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Abstract 
 

In this paper, we propose a peer-to-peer approach 
to derive and obtain additional context data from low-
level context data that may be spread over multiple 
domains in pervasive computing environments. In this 
system, peers are self-organized into a semantic peer-
to-peer network as the underlying communication 
substrate. Context reasoning is done in a distributed 
fashion through logical reasoning according to a set of 
user-defined rules. Both pull and push services are 
supported in the system to enable message exchange 
during the reasoning process. We present our design 
concepts, and prove the effectiveness of our system 
through the prototype evaluation.  
 
1. Introduction 
 

The advancement of pervasive computing advocates 
complex applications to be built with context-
awareness enabled. In the past decade, there have been 
many efforts on building various context-aware 
systems. One of the challenges in these systems is how 
to derive high-level context data from a set of low-
level context data that may be spread over multiple 
domains. In recently years, many systems such as [2] 
adopted a centralized approach to context reasoning. 
This approach works well in a single smart space, i.e., 
a smart home. It can provide fast response, and it is 
relatively easy to update context data or indices since 
the data set in a single domain is small. However, the 
centralized approach has traditional limitations such as 
a single processing bottleneck and a single point of 
failure. It requires system administration at the 
centralized server. More importantly, it may not be 
suitable for building cross-domain context-aware 
applications that require utilizing and reasoning about 
context data over multiple smart spaces. Using a 
centralized approach for such applications may lead to 
increased difficulties in administration and a higher 

maintenance cost of updating context data due to the 
dynamicity of context information. 

Recently, peer-to-peer (P2P) approaches such as 
[6], [7] and [8] have received considerable attention 
and gained popularity because their underlying 
infrastructures are appropriate to scalable and flexible 
distributed applications. In a P2P system, there is no 
centralized control: Each peer acts as a server or a 
client, and cooperates with other peers in order to solve 
a collective task. Performing context reasoning in a 
P2P manner provides us a potential solution to 
overcome the limitations incurred by a centralized 
reasoning system. 

In this paper, we propose a P2P approach to context 
reasoning in pervasive computing environments. We 
aim at providing reasoning capabilities for 
collaborative context-aware applications over multiple 
domains. In this system, peers are organized into a 
semantic P2P network [9]. Context interpreters are 
special peers that are responsible for performing 
reasoning tasks through logical reasoning which 
consists of ontology reasoning and rule-based 
reasoning. We extend the semantic P2P network by 
proposing an event subscription mechanism that allows 
applications to pre-subscribe context data to keep track 
of dynamic data changes in the reasoning process. We 
conduct the prototype evaluation to prove that our P2P 
reasoning system works effectively. 

The rest of the paper is organized as follows. We 
survey related work in Section 2, and then present the 
architecture of our P2P context reasoning system in 
Section 3. We present the evaluation results in Section 
4. Finally, we conclude our work in Section 5.  
 
2. Related Work 
 

Many existing systems adopted a centralized 
approach to derive high-level contexts. Chen et al. [2] 
proposed the CoBrA infrastructure where context 
information is shared by all devices, services and 
agents. CoBrA deploys a centralized server called 
Context Broker to store and reason about context 
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information. Wang et al. [10] proposed a centralized 
context reasoning system to acquire and aggregate low-
level contexts, and derive high-level contexts. 
However, the centralized approach has limitations such 
as a single processing bottleneck, which ultimately 
leads to a scalability problem; and a single point of 
failure, which undermines system robustness. This 
approach also requires system administration at the 
centralized server. Studies in [2] and [10] have shown 
that logical reasoning is a computationally intensive 
process, and a centralized reasoning engine may not 
scale well when the knowledge base and/or the rule set 
are large.  

Researchers also proposed many context reasoning 
systems based on distributed reasoning servers. 
Ranganathan et al. [1] developed a middleware 
infrastructure to enable context awareness in pervasive 
computing. They leverage on standard CORBA 
services to manage and resolve the basic difficulties in 
building a distributed context reasoning system. Our 
previous work in [3] proposed a distributed context 
reasoning system based on Service-Oriented 
Architecture. This approach distributes the workload of 
a centralized reasoning server to multiple servers in the 
network; however, distributed servers still have the 
limitations of robustness and centralized 
administration, and need an advanced load-balancing 
strategy.  

