
MDLdroid: a ChainSGD-reduce Approach to Mobile Deep
Learning for Personal Mobile Sensing

Yu Zhang
RMIT University

zac.lhjzyzzoo@gmail.com

Tao Gu
RMIT University

tao.gu@rmit.edu.au

Xi Zhang
RMIT University

zaibuer@gmail.com

ABSTRACT

Personal mobile sensing is fast permeating our daily lives to enable

activity monitoring, healthcare and rehabilitation. Combined with

deep learning, these applications have achieved significant success

in recent years. Different from conventional cloud-based paradigms,

running deep learning on devices offers several advantages includ-

ing data privacy preservation and low-latency response for both

model inference and update. Since data collection is costly in reality,

Google’s Federated Learning offers not only complete data privacy

but also better model robustness based on multiple user data. How-

ever, personal mobile sensing applications are mostly user-specific

and highly affected by environment. As a result, continuous local

changes may seriously affect the performance of a global model

generated by Federated Learning. In addition, deploying Federated

Learning on a local server, e.g., edge server, may quickly reach

the bottleneck due to resource constraint and serious failure by

attacks. Towards pushing deep learning on devices, we present

MDLdroid, a novel decentralized mobile deep learning framework

to enable resource-aware on-device collaborative learning for per-

sonal mobile sensing applications. To address resource limitation,

we propose a ChainSGD-reduce approach which includes a novel

chain-directed Synchronous Stochastic Gradient Descent algorithm

to effectively reduce overhead among multiple devices. We also de-

sign an agent-based multi-goal reinforcement learning mechanism

to balance resources in a fair and efficient manner. Our evalua-

tions show that our model training on off-the-shelf mobile devices

achieves 2x to 3.5x faster than single-device training, and 1.5x faster

than the master-slave approach.

CCS CONCEPTS

•Computingmethodologies→Neural networks;Distributed

computingmethodologies; Reinforcement learning;Mobile agents;

• Networks→ Network resources allocation; Network protocol

design.

KEYWORDS

Mobile deep learning, Neural networks, Distribute computing, Re-

source allocation, Reinforcement learning

1 INTRODUCTION

With the rapid development of mobile and wearable devices, recent

years have witnessed an explosion of mobile sensing applications.

These applications gain an insight into people’s life based on rich

personal sensing data, e.g., understanding biological contexts in

daily living [31], recognizing activities in ambient assisted living

areas [17], and monitoring personal health in smart home or hos-

pital [32]. Machine learning has been commonly used to process

sensing data. However, traditional machine learning techniques

require manual and complex feature engineering. Deep Learning

(DL) has gained an increasing popularity due to its higher model

accuracy. Besides, its automated feature extraction capability and

the ability of scaling with data make it an ideal solution for process-

ing multi-modality sensing data [40]. It is advocated that DL will

be the next key enabler for advanced personal mobile sensing [24].

Personal Sensing Requirements A successful DL application

requires a huge amount of data to train a model, in which large

computation resources will be involved. The commercial solution

is to transmit the data from local to cloud, offloading the heavy

training workloads to the cloud. Edge server can also be used to

efficiently offload the workloads [27]. However, real-world per-

sonal sensing applications pose several requirements in which the

server-based approaches may not fit. Firstly, personal sensing data

are significantly privacy-sensitive as the data contain a variety of

human motion and biological contexts. Studies [39] [21] show that

leaking motion data can cause a series of violations concerning

user location, health condition, emotional state, and identification

information. Even governments across the worlds are reinforcing

laws to protect personal data privacy, for example the General Data

Protection Regulation (GDPR) [44]. Server-based approaches have

serious privacy concerns. Secondly, due to dynamic external nature

effects and internal characteristics of each individual, personal sens-

ing data are strongly affected by specific personal activities, social

abilities and surrounding environment conditions over time [25]

[17], and features may be updated at any time. Simply deploying a

pre-trained global model on device may not continually work well

to adapt the local features which have been changed. Continually

training a local model with new data is a fundamental requirement,

and applications usually require low-latency responses for both

model inference and update. In practice, continually transmitting

sensing data to the server and downloading model updates for

training can incur fast battery drain and considerable latency for

mobile devices especially when the network connection is unstable

or broken. Different from server-based approaches, mobile DL may

be an ideal solution to effectively preserve sensing data privacy

without being transmitted over the public network, and enable

quick local model inference and update response for continuous on-

device training [11] [40]. Thus, mobile DL is a promising direction

for personal sensing applications.

Mobile Deep Learning Challenges Existing work [40] reveal

that mobile DL poses two challenges. Firstly, pushing DL with both

model training and inference to a resource-constraint mobile device

in practice is extremely constricted by its capability. Secondly, data

collectionwith various conditions is usually costly in reality, and the

model performance and robustness can be seriously affected due to

insufficient data. Collaborative deep learning is proposed to ensure

73

2020 19th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)

978-1-7281-5497-8/20/$31.00 ©2020 IEEE
DOI 10.1109/IPSN48710.2020.00-45

Authorized licensed use limited to: RMIT University Library. Downloaded on October 28,2020 at 01:37:29 UTC from IEEE Xplore. Restrictions apply.

model training efficiency and robustness based onmultiple user data

[46]. Following this direction, Google’s Federated Learning [19] has

been proposed to provide a mobile collaborative DL framework.

