
MDLdroidLite: a Release-and-Inhibit Control Approach to
Resource-Efficient Deep Neural Networks on Mobile Devices

Yu Zhang
RMIT University, Australia
zac.lhjzyzzoo@gmail.com

Tao Gu
Macquarie University, Australia

tao.gu@mq.edu.au

Xi Zhang
RMIT University, Australia

zaibuer@gmail.com

Abstract
Mobile Deep Learning (MDL) has emerged as a privacy-preserving
learning paradigm for mobile devices. This paradigm offers unique
features such as privacy preservation, continual learning and low-
latency inference to the building of personal mobile sensing appli-
cations. However, squeezing Deep Learning to mobile devices is
extremely challenging due to resource constraint. Traditional Deep
Neural Networks (DNNs) are usually over-parametered, hence in-
curring huge resource overhead for on-device learning. In this paper,
we present a novel on-device deep learning framework named MDL-
droidLite that transforms traditional DNNs into resource-efficient
model structures for on-device learning. To minimize resource over-
head, we propose a novel Release-and-Inhibit Control (RIC) approach
based on Model Predictive Control theory to efficiently grow DNNs
from tiny to backbone. We also design a gate-based fast adaptation
mechanism for channel-level knowledge transformation to quickly
adapt new-born neurons with existing neurons, enabling safe pa-
rameter adaptation and fast convergence for on-device training. Our
evaluations show that MDLdroidLite boosts on-device training on
various PMS datasets with 28× to 50× less model parameters, 4× to
10× less floating number operations than the state-of-the-art model
structures while keeping the same accuracy level.
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•Computingmethodologies→Machine learning;Neural net-
works;Computational control theory; •Human-centered com-
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1 Introduction
With the rapid development of wearable and mobile devices such
as wristbands, EEG headsets, smartwatches and smartphones, re-
cent years have witnessed rapid increase in the demand of Personal
Mobile Sensing (PMS) applications, ranging from activity recog-
nition [36], continual personal health monitoring [44], to private
mental contexts understanding [45]. Through these devices, PMS
applications are able to exploit rich contexts from personal sensing
data that may be privacy sensitive. Machine learning plays a vital
role in interpreting and making sense to sensor data. In particular,
Deep Learning (DL) has created tremendous opportunities to achieve
breakthroughs in a higher level of accuracy and robustness [35].

A DL application works in two phases–training and inference.
Existing Deep Neural Networks (DNNs) require heavy computation
resources specially for training, beyond the capability of wearable
and mobile devices. As a result, most of the solutions offload training
workloads by transmitting sensor data from devices to clouds [24] or
edge servers [38] and download pre-trained models [35] on devices
for inference. However, real-world PMS applications have many
intrinsic properties which create several open questions [60, 63].
Firstly, sensor data in PMS applications are highly privacy-sensitive
as they contain motion and biological contexts of an individual.
Transferring personal sensor data from devices to clouds or edge
severs may raise severe privacy concerns. Numerous studies [32, 48]
reveal that unexpected data leaking may lead to privacy violation.
Data privacy protection has also been raised to the level of regula-
tions and laws [57]. Secondly, due to the dynamic nature of sensor
data, i.e., unreliable and brittle over time, PMS applications are highly
user-specific (i.e., personal preferences or health conditions) and can
be easily affected by local scenario changes (i.e., long-term behavior
changes, stationary-to-movement changes or ambient environment
condition changes) [7, 22, 35, 60], hence continual training or adap-
tation is crucial to maintain model generalization and robustness.
Thirdly, PMS applications such as gesture recognition [62] and fall de-
tection [36] require real-time responses, hence low-latency in model
inference is critical. Furthermore, since sensor data are naturally
less interpretable than images or texts [7], collecting and labeling a
large amount of sensor data with diverse real-world scenarios may
be impractical. In fact, there is a lack of public available datasets and
most of sensor data collections are done privately for specific PMS
applications.

Existing approaches deploy pre-trained models (i.e., training done
in clouds) for on-device inference to avoid privacy violation [11, 34],
but these models may suffer from performance issues when ap-
plied to different users in different environments due to the problem
of "one size fits all". Although transfer learning can be applied to
user-specific model adaptation, several real-world limitations exist
[56, 61]: 1) the transferred model performance may be inferior due to
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domain-shift caused by target sensor data dynamics; 2) the transfer
process is limited to specific source models, which may not be uni-
versally applied to different applications; 3) the model adaptation is
completed by transmitting user-specific sensor data to clouds, which
will violate privacy.

Mobile Deep Learning (MDL) has been recently advocated as an
appealing on-device learning solution for privacy-preserving PMS
applications [16, 17, 30, 63]. MDL promises to offer unique features
to enable strict privacy preservation (i.e., zero data transmission), con-
tinual training and low-latency inference on mobile devices [30, 63].
Thanks to data augmentation techniques [9, 54] which can easily
augment the collected user-specific sensor data to an adequate level
for real-world applications, hence as a universal solution, a MDL
framework with on-device training from scratch is essential for PMS
applications.

Most of the existing works study model inference on mobile de-
vices [34], e.g., TensorFlow Lite [40] and optimization in [24]. Few
studies [10, 25] relate to on-device training which is more challeng-
ing because the resources required for training can easily go beyond
the capacity of commodity mobile devices [55]. Google’s Federated
Learning (FL) [30] as a well-known MDL framework aims to enable
on-device training, but it is still at an early stage and the perfor-
mance is much limited by the resource constraint on mobile devices.
The resource overhead of on-device training therefore seems to be
the main obstacle, and the performance of on-device training may
be largely limited by the resources on mobile devices. The study
[19] reveals that, as one of the underlying impediments, DNNs are
originally designed as complex structures involving millions of pa-
rameters surprisingly, resulting in huge memory footprints, a large
number of floating number operations (FLOPs), and the risk of over-
fitting. In essence, existing studies focus on training accuracy as
the first priority yet less resource consideration for training. The
accuracy-first approach will potentially result in resource-inefficient
structures for mobile devices. Besides, most of DNN structures rely
on hand-crafted model configuration with manual hyperparameter
tuning on specific datasets, hence this process can be very costly
and less dynamic when adapted to new datasets [20].

To reduce heavy model parameters in DNNs, model pruning has
been proposed to achieve a lightweight structure with less resources
used [42]. The study [20] indicates that a latest pruning technique can
reduce 90% of the model parameters and FLOPs with little accuracy
drop. Although pruning techniques have been successfully applied
in mobile scenarios, they mainly focus on pruning a pre-trained,
over-parameterized DNN to a backbone structure for inference only,
but not training [12, 58]. Besides, since a pruned structure may be po-
tentially over- "fitted" and primarily fixed on stationary datasets, the
model is structurally limited to on-device continual training, which
may cause serious learning forgetting issue to degrade model perfor-
mance [14, 20, 39]. Moreover, due to the lack of hardware or libraries
for sparsification support on off-the-shelf mobile devices, existing
pruning-pipelines may not lead to actual compression or resource
reduction [42, 64]. The conventional training of DNNs initializes
with millions of parameters in the first place may easily overwhelm
the limited memory on mobile devices. We ask a fundamental ques-
tion why we train DNNs with large redundant parameters from the
beginning. This leads to our intuition of training DNNs from tiny to
backbone, i.e., small to big, eliminating the pruning process. This new

approach, i.e., a "growth" approach, may avoid heavy redundancy in
computation resources, hence potentially fits in mobile devices.

Moving along this direction, Continuous Growth (CG) has re-
cently been proposed in several works [8, 14, 18, 29] that can con-
tinually search an efficient DNN structure with less redundancy
and adaptable to different datasets and model configurations. CG
combines both constructive (e.g., adding neurons, channels or layers)
and destructive (i.e., pruning) structure learning. It starts training
from a small-sized model configuration, and grows continually to
reach the full size or the size bounded by a fixed resource budget,
then pruning its model size down for inference. Although CG has
not been shown its feasibility of training DNNs on mobile devices,
the idea of growing DNNs from a small size can be promisingly used
to continually build resource-efficient DNN structures for on-device
training and inference. However, two critical challenges exist when
applying CG on mobile devices. Firstly, the growth strategy in CG
is simple and inefficient (e.g., linear or near-exponential), hence it
may still lead to a relatively large or over-parameterized model. In
addition, since CG grows all layers of a model with the same growth
rate, the model structure may contain large redundancy between
layers. Although pruning may bring down the size, this process is
inefficient in practice and currently unsupported on commodity mo-
bile devices. Furthermore, CG controls the growth by pre-setting
a fixed resource threshold, i.e., resource budget, however it cannot
handle dynamic resource changes on mobile devices in reality.

Secondly, CG adopts knowledge transfer (KT) to fast adapt new-
borns (i.e., new added neurons, channels or layers) by transferring ex-
isting learned parameters, which effectively saves resources [19, 59].
However, when applied to resource-constrained devices, CG does not
guarantee training convergence during growth. The convergence
rate (i.e., training loss rate) is a nontrivial metric to indicate the
speed of training and a strong indicator to resource usage on mobile
devices. Hence, such slow convergence in CG (Section §2) severely
degrades the training performance on commodity smartphones and
leads to inevitable resource overhead.

