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Abstract—The emerging participatory sensing applications
have brought a privacy risk where users expose their location
information. Most of the existing solutions preserve location
privacy by generalizing a precise user location to a coarse-grained
location, and hence they cannot be applied in those applications
requiring fine-grained location information. To address this issue,
in this paper we propose a novel method to preserve location
privacy by anonymizing coarse-grained locations and retaining
fine-grained locations using Attribute Based Encryption (ABE).
In addition, we do not assume the service provider is an
trustworthy entity, making our solution more feasible to practical
applications. We present and analyze our security model, and
evaluate the performance and scalability of our system.

Keywords-Location privacy, participatory sensing, ABE, k-
anonymity.

I. INTRODUCTION

Over the past decade, we have witnessed an explosive

growth of mobile devices that are increasingly capable of cap-

turing and transmitting image, sound, location and other data

interactively or autonomously. The ubiquity of these devices

has brought forth a new class of applications—participatory

sensing application [1] (a.k.a. opportunistic sensing applica-

tioin [2]), e.g., CarTel [3], AnonySense [4], Nericell [5] and

PetrolWatch [6]. In these applications, mobile phones carried

by users collect the information about an urban landscape

(e.g., traffic information). The information are then reported

to an application server and shared by other users. Since such

information include users’ spacial and temporal information,

the privacy of the users has been put at increased risk.

Specifically, the spacial and temporal information in a report

may be linked to a particular user, resulting in his privacy

being invaded. Thus, the most challenging privacy issue is

how to avoid linking between a report and the user.

Simple techniques using pseudonyms or anonymizing re-

ports may not work. For example, if an adversary has a priori

knowledge of a user’s movement pattern, it is fairly trivial

to de-anonymize the reports. A considerable solution is to

appoint a trusted anonymizer to guarantee user anonymity.

With this anonymizer, the precise location represented by a

point in coordinate (i.e., fine-grained location) in each report is

generalized to a region in space (i.e., coarse-grained location)

where there are at least k users. In this way, it is impossible

to distinguish between them. Such technique is known as k-
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Fig. 1. 3-anonymity: an example

anonymity, and it has been widely adopted in location based

services (LBS) [7][8][9][10][11].

However, the k-anonymity technique only provides coarse-

grained location information which may be useless in many

participatory sensing applications. For instance, consider a par-

ticipatory sensing application which reports traffic information

in city. As illustrated in Fig. 1, if k-anonymity is used, the

intersection along a road, where a reporter is currently located

at, will be generalized to a large region (e.g., Region A, B

or C). Since the region of a report may cover more than 2
km2 [4], users cannot ascertain which road is being referred

to, leaving this location information little use.

In this paper, we aim to preserve user privacy in participa-

tory sensing applications which require fine-grained locations.

An intuitive solution is that a reporter can report coarse-

grained location information to the server, and fine-grained lo-

cation information to the end-users. To achieve this, a reporter

may prepare two copies of his location information to be sent

to the server—the anonymized, coarse-grained location and

the encrypted, fine-grained location. To encrypt fine-grained

locations, Public-Key Cryptography (PKC) may do the job.

However, in participatory sensing applications, reporters have

no prior knowledge of end-users. PKC fails to work in this

context because it requires the senders must know the receivers

exactly in order to choose the correct public keys.

To overcome the limitation of PKC, in our solution, we

adopt the idea of Attribute Based Encryption (ABE) [12].

Using ABE, reporters can encrypt messages based on certain

attributes rather than user identities. Since the attributes can

be specified by reporters, they can encrypt messages without

any prior knowledge of end-users. Such attributes can be,

for example, age, gender, occupation and location, etc. Only

the users with these attributes can obtain the private keys

and decrypt the message. However, attributes in traditional
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ABE are static while user locations in participatory sensing

applications are changing all the time. Dynamic attributes may

cause great difficulties in maintaining their values such as

updating a new attribute value and deleting an out-of-date

attribute value. We address the key distribution and revocation

problems by tolerating masquerading, and demonstrate that

our solution is secure against masquerade attacks through our

privacy analysis and evaluation.

In summary, this paper makes the following contributions:

• We propose a novel method (P3S) to preserve privacy

in participatory sensing applications which require fine-

grained locations. P3S is able to preserve location privacy

and provide fine-grained location information at the same

time.