This framework not only preserves data privacy by transferring the

gradient parameters of a DL model without exposing local data, but

also improves the global model performance and robustness by a

large number of user models. However, Federated Learning relies on

a central server for intensive global model aggregations, which may

not work well for personal sensing scenarios due to the low-latency

requirement for continuous local model update. Scaling down the

framework to a central edge server [41] or even amaster device may

efficiently reduce the latency. However, Federated Learning deploys

a master-slave structure which is less attack-resistant [48]. A recent

study [6] demonstrates that the model poisoning attacks can cause

a serious negative impact to the central training process. In addition,

the central edge server or master device may quickly become the

bottleneck due to substantial communication and intensive model

aggregation, resulting in huge resource overhead [23]. Moreover,

the system fault-tolerant may be limited in practice if the central

node goes down.

In contrast, applying a decentralized structure for mobile DL can

theoretically offer high attack-resistant and reliable fault-tolerant

[48]. Existing approaches propose a theoretical decentralized struc-

ture based on a fixed directed graph network such as Ring-Allreduce

[28]. These approaches have been applied in high performance

cloud environments where resources are rich and stable. However,

when applied to mobile devices where their resources are scarce

and dynamic, the training process can easily suspend or crash due

to low level of resources available. Furthermore, studies [15] [17]

report that using opportunistic user context from multiple people

can enrich the sensing data distribution to make model robust to the

local variations. Therefore, moving towards a local resource-aware

decentralized collaborative mobile DL approach without central

server support for personal sensing applications is strongly moti-

vated in order to mitigate resource overhead and reduce latency for

training.

Decentralized Mobile Scheduling Deploying a decentralized

DL framework on multiple devices can be extremely difficult due

to the design of resource-efficiency task scheduling for resource-

constrained devices. A generic optimization algorithm [42] can be

applied to perform task scheduling. However, the recent Multi-

agents Reinforcement Learning (MARL) approach [33] may work

better in such a non-stationarity and multi-device scenario. Agent-

based approaches have a significant advantage of estimating the

future scheduling order because agents inherently learn features

from the past experiences based on Reinforcement Learning (RL),

while the generic optimization approaches cannot estimate a future

possible state and will be limited to control a complex environment

due to lacking of such learning mechanism [5]. Thus, using agent-

based approaches can theoretically make scheduling more reliable

for complex environments.

OurApproachAiming to pushDL tomobile devices, we present

MDLdroid, a novel decentralizedMobileDeep Learning framework

to enable resource-aware on-device collaborative learning for per-

sonal mobile sensing applications. MDLdroid targets to fully oper-

ate on multiple off-the-shelf Android smartphones connected in

a mesh network, and achieve high training accuracy and reliable

execution of the state-of-the-art DL models.

Our challenge is two-fold. To address the first challenge of re-

source constraint on device, we propose a ChainSGD-reduce ap-

proach which essentially uses a novel chain-directed Synchronous

Stochastic Gradient Descent (S-SGD) algorithm to effectively re-

duce resource overhead among devices for training. The key idea is

to decentralize the S-SGD algorithm [9] running on a single device

to multiple devices with dynamic chain-directed model aggregation.

Specifically, each device runs a descendant model for training in

which model aggregation task is managed by any two devices at a

time to achieve minimal-peak (i.e., minimum communication and

memory) of resource overhead for each device. Different from the

existing Ring-Allreduce approach [28], each pair of devices is dy-

namically scheduled to perform model aggregation based on their

resource condition for latency reduction. In practice, we leverage on

a mesh graph to aggregate multiple descendant model parameters

into global model parameters to complete each training iteration.

Once the Epoch reaches the given iterations, the entire training pro-

cess is completed. The global model generated can then be deployed

on each device for inference.

Secondly, designing a resource-efficiency task scheduler in a

decentralized DL framework is challenging because resources on

device are constrained strictly and changed dynamically (i.e., the

Non-stationarity problem). A device may be dynamically switched

to busy state due to other high priority tasks, leading to training

being suspended. In addition, the model aggregation task needs to

be distributed to multiple devices in a fair manner to battery con-

sumption across the network. To address this challenge, we propose

a single agent-based scheduler based on Reinforcement Learning

to self organize scheduling tasks using dynamic information of on-

device resource, named Chain-scheduler. Chain-scheduler includes

an effective reward function design to map each perceived sched-

uling action to a reward, aiming to optimize the given constraints.

Through our analysis in Section (§3.3), Chain-scheduler can achieve

the best latency-reduced scheduling close to Tree-scheduler in the

Tree-Allreduce approach [37], and it can also achieve the best en-

ergy balance close to Ring-scheduler in the Ring-Allreduce approach

[28]. To tackle the Non-stationarity problem, we apply a continuous

environment learning strategy to repeat learning if the schedul-

ing environment is changed. In this way, scheduling can be more

adaptive to on-device resource changes. In addition, we further

enhance the performance of the reward function by designing a

Threshold-based Decaying Greedy-Exploration (TDGE) strategy to

save on-device resources used for scheduling tasks.