Our Approach To address the limitations of CG and move to-
wards MDL, in this paper we present MDLdroidLite, a novel on-
device DL framework to support privacy-preserving PMS appli-
cations. MDLdroidLite is able to fully operate DL on commodity
smartphones for both training and inference. This capability is es-
sentially achieved by our proposed dynamic fast-grow control to
transform traditional DNNs into resource-efficient model structures
running on mobile devices with negligible extra cost. In addition,
given different datasets and DNN configurations, MDLdroidLite can
dynamically control the growth of DNNs and train a dataset simul-
taneously in a resource-efficient way (i.e., less model parameters,
memory footprints, FLOPs and fast new-borns adaptation).

Our challenges are two-fold. To optimize DNNs for mobile devices,
we propose a novel Release-and-Inhibit Control (RIC) approach that
efficiently manages the growth of DNN model structure in layer-
level (i.e., each layer can grow independently). Different from CG
[14, 18] that grows DNNs inefficiently to overparameter and prunes
later to the backbone, our key idea is to manage the growth wisely
from tiny to backbone so that we can avoid large redundant resource
overhead. We specifically design a resource-constrained controller,
named RIC-grow, based on the Model Predictive Control (MPC) the-
ory, to manage the growth of DNNs in a single trajectory. In addition,
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we propose a layer-level, compete-decay growth model (§3.1.3) to
predict the optimal grow-value for each grow-step, which efficiently
assists the controller to make decisions (e.g., whether growing or
not and how many neurons). Conceptually, our approach works sim-
ilar to human brain’s hypothalamus that produces Releasing and
Inhibiting hormones to help human body grow healthily [47]. Built
upon RIC-enabled DNNs, MDLdroidLite can facilitate efficient train-
ing and inference on commodity smartphones with significantly-
reduced resource overhead.

As aforementioned, slow convergence in CG is caused by the
large variance of neurons after each growth. MDLdroidLite aims
to minimize the variance for fast convergence by adapting new-
born neurons quickly with existing neurons. To achieve, we design
a gate-based fast adaptation mechanism for channel-level knowl-
edge transformation in each layer, namely RIC-adaption pipeline.
Different from CG, RIC-adaption pipeline uses a variance optimiza-
tion function for efficient adaptation. Safe parameter adaptation
is achieved by two proposed techniques–three-step distance-based
selective parameter adaptation (DSPA) (§3.2.1) and gate-based coor-
dination unit (GCU) (§3.2.2). Systematically, we first employ a cosine
similarity-based parameter selection function to select a group of
existing neurons that has a small variance. Next, we apply a model
weight scaling function to scale down the selected parameters to
new-born neurons for preserving the current loss. We then use a
layer-to-layer mapping function to map new-born neurons of the
subsequent layer in the same way to maintain the prior-subsequent
layer shapes. Finally, we propose a momentum-based optimization
function to minimize and coordinate the variance between the new-
born and existing neurons using GCU. In a nutshell, RIC-adaption
pipeline allows a notable fast convergence rate for each grow-step,
hence speeding up on-device training.

We fully implement MDLdroidLite using two DL libraries, and
conduct comprehensive evaluations on three off-the-shelf Android
smartphones using 4 PMS datasets and 2 standard image datasets.
MDLdroidLite outperforms existing parameter adaptation methods
by speeding up training convergence 2.84× to 4.88×. The backbone
models in MDLdroidLite achieve parameter reduction by 28× to
50×, FLOPs reduction by 4× to 10× over a full-sized model on PMS
datasets while keeping the same accuracy level.

Our main contributions are summarized as follows.
• To the best of our knowledge, MDLdroidLite presents the first
on-device structure learning framework that enables resource-
efficient DNNs on off-the-shelf mobile devices, capable of building
the privacy-preserving PMS applications.

• We propose a novel Release-and-Inhibit Control (RIC) approach,
particularly a compete-decay model-based resource-constrained
controller to manage the efficient growth of DNNs.

• Wedesign a gate-based fast adaptationmechanism, i.e., RIC-adaption
pipeline, to efficiently adapt new-born neurons with existing neu-
rons for fast convergence.

• We evaluate MDLdroidLite on Android smartphones with a num-
ber of DNNs using real-world PMS datasets. Results indicate that
MDLdroidLite makes DNN model structure resource-efficient for
on-device training and inference, outperforming the state-of-the-
arts.
Implication MDLdroidLite moves an important step towards

the promising MDL paradigm, and bridges the gap between DL

Table 1: Training resource overhead on Pixel 2 XL phone.
Model & Dataset Battery Memory Parameter FLOPs Batch Size Epoch
LeNet on MNIST 2250mAh 256MB 431K 4.59M 100 20
MobileNet on HAR 630mAh 160MB 55.2K 1.16M 32 20
VGG-11 on CIFAR-10 3320mAh 744MB 9.24M 306.12M 100 2
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Figure 1: Preliminary results. (a) On-device training time and
inference latency using the state-of-the-art DNNs; (b) Poor ro-
bustness using pre-trainedmodel for individual; (c) Accuracy
drop due to local scenario changes and recovery by continual
training; (d) Slow convergence of existing CG methods.

and PMS applications for mobile devices. With on-device learning,
MDLdroidLite will facilitate the building of a wide range of privacy-
preserving PMS applications. In addition, with continual learning,
MDLdroidLite will generate personalized models directly on smart-
phones, improving interactivity efficiency with individuals. While
this paper primarily focuses on enabling DL on mobile devices for
PMS applications, to further extent, MDLdroidLite can be applied to
other embedded and Internet of Things (IoT) devices for intelligent
edge systems and IoT applications.

2 Motivation
To discover the limitations of existing DL solutions for PMS applica-
tions, we conduct preliminary experiments for on-device training
and inference.
Set-up We use four PMS datasets (i.e., three public and one self-
collected) and two image datasets, detailed in Table 3, to evaluate
three DNN structures from small- to large-scale (i.e., LeNet, Mo-
bileNet and VGG-11), detailed in Table 4. The study was done on
an off-the-shelf Google Pixel 2XL smartphone, detailed in Table 5,
which ran complete training and inference based on DL4J library.
ResourceBottleneck inOn-deviceDLTo understand the resource
overhead of on-device training and inference, we train LeNet on
MNIST, MobileNet on HAR and VGG-11 on CIFAR-10, respectively,
with full-sized model configurations under no constant charging
and memory-constrained conditions. From Fig. 1a, we observe that
training is extremely slow due to heavy computation, e.g., training
a LeNet on MNIST takes more than 1.5 hours with a considerable
2250mAh out of 3520mAh battery drain, as shown in Table 1. Espe-
cially, the training of a large-scale VGG-11 on CIFAR-10 fails with
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only two training iterations due to a complete battery drain. The
memory footprints nearly reach a preset maximum threshold, re-
sulting in an unsafe condition on the smartphone. With constant
charging, the training can achieve an accuracy of over 80% by in-
creasing iterations up to 10, but it takes more than 13.5 hours which
is incredibly long. Thus, training with full-sized DNNs is very costly
on resource-constrained smartphones, and may not be practical if
no efficient solutions introduced.
Poor Performance of Pre-trained Model To study the perfor-
mance of pre-trained model by user dependency in real-world PMS
applications, we design two common training scenarios–a pre-trained
model and a user-specific model based on LeNet, to train HAR,
MHEALTH, sEMG, and FinDroidHR, respectively, as illustrated in
Table 3. In this experiment, all users’ data are manually labeled. For
each dataset, we first pick the data contains ten users. We then train
the user-specific model using the data from one user, and train the
pre-trained model using the remaining users’ data. After training,
both models are evaluated on the test data for the specific user. The
same process is repeated for each of the users. Fig. 1b shows that
the pre-trained model results in a much lower accuracy than the
user-specific model, e.g., 32.16% and 37.91% accuracy drop on HAR
and MHEALTH, respectively. In addition, the pre-trained models are
less robust than the user-specific models when adapting to specific
users. In summary, applying a pre-trained model to PMS applications
has its intrinsic limitation due to user dependency.
Impact of Local Scenario Changes and Recovery Since the fact
that most of PMS applications primarily work for stationary scenario
(e.g., indoor sitting), users may switch to movement scenario (e.g.,
outdoor running) that the models may not cover in reality. We apply
the stationary-to-movement change to quantify the impact of local
scenario changes. We implement a real-world PMS application, i.e.,
FinDroidHR [62], and collect a local dataset from two scenarios,
e.g., indoor sitting and outdoor running. We use both LeNet and
MobileNet to train the models. Specifically, we first train the models
on the indoor sitting dataset, and we evaluate the models for both
scenarios when the local scenario is changed from indoor sitting to
outdoor running. Fig. 1c shows a dramatic accuracy degradation due
to a local scenario change, e.g., 76.7% and 77.49% accuracy reduction
on LeNet and MobileNet, respectively. This is probably due to new
or unseen data generated as a result of local scenario change, which
may have serve impact on the performance of existing models.