• We address the key distribution and revocation problems

arising from ABE. We introduce a formal privacy model,

and demonstrate that even in the worst case, P3S guar-

antees a certain degree of anonymity for users.

• As a case study, we implement P3S in a road-traffic

information service named VehicleMap. Base on this

implementation, we evaluate the runtime of P3S, and the

results show P3S can be applied to other participatory

sensing applications in general.

The rest of the paper is organized as follows. We first

discuss the related work in Section II. We then describe P3S

in Section III, and present the privacy analysis in Section IV.

Section V presents our implementation and evaluation results.

Finally, we conclude the paper in Section VI.

II. RELATED WORK

Many existing work leverage on the concept of k-anonymity

to keep user privacy anonymous. K-anonymity is originally

proposed by Sweeney [13][14] in the database community to

protect sensitive information from being disclosed. A table

satisfies k-anonymity if every record is indistinguishable from

at least k− 1 other records with respect to every set of quasi-

identifiers. If an aggregation of k reports satisfies k-anonymity,

the probability of identifying a user will be theoretically

1/k. Based on k-anonymity, various approaches have been

proposed, and they can be broadly classified into the following

two categories.

A. Location Blurring

The solutions in this category typically make a precise

location blur by generalizing a point in coordinate to a plane

in space.

Beresford et al. [15] defined location privacy as the ability

to prevent other parties from learning one’s current or past lo-

cation. They introduced a-priori defined Mix Zones to provide

anonymity. Users within the same mix zone use pseudonyms

to communicate and serve as an anonymity set. The main

problem with this system is that there must be enough users

in the mix zone to ensure location privacy.

Gruteser et al. [8] applied k-anonymity to protect location

privacy, and proposed spatial and temporal cloaking. In this

technique, all the requests (from at least k different users) from

an area within a certain period of time are managed together as

an anonymity set to achieve k-anonymity. However, the area

can be large if the user density is low.

The concept of tessellation was first introduced in Anony-

Sense [4][16] to protect user privacy when reporting context

information. Tessellation partitions a geographical area into a

number of tiles large enough to preserve the users’ privacy and

each user’s location is generalized to a plane in space (i.e., a

tile) which covers at least k potential users.

In the above approaches, there exists a tradeoff between

functionality and privacy, i.e., to ensure privacy protection,

they have to sacrifice the granularity of location information.

In this work, our goal is to preserve location privacy and

provide fine-grained location information at the same time.

B. Fine-grained Location

Little work has been done to achieve privacy protection

while providing fine-grained location information. Huang et

al. [6] proposed a simple modification to tessellation based

on micro-aggregation [17]. They presented an application—

PetrolWatch which allows users to automatically collect, con-

tribute and share petrol price information using camera phones.

However, in their method, service providers are assumed to be

trustworthy, which may not be always true in reality and it is

also contradicted with the original intention of tessellation. If

a service provider is trustworthy, it is able to provide adequate

protection on users’ privacy. In this case, no extra protection is

needed. In this paper, we alleviate this assumption by assuming

service providers to be untrustworthy.

Meyerowitz et al. [10] proposed a solution named

CacheCloak to cache service results. Instead of obscuring a

user’s path by hiding parts of it, they obscure a user’s location

by surrounding it with other users’ paths. When a user requests

location data, the CacheCloak server either returns cached

data or obtains new data from the location-based service. The

CacheCloak always have accurate data available for the user

from its cache or from a new anonymous request to the service.

However, CacheCloak only makes sense in some location-

based services which have relatively static service results, and

users should trust the system for securing privacy. For those

applications which provide real-time services, this method may

have a limitation since the lifetime of the cached data will be

very short. Thus, it cannot be applied in participatory sensing

applications since the sensing data is changing all the time.

III. P3S: PRIVACY PROTECTION BASED ON ABE

In this section, we first give the background of ABE,

then illustrate how we use ABE in P3S to achieve privacy

protection.

A. Attribute Based Encryption

In ABE, a user’s private key is associated with an arbitrary

number of attributes expressed as strings. When a party uses

ABE to encrypt a message, they specify an associated access

structure—a logical expression over attributes. For instance,
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{“student of Nanjing university” AND “major: computer sci-

ence”} is an access structure. A user will only be able to

decrypt a cipher text if that user’s attributes pass through

the cipher text’s access structure. Suppose Alice chooses to

encrypt a message with access structure {“student of Nanjing

university” AND “major: computer science”}, only the stu-

dents of Nanjing university whose major is computer science

can decrypt this message.