We fully implement MDLdroid on off-the-shelf smartphones

based on modified DL4J libraries. To evaluate MDLdroid, we use

two standard Convolutional Neural Network (CNN) models (LeNet

[26] and AlexNet [20]) since CNN can be used to effectively pro-

cess multi-channel sensing data [43]. We evaluate the training

performance using 6 public datasets in Table 1, containing diverse

personal mobile sensing data. Results show that MDLdroid achieves

high training accuracy which is comparable to the state-of-the-art

accuracy reported in 3, speeds up training by 2x to 3.5x compared to

the single-device baseline and 1.5x compared to Federated Learning.

In addition, MDLdroid reduces latency overhead due to busy condi-

tion by 23% and 53% compared to Tree-scheduler and Ring-scheduler,

74

Authorized licensed use limited to: RMIT University Library. Downloaded on October 28,2020 at 01:37:29 UTC from IEEE Xplore. Restrictions apply.

respectively. Moreover, MDLdroid reduces the variance in battery

consumption among devices by 40% compared to Tree-scheduler.

Summary of Contributions Key contributions of this paper

are summarized as follows:

• We present MDLdroid, a novel decentralized mobile DL frame-

work based on a mesh network to enable resource-aware on-

device collaborative learning for personal mobile sensing appli-

cations (§3).

• We propose a ChainSGD-reduce approach, in particular a chain-

directed S-SGD algorithm, to minimize the resource overhead of

model aggregation tasks in a decentralized framework (§3.2).

• We design an agent-based multi-goal reinforcement learning

mechanism, Chain-scheduler, with an accelerated reward func-

tion to manage and balance resources in a fair and efficient man-

ner (§3.3).

• We evaluate MDLdroid on off-the-shelf Android smartphones

with two standard DL models using 6 public personal mobile

sensing datasets (§4). Results indicate that MDLdroid accelerates

training effectively, outperforming the state-of-the-arts.

To the best of our knowledge, this is the first time that collabora-

tive DL is fully implemented and functioned on off-the-shelf mobile

devices with both model training and inference without central

server support. MDLdroid takes mobile DL to the next step, and

opens up new possibilities for building secure and adaptive mobile

sensing applications.

Implication MDLdroid defines two implication models. The

individual model is used for an individual who has sufficient per-

sonal data and multiple mobile devices to offer shared resources.

The personal sensing data can only be safely distributed to the

given mobile devices verified by the same identity (e.g., Google ac-

count). MDLdroid can accelerate on-device learning, and alleviate

the resource burden from a single device.

The non-individual model is mainly applied for a group of people

to explore specific local sensing features. The data will be strictly

kept on device to preserve data privacy, and only the model gradient

parameters of each individual will be exchanged to improve model

robustness. With the nature benefits of a decentralized approach,

model poisoning check [6] can be easily deployed in each device to

prevent attacks. Even if a few of devices are down due to attacks,

MDLdroid can isolate them and keep others working safely to avoid

catastrophic failure. Moreover, MDLdroid can be potentially used

in many multi-user sensing scenarios [4], such as specific family

behaviour recognition in a smart home, patient-specific health

condition monitoring in a hospital, and healthcare tracking for

older adults in different aged care facilities.

2 MOTIVATION

To investigate the limitations of deploying mobile DL on device in

current solutions, we conduct preliminary studies to discover the

bottleneck of on-device training.

SetupWe select three well-known public datasets with differ-

ent scales, i.e., sEMG (25MB) [22], HAR (160MB) [1], and OPPO

(500MB) [1] in Table 1. We use an off-the-shelf Android smartphone,

i.e., Google Pixel 2XL running Android 8.1. In each experiment, the

smartphone runs complete training with a dataset using DL4J li-

braries [10].

14 17 8

sEMG HAR OPPO
0

1000

2000

3000

4000

B
at

te
ry

(m
A

h)

LeNet
AlexNet

(a)

0 20 40 60
Time(100ms)

200

400

600

M
em

or
y(

M
B

)

N=2
N=4
N=6
N=8

(b)

0 5 10 15 20
Slave Devices

0

5

10

15

T
im

e(
m

s)

104

Master
Sequential
Crash

(c)

0 20 40 60 80
Batch

0

100

200

300

M
em

or
y(

M
B

)

Both
Only Agent Task
Only Training Task

(d)

Figure 1: Preliminary results. (a) Battery consumption on

single-device training; (b) Memory crash on CNN-LSTM; (c)

Time cost of Master vs. Sequential model aggregation; (d)

Memory conflict when running multi-agents.