Continual training can be used to recover the existing model
performance. Fig. 1c shows that with continual training the accuracy
is well restored in both scenarios. This study shows that continual on-
device training may potentially tackle the poor model performance
caused by local scenario changes in PMS applications.
Slow Convergence in Existing CG To explore the training effi-
ciency of CG on resource-constrained mobile devices, we implement
two recent CG methods (i.e., NeST [14] and CGaP [18]) and com-
pare the training of a LeNet on MNIST from a tiny structure (i.e.,
10% of the full size) to that of a full-sized LeNet on MNIST. We run
each experiment 5 times. Our result reveals that both methods suffer
from a notable slow convergence issue and incur significant resource
overhead. From Fig. 1d, we observe that the loss convergence time
of both methods is way slower that of training a full-sized LeNet,
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Figure 2: MDLdroidLite Workflow.

Table 2: Terminologies in MDLdroidLite
Terminology Explanation
Model Configuration State-of-the-art hand-crafted DNN structure configu-

ration (e.g., MobileNet) combining with a given dataset
(e.g., HAR) as the input of MDLdroidLite.

Training Epoch Training iterations, running the proposed RIC ap-
proach after each iteration.

Over-parameterized
Structure

Training a given dataset using a full-sized model con-
figuration with redundancy.

Tiny Structure Starting a structure with a tiny-sized model configura-
tion (e.g., 1% to 10% of full size).

Backbone Structure A structure with much less resource overhead based
on the given dataset as an output of MDLdroidLite.

i.e., 20.68mins and 63.36mins slower using CGaP and NeST, respec-
tively, to achieve a converged loss, and the lengthy training leads
to inevitable battery drain. Due to slow convergence, both methods
may fail to achieve a fair accuracy in case of low battery budget
on smartphone. Although training a full-sized LeNet on MNIST in-
curs a large amount of memory footprints and FLOPs, it achieves
a faster convergence rate to reach a fair accuracy at earlier time
stage. In addition, CGaP presents a serious degraded spiking loss
issue to slow down the training before getting converged, shown in
Fig. 1d. Moreover, since NeST randomly generates the parameters
of new-borns and adapts with the existing parameters in a costly
trial-and-error way, the on-device loss convergence demonstrates as
inferior to yield much more resource overhead. Hence, existing CG
solutions may not be practical for resource-constrained training on
mobile devices.

3 MDLdroidLite Framework
In this section, we present the system architecture of MDLdroidLite
shown in Fig. 2. We also describe the proposed RIC approach in
detail including RIC-grow and RIC-adaption pipeline.

For clarification, the terminologies involved in MDLdroidLite are
summarized in Table 2.

3.1 Release-and-Inhibit Control Approach
Conventionally, a DNN structure with specific dataset is optimized
manually by domain experts on the basis of trial-and-error. Towards
automatic DNN structure optimization, Neural Architecture Search
(NAS) has been recently proposed to utilize searching (i.e., evolution-
ary algorithm based grid search [50]) and controlling (i.e., Reinforce-
ment Learning (RL) based structure control [5, 65]) approaches to
achieve efficient DNN structures. However, these approaches either
suffer from intractable searching space or heavy extra training of
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(a) (b)
Figure 3: (a) Correlation between loss reduction and structure
growth; (b) Non-linear correlation between structure growth
and growth score in a layer.

control models, leading to tremendous computational cost [4], which
are impractical for mobile devices.

MPC as a model-based control technique has been proposed to
intuitively optimize the dynamic system states (i.e., system’s future
actions) with a set of control constraints leveraging a finite-horizon
formulation [53]. Due to the nature of less computation required
for model tuning in MPC, yielding notable control performance, it
has been widely applied in autonomous vehicle and mobile robotic
domains to solve real-world control problems. Inspired from con-
structive structure learning, our basic idea is to introduceMPC-based
dynamic growth control to transform traditional DNNs into resource-
efficient structures for on-device learning.

Towards training a typical feed-forward DNN, the underlying
optimization problem is to minimize the batch loss measuring be-
tween the outputs and the given labels. For each hidden layer 𝑙 =
{𝑙𝑖 , 𝑖 = 1, 2, ..., 𝐿+1} in the DNN, the input channel size as fan_in and
output channel size as fan_out of each layer 𝑙 is defined as 𝐼 𝑙 and𝑂𝑙 ,
respectively. Hence, the structure shape of 𝑙 denotes as 𝐼 𝑙 × 𝑂𝑙 ×
𝐾𝐻 𝑙 × 𝐾𝑊 𝑙 in a convolution layer, and 𝐼 𝑙 × 𝑂𝑙 in a fully-connected
layer, where 𝐾𝐻 and 𝐾𝑊 denote kernel height and kernel width,
respectively. When relating to resource usage, a large shape of 𝑙
represents a large number of model parameters, memory footprints
and FLOPs. In addition, 𝑂𝑙

𝑖
denotes the 𝑖-th channel in a convolu-

tion layer, and the 𝑖-th neuron in a fully-connected layer. In short, a
DNN model structure is simply defined as an array of 𝑂𝑙 , e.g., array
[20-50-500-10] represents a full-sized LeNet as shown in Table 4.

To observe the correlation between loss minimization and struc-
ture growth, we train a LeNet on MNIST with reduced scales (e.g.,
10%, 30%, 50%, 70%) of the full size shown in Fig. 3a. The result in
the zoom-in figure indicates that the loss is monotonically decreased
when the structure size increases. Our observation is that the reduc-
tion rate of loss gradually reduces as the structure size increases,
even the loss of 50% 𝑆𝑖𝑧𝑒 is nearly equal to that of 𝐹𝑢𝑙𝑙 𝑆𝑖𝑧𝑒 , result-
ing in the same level of accuracy. Intuitively, large resources can be
saved if the growth of model structure is properly controlled to a
"fit" size without accuracy drop. To this end, we propose a novel RIC
approach to optimize the DNN structure under resource constraints
and speed up on-device training in layer-level. Specifically, RIC in-
cludes two components–RIC-grow which controls structure growth
by competing the growth values of release and inhibit decisions (i.e.,
structure growing or structure staying respectively) in each layer,
and RIC-adaption pipeline which enables fast training convergence
after growth.

To formulate our problem, we define that 𝐴𝑙 = 0, 1, ...,𝑂𝑙 is a set
of control actions representing the growth number in 𝑂𝑙 , where the
growth number is limited up to 𝑂𝑙 for effective parameter transfer
adaptation. Each action is denoted as 𝑎 ∈ 𝐴𝑙 , and current fan_out
is denoted as 𝑜 ∈ 𝑂𝑙 . Especially, I is denoted as inhibit decision
if 𝑎 = 0, and R is denoted as release decision if 𝑎 > 0. Also, we
let 𝜃 denote a structure array of 𝑂𝑙 , and 𝜋 denote a control action
array of 𝐴𝑙 . The growth step is defined as 𝑡 in a set of 𝑇 = 1, 2, ..., 𝑁
representing each training epoch, where 𝑁 is a given maximum
epoch. Practically, we optimize the structure 𝜃 at each grow-step 𝑡 .
Thus, our growth control optimization is formulated as follows.

argmin
RIC(𝜋𝑡 )

min
W,𝑏

T(D, 𝜃◦) 𝜃 ∈ 𝜙

𝜃∗ = 𝜃◦ +
𝑁∑
𝑡=1

𝜋𝑡 𝜋𝑡 = [𝑎𝑙1𝑡 , 𝑎
𝑙2
𝑡 , ..., 𝑎

𝑙𝐿
𝑡 ]

(1)

where D and 𝜙 denote a given dataset and its full-sized model con-
figuration, respectively. RIC as a dynamic control constraint model
starts from a tiny structure 𝜃◦, resulting in a resource-efficient back-
bone structure 𝜃∗ controlled by a set of resource-constrained 𝜋𝑡
through grow-step 𝑁 . Theoretically, RIC optimizes the structure and
the training objective simultaneously. Since MDLdroidLite is an on-
device structure learning framework, we focus mainly on controlling
the growth of 𝑂𝑙 in a resource-efficient way.

3.1.1 Resource-Constrained RIC-grow
In MDLdroidLite, the control constraint model RIC in Eq. 1 is

defined as a Markov tuple (𝑂,𝑇 ,𝐴, 𝑃, 𝑅), where the 𝑂𝑙 = 1, 2, ..., 𝜙𝑙

and the𝑇 are discrete state variables, 𝑃𝑙 is a stochastic state transition
model, and 𝑅 is a resource-constrained reward function shown in
Eq. 4. The control model state 𝑠 ∈ 𝑆𝑙 is denoted as a pair of (𝑡, 𝑜), 𝑠◦
denotes the initial state at each grow-step, and 𝑠 ′ = (𝑡 ′, 𝑜 ′) denotes
a future state transiting from the state 𝑠 by control action 𝑎, where
𝑜 ′ = 𝑜 + 𝑎 and 𝑡 ′ = 𝑡 + 1. Given 𝐾 as the size of finite-horizon
time window, RIC-grow optimizes the control actions within the
horizon area 𝑡 → 𝑡 +𝐾 at each grow-step. As a result, the layer-level
control decision value function V𝑙 (𝑠) is formulated based on Bellman
equation [43] as:

V𝑙 (𝑠) = max
𝑎∈{R,I}

[𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝𝑙 , 𝑠, 𝑎, 𝑠′) (R𝑙 (𝑠, 𝑎, 𝑠′) + 𝛾V𝑙 (𝑠′)) ] (2)

where 𝛾 denotes a value discount factor (e.g., 0.5 as default). To
reduce the computation cost of V𝑙 (𝑠), we employ a 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (·) [15]
as default transition model to randomly dropout some actions during
recursive optimization, where 𝑝𝑙 is a pre-set probability for all actions
(e.g., 0.5 as default). Practically, RIC-grow makes each optimized
control decision by solving max{V𝑙 (𝑠) |R,V𝑙 (𝑠) |I} to achieve the
"fit" size for each layer.