Przybilski [5] proposed a distributed approach using 
P2P for context reasoning. In this system, mobile 
devices perform simple context reasoning such as 
feature extraction, and can send their reasoned context 
information to a remote server for more advanced 
context reasoning such as classification that requires 
more powerful computation capabilities. While this 
concept is new, the feasibility of this approach remains 
unproved as this system is neither implemented nor 
evaluated.  
 
3. System Architecture 
 

Our system consists of many individual peers, 
which can act as context producers, context consumers 
or context interpreters. A context producer provides 
various context data – usually low-level context data 
that are obtained from physical sensors, whereas a 
context consumer obtains context data by sending 
context queries to the network and receiving results. A 
context interpreter is a special context producer which 
is able to derived implicit and high-level contexts from 
explicit and low-level contexts. We organize context 
producers and interpreters into a P2P network [9] – an 
ontology-based semantic network as the underlying 
communication substrate. A context consumer submits 

its context queries to any context producer or 
interpreter that acts as a proxy, and receives the results. 
Users or applications may utilize various contexts 
obtained from the network and adapt their behaviors 
accordingly. 

 
3.1. Data Model and Storage 
 

In our system, we use an RDF based context model 
to represent context data. We have designed our 
context ontologies with a two-level hierarchy in [3]. 
The upper ontology defines common concepts about 
the physical world in pervasive computing 
environments, and it is shared among all the peers. 
Each peer can define its own concepts in its low-layer 
ontologies which extend the leaf concepts in the upper 
ontology. Different peers may store different sets of 
low-layer ontologies based on their applications’ 
needs. This design approach offers application 
developers the flexibility to define the domain 
knowledge which is specific to their applications. 

Each context producer or interpreter maintains a 
local RDF repository to store local context data and 
ontologies. An RDF repository can be accessed 
through the RDQL based query engine which is able to 
parse RDF triples and resolve context queries. 

 
3.2. First-Order-Logic 
 

We use first-order-logic to reason about context 
data. There are two kinds of reasoning in our system: 
ontology reasoning and user-defined rule-based 
reasoning. Ontology reasoning is responsible for 
checking class consistency and implied relationship, 
asserting inter-ontology relations when integrating or 
switching domain-specific ontologies.  

Application developers can also define their own 
rules to derive high-level contexts. This enables users 
or applications to raise the level of context abstraction 
based on their needs. A user-defined rule takes the 
form: 

<RuleName>: <Premise1> ... <Premisen> -
> <Conclusion> 
<RuleName> specifies the name of the rule. 

<Premise1>...<Premisen> are triple patterns 
representing the premises that make the conclusion 
true. <Conclusion> is a triple pattern that specifies 
the high-level statement generated when all the 
premises are satisfied. 

Each context interpreter stores a set of rules locally. 
For context queries, the rules to infer high-level 
contexts are encoded as backward chaining rules. 
Given a high-level context query, they help identifying 
and invoking one or more low-level context data. For 
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context subscription, we use forward chaining 
reasoning to infer the facts when context changes. This 
is to avoid having to infer the same facts repeatedly. In 
the implementation of rule-based reasoning engine, we 
combine both forward chaining and backward chaining 
models to form a hybrid execution mode. 

3.3   Semantic P2P Overlay and its Extension 
of Event Subscription 

In our system, context producers and interpreters 
are organized into a semantic P2P network. We group 
context producers and interpreters into different 
semantic clusters. Each semantic cluster corresponds to 
a leaf concept in the upper context ontology. Upon 
creation, each context producer or interpreter first 
maps the semantics of its local data to one or more leaf 
concepts in the upper context ontology; it then joins a 
semantic cluster. These semantic clusters are 
interconnected as a one-dimensional circular space to 
form the P2P network. Upon receiving a context query, 
the context producer or interpreter pre-processes it to 
obtain the semantic cluster associated with the query, 
and then routes the query to appropriate producers or 
interpreters that have the relevant context data. 