Bottleneck of Single-device Training The encouraging result

is that single-device training with LeNet for both sEMG and HAR

achieves a fair accuracy with no failure. As we raise the memory

threshold, the run-time memory usage of training is moderately

increased with no major issues observed. However, from Figure 1a,

we observe that battery overhead dramatically rises with the growth

of data size and model complexity. In particular, with a maximum

battery capacity of 3500 mAh on the smartphone, the training of

HAR with AlexNet and the training of OPPO with both LeNet

and AlexNet fail due to massive battery drain. Thus, single-device

training on off-the-shelf smartphone is not currently feasible.

Memory Overhead of Master Model Aggregation To have

quantitative measurements, we implement Federated Learning [7]

on device without central server support, and run the master model

aggregation process (i.e., memory usage is O(N)) on a master device

to evaluate its resource utilization. Each experiment runs on the

same smartphone receiving N copies of model gradient parame-

ters, where N denotes the number of other slave devices. We select

PAMA2 dataset from Table 1 to train a CNN-LSTM hybrid model

[47] (i.e., 46.4MB model file and 11.61M model parameters). Figure

1b illustrates its memory usage since memory is more critical than

battery due to model aggregation. We observe that memory usage is

rapidly increased with N . When N = 8, it ends up with OutOfMem-
ory (i.e., maximum 512MB). Therefore, multi-device training in a

centralized framework has severe memory limitations for model

aggregation.

Cost of Sequential Model Aggregation To solve the memory

limitations, a naive sequential model aggregation approach (i.e.,

memory usage is O(2)) is implemented by sequentially loading

model files into memory on the master device. We use the same

CNN-LSTM hybrid model to evaluate the time cost. We simulate N
is up to 20 to increase the scalability of model aggregation. Figure

1c indicates the time usage of sequential aggregation is way higher

than using master aggregation (e.g., 47307ms vs. 160ms respectively

when N = 8). Besides, the time usage of sequential aggregation

75

Authorized licensed use limited to: RMIT University Library. Downloaded on October 28,2020 at 01:37:29 UTC from IEEE Xplore. Restrictions apply.

User Input

Model Config

Trade-offs

Scan-Build

BLE Scan

Network Build

Broadcasts
Model Configs

Training

Descendant
Model Init

Users

ChainSGD

On-device
Training

Resource
Info Msg

Init Msg
Request

Scheduling

Scheduling

DQN Model

Chain
Scheduler

Monitor

Users Model
Inference

Loading
Sensing Data

On-device
Training

Multi-device
Training

Figure 2: MDLdroid Architecture consists of three-stage pro-

cesses: 1) user model configuration input; 2) network scan &

build; 3) model training & task scheduling.

presents a linear increase with N , which is also critical in practice.
Moreover, since two copies of model files are aggregated in memory

space for each loading, the NeighborSGD in Eq. (2) is used in this

implementation. However, a severe accuracy degradation issue is

revealed as shown in Figures 3a and 3a (§3.2.2). Thus, although

sequential model aggregation simply minimizes the memory usage,

it can still cause considerable extra training time cost and accuracy

degradation.

Resource Conflict in MARL Our preliminary experiment re-

veals that severe resource conflict exists in MARL. We implement a

simplified MARL [5] on the same smartphone using DL4J libraries.

Figure 1d indicates that running training and agent tasks concur-

rently on-device can dominate the main memory of the device,

resulting in 0.6x higher than that of running any single task. We

thus turn our intention to a single agent-based RL scheduling ap-

proach, which motivates our proposal.

3 MDLDROID FRAMEWORK

In this section, we detail the system architecture of MDLdroid. We

also present the proposed ChainSGD-reduce approach and Chain-

scheduler.

3.1 System Architecture

We first give an architecture of MDLdroid in Figure 2. Since MDL-

droid is designed to operate full-scale DL on Android based on a

mesh network, we employ both Bluetooth Low Energy (BLE) and

Bluetooth Socket (BS) to build the mesh network due to accessi-

bility and low energy consumption. In principle, any on-device

mesh-based protocol can be applied (§3.2).

In the first stage, users input different model configurations

based on their demand to train models. MDLdroid uses two com-

bined network topology in the second stage. The BS-based mesh

topology is applied to perform the decentralized model aggregation

between devices in the training stage, while the BLE-based tree

topology is used for the centralized resource condition monitor-

ing in the task scheduling stage. In the third stage, each device

is required to continually report resource condition to a mobile

agent (MA). Once all training tasks request the model aggregation

for each iteration, the Chain-scheduler on the MA can manage

the resource-efficiency scheduling paths as a chain-directed graph.

When model aggregation of each iteration are completed, a copy

of the aggregated model parameters will be resource-aware broad-

casted (§3.2.3) to all devices for the next iteration. Finally, once

training is completed, a global model will be distributed to all de-

vices via broadcasting for model inference Especially, MDLdroid

can also reload a pre-trained model to continually train with new

local sensing data.