There are four kinds of keys involved in ABE: 1) a master

public key which is published by PKG; 2) a master private

key which is retained by PKG; 3) public keys computed by

the reporters; 4) corresponding private keys generated by the

PKG. ABE works as follows. First, PKG publishes a master

public key, and retains the corresponding master private key.

Given the master public key, any party can compute a public

key corresponding to one or more attributes by combining

the master public key with the attribute values. PKG uses the

master private key to generate the private key for users with

certain attributes. To obtain a corresponding private key, the

users with these attributes contact PKG and use the attribute

values as authorization.

In ABE, attributes are static. However, attributes in P3S

are dynamic. For example, the locations of reporters are

changing over the time. Such dynamic attributes may create

more overhead in maintaining their values such as updating

a new attribute value and deleting an out-of-date attribute

value. This limitation makes key distribution difficult and

creates revocation problems. We will address these limitations

in Section III-E.

B. Defining Access Structures

In P3S, each end-user owns his attributes, and each reporter

has his access structure. Before a reporter uses ABE to encrypt

a report, he should first define the access structure to the report.

P3S provides two ways for a reporter to define an access

structure.

Defined by System: The system should provide a default

access structure. In P3S, a user is authorized by the system to

access fine-grained location information based on trust man-

agement. In this case, security policies and security credentials

are needed [18] to indicate which kinds of actions are secure

and what kinds of users are trusted.

Defined by Reporter: Alternatively, reporters are able to

define their own access structures by choosing an arbitrary

number of attributes indexed by PKG. The chosen attributes

are different in different applications. We will introduce what

attributes we choose in Section V-B.

C. P3S Overview

P3S consists of the following entities, as illustrated in Fig. 2.

• Data Collection Entity: It collects sensing data from

reporters and protects their location privacy using k-

anonymity.

• Data Sharing Entity: It provides privacy protection for

end-users whose location information are needed to ac-

cess location-based services.

Fig. 2. P3S method

• Private Key Generator (PKG): This is the only trusted

entity in P3S which provides public keys to reporters

and private keys to end-users. A trusted third party is

necessary, and a similar assumption can be found in many

other work [15][7][10].

Data collection and sharing entities might not be trusted by

users, thus they only get coarse-grained location information.

D. P3S Method

P3S adopts the basic idea of ABE. It consists of the

following algorithms. To simplify our illustration, we name

users transmitting reports “reporters”, and users accessing

services “end-users”.

Setup: This is a randomized algorithm enforced by PKG.

It does not take any input other than the implicit security

parameter. It outputs a master public key PK and a master

private key MK.

Setup() =⇒ PK +MK
Encryption: This is a randomized algorithm enforced by

reporters. The inputs are as follows: a fine-grained location

FL in plain text, a set of attributes αS which is defined by

the system or the reporters, and the public parameters PK. It

outputs the cipher text of the fine-grained location EL.

Encryption(FL, αS,PK) =⇒ EL
Anonymization: This algorithm is enforced by reporters. The

inputs are as follows: a fine-grained location FL in plain text

and a parameter K. It outputs the coarse-grained location AL.

Anonymization(FL,K) =⇒ AL
Aggregation: This is a randomized algorithm enforced by

the data collection entity. The inputs are (EL,AL) pairs, and

a parameter L. It outputs a series of reports RS.

LP def−−→ (EL,AL)
Aggregation(LP1,LP2,LP3, ...L) =⇒ RS
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KeyGeneration: This is a randomized algorithm enforced

by PKG. The inputs are as follows: a set of attributes AS ,

a master private key MK and a master public key PK. It

outputs a decryption key DK.

KeyGeneration(AS,MK,PK) =⇒ DK
Decryption: The inputs of this algorithm are as follows: the

cipher text of location EL that was encrypted under αS, a

decryption key DK for AS and a master public key PK. It

outputs a fine-grained location FL in plain text if αS ⊆ AS.

Decryption(EL,DK, αS,AS) αS⊆AS−−−−−→ FL
These algorithms work in the following way as shown in

Fig. 2. First, PKG enforces Setup to publish a master public

key PK, and retains the corresponding master private key

MK. Then, a reporter downloads PK from PKG, and uses

Encryption and Anonymization to prepare the two copies of

his location. The data collection entity enforces Aggregation
to aggregate reports and send them to the service provider.