3.1.2 Growth Cost Constraints
In the control decision value function, we consider two typical

resource constraints of DNNs, the number of model parameters (i.e.,
size of neurons) and the number of FLOPs for each layer, which may
actually affect on-device memory footprints, battery consumption,
training time and inference latency. We associate a 𝐹𝑙𝑜𝑝𝑠𝑙 (𝑠) func-
tion [41] with a 𝑆𝑖𝑧𝑒𝑙 (𝑠) function to dynamic calculate the growth
cost of each layer representing C𝑙 (𝑠) shown as:

C𝑙 (𝑠) =(1 − 𝛽)𝐹𝑙𝑜𝑝𝑠𝑙 (𝑠) + 𝛽𝑆𝑖𝑧𝑒𝑙 (𝑠) (3)
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Figure 4: RIC-grow control workflow in a layer.

where 𝛽 denotes a normalization coefficient between both func-
tions. We hence propose the resource-constrained reward function
R𝑙 (𝑠, 𝑎, 𝑠 ′) formulated as a growth state-value function G𝑙 (𝑠, 𝑎, 𝑠 ′)
constrained by a related growth state-cost function C𝑙 (𝑠, 𝑎, 𝑠 ′) for-
mulated as:

R𝑙 (𝑠, 𝑎, 𝑠′) =G
𝑙 (𝑠, 𝑎, 𝑠′)

C𝑙 (𝑠, 𝑎, 𝑠′)
=

��G𝑙 (𝑠) − G𝑙 (𝑠′)
��

C𝑙 (𝑠′)
C𝑙 (𝑠 ) + P𝑙

(4)

where the growth state-value is calculated as a growth value differ-
ence between states, in which the growth values are predicted using
a compete-decay growth model G𝑙 (𝑠) in Eq. 7. Also, the growth state-
cost is extended as a scale of the incremental cost between states
using the growth cost function C𝑙 (𝑠) in Eq. 3 with P𝑙 denoted as a
penalty function.

3.1.3 Compete-decay Growth Model
Since RIC-grow optimizes structure growth based on a dynamic

model-based MPC, the growth model G𝑙 (𝑠) in Eq. 4 plays a vital role
to ensure the resource-constrained control performance. To build
the structure growth model, we first apply saliency metric analysis
(e.g., L1/L2 weight normalization) [49] to approximate the impor-
tance of different structure components (i.e., layers and channels),
and heuristically predicting the growth values after both release
and inhibit control actions. Since the saliency metric is widely used
in pruning tasks with fair performance [46], it is an efficient way
to track the dynamic changes of layers and channels during the
training optimization in Eq. 1. Different from the analysis of correla-
tion between loss and specific component removal in pruning, we
mainly analyze the direction of weights’ gradient changes for each
component through the loss reduction aiming to predict potential
structure growth values within a finite-horizon time window. Based
on L1 normalization of component weights [49], we combine the
weights’ gradients processed in Backpropagation (BP) to compute
dynamic saliency metric of layers and channels, formulating as layer
saliency score S𝑙 and channel saliency score CS𝑙

𝑖 in Eq. 5, hence the
direction vector of weights’ gradients changes is represented as a
set of saliency scores. To formulate the correlation between a set of
saliency score and loss reduction in each layer, we utilize a cosine
similarity function as𝐶𝑜𝑠𝑖𝑚(·) [13] to normalize both vectors, mark-
ing as growth score 𝐺𝑆𝑙 formulated as 𝐺𝑆𝑙 = 𝐶𝑜𝑠𝑖𝑚(S𝑙

1:𝑛,L1:𝑛).

S𝑙 =
𝑂∑
𝑖=0

(CS𝑙𝑖 ) =
𝑂∑
𝑖=0

(
𝐼∑
𝑗=0

𝐾𝐻∑
𝑘ℎ=0

𝐾𝑊∑
𝑘𝑤=0

���� 𝜕L(W⊺x + 𝑏, 𝑦)
𝜕W𝑙

W𝑙

����) (5)

where 𝑛 denotes a unit size of direction vector (e.g., 5 as default).

To explore the correlation between structure growth and the
proposed growth score in each layer, we next present the prelim-
inary results using the five trained LeNets on MNIST. In Fig. 3b,
the growth scores of five layer structures not only demonstrate as
monotonic non-linear decay along with loss reduction, marking as
Decay-Stay (𝐷𝑆) (i.e., growth score decay with structure staying),
but also show a vertically monotonic decay along with increase
of the structure sizes. Especially, the decay rate of growth scores
vertically slows down as layer structure size increases, which also
represents as monotonic non-linear decay about growth score, mark-
ing as Decay-Grow (𝐷𝐺) (i.e., growth score decay with structure
growing). The results indicate that layer structure is able to be indi-
vidually controlled based on its dynamic growth score to efficiently
save resources. Conceptually, the red dash line presents a potential
structure growth path about growth score by transiting growth state
every 12-epoch. Based on the observation, the way of using both
non-linear decay (i.e., 𝐷𝑆 and 𝐷𝐺) can empirically cover both hori-
zontal and vertical growth state transitions in RIC-grow, hence the
structure growth model can be theoretically proposed as a compo-
sition of both non-linear models, named a compete-decay growth
model as G𝑙 (𝑠) = F (𝐷𝑆𝑙 (𝑠), 𝐷𝐺𝑙 (𝑠)), helping RIC-grow controller
make each R|I decision by competing the predicted growth values
of Decay-Grow and Decay-Stay in layer-level.

To solve both 𝐷𝑆𝑙 (𝑠) and 𝐷𝐺𝑙 (𝑠), we utilize a typical decay ex-
ponential model 𝐷𝑙 (𝑥) = 𝑎𝑏𝑥 + 𝑐 to represent, where 𝑎 ∈ (0, 100),
𝑏 ∈ (0, 1), 𝑐 ∈ (0, 10), and 𝑥 denotes a set of sample growth scores.
Practically, we apply non-linear regression by solving mean square
error (MSE) [6] to fit the proposed models. Since RIC-grow collects
growth scores𝐺𝑆𝑙 of each layer at each grow-step, the model param-
eters (i.e., 𝑎, 𝑏, 𝑎𝑛𝑑 𝑐) of 𝐷𝑆𝑙 (𝑠) can be continually tuned to ensure
the performance. However, since the structure is controlled as a
single instance, the model parameters of 𝐷𝐺𝑙 (𝑠) may not be able
to converge due to insufficient growth scores between state transi-
tion. For this, we propose a Triplet Decay Array (TDA) formulated as
𝑇𝐷𝐴𝑙 = [𝐷𝑆𝑙 (𝑠 (𝑡, 𝑜 −𝑎2)), 𝐷𝑆𝑙 (𝑠 (𝑡, 𝑜 −𝑎1)), 𝐷𝑆𝑙 (𝑠 (𝑡, 𝑜))] to record
three latest 𝐷𝑆𝑙 with the growth states transited by release actions
(i.e., two past states and current state with different 𝑂𝑙 ), aiming
to provide sufficient growth scores between state transition to fit
𝐷𝐺𝑙 (𝑠) with minimal resource cost. The composed formulations are
shown as follows.

argmin
𝑎,𝑏,𝑐

3∑
𝑖=1

(𝐷𝐺𝑙 (𝑠) −𝑇𝐷𝐴𝑙 [𝑖 ])2 (6)

G𝑙 (𝑠) =
[
𝐷𝐺𝑙𝑡 (𝑠) ... 𝐷𝐺𝑙

𝑡+𝐾 (𝑠)
]

(7)

where the model parameters of 𝐷𝐺𝑙 (𝑠) are tuned using TDA. Practi-
cally, RIC-grow requires to take two release actions at the beginning
of training as warm-up to set-up 𝑇𝐷𝐴𝑙 and 𝐷𝐺𝑙 (𝑠). As a result,
the proposed compete-decay growth model G𝑙 (𝑠) is composed of
multiple 𝐷𝐺𝑙 (𝑠) within the 𝑡 + 𝐾 time finite-horizon area. For each
grow-step, the outputs of G𝑙 (𝑠) can be represented as a growth value
matrix named G-table to contribute in control decision value opti-
mization in Eq. 2. Fig. 4 demonstrates the workflow of RIC-grow
using the proposed growth model in a layer. In addition, both TDA
and growth model are updated by the latest growth scores as feed-
back to ensure the growth value prediction performance, and TDA
windowmoves to the latest growth state before next control decision.
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(a) (b)
Figure 5: Variance of neuron saliency scores in a layer after
each growth: (a) Spiking and enlarged variance using CGaP;
(b) Large variance in channel-level using NeST.