In addition to search requests which pull data from 
the network on a one-time basis, context consumers 
may be interested to subscribe a context event to the 
network and get notified when the event changes over 
a period of time. In this paper, we propose an event 
subscription mechanism which is an extension to the 
semantic P2P network. It is particularly useful during 
the reasoning process where one or more premises are 
not ready at the point of a derivation; and hence, they 
need to be subscribed to the network and resume the 
derivation process when all premises get ready.   

When a context producer or interpreter receives a 
subscription request, it checks its local RDF data and 
decides whether it should accept the request. For 
example, a peer subscribes a context event “John enters 
the bedroom” in the RDF triple form of 
<socam:John socam:locatedIn 
socam:Bedroom> to the network. As this RDF 
triple may not exist in the network (i.e., John may be in 
some other places) at the time of receiving a request, 
the subscription request may end up with no context 
producers to register. To avoid losing potential 
producers or ending up with many irrelevant 
producers, we propose a subscription acceptance 
algorithm, as shown in Figure 1, for a peer to match a 
subscription request against its local RDF data. 

Given a subscription request in the form 
of an RDF triple pattern <Subs, Preds, 
Objs>, a variable in the RDF triple 
represents any arbitrary constant. 
Let <Subl, Predl, Objl> represents any RDF 
triple in a peer’s local data set called 
L. 
accept = false; 
for each RDF triple in L  
  if Preds is of DatatypeProperty && ((Subs 
== Subl) ∩ (Preds == Predl)) == true then  
    accept = true; break; 
  else if Preds is of ObjectProperty 
&&((Preds == Predl) ∩ (Objs == Objl)) == 
true then 
    accept = true; break; 
  end if 
end for 
if accept == true then accept the request; 
else reject the request; 
end if 

Figure 1: Subscription acceptance algorithm 

This algorithm works for a subscription request in 
the form of any RDF triple pattern whose subject, 
predicate or object may take variables. Although 
predicates can be specified as variables, this situation 
seldom occurs since users or applications are always in 
favor of more specific events in context-aware 
pervasive applications. We now consider the case that 
a predicate is specified in a subscription request. If a 
subscription request’s predicate is of type 
DatatypeProperty, a context producer determines 
if its local RDF data contains triple(s) with the same 
subject-predicate pair as in the request. For example, 
for a given subscription request <socam:Bedroom 
socam:lightLevel ‘LOW’>, a producer will 
accept the request if there exists an RDF triple with 
subject socam:Bedroom and predicate 
socam:lightLevel in its local data. If a 
subscription request’s predicate is of type 
ObjectProperty, a context producer determines if 
its local RDF data contains triple(s) with the same 
predicate-object pair as the request. For example, for a 
given subscription request <socam:John 
socam:locatedIn socam:Bedroom>, a 
producer will accept the request if there exists an RDF 
triple with predicate socam:locatedIn and object 
socam:Bedroom in its local data. 

To understand the rationale behind these decisions, 
consider a subscription request in the form of the RDF 
triple <Subs, Preds, Objs>. Such a triple may be 
obtained from raw data generated by a physical sensor. 
In the sensor network domain, a predicate always 
corresponds to a sensor type, e.g., 
socam:locatedIn corresponds to a physical 
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location sensor. If Preds is of 
DatatypeProperty, Subs should correspond to 
the target this sensor is monitoring and Objs should 
correspond to the sensor output. For example, the RDF 
triple of <socam:Bedroom socam:lightLevel 
‘LOW’> can be interpreted as the output of a light 
level sensor monitoring the bedroom’s light level. If a 
context producer’s local RDF data contains at least one 
triple with the Subs-Preds pair, it can be inferred 
that this producer has the type of sensor specified by 
this pair. Hence, we can conclude that this producer 
can provide triples of this same subject-predicate pair. 
On the other hand, if Preds is of 
ObjectProperty, Objs should correspond to the 
target this sensor is monitoring and Subs should 
correspond to the sensor output. In this case, the 
producer can provide triples with the same Subs-
Preds pair as in the subscription request.  