3.2 ChainSGD-reduce Approach

Collaborative learning relies on the distributed stochastic gradient

descent (SGD) algorithms [19]. To achieve reliable training accuracy,

a central server typically gathers local gradient parameters Δwk
i

from all machines and aggregates them to be global gradient pa-

rameters Δw(k)(t) after each training iteration. The central server

then updates the local parametersw(k)(t + 1) for all machines via a
one-to-many broadcasts [13]:

Δw(k)(t) =
1

N

N∑
i=1

Δwk
i

w(k)(t + 1) = wk (t) − ηΔwk (t)

(1)

wherew(k)(t) denotes the k(th) parameters at each training itera-
tion t , Δwi denotes a local gradient parameter from the ith machine,
N is the number of machines and η is the learning rate.

3.2.1 Asynchronous SGD vs. Synchronous SGD.

The distributed SGD algorithms are mainly classified into two

categories—Asynchronous SGD (A-SGD) and S-SGD [9]. A-SGD

can be more communication efficient and runs with no strong de-

pendency among machines. However, study [45] points out that

A-SGD suffers from an uncertain training accuracy degradation

issue due to its delay model updating mechanism. S-SGD repre-

senting in Eq. (1), on the other hand, runs quite stable without this

issue, but the drawback of S-SGD is that some machines may be

slowed down in run-time due to dynamic low resources, and hence

the overall training time depends on the slowest machine. By given

limited training condition on mobile device, S-SGD can effectively

achieve a higher accuracy and more reliable training performance

than A-SGD, which motivates S-SGD in our approach.

3.2.2 Chain-directed Synchronous SGD.

In a decentralized DL framework, the relationship between train-

ing nodes and the central node is decoupled. Therefore, the central-

ized model aggregation can be separated into multiple descendant

aggregations by structural transformation. The existing work [18]

present decentralized SGD algorithms based on a fixed directed

network. We define a decentralized topology with a fixed directed

graph as (V , E), where V denotes a set of devices and E represents

a set of edges. When we have N training devices, V = {1, 2, ...,N }
and E ∈ RV×V . We define directed edges as (i, j) ∈ E, which means
device i can send its gradient parameter to device j for model aggre-
gation. The number of device j’s neighbors ism, and the number of

device j is n, wherem,n ∈ N . With these settings, we can transform

the centralized model aggregation (CentralSGD) in Eq. (1) to the

decentralized neighbor aggregation (NeighborSGD) as follows.

Δw(k)(t) =
1

n

n∑
j=1

(∑m
i=1 Δw

k
i +mΔw

k
j

2m

)
(2)

However, although the model aggregation is divided by j descen-
dant neighbor aggregations, the single device j still requires to

76

Authorized licensed use limited to: RMIT University Library. Downloaded on October 28,2020 at 01:37:29 UTC from IEEE Xplore. Restrictions apply.

0 5 10 15 20
Epoch

0.6

0.8

1

A
cc

ur
ac

y(
%

)

NeighborSGD
CentralSGD
ChainSGD

(a)

0 5 10 15 20
Epoch

0.5

0.6

0.7

0.8

A
cc

ur
ac

y(
%

)

NeighborSGD
CentralSGD
ChainSGD

(b)

Figure 3: Training accuracy degradation and restore when

the number of device increases (a) N = 6; (b) N = 9.

concurrently performm model aggregations, which may cause sig-

nificant memory overhead revealed by our preliminary study. On

the other hand, considering the dynamicity of resources on device is

uncertain during training, the neighbor model aggregation based on

the fixed directed decentralized topology may cause distinct latency

if device j pauses the process due to low-resource condition.
To reducememory overhead and latency, we propose a ChainSGD-

reduce approach with a mesh-based decentralized topology. In this

approach,m is constantly managed as one for every neighbor aggre-

gation to achieve a minimal-peak in memory and communication

overhead for both devices i and j. Our approach also includes an
agent-based RL Chain-scheduler to schedule the neighbor aggrega-

tion task as a dynamic chain-directed graph in a resource efficiency

way.

Compared with centralized graph and decentralized neighbor

graph, Figure 4 demonstrates that themajor differences of ChainSGD-

reduce are twofold: 1) the model aggregation is managed only with

one of neighbors at a time; 2) the order of the aggregation tasks is

dynamically scheduled depending on the real-time resource condi-

tion of device.

When ChainSGD-reduce is applied to NeighborSGD in Eq. 2,

we reveal an accuracy degradation issue. Figure 3a shows that the

training accuracy of NeighborSGD is lower than that of CentralSGD

by 3% (N = 6). Besides, Figure 3b shows that with N increases, the

training accuracy gap between NeighborSGD and CentralSGD be-

comes larger by roughly 5% less (N = 9). It is because that the global

gradient parameters Δw(k)(t) decompose through the model aggre-
gation process. We thus redefine ChainSGD as the following pair

aggregation functionW (j, i) aiming to restore training accuracy.