3.2 RIC-adaption Pipeline
The aforementioned issue of slow training convergence may incur
considerable resource overhead on mobile devices. To further under-
stand this issue, we use the proposed channel saliency score CS𝑙

𝑖 in
Eq. 5 to analyze the two existing CG methods and compare them
with the full-sized model. Fig. 5a shows that the score variance using
CGaP [18], representing as the shadow area on the line, is much
larger than training a full-sized model around each growth mark,
and the mean of the scores is way larger than that of the full-sized
model especially at early-middle time stages.

One of our key observations reveals that the variance of channel
saliency scores in each layer presents a notable effect of enlargement
on both CG methods. Also, the channel saliency scores of CGaP con-
tinually demonstrate the strong spiking issue throughout the model
growth, resulting in the degraded spiking loss. Such unsafe loss re-
duction leads to a serious accuracy drop after each growth. Similarly,
Fig. 5b presents a detailed channel saliency score comparison after
each growth using NeST [14]. The results indicate that the new-born
channels of each growth perform much less importance, leading to
large score variance between channels. Thus, the existing KT adapta-
tion approaches in CG largely increases the risk of large variance in
channel-level [21], yielding unsafe parameter adaptation and slow
training convergence under resource-constrained conditions.

Batch Normalization (BN) [28] has been widely applied in various
DNN structures to speed up training, but it may not work well on
resource-constrained mobile devices. To evaluate resource efficiency
of BN on mobile devices, we train both MobileNet on HAR and VGG-
11 on CIFAR-10 with different batch size conditions. Our observation
is that applying BN on device causes extra resource overhead for both
training and inference, and accuracy highly relies on the batch size,
e.g., 93.01% with batch-32 but 96.09% with batch-64 using MobileNet
on HAR. Although BN works well on large-scale VGG-11, it may not
be resource-efficient to small-scale MobileNet, e.g., MobileNet on
HAR can still achieve a fair accuracy on 95.55% without using BN.

To address the aforementioned issues and achieve resource effi-
ciency for KT adaptation, we propose RIC-adaption pipeline with
two unique techniques–three-step distance-based selective parame-
ter adaptation (DSPA) and Gate-based Coordination Unit (GCU). Our
basic idea is to first safely adapt existing-to-new (i.e., transferring
existing parameters to new-born parameters) in growth, and then
gradually coordinate the variance of existing-to-new within the next
training epoch.

3.2.1 Three-step Selective Parameter Adaptation

(b)
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Figure 6: RIC-adaption pipeline in channel-level: (a) Layer-to-
layer parameter selection, scale andmapping; (b) Existing-to-
new channel coordination in a layer.

To safely adapt existing-to-new without accuracy drop in each
growth, we propose three parameter adaptation methods–parameter
selection, scale, and mapping between prior-subsequent layer. Dif-
ferent from CGaP [18] that picks a number of channels with the
highest saliency scores, we firstly reversely picks a channel with
the lowest saliency score, and apply the cosine similarity function
[13] to select the number of channels which are "close" to the lowest
one. In this way, the selected group of channels presents a small
variance and mean of the scores, hence transferring the selected
"close" channels to new-born channels. We secondly apply a safe
parameter scale function to preserve the current loss reduction with-
out accuracy drop. Since the variance and mean of channel saliency
scores in a full-sized model demonstrate being much smaller than
that in existing CG methods shown in Fig. 5, the parameter distribu-
tion of a full-sized model is inherently more stable and safe. This is
heuristically considered as "lower bound" to scale parameters down
to the range. Rethinking the process from the beginning, we apply
Kaiming [26] to initialize the model parameters. According to the
Kaiming formulation 𝑆𝑡𝑑 =

√
3

𝑓 𝑎𝑛_𝑖𝑛 , the 𝑆𝑡𝑑 (i.e., standard devia-
tion) of initialized parameter distribution presents a decrease along
with the increase of fan_in leading to small variance. Intuitively,
since the model growth leads to the fan_in of layer increase (i.e.,
𝑂𝑙 increase leads to 𝐼 𝑙+1 increase), we can dynamically mark each
𝑆𝑡𝑑 calculated by the increased fan_in as the "lower bound", scaling
parameters to the 𝑆𝑡𝑑 to achieve small variance, which the scale
function is formulated in Eq. 8.

𝑆𝑐𝑎𝑙𝑒𝑙 =

√
𝐼 𝑙 𝑆𝑡𝑑 (W𝑙

𝐸𝑥
)

√
3

(8)

W𝑙
𝑁𝑒𝑤 =

W𝑙
𝑆𝑒𝑙𝑒𝑐𝑡

𝑆𝑐𝑎𝑙𝑒𝑙
+ N𝑙 N ∈ 𝑈 [−𝜇, 𝜇 ],W𝑙

𝑆𝑒𝑙𝑒𝑐𝑡
∈ W𝑙

𝐸𝑥 (9)

We hence propose to first remain the distribution of existing pa-
rameters to preserve loss reduction and avoid accuracy drop, and
then scale the distribution of new-born parameters to the "lower
bound" with small variance (i.e., conceptually close to "inactive") to
prepare for the channel coordination using GCU. Combining with
the parameter selection, the parameters of new-born channels can be
transferred by Eq. 9, where N denotes a small amount of noise. We
finally map selected channel indexes in prior layer to subsequent
layer to select the related channels, and then perform existing-to-
new using the same way in Eq. 9 to maintain the relationship of
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prior-subsequent layer in growth. In summary, Fig. 6a illustrates the
workflow of these three methods.

3.2.2 Gate-based Coordination Unit
To coordinate the variance of existing-to-new after growth, we

design GCU as a separate matrix followed up each layer shown in
Fig. 6b to enable fast convergence and speed up training. In Eq. 5,
the channel saliency score consists of channel weights and gradients,
therefore we decompose the variance of the scores coordination into
two tasks–weight variance reduction and gradient based variance
coordination. GCU has two gates to handle both tasks, i.e., meta
gate as a weight regulator applied in forward pass, and RI gate as a
gradient regulator applied in BP, resulting inminimizing the variance
of existing-to-new.
Meta Gate Since new-born parameters are safely scaled close to
"inactive" and existing parameters are remained to avoid accuracy
drop in growth, the weight variance between existing and new-born
channels is “temporarily” enlarged. To next minimize the weight vari-
ance,meta gate features as weight scale coefficients (i.e.,𝑀𝑒𝑡𝑎𝑙

𝐸𝑥
and

𝑀𝑒𝑡𝑎𝑙
𝑁𝑒𝑤

) to gradually coordinate between existing and new-born
channels. Firstly, existing parameters will be scaled down to the same
𝑆𝑡𝑑 as new parameters using 𝑆𝑐𝑎𝑙𝑒𝑙 in Eq. 8, and both𝑀𝑒𝑡𝑎𝑙

𝐸𝑥
and

𝑀𝑒𝑡𝑎𝑙
𝑁𝑒𝑤

are initialized as the 𝑆𝑐𝑎𝑙𝑒𝑙 and 1 respectively. Secondly,
to functionally "remain" the existing parameters with no accuracy
drop, 𝑀𝑒𝑡𝑎𝑙

𝐸𝑥
is used to scale back the outputs (i.e., feature maps)

of the existing parameters, formulated as 𝑀𝑒𝑡𝑎𝑙
𝐸𝑥

( W⊺
𝐸𝑥

𝑆𝑐𝑎𝑙𝑒𝑙
x + 𝑏𝐸𝑥 ).