The service provider can use the coarse-grained location for

location-based services, but it is not able to decrypt the cipher

text of the fine-grained location. Only the users satisfying

αS ⊆ AS are able to get the fine-grained location FL through

Decryption.

E. Key Management

In a traditional ABE system, a reporter defines his access

structure and assigns the attribute values for the receivers.

In this case, the system does not care whether a receiver’s

attribute value is real or not. However, in most participatory

sensing applications, the location of each user changes con-

stantly due to mobility, so does his attribute. In this case, it

is impossible for an individual reporter to assign the dynamic

attribute values to potential users. Thus PKG should authen-

ticate and testify the attributes of all the users. Maintaining

users’ attribute values such as updating a new attribute value

and deleting an out-of-date attribute value is thus a challenging

task. This is also known as the key distribution and revocation

problems.

To address the above limitation of ABE in a scenario

which involves dynamic attributes, instead of requiring PKG to

authenticate and testify the dynamic location attribute of each

users, we make a concession to tolerate users’ masquerading

their locations. However, limiting each user can obtain only

one private key in each time interval. In a time interval ti, a

user reports an arbitrary value vi of his attribute to PKG. PKG

generates a private key based on the union of vi|ti, and passes

the key back to this user. In this case, the key distribution

problem is solved since PKG does not need to worry about the

attribute values; and the key revocation problem is solved since

each private key can only decrypt the information generated

in a time interval ti.
We summarize our key management using the following

lemma.

Lemma 3.1: One can not be in two places at once.
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The key management in P3S can not guarantee the authen-

ticity of each user’s attribute values. This limitation may rise

privacy concerns under attacks, especially masquerade attacks.

In the following section, we demonstrate how P3S secures

privacy under masquerade and collusion attacks.

IV. PRIVACY ANALYSIS

In this section, we first define our privacy metric, and then

introduce an attacker model and show P3S is secure under

different attacks.

A. Privacy Metrics and Evaluation

In location sensitive applications, location privacy is typ-

ically measured by location entropy [19]. Location entropy

gives a precise quantitative measure of an attacker’s uncer-

tainty. It is defined as the number of bits E,

E = −
∑

P (x, y) · log2 P (x, y) (1)

for the probability P (x, y) that a user is at location (x, y). By

Equation 1, 2E locations with an equal likelihood will result

in E bits of entropy, thus for k-anonymity, we have k = 2E .

The higher E is, the more uncertain a hostile observer will

be about the true answer, and therefore the higher anonymity

we achieve. Similar privacy measurements can be found in

[15][10][20].

In participatory sensing applications, location entropy is de-

termined by several factors: the distribution of tiles, the speed

of a vehicle, the length of the time interval. For simplicity,

we assume that tiles are uniformly distributed to estimate the

mean entropy of an urban. Let n denote the number of users

in a tile. Let t denote the length of the time interval, V denote

the vehicular speed of a user u, and a denote the area of a

tile. The location entropy for this user can be calculated as

follows:

Eu = log2[
∫ V t/a1/2

1

8x · n̄ · dx · n̄+ 1] (2)

To make further analysis, we set the vehicle speed in an

urban to 8km/h according to the result in [10]. We set the

mean area of a tile to 3.25 km2 based on the statistic data we
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collected from 28 cities in China (more details will be given

in Section V). We run the experiment as follows. We first

generate an urban area of Nanjing with 18 km x 18 km from

GoogleMap. Initially, vehicles are placed randomly in this

area, and start to move to random destinations. We compute

the mean entropy, and the result is shown in Fig. 3.

From Fig. 3, we observe that when the time interval is short

(< 7min), the mean privacy entropy in P3S is lower than the

theoretical entropy (log2n) in n-anonymity. It means that the

probability of distinguishing a user is more than 1/n. This is

because a user can not move far in a short period of time. In

this case, among all the n candidate locations, the nearest one

is most likely his location.

B. Attacker Model

From the above analysis, we conclude that the location

entropy may reduce in the presence of an attack. Before we

analyze possible attacks in P3S, we define our attacker models

as follows.
1) Link Attack: Given a set L of locations l, we say that

g : L =⇒ L is a generalization function. Let l denote an

accurate location, and l’=g(l) denote the generalization of l
that is forwarded to SP.