W (j, i) =

⎧⎪⎪⎨⎪⎪⎩
θiΔw

k
i +θ jΔw

k
j

θi+θ j

θ
′

i = θi + θ j
(3)

whereW (j, i) represents the aggregated gradient parameters send-
ing from a remote device j to device i as a pair aggregation. The

global gradient parameters of each iteration are denoted asΔw(k)(t) =
(N −1)W (j, i). Since ChainSGD offers a dynamic model aggregation

process, multiple pair aggregation can be performed simultaneously

based on resource condition of devices within one round to reduce

latency showing in Figure 4. Especially, θ is a reversal parameter to
enable that the gradient parameters ofW (j, i) can be restored close
to CentralSGD, and θ starts from 1. Once a pair aggregation is done,

the local θi will be updated with a remote θ j as θ
′

i for sending to

next round. Our approach requires that the BS message for model

aggregation contains Δwk and θ as (Δwk , θ). Both Figures 3a and

Master MA

Figure 4: Model aggregation structure comparison: Cen-

tralSGD vs. NeighborSGD vs. ChainSGD

3a show that the performance of ChainSGD is consistent with that

of CentralSGD with no accuracy degradation.

In summary, the ChainSGD-reduce algorithm is shown in Algo-

rithm 1 below.

ALGORITHM 1: ChainSGD-reduce Algorithm

Initialize parameters w0, number of iteration t , number of devices

N , training dataset Dtrain ;

for All devices i ∈ N do

for t Epochs do

Train model on local d ttrain ∈ Dtrain ;

while true do

if Get an incoming BS message (W (j , i), θ) then

Pair aggregation Δwk
i in Eq. (3);

Update θ ;

end

else

Get a remote neighbor j from MA;

Send (Δwk
i , θ) to neighbor j , Break;

end

end

Update local w
(k)
i
(t + 1) = wk

i (t) − ηΔwk (t);

end

end

3.2.3 Resource-aware Broadcasting.

In ChainSGD-reduce, the MA device handles the global model

parameters broadcasting after each training iteration. If the MA

device sequentially broadcasts by BS messages, it may suffer from

heavy communication overhead when the number of devices N is

large. We employ a binomial-tree broadcast algorithm [14] with a

message forwarding function to address this issue. Basically, our im-

plementation enables the broadcast list sorted by devices’ resource

condition, and the devices with more resources will be assigned

with a list of forwarding tasks to mitigate the overhead on MA.

Thus, the number of broadcast round by MA can be reduced from

N to �log2 N �.

3.2.4 Fault-tolerant.

MDLdroid offers a fault-tolerant strategy to ensure the stability

for on-device training: 1) File cache: model parameters and neces-

sary records can be saved as files backup in run-time for training

recovery; 2) Training device fault: once a training device is lost

after the re-connection attempts, File cache will be first preformed.

Then MA will skip the device for scheduling until reconnected. If

re-connection is successful, MA will require the device to send over

77

Authorized licensed use limited to: RMIT University Library. Downloaded on October 28,2020 at 01:37:29 UTC from IEEE Xplore. Restrictions apply.

the last model parameters and iteration records. After that, MA will

send back the current iteration records for synchronization, and the

device will receive the global aggregated model parameters until

next iteration.

3.3 Resource-aware Chain-scheduler

We propose Chain-scheduler using an agent-based RL model to

dynamically schedule model aggregation tasks. To mitigate the

memory overhead analyzed in our preliminary experiment (§2),

we design a single agent-based RL mechanism. The agent task is

separated into an individual device as the MA which is respon-

sible of resource-aware scheduling, and other devices are mainly

responsible of running training tasks. With a mesh network, MA

can globally monitor all training devices’ resource condition in

real-time with low-energy cost. In MDLdroid, two optimal goals

are defined for Chain-scheduler to achieve resource-efficiency. One

is to reduce training latency due to the resource condition of some

devices dynamically turning busy in real-time. Another is to bal-

ance communication overhead and battery consumption across the

network.

Mathematically, Chain-scheduler deals with the following con-

strained optimization function:

argmin N (T (t)) + N (E(t))

s.t.M ≤ Mmax , B ≤ Bmax
(4)

where T and E denote training time and energy balance across the

network, respectively. N (x) = (x − xmin)/(xmax − xmin) is a stan-

dard normalization function to transform training time and energy

balance to be at the same scale. t represents the current training
iteration. We denote Mmax and Bmax as the maximum memory

and maximum battery offered by the target device, respectively.

Training Time T The training time for each iteration t is de-
fined as:

T (t) = Ttr + f (Ta,Tb) (5)

where Ttr denotes the training time of each individual device, Ta
denotes the overall model aggregation time for iteration t , and
Tb represents the overall latency time caused by the busy state of
devices. f (x) is the schedule function. Especially, due to concurrent
processes, f (x) can schedule Ta and Tb to reduce iteration latency.
The worse case isTa +Tb in which the scheduled sequence is linear
and no concurrent overlap, while the ideal case is max(Ta,Tb) in
which training latency is minimized as the concurrent overlap.

Energy Balance E The energy balance for each iteration t can
be modeled as:

E(t) =
1

N

N∑
i=1

(Eic − μ)2 (6)

where μ is the mean of {E1, E2...EN }, and Eic denotes the energy
consumption of device i . We employ a variance function to repre-

sent the balance performance of Chain-scheduler.