Conceptually,𝑀𝑒𝑡𝑎𝑙
𝐸𝑥

is coupled with the scaled existing parameters
to not only physically reduce the weight variance between existing
and new-born channels, but also functionally “remain” the outputs
as identical with no impact to accuracy. Thirdly, since the 𝑆𝑐𝑎𝑙𝑒𝑙 is
permuted to 𝑀𝑒𝑡𝑎𝑙

𝐸𝑥
as a weight regulator, we can gradually turn

down (e.g., uniform decay)𝑀𝑒𝑡𝑎𝑙
𝐸𝑥

close to𝑀𝑒𝑡𝑎𝑙
𝑁𝑒𝑤

to minimize
the weight variance, and collaborate with RI gate to dynamically
minimize the variance of existing-to-new within the next training
epoch.
RI Gate Since new-born parameters are safely scaled close to "inac-
tive", the gradients of new-born channels present less contribution to
the gradient descent. To gradually active the new-born parameters
and coordinate with existing parameters for a minimal variance,
RI gate works as gradient scale coefficients (i.e., 𝑅𝐼 𝑙

𝐸𝑥
and 𝑅𝐼 𝑙

𝑁𝑒𝑤
)

to dynamically "release" (i.e., active) new-born’s gradients and "in-
hibit" (i.e. turn down) existing gradients using a momentum-based
variance minimization function. Theoretically, the momentum-based
algorithm [51] improves optimization with stable and fast conver-
gence, leading to efficient minimization for the variance of existing-
to-new coordination. Firstly, we define the gradient scaling function
as 𝑔𝑙∗ =

𝑔𝑙

𝑅𝐼 𝑙
, where 𝑔 denotes channel gradients. Since the initial

gradients of existing parameters usingmeta gate are larger than that
of new-born parameters by 𝑆𝑐𝑎𝑙𝑒𝑙 , we let 𝑅𝐼 𝑙

𝐸𝑥
and 𝑅𝐼 𝑙

𝑁𝑒𝑤
as 𝑆𝑐𝑎𝑙𝑒𝑙

and 1, respectively. Secondly, we set up the variance coordination
objective function as min𝑅𝐼 𝑙

���CS𝑙
𝐸𝑥

− CS𝑙
𝑁𝑒𝑤

���. Thirdly, we propose
a momentum function in Eq. 10, where𝑚 is batch size, to improve
the minimization as fast and stable. In practice, both 𝑅𝐼 𝑙

𝐸𝑥
and 𝑅𝐼 𝑙

𝑁𝑒𝑤
are dynamically optimized to minimize the variance coordination
function using Eq. 11 within the current training epoch, resulting a

Figure 7: MDLdroidLite screenshot: (a) Smartwatch gesture
input and on-device inference; (b) On-device training.

stable gradient descent with fast training convergence.
V𝑙 (𝑚) = 𝜆V𝑙 (𝑚 − 1) + (1 − 𝜆) (CS𝑙𝑖 (𝑚) − CS𝑙𝑖 (𝑚 − 1)) (10)

𝑅𝐼 𝑙 (𝑚 + 1) = 𝑅𝐼 𝑙 (𝑚) + 𝛼V𝑙 (𝑚) 𝑅𝐼 𝑙 ∈ [ 1
2𝑆𝑐𝑎𝑙𝑒𝑙

, 2𝑆𝑐𝑎𝑙𝑒𝑙 ] (11)

4 Evaluation
In this section, we first describe the implementation of MDLdroidLite.
We then design two sets of experiments to comprehensively evaluate
the performance MDLdroidLite. The first set evaluates the perfor-
mance of RIC-adaption pipeline compared with existing parameter
transfer adaptation baselines with the same growth rate, while the
second set not only compares the performance of MDLdroidLite with
existing CG and search methods, but also evaluates the resource effi-
ciency of MDLdroidLite on several commodity smartphones using a
range of datasets.

4.1 MDLdroidLite Implementation
We implement MDLdroidLite based on two DL libraries–DL4J ver-
sion 1.0.0-SNAPSHOT and PyTorch version 1.4.0. Specifically, we
modify the source code of training flow and building DNN structure
for both DL libraries. We apply our implementation on three off-the-
shelf smartphones purchased in the past four years shown in Table 5.
To simplify the usage scenario of MDLdroidLite with different model
configurations, we implement the RIC approach as a separate layer.
After loading a model configuration, MDLdroidLite will easily add
a RIC layer between each hidden layer (i.e., convolution layer and
fully-connected layer) and subsequent BN or ReLU layer to enable
both RIC-grow and RIC-adaption pipeline.

To demonstrate the use of MDLdroidLite in real-world PMS ap-
plications and evaluate its end-to-end performance, we develop an
application to recognize hand gestures using smartwatch based on
the work done in [62] shown in Fig. 7.

4.2 Experimental Set-up
To evaluate MDLdroidLite, we select four PMS datasets (three public
and one self-collected) and two well-known image datasets repre-
senting image recognition (IR) for standardized effectiveness tests.
The four PMS datasets are selected for various PMS applications, e.g.,
activity for daily living (ADLs) recognition, health behavior monitor-
ing (HBM), and gesture recognition (GR). Practically, we scale down
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Table 3: PMS & Image dataset specifications
Datasets Type Task Class Sample Rate #-C #-H×W #-KH×W #-TR #-TE
sEMG [33] EMG GR 6 14695 50Hz 8 1×100 1×12 41.3MB 10.3MB
MHEALTH [3] IMU HBM 9 3255 50Hz 23 1×100 1×12 41.9MB 18MB
HAR [1] IMU ADLs 6 10299 50Hz 9 1×128 1×14 67.8MB 27.2MB
FinDroidHR [62] IMU&HR GR 6 2520 100Hz 7 1×150 1×14 15.6MB 2.6MB
MNIST [37] IMG IR 10 70000 NA 1 28×28 5×5 15MB 2.5MB
CIFAR-10 [31] IMG IR 10 60000 NA 3 32×32 3×3 113MB 23MB

Table 4: Model configuration specifications
DNNs Configuration (Type/Stride/Padding/BN) Tiny Structure
LeNet [37] Conv1/𝑆1 ∈ [1, 20] → 𝑃𝑜𝑜𝑙/𝑆2 → Conv2/𝑆1 ∈

[1, 50] → 𝑃𝑜𝑜𝑙/𝑆2 → FC ∈ [1, 500] → 𝑂𝑢𝑡𝑝𝑢𝑡
[2-5-10-Output]

MobileNet [27] Conv1/𝑆2 ∈ [1, 32] → ConvDW1/𝑆1 ∈ [1, 32] →
ConvP1/𝑆1 ∈ [1, 64] → ConvDW2/𝑆2 ∈ [1, 64] →
ConvP2/𝑆1 ∈ [1, 128] → ConvDW3/𝑆1 ∈ [1, 128] →
ConvP3/𝑆1 ∈ [1, 256] → 𝐴𝑣𝑔𝑃𝑜𝑜𝑙 → 𝑂𝑢𝑡𝑝𝑢𝑡

[3-6-12-25-Output]

VGG-11 [52] Conv1/𝑆1/𝑃1/𝐵𝑁 ∈ [1, 64] → 𝑃𝑜𝑜𝑙/𝑆2 →
Conv2/𝑆1/𝑃1/𝐵𝑁 ∈ [1, 128] → 𝑃𝑜𝑜𝑙/𝑆2 →
Conv3/𝑆1/𝑃1/𝐵𝑁 ∈ [1, 256] → Conv4/𝑆1/𝑃1/𝐵𝑁 ∈
[1, 256] → 𝑃𝑜𝑜𝑙/𝑆2 → Conv5/𝑆1/𝑃1/𝐵𝑁 ∈
[1, 512] → Conv6/𝑆1/𝑃1/𝐵𝑁 ∈ [1, 512] →
𝑃𝑜𝑜𝑙/𝑆2 → Conv7/𝑆1/𝑃1/𝐵𝑁 ∈ [1, 512] →
Conv8/𝑆1/𝑃1/𝐵𝑁 ∈ [1, 512] → 𝑃𝑜𝑜𝑙/𝑆2 → 𝑂𝑢𝑡𝑝𝑢𝑡

[6-12-25-25-50-
50-50-50-Output]

Table 5: Mobile device specifications
Device Year ROM RAM CPU Battery OS
Huawei nova 6 SE 2019 128GB 8GB Kirin 810 4200mAh Android 10
Google Pixel 2 XL 2017 64GB 4GB Snapdragon 835 3520mAh Android 8.1.0
Google Pixel 2016 32GB 4GB Snapdragon 821 2770mAh Android 8.1.0
Samsung Gear S3 2016 4GB 768MB Exynos 7 Dual 7270 380mAh Tizen 4.0.0.4

the layer number of a standard MobileNet to fit sensor data. We use
three off-the-shelf smartphones with different resource capacities
shown in Table 5 to evaluate the resource efficiency of MDLdroidLite
in reality, in which the screen battery drain is excluded in the results.
Hyper-parametersWe select Adam [51] as the default stochastic
gradient descent optimization, and set a fixed learning rate to 0.0005.
We set batch size with 64 for PMS datasets, and 100 for image datasets.
The model parameters and noise are randomly initialized following a
uniform distribution in [−1, 1]. We also apply a 2-epoch countdown
early stop strategy [2]. Practically, we set each tiny structure as 10%
of full-sized convolution layer and 2% of full-sized fully-connected
layer shown in Table 4. We report top-1 accuracy throughout the
evaluation.

4.3 RIC-adaption Pipeline Performance
We first evaluate the performance of RIC-adaption pipeline in terms
of the variance of existing-to-new minimization, safe parameter adap-
tation, fast convergence rate, and time-to-accuracy efficiency.
Baselines We select three state-of-the-art parameter adaptation
methods in CG as our baselines.
• NeST-bridge [14] uses a bridging-gradient transformation func-
tion to adapt new-born parameters in fully-connected layers, and
utilizes trial-and-error to randomly generate parameters in convo-
lution layers (e.g., we set 10 trails per growth).

• CGaP-select [18] uses a saliency-based selective parameter adap-
tation method, transferring new-born parameters by picking up
existing parameters with the highest saliency scores.