Once a peer accepts a subscription request, it keeps 
monitoring the request. Whenever a change occurs, the 
peer notifies the subscribers if the RDF triple matches 
the subscription request. An RDF triple <Subc Predc 
Objc> is said to match the subscription request if 
(Subc == Subs) ∩ (Predc == Preds) ∩ 
(Objc == Objs) are true. The routing of 
notification traces the exact path of the subscription 
request in the reverse direction. A subscriber can 
unsubscribe a context event by sending an 
unsubscription request directly to the producer. 
 
4. Evaluation Results 

 
To evaluate our prototype system, we set up a 

testbed that consists of eight peers (five producer peers 
and three interpreter peers) in our campus network. We 
run all the peers on off-the-shelf computers – Pentium 
500MHz desktop PCs with 256MB memory to see how 
well the system performs. We create and store a set of 
low-level context data in each context producer, and 
create different sets of rules in the three interpreters for 
deriving high-level contexts. All the peers participate 
in the overlay network. We evaluate our prototype 
system based on the testbed and focus our evaluations 
on the performance of context interpreter.  
 
4.1. Deduced Query Processing Capability 
 

In this experiment, we evaluate the capability of a 
context interpreter to process deduced queries. We 
generate a various number of simultaneous deduced 
queries in randomly selected peers, and measure the 
average processing time in the context interpreters. 
Figure 2 plots average processing time against number 

of simultaneous deduced queries. When a logarithmic 
scale is used for both axes, the graph displays a linear 
relationship. This shows that the query processing 
capability of context interpreter scales well to number 
of deduced queries. 
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Figure 2: Query processing capability of context interpreter. 

On average, a context interpreter takes about 1.1 
seconds to answer a deduced query. We analyze query 
response time by breaking it down into three portions: 
query mapping, query processing and communication, 
as shown in Figure 3. Query mapping is the time taken 
to map a query to the appropriate cluster for routing. 
Query processing is the time taken to process a 
deduced query, including tasks such as rule processing, 
internal query generation, and high-level context data 
derivation. Communication represents the time taken 
for queries and their results to travel over the network. 
It includes communication cost for both deduced 
queries and internal queries. 
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Figure 3: Breakdowns of the response time for deduced query. 

As we can see from the above figure, the costs of 
query processing and communication are the major 
factors. We have assumed the worst scenario in this 
experiment, i.e., a context interpreter’s premise model 
is empty and all the premises have to be obtained from 
the network by issuing internal queries. In the reminder 
of this section, we will look into various methods to 
improve deduced query processing. 
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4.2. Improving Deduced Query Processing 
 

We propose and evaluate four methods to improve 
deduced query processing for context interpreter. Table 
1 summarizes the four methods. 

TABLE 1: DIFFERENT METHODS FOR DEDUCED QUERY 
PROCESSING 

Method 
Pre-

subscription 
Shared Internal 
Subscription 

A   

B   
C   
D   

 Method A (Pre-subscribe all premises): The context 
interpreter analyzes all the rules it maintains and 
sends internal queries to the network for all possible 
premises upon startup. It also pre-derives all 
possible high-level context data corresponding to all 
the rules it stores. 

 Method B (Internal queries are not shared): For 
each deduced query received, a context interpreter 
sends internal queries for all relevant premises and 
unsubscribes these internal queries when the 
deduced query is answered. Internal queries are not 
shared between rules. 

 Method C (Internal queries are shared): This 
method is similar to Method B, but internal queries 
are shared between rules. A context interpreter only 
sends an internal query if it has not been sent and 
only unsubscribes an internal query if there are no 
pending deduced queries that require that internal 
query. 