The best estimated scheduling sequence represents as a reverse

tree structure of Tree-scheduler [37] to reduce latency, which re-

quires �log2 N � communication rounds. While the worse case rep-

resents as a ring structure of Ring-scheduler [28] with N commu-

nication rounds. However, Ring-scheduler can perform the best

11

Send model

1

1

2

Module Aggregation

2 1

1

1

2

1

12 1

32 1 21 1

Count for balance1

Round 3

Round 1

Round 2

Round 4

(a)

Training
Device

MA

Retraining
Scheduler

Training
interrupted
and start

retrain again

Report Resources Message
Request Scheduling

(b)

Figure 5: (a) The process of scheduling by busy condition; (b)

State diagram and Re-training mechanism

energy balance as each device only requires to aggregate model

once. Thus, Chain-scheduler is aiming to achieve optimal trade-off

between Tree-scheduler and Ring-scheduler.

3.3.1 Multi-goal Reward Function.

We employ a DQN model [33] in MA to learn the scheduling

environment based on the optimization function in Eq. (4). In our

protocol, all train devices are required to continually report their

resource condition to MA. We select five essential resource param-

eters including: free memory (i.e., remaining memory), battery (i.e.,

remaining battery), in-use (i.e., whether if under intensive use con-

dition), charge (i.e., whether if charging), cpu (i.e., current CPU), to

identify whether the device is in busy (Sbusy) or free (Sf r ee). Next,
we present the design of the Chain-scheduler structure:

• State: We design five states for Chain-scheduler to make cru-

cial scheduling decisions based on our protocol. s = {st , i =
1, 2, ...,T } represents as a set of devices’ states, where t denotes
the learning step. States = (Sf r ee , Sbusy , Ssend , Sдet , Sdone),
where Ssend denotes that the device is sending model parame-

ters, and Sдet represents the device is getting model parameters.
Specifically, the state of devices can be only defined as one of the

five states at any learning step. Figure 5b illustrates the relation-

ship of these states.

• Action: We define a = {ai , i = 1, 2, ...,N }, where N denotes the

number of devices. It represents which device is selected by the

scheduler to act in the environment.

• Reward: r = {rt , t = 1, 2, ...,T } is defined by the reward function
r (st ,a, st+1) in Eq. (7).
RewardModel To solve the optimization function in Eq. (4), we

design a three-stage mechanism as follows to offer a fast learning

process. Firstly, to reduce training latency, we design a decaying

penalty function ρ + tρ/2(N − 1) aiming to set Sbusy as the low-

est priority. Since our protocol requires that a pair (i, j) should be
selected by each scheduling, it takes two steps in the learning pro-

cess. Then, 2(N − 1) represents the best learning steps at one Epoch.

With N increases, the penalty reward of Sbusy decreases. Thus,

the later Sbusy chooses, the smaller penalty reward the model gets.

From concurrent perspective, the training latency can be reduced

78

Authorized licensed use limited to: RMIT University Library. Downloaded on October 28,2020 at 01:37:29 UTC from IEEE Xplore. Restrictions apply.

Figure 6: RL training speed comparison by using different

exploration rate

as the process of model aggregation can be done with Sf r ee in

advance. Secondly, to balance energy consumption, if the count

of Sf r ee → Sдet for each device is close to the average, the energy
variance of all devices in Eq. (6) can reach the minimal. Hence, we

design a penalty function α − βnaдд , where naдд records the count
of Sf r ee → Sдet . With naдд increases, the penalty reward also

increases. In addition, we design an incentive function α + βnaдд to
speed up the model learning. With naдд increases, the model can
get more rewards if Sf r ee → Ssend is done. Thirdly, to achieve

fast learning, we design an efficient termination function. If the

selected action is a repeat as an invalid action or the learning step

is larger than the best learning steps, the model gets a severe penalty

reward and the current learning step is terminated. In summary,

we present our reward function as follows.

r (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

α − βnaдд Sf r ee → Sдet
α + βnaдд Sf r ee → Ssend
ρ + tρ/2(N − 1) Sbusy
−1 Exceeds limits
−1 Select invalid action
1 Completed

(7)

where α , β and ρ denote initial reward, initial busy penalty and
battery cost per aggregation, respectively. naдд denotes the number
of model aggregations. By default, we set α to −0.04, β to 0.1 and ρ
to −0.8.

3.3.2 Accelerated Reward Function.

To further accelerate the RL learning process, we propose a

threshold-based decaying greedy-exploration (TDGE) strategywhich

extends the existing decaying greedy-exploration (DGE) strategy

[38]. The decaying greedy-exploration (DGE) strategy has been

used as a default option with a fair performance. However, Figure

6 shows DGE-Fast (using 2x exploration rate) completes earlier

than DGE-Slow, i.e., each stops at 73 Epoch and 143 Epoch, respec-

tively. A key observation from our empirical study is that more

sufficient exploration achieves more efficient learning time reduc-

tion. Therefore, in the proposed TDGE strategy, we aim to ensure

sufficient exploration in the beginning to accelerate the learning

process. The interpretation is to ensure the model to fully explore

until the reward reaches the given threshold, we then switch the

exploration to start epsilon decaying from the predefined value.