• Net2WiderNet [8] is based on a standard random duplication
function with a safe compensation scale design for existing-to-new.
For a standardized effectiveness comparison, we employ a LeNet

on MNIST to evaluate RIC-adaption pipeline running on a Pixel 2XL
smartphone without constant power charging. Our experiments run
with the same growth rate of 0.6 (i.e., 60% per growth) and the same
growth phase (i.e., every 3-epoch growth) of CGaP-select to reach
the full size. We run each experiment 5 times, and train each model
with 30-epoch.

4.3.1 Channel-level VarianceMinimization In this experiment,
we evaluate the effectiveness of RIC-adaption pipeline in channel
variance minimization. We also compare the channel variance of
training a full-sized model as a standard "lower bound".

We investigate whether RIC-adaption pipeline performs fast and
stable channel variance minimization throughout the entire model
growth. Fig. 8a, b, and c report that the channel variance (i.e., shadow
area on the line of saliency score) using RIC-adaption pipeline is
much smaller and more stable than all the baselines. Compared with
the baselines at 9-epoch, RIC-adaption reduces channel variance
2.89×, 2.95×, and 5.13× on average over CGaP-select, Net2WiderNet,
and NeST-bridge, respectively. Also, the results indicate that the
mean of channel saliency scores using RIC-adaption pipeline is no-
tably reduced in early growth stage to fast reach the "lower bound"
at 5-epoch, which is 13-epoch, 20-epoch, 16-epoch faster than GaP-
select, Net2WiderNet, and NeST-bridge, respectively. Hence, RIC-
adaption pipeline outperforms the baselines with a minimized vari-
ance of existing-to-new in the growth.

4.3.2 Safe ParameterAdaptation Wenow examinewhether RIC-
adaption pipeline performs a safe parameter adaptation compared
with the baselines. Fig. 8d plots a set of before- and after-growth
accuracy comparison at 12-epoch. The results clearly show that
the accuracy using RIC-adaption pipeline is effectively preserved
through the growth with only 0.27% drop on average. Since the se-
lected existing parameters are unsafely scaled in both CGaP-select
and Net2WiderNet, the results reveal that the accuracy after growth
is dropped by 34.77% and 22.63%, respectively. Interestingly, the ac-
curacy in NeST-bridge presents a small drop by 8.84% after growth.
It is because the new-born parameters are randomly generated in
naturally inactive, which is relatively safe to remain the accuracy.
Thus, RIC-adaption pipeline guarantees a safe parameter adaptation.

4.3.3 Fast Convergence Rate With the channel variance mini-
mized, we now evaluate whether RIC-adaption pipeline can achieve
a fast convergence rate over our baselines. Since the full-sized model
inherently performs with fast convergence, it is marked as a "stan-
dard" convergence rate for benchmarking. Fig. 9a presents that RIC-
adaption pipeline demonstrates a fastest convergence rate among the
adaptation baselines, which reaches the "standard" rate at the earliest
(e.g., 11-epoch). In addition, since the channel variance is coordinated
as stable, the loss reduction of using RIC-adaption pipeline also re-
ports as stable with only minor spiking loss. Hence, RIC-adaption
pipeline achieves fast convergence by minimizing the variance of
existing-to-new during model growth.

4.3.4 Time-to-accuracy Efficiency Wehave shownRIC-adaption
pipeline guarantees safe parameter adaptation with fast training
convergence. It is now important to evaluate whether RIC-adaption
pipeline can actually achieve superior time-to-accuracy efficiency
(i.e., less time cost when accuracy close to the "standard"). Fig. 9b
presents that RIC-adaption pipeline achieves the best time-to-accuracy
efficiency. The results report that the accuracy using RIC-adaption
pipeline reaches the "standard" in 13.8mins, which speeds up training
by 2.84×, 3.12×, and 4.88× on average over CGaP-select, Net2WiderNet,
and NeST-bridge, respectively. In addition, the accuracy using RIC-
adaption pipeline shows much more stable than the baselines.
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(a) (b) (c) (d)
Figure 8: Channel variance minimization in growth and accuracy drop after growth.

(a) (b)
Figure 9: Time-to-accuracy efficiency of RIC-adaption.

4.4 MDLdroidLite Performance
We now examine the performance of MDLdroidLite in terms of
growth control fine-tuning, on-device time-to-accuracy structure
efficiency, on-device DL resource reduction, and on-device structure
resource efficiency using a range of datasets.
Baselines We select two state-of-the-art CG methods and one sim-
plified NAS approach as our baselines.
• NeST [14] is a linear growth approach. The model structure con-
tinually grows with a fixed phase until reaching the full size.

• CGaP [18] presents an exponential growth using a fixed growth
rate. It also involves a simple pre-setting resource budget in growth.

• S-search [23] is a simplified NAS approach using Evolutionary
algorithm with randomly parameter initialization. It performs a
single-path search to select a candidate with the highest accuracy
from a small amount of population.
For benchmarking, we train MobileNet on HAR, LeNet on HAR,

and LeNet on MNIST, respectively, on a Pixel 2XL smartphone with-
out constant charging to compare the performance of MDLdroidLite
with the baselines. Due to the lack of pruning support on off-the-shelf
smartphones, the comparison of the structure growth performance
is done on NeST and CGaP. To ensure the efficiency performance of
S-search on device, we implement it as a linear candidate selection
(i.e., maximum two candidates are simultaneously active in mem-
ory) to avoid intensive memory use. For each experiment, we start
training on a fully-charged smartphone and record its actual battery
consumption throughout the experiment.

4.4.1 Growth Control Fine-tuning In this experiment, we eval-
uate the growth control performance of MDLdroidLite with different
sizes of time horizon (TH). Since MDLdroidLite uses the compete-
decay growth model to dynamically optimize a recursive decision
function, the size of TH is important for making an optimized growth
decision. In addition, we fix the penalty regulator as default and set
20-epoch as the resource budget.

(a) LeNet on MNIST (b) MobileNet on HAR
Figure 10: Accuracy-to-structure fine-tuning by timehorizon.

We apply five different TH sizes from TH-1 to TH-5 to evaluate
accuracy-to-structure (e.g., using FLOPs to represent structure) ef-
ficiency using the control decision optimization in MDLdroidLite.
Fig. 10 plots the correlation between structure FLOPs and accuracy
achieved in growth. Both results of TH-4 on LeNet and TH-3 on Mo-
bileNet present the optimal accuracy-to-structure, e.g., using TH-4
on LeNet achieves the minimal FLOPs of 1.84M and the best accuracy
of 99.06%. The results suggest that different TH sizes may lead to a
better resource-efficient DNN structure. However, since our control
optimization leverages a recursive-based function, the control cost
may theoretically increase as the size of TH increases.

Fig. 11 reports the average resource overhead for making each
control decision on device. The results indicate that with the size
of TH increases, the control time and battery consumption of both
models show a near-exponential increase. Especially, when using
TH-5, the averaged control time is up to 4.36s for LeNet (e.g., three
layers growth) and 5.9s for MobileNet (e.g., four layers growth). Since
MDLdroidLite targets layer-level growth control, it also implies that
the time cost may increase along with the number of model layers.
Although a large size of TH may cause such "notable" resource
overhead, it eventually depends on the accuracy-to-structure, e.g.,
although the control time using TH-4 on LeNet is 1.78s on average, it
still achieves the best accuracy-to-structure shown in Fig. 10a to save
a large amount of resource on device. Practically, the size of TH may
affect the optimized growth decision, and should be safely managed
in a small range to assist dynamic control depends on actual resource
budgets. Since different models on different datasets may need to fine-
tuning with different size of TH for optimal accuracy-to-structure,
we henceforth report the optimized results for simplicity.

4.4.2 On-device Time-to-accuracy Structure Efficiency We con-
tinue to examine the time-to-accuracy performance of MDLdroidLite
to identify whether MDLdroidLite can transform a tiny structure
to backbone structure in a resource-efficient way, comparing to our
baselines. We employ LeNet on both HAR and MNIST to measure
the differences of using the same model with different datasets. We
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(a) LeNet on MNIST (b) MobileNet on HAR
Figure 11: Growth control resource by different time horizon.

(a) LeNet on HAR (b) LeNet on MNIST
Figure 12: Time-to-accuracy efficiency comparison.

run each experiment 5 times. When 2-epoch countdown early stop-
ping is applied, training will be stopped as soon as the accuracy is
achieved.

Fig. 12a shows thatMDLdroidLite achieves the best time-to-accuracy
in training LeNet on HAR, e.g., takes 64.80s to achieve an accuracy of
94.46% on average using a "grow" LeNet on HAR. The results demon-
strate that MDLdroidLite outperforms the baselines by 2.9× and
2.4× faster over CGaP [18] and NeST [14], respectively. Also, MDL-
droidLite speeds up training by 3.13× and 4.6× over S-search [23]
and a full-sized model, respectively. Meanwhile, Fig. 12b reports the
time-to-accuracy results of training LeNet on MNIST. Similarly, the
"grow" LeNet onMNIST achieves the fastest (e.g., 33.43mins) to reach
the highest accuracy, which is 70.41mins, 72.68mins, 120.13mins and
15.78mins faster than CGaP [18], NeST [14], S-search [23], and a
full-sized model, respectively. The results demonstrate that MDL-
droidLite achieves a superior time-to-accuracy efficiency over the
baselines.