Definition 4.1: Let U denote the set of users u. A link attack

based on knowledge Γ is a function LinΓ : L× U =⇒ [0, 1],
such that, for each generalized location l’, we have:∑

u∈U
LinΓ(l′, u) = 1 (3)

By Definition 4.1, link attacks can be specified in which,

given a location l’, the candidate users have different prob-

abilities to locate at l’. We illustrate it using the following

example.

Example 4.1: Suppose Alice is parking near a fashion shop,

and Bob is driving to a palaestra. If they happened to be in

the same tile, they will have different probabilities to locate at

each of the locations due to their difference in gender. Based

on common senses such as women love shopping and men

enjoy in football games, if Alice and Bob are the only two

users in this tile, it is fair easy to deduce that Alice is near

the shop and Bob is near the palaestra.
2) Track Attack: Given a set U of users u, we say that

p : U =⇒ U is a pseudonym function. Let u denote a real

user, and u’=p(u) denote the pseudonym of u that is forwarded

to SP.

Definition 4.2: A track attack based on knowledge Γ is

a function TraΓ : L × U =⇒ [0, 1], such that for each

anonymized user u’, we have:∑
l∈L

TraΓ(l, u′) = 1 (4)

By Definition 4.2, track attacks can be specified in which,

given an pseudonymized user r’, he has different probabilities

to locate at the candidate locations. We illustrate it using the

following example.

Example 4.2: Suppose user1 is parking near a fashion

shop, and user2 is driving to a palaestra. Here user1 and

user2 are pseudonyms to prevent the link attacks which arise

from gender differences. However, a few minutes ago, user1
was at Alice’s personal garage near the shop, and user2 was

on Bob’s driveway near the palaestra. In this case, if Alice and

Bob are the only two users in this tile, attackers can deduce

with high confidence that Alice is user1 and Bob is user2.

3) Attacker Model: Combining the above two attacks, we

define our attacker model as follows.

Definition 4.3: AttΓ : L × U =⇒ [0, 1], such that:

∑
l∈L

AttΓ(l, u′)×
∑
u∈U

AttΓ(l′, u) = 1 (5)

Example 4.3: In a participatory sensing application, sup-

pose that we have two users—Alice and Bob. They use user1
and user2 as their pseudonyms, and report their locations ev-

ery a few minutes. The locations they report can be expressed

as l′1, l′2, ..., l′n, where l′ indicates the generalized location in

their report. If 2-anonymity is used, l′i can be expressed as

<liA, liB>. We analyze our privacy model in the following

three cases.

Case 1 (link attack): Under this attack, an attacker can

deduce that Alice is located at l′1, l′2, ..., liA, ..., l′n, and Bob is

located at l′1, l′2, ..., liB , ..., l′n. The attacker knows the users’

location at i but the users’ locations still satisfies 2-anonymity

at other time intervals.

Case 2 (track attack): Under this attack, an attacker can

deduce that A user is located at l′1A, l′2A, ..., l′nA, and another

user is located at l′1B , l′2B , ..., l′nB . Although the attacker

knows that a sequence of locations l′1A, l′2A, ..., l′nA belongs

to a user and l′1B , l′2B , ..., l′nB belongs to another, he does not

know which one is Alice or Bob.

Case 3 (combination attack): Under a combination attack

(both link attack and track attack), an attacker can deduce that

Alice is located at l1A, l2A, ..., lnA, and Bob is located at l1B ,

l2B , ..., lnB . Users’ location privacy is invaded in this case.

An occasional disclosure by a link between a user and an

accurate location should not be considered as an attack. For

example, suppose an attacker sees Alice near a shop. This

kind of disclosure is inevitable, and we should focus on the

attacks arising from the system, i.e., we should prevent him

from knowing the historical and future location information

of Alice. In another word, we need to prevent tracking at any

time in any tiles for any users. Base on this understanding, we

analyze the performance of P3S under different attacks in the

following sections.

C. Masquerade Attack

Our key management in P3S tolerates masquerading, thus

an attacker may obtain a private key by reporting a masquerade

location to PKG. This key can then be used for decryption.

When user density is low, or attackers know certain back-

ground knowledge, it may be easy to link a user to a certain

location. We name this attack the masquerade attack. The

masquerade attack exists due to the limitation of handling

dynamic attributes in ABE.
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P3S prevents the masquerade attack by preventing tracking

users. Although one can masquerade to get the fine-grained

location information, he is not able to know which reporter is

located at this location because he can not track the reporter.