Specifically, the threshold is approximately defined by achieving

optimal latency and battery balance at the same time in Eq.(8) since

the reward function is designed to optimize both features by Eq.

(4). The estimation of optimal latency is defined as reward value by

Eq. (10), where the estimation of optimal battery balance is defined

in Eq. (9).

We define threshold T (N) by separating the calculation of the
optimal reward into two parts in Eq. (8), which imitate architecture

in defining optimization function of Chain-scheduler. The first part

represents the maximal reward value of battery balance by Eq. (9).

The second part denotes the optimal reward value of latency by Eq.

(10).

T (N) = f (N) + д(N) − Φ (8)

where Φ denotes an offset value obtained from our experiment.

f (N) =

{
β(N mod 2) + f (�N /2) N > 1

0 N = 0 & 1
(9)

д(N) = β log2 N (10)

In summary, the Chain-scheduler algorithm is shown in Algo-

rithm 2.

ALGORITHM 2: Chain-scheduler Algorithm

Initialize target network weights, epsilon ϵ = 1.0, threshold TR in

Eq. (8), state s ;

while Epoch < maxEpoch do

for t ← 1 tomaxStep do

if random(0,1) < ϵ then
randomly explore an action from validAction();

else
take action a with ϵ -greedy policy based on Q-value

function Q (st , at);
end

receive st+1 and rt in Eq. (7);

st ← st+1;

if st+1 is terminated then

if reward > TR then
ϵ ← ϵnew

end

break;
end

end

update ϵ by decaying;

end

3.3.3 Continuous Environment Learning.

As analyzed in Section (§2), Non-Stationarity scenario has a

negative impact on the performance of the RL model. However,

since MA can continuously monitor device resource condition,

this impact can be mitigated by a repeating environment learning

mechanism [2]. If the current resource condition is not equal to

the previous record, MA can restart the RL learning process to

update the model. Figure 5b indicates three re-learning conditions.

In the first two conditions, the RL learning process can be restarted

with a small learning slot by the resource condition changes of

environment, and it finishes before the scheduling actions. For the

third condition, if scheduling actions require to perform during the

slot of re-learning, Chain-scheduler can output a fair scheduling

based on the history experience of the RL model.

79

Authorized licensed use limited to: RMIT University Library. Downloaded on October 28,2020 at 01:37:29 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

Figure 7: Experiment screenshot. (a) User model input; (b)

Training execution screenshot

Table 1: Dataset Specifications

Datasets Type Task #-S #-C #-SA #-R #-H #-TR #-TE

sEMG [22] EMG GR 37 6 14695 50 8 25 6

MHEALTH [3] IMU HBM 10 9 3255 50 23 100 30

UniMiB [30] IMU FDR 30 8 8430 50 1 116 15

HAR [1] IMU ADLs 30 6 10299 50 9 160 60

OPPORTUNITY [35] IMU ADLs 12 11 16837 50 77 500 50

PAMAP2 [34] IMU ADLs 9 12 12397 100 9 900 90

4 EVALUATION

4.1 MDLdroid Implementation

We implement MDLdroid based on an open-source DL library (i.e.,

DL4J). In particular, we essentially modify DL4J to enable the pro-

posed ChainSGD-reduce approach on device. We also tailor our

implementation for execution on Android smartphone. With mi-

nor model configurations, MDLdroid is fully compatible with a

range of DL models without scaling down the model. We employ

9 off-the-shelf Android smartphones and Table 2 gives their spec-

ifications. Figure 7a plots a screenshot in which user customizes

model configuration such as the parameters for certain datasets,

customized hidden layer structures, and the required number of

training devices. Figure 7b plots a screenshot during an execution of

training on 9 smartphones using MDLdroid. The MA device scans

all nearby devices, and build a BLE mesh network. The black dash

lines represent the BLE connections between MA and training de-

vices for resource condition monitoring. The yellow lines indicates

a particular chain-directed model aggregation process via BS.

4.2 Datasets

To evaluate MDLdroid, we select 6 public personal mobile sensing

datasets with a training scale ranged from 25M to 900M. These

datasets are typically used for building a variety of personal mobile

applications, e.g., gesture recognition (GR), recognition of activity

for daily living (ADLs), fall detection recognition (FDR), and health

behavior monitoring (HBM). The specification of each dataset is

listed in Table 1. #-S, #-C, #-SA, #-R, #-H, #-TR, #-TE separately

denote the number of subjects, the number of classes, the number

Table 2: Smartphone specifications

Device HD RAM CPU Battery(mAh)

OnePlus 6 128GB 8GB Snapdragon 845 3300

Pixel 2 XL 64GB 4GB Snapdragon 835 3520

Huawei Honor 8 32GB 4GB HiSilicon Kirin 950 3000

of samples, sampling rate (Hz), the number of channels, the size of

training data (MB), and the size of testing data (MB),

4.3 Evaluation Methodology

In our evaluation, all the participating smartphones are placed in

proximity with a range from 1m to 5m for any twos. To evaluate

actual battery consumption, we set all smartphones as discharging.