4.4.3 On-deviceDLResourceReduction In this experiment, we
quantify the on-device resource reduction. Fig. 13 plots the dynamic
increase of structure FLOPs along with elapsed time. The results
show that MDLdroidLite achieves significant resource reduction on
both model FLOPs and parameters, e.g., the "grow" LeNet on MNIST
reduces model parameters and FLOPs by 12× and 2.65×, respectively,
over a full-sized model. As a result, the structure of LeNet on MNIST
scales down to [13-33-50-10], and that of LeNet on HAR is reduced to
[10-16-33-6]. This experiment shows that, by our layer-level growth
control, the structure of every single layer in MDLdroidLite can
wisely "grow" to a much smaller size than that in S-search [23] with
a fixed scale for all layer growth, e.g., 6.1× on model parameters and
2.2× on FLOPs reduction in training LeNet on MNIST.

We further measure the specific resource reduction on memory
footprints and battery consumption compared with all the baselines.
Fig. 14 reports that both models using MDLdroidLite achieves the
lowest memory footprints and battery consumption, e.g., the battery

(a) LeNet on HAR (b) LeNet on MNIST
Figure 13: Time-to-FLOPs structure efficiency.

(a) LeNet on MNIST (b) LeNet on HAR
Figure 14: Battery and memory reduction comparison.

consumption on the "grow" model can be reduced by 4× over a full-
sized LeNet on HAR. Since S-search [23] is implemented to avoid
intensive memory use, the single-path linear search shows a huge
battery drain. For memory footprints, as the DL4J initial memory
footprints (e.g., loading libs or dependencies ) are already roughly up
to 137MB, the memory footprints for each one look tough, but the
head parts of the memory bars in Fig. 14b indicate that the on-device
memory footprints of "grow" LeNet on HAR are largely reduced by
3.4× over a full-sized model.

4.4.4 On-device Structure Resource Efficiency We now sum-
marize the resource efficiency results of MDLdroidLite for three
smartphones, in terms of parameters, FLOPs, memory, time, battery,
and batch latency. The experiments are done using small- to large-
scale model configuration (i.e., LeNet, MobileNet and VGG-11) on all
six datasets. For benchmarking with backbone structures, we select
the state-of-the-art filter-based pruning technique [46], the full-sized
model and S-search [23] as our baselines.

For the results in LeNet on PMS datasets, the backbone models in
MDLdroidLite achieve 28× to 50× on parameters reduction, 4× to
10× FLOPs reduction, 1.83× to 4.96× speedup on average over the
full-sized model. Also, the backbone models in MDLdroidLite are
equivalent or outperformed to the pruned models, e.g., the backbone
model as [10-16-33-6] outperforms the pruned model as [12-18-50-6]
on HAR. Besides, for the results in MobileNet on PMS datasets, the
parameters, FLOPs, and training time of the backbone models in
MDLdroidLite are reduced by 4× to 7×, 2× to 7×, and 1.27× to 1.56×
over the full-sized model, respectively. In addition, since training
a large-scale VGG-11 on device is quite costly, it cannot achieve a
fair accuracy due to battery drain. However, a backbone VGG-11 in
MDLdroidLite can safely achieve an accuracy of 75%+ with 1328mAh
battery consumption. The complete results are omitted due to space
constrained.

4.4.5 Real-world Performance of MDLdroidLite To evaluate
the real-world performance of MDLdroidLite, we develop a hand
gesture recognition application shown in Fig. 7a. We first ask the
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subject to collect a training dataset that contains 6 gestures and 120
data instances per gesture. Annotation is done manually using the
application on smartwatch. We then apply three data augmentation
techniques (i.e., adding noise, drift, and pool) [54] to augment data
on device, detailed in Table 3.

For the results in MobileNet on Pixel 2XL, the backbone model
in MDLdroidLite achieves a state-of-the-art accuracy of 98.61% (e.g.,
99.16% in the full-sized model) with 7× less parameters, and 5.22×
less FLOPs than the full-sized model. In addition, the training time,
battery consumption, and batch latency of the backbone model in
MDLdroidLite are efficiently reduced by 1.57×, 1.55×, and 1.49×,
respectively. This case study demonstrates that MDLdroidLite can
boost on-device training and inference with the resource-efficient
backbone model for real-world PMS applications.

From the results we obtain, MDLdroidLite outperforms all the
baselines in terms of safe parameter adaptation, fast training conver-
gence, and on-device resource-efficiency, demonstrating the resource
efficiency of MDLdroidLite for on-device DL. Leveraging the supe-
riority in resource efficiency of MDLdroidLite, a large amount of
training resources can be saved on mobile devices, e.g., the battery
consumption in MDLdroidLite is significantly reduced by 1527mAh
and 1594mAh (i.e., nearly half battery available) over CGaP [18] and
NeST [14], respectively, shown in Fig. 14a. In addition, the three mod-
els (i.e., MobileNet, LeNet, VGG-11) used in our evaluation represent
small- to large-scale PMS applications in reality. The results show
that MDLdroidLite can effectively handle different complexity levels
of PMS applications and achieve the optimal model performance.

5 Discussion and Future Work
End-to-endUse ScenarioMDLdroidLite aims for a universal resource-
constrained approach towards MDL, hence theoretically it works
for any on-device learning scenarios, e.g., training from scratch, con-
tinual learning, and RL. Besides, due to the sensor data dynamics
in real-world PMS applications, MDLdroidLite can incorporate with
transfer learning to continually optimize model structure with new
data to avoid learning forgetting [39]. Furthermore, although model
structure optimization may involve a number of options (e.g., depth
size and input size), the focus of this paper is to manage the output
size per layer for efficient on-device training and inference.
Model Structure Complexity Traditional model structure is usu-
ally made to be deep and complex for high accuracy, especially in
computer vision. However, since PMS data naturally have less com-
plexity than image data, the high-accuracy requirement in PMS ap-
plications is usually not placed at the first priority. Instead, resource
efficiency is more critical in the sensing domain. In our experience,
some lightweight or shallow models may even work better because
they effectively avoid overfitting issues. Although training large-
scale models on device may not be efficient enough, e.g., training
VGG-11 on CIFAR-10 in our evaluation, but MDLdroidLite moves the
first step, which opens numerous possibilities to advanced on-device
DL applications.
Insufficient Training Data Data augmentation effectively solves
the problem of insufficient training data. However, the problem may
still exist in real-world PMS applications, especially at the boot-
strapping stage. In this case, MDLdroidLite can start with a pruned
pre-trained model, and continually fine-tune the model structure

over time to maintain the optimal performance. Alternatively, ex-
isting MDL frameworks, such as FL [30] and MDLdroid [63], can
be incorporated to perform collaborative learning leveraging mul-
tiple users. Although MDLdroidLite may not currently work with
these frameworks due to the dynamic structure, the challenge of
heterogeneous model aggregation will be addressed in our future
work.

6 Related Work
Constructive Structure Adaptation A constructive approach is
able to grow and expand DNNs from a small structure. Recent works
combine both constructive and destructive approaches into CG, but
their efficiency seriously relies on pruning. NeST [14] proposes a
linear CG approach by continually growing the layer width, but it is
costly due to the random trial-and-error used to grow channels in
convolution layers, and importantly a linear growth without control
yields inferior training performance. Similarly, CGaP [18] shows a
near-exponential growth with a saliency-based selective KT func-
tion, but the growth strategy is arbitrary and it could easily run into
overparameter which can be too expensive for on-device training.
Different from these works, MDLdroidLite follows the idea of struc-
ture growth but wisely controls a single trajectory growth through
resource-constrained optimization to transform a traditional DNN
structure to a resource-efficient DNN for mobile devices.
Knowledge Transfer Adaptation Existing CG methods enable
fast parameter adaptation using KT but suffer from slow convergence
under resource-constrained conditions. Net2net [8] proposes a stan-
dard random duplication function but with a safe compensation scale
in each subsequent layer for rapid knowledge transformation. NeST
[14] designs a bridging-gradient transformation function to help the
neurons growth in fully-connected layers, but the new-born neu-
rons identified as being inactive without coordination may present
a weak contribution to slow down training. Differently, CGaP [18]
employs a saliency-based selective duplication to achieve higher
accuracy, but the training loss presents a degraded spiking after
each transformation, hence the loss is notably unstable to yield infe-
rior convergence performance. In contrast, leveraging RIC-adaption
pipeline, MDLdroidLite not only safely adapts new-born neurons
using a three-step DSPA, but also designs a GCU to minimize the
variance between new-born and existing neurons, resulting in fast
convergence after each grow-step to significantly speed up on-device
training.

7 Conclusion
This paper presents a novel on-device structure learning frame-
work that enables resource-efficient DNNs on mobile devices. MDL-
droidLite is able to perform on-device training from scratch, con-
tinual learning to support personalized, privacy-preserving PMS
applications. Moreover, MDLdroidLite achieves efficient on-device
training and inference performance for most of the state-of-the-art
DNNs.
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