In P3S, a user can obtain only one private key at a time

(according to Lemma 3.1). If an attacker uses fake attribute

values, it will be difficult to obtain the correct private key

for a specific user. Taking k-anonymity as an example, the

probability of identifying a specific user is 1/k. If each

attribute has m different values on average, the probability

of identifying a specific user is 1/m in the case that only one

attribute is involved, and the probability decreases to 1/mn in

the case that an union of n attributes is involved.

In P3S, suppose there are very few users (e.g., less than 10

in a tile), we analyze masquerade attacks in the worst case

where each user in a tile can be distinguished and linked to

a precise location (e.g., n = 1). Fig. 4 shows that, in the

worst case, P3S still provides a certain degree of anonymity

even if there is only 1 user in each tile. Suppose a user in

Tile L0 move to one of the 10 possible tiles in the next time

interval. In this case, the probability of tracking this user is

1/10. Suppose an attacker masquerade his location as Li, he

will lost his target if the user moves to Lj (i �= j).

D. Collusion Attack

In a collusion attack, multiple attackers may collude with

each other to obtain private keys to decrypt fine-grained

locations in a large region which may cover many tiles. We

conduct an experiment to estimate the mean location entropy

under a collusion attack. Each attacker masquerades a different

location surrounding a normal user. In this case, to track a user,

attackers are able to get as much information surrounding him

as possible. Fig. 5 illustrates that, under collusion attacks, the

mean entropy is reduced rapidly. When there are 50 colluders,

the entropy is reduced by 5 to 6 bits.

We prevent collision attacks using the following idea. When

the redundance rate > r (i.e., many redundant reports in

bustling places), we can lengthen the sensing interval for

reporters in related tiles to increase the location entropy. When

the redundance rate < r, if there are more than s users

querying for different tiles not far from each other, some of
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these queries will be denied to guarantee a lowest bound of

entropy e for all users. It can be calculated in the equation as

follows.

eu = log2[
∫ V t/a1/2

1

8x · n̄ · dx · n̄/s+ 1] (6)

V. IMPLEMENTATION AND RUNTIME PERFORMANCE

We implement P3S in a participatory sensing application

(VehicleMap) which provides road-traffic information. In this

section, we first present our implementation, then evaluate the

performance of P3S.

A. Implementation in VehicleMap

VehicleMap provides mobile users with real-time traffic

information which are reported by different vehicles. A report

containing the vehicle’s acceleration, speed and location is

generated by a mobile phone and sent to the service provider.

The service provider can then interpret the data, conclude a

jam and notify the users querying this service.

Fig. 6 shows a screen-shot of the city of Nanjing in China

(taken from Google Maps at 14:58 on Nov 23, 2009). The four

colors—black, brown, yellow and green—are used to indicate

the live traffic from the slowest to the fastest. Suppose a patient

is currently at location A (a green thumb-tack in T2), and

wants to find a path with least traffic jams to a hospital located

at location B in T5. The blue line shows the shortest path

from A to B, however this path was indicated with the slowest

traffic (the slow traffic areas are marked with red circles 1 to

4).

Using traditional k-anonymity techniques, the fine-grained

location of a jam is blurred to a tile and users only obtain

the traffic information as “there are jams in T3, T7, T11 and

T15”, thus this patient will have to bypass all these tiles. If

there is also a jam at P , the previous techniques fail to find a

path which can bypass all the jams. If P3S is employed, L2
will be recommended as the desired path with no jams.

B. Defining Access Structure

We use location and time for building up access structure.

The location information of a jam in a user’s neighborhood
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Fig. 6. VehicleMap (A: patient, B: hospital)

is necessary to him. We use a need-to-know principle as

follows: the users are only allowed to query for the precise

information nearby. This principle is designed based on the

following observations: Suppose a user requests at location

A with the destination location B, 1) Users need to know

the traffic information around them, e.g., neighboring streets;

2) When a user is far from his destination, he pays more

attentions on the driving direction, instead of which roads or

streets he will drive through; 3) Traffic information is quite

dynamic, to pre-fetch traffic information of a certain area is

often useless; 4) Location privacy is not so sensitive to users

nearby.