 Method D (Pre-subscribe certain premises/Internal 
queries are shared): This method is a combination 
of Methods A and C. A context interpreter uses 
Method A for the rules corresponding to frequent 
deduced queries and uses Method C for the rules 
corresponding to infrequent deduced queries. 
In this experiment, we evaluate the effectiveness of 

each method. Method A is performed by manually 
placing the necessary high-level statements in a context 
interpreter’s inference model beforehand. Method C is 
performed by checking for internal queries that have 
already been sent, and only initiating internal queries if 
they have not been sent before. Method B is performed 
by removing the check for internal queries that have 
already been sent. Hence, duplicated internal queries 
may be sent over the network. Method D is performed 
by manually placing a portion of all possible high-level 
statements in a context interpreter’s inference model 
beforehand. Note that we use one-third of the high-
level statements in this experiment, the ratio should be 
computed based on query statistics in real scenarios.  

Figure 4 plots processing time of deduced queries for 
different methods. Among the four methods, Method A 
gives the shortest response time. This is because the 
context interpreter processes reasoning rules, 
subscribes internal queries and derives high-level 
context data beforehand. Method B performs the worst 
as we assume the worst-case scenario (i.e., a context 
interpreter has to issue an independent internal query 
for each of the premises).  
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Figure 4: Processing time of deduced queries for different 
methods in the context interpreter. 

Although Method A performs the best, it may not 
scale well if a context interpreter maintains too many 
rules. This is because the context interpreter would 
have to maintain a large number of internal 
subscriptions at all times. In addition, many irrelevant 
internal queries may be sent to the network, thus 
increasing unnecessary load on the network. Also, the 
context interpreter may have to periodically resend all 
internal queries to ensure that it is able to obtain 
premises from context producers that have just joined 
the network. Method B removes the need for a context 
interpreter to keep track of the internal queries it sends 
to the network and ensures that the premises obtained 
are fresh as internal queries are only sent when 
receiving deduced queries. However, this method is 
inefficient as it generates many redundant internal 
queries, which increase the network load and the 
response time for deduced queries. Method C provides 
a good compromise between Methods A and B. 
Although its response time is greater than that of 
Method A, it generates a significantly smaller number 
of internal queries compared to both Methods A and B, 
and thus reduces the network load. In addition, the 
premises obtained are also fresh as the internal queries 
are subscribed on demand as it is with Method B. 
Method D improves the response time of Method B by 
pre-subscribing the premises for deduced queries that 
are popular. It requires a context interpreter to maintain 
and keep track of the statistics of deduced queries 
received and deploy an algorithm to decide which 
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queries should be pre-subscribed beforehand. This 
method needs to be further studied in our future work.  

4.3   Memory Consumption 

We have evaluated and analyzed the 
communication costs of various methods for handling 
deduced queries in Section 4.2. We now evaluate 
memory consumption. Figure 5 plots the memory 
consumption in term of MB (megabytes) for the above 
four methods.  
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Figure 5: Memory consumption for the four methods. 

Among them, Method A consumes the most 
memory. This is because, in Method A, a context 
interpreter has to maintain internal subscriptions for all 
internal queries to which it has pre-subscribed. Method 
B consumes the least memory because a context 
interpreter does not need to maintain internal queries as 
all internal queries are subscribed on demand. The 
memory consumptions of Methods C and D fall 
between that of Methods A and B. Clearly, there is a 
tradeoff between query response time and memory 
consumption. This evaluation also reveals that the 
computing device that runs context interpreter does 
require certain hardware capabilities (i.e., processing 
power and memory) apart from certain software 
platform capabilities. Some embedded computing 
device may not be capable of running the context 
interpreter, for example, mobile phone, etc. 

 
5. Conclusion 
 

In this paper, we have presented a peer-to-peer 
approach to derive high-level contexts from a set of 
low-level contexts that may be spread over multiple 
domains in pervasive computing environments. Our 
evaluation results have shown the effectiveness of our 
prototype system. We plan to develop several cross-
domain context-aware applications (e.g., cooperative 
smart home application, etc) that fully utilize the 
capability of context interpreter in our future work.  
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