C. Runtime Performance

We focus our evaluation on the runtime and scalability of

P3S. In VehicleMap, the private keys for the same tile which

are generated at different time intervals will differ. The private

key which is used to decrypt the fine-grained location of a

jam happened at 5pm will not work at another time, e.g.,

6pm. This requires extensive computation which may affect

the performance of P3S seriously. Moreover, previous studies

show that ABE operations are about 100-1000 times slower

than those of RSA [21]. Hence, the runtime performance of

P3S is critical to real applications.

1) Runtime of PKG: P3S consists of six functions. Setup
runs off-line. Aggregation runs on the data collection and

sharing entities, and its runtime is determined by the time

of waiting for aggregating reports and queries. KeyGeneration
runs on PKG, and it is the most time-consuming process as

all the private keys are computed in this function. Hence, we

focus on evaluating KeyGeneration.

We run KeyGeneration on a laptop computer with a 1.86

GHz processor and 2 GB of RAM. In the experiment, we

generate the attribute values pseudo-randomly, and the average

length of the attribute values is 16 bytes. Fig. 7 shows the

runtime over 50-250 tiles.

The runtime of KeyGeneration is the sum of the time of

generating the privacy key for each tile. If more than one user

queries for the same tile during the same time interval, PKG

only needs to compute the private key once for all these users.
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Fig. 7. Runtime of the KeyGeneration function in PKG
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Fig. 8. Searching results and the urban areas of 28 cities in China.

In the worst case, PKG has to compute private keys for all the

tiles in a city during a time interval.

2) Scalability: We evaluate the scalability of P3S with

regards to the number of tiles (i.e., the number of times

running KeyGeneration in the worst case). To estimate the

quantity of the tiles, we use Google Maps and search for

“street office” in 28 cities in China. There is typically a street

office for several streets, and each street office corresponds to

a predefined tile. The number of searching results indicates

the quantity of the tiles to some extent.

We compare the urban areas, the searching results and the

number of street offices in Nantong, Nanjing and Chengdu.

For example, in Nanjing, we obtain 231 searching results and

the urban area of Nanjing is about 243 km2. In fact, there

are 46 street offices [22], hence the ratio of the number of

street offices to the searching results is 46/231 .= 1/5. Finally,

we conclude 1/5 of the searching results on average as an

indication to the real number of street offices.

Fig. 8 shows the number of searching results and the urban

areas of 28 cities in China. The black line indicates the

distribution of searching results. The dotted line shows the

ratio of the total number of searching results to the total

number of urban areas. The broken line shows the expectation

which is obtained by the average ratio over all the cities. We

obtain the mean area of tiles for different cities from 1.35 to

10.16 km2, and the mean area for all the cities 3.25 km2. The
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Fig. 9. Runtime performance of P3S on iPhone

number of searching results falls in the range of 31 to 1173

for most of the cities. Thus, we use 1200 as the upper limit of

the searching results, and we obtain the upper limit of tiles as

1200 ∗ 1/5 = 240. Combining with the runtime performance

shown in Fig. 7, we observe that, in the worst case, it costs 50

seconds to generate all the private keys in a time interval. We

conclude that the time interval should be longer than 1 min in

a large city.

3) Runtime Performance on Mobile Devices: To evaluate

the feasibility of P3S on mobile devices, we deployed Ve-
hicleMap on a mobile device, and evaluate the runtime of

Encryption, Decryption and Anonymization. We use a first-

generation iPhone with a 620MHz ARM processor, and the

primary package from Cydia installer such as Classpath,

IPhone/Java, JamVM, and Jikes for our implementation.

Fig. 9 shows the runtime of VehicleMap in the worst case.

The result shows that GPS positioning takes up the most of the

runtime (> 30 seconds). The three functions take 0.47 seconds,

which is the sum of the time for reporters to generate two

copies of a location (the cipher text of fine-grained location

and coarse-grained location), and the time for end-users to

decrypt the cipher text. The time of waiting for the response

from the service provider is about 3 to 5 seconds. The above

results show P3S only takes about one percent of the entire

time, demonstrating its feasibility for real-life deployments.

VI. CONCLUSION

In this paper, we propose P3S to preserve location privacy

in participatory sensing applications requiring fine-grained

location information using ABE. We validate and evaluate P3S

using VehicleMap. The results show that not only P3S secures

user privacy, but also it is feasible in real deployment.

For our future work, we plan to improve the robustness

of P3S against a single point of failure. We can use a

distributed architecture in which each of the three computation

entities (data collection entity, data sharing entity and PKG)

is distributed or replicated.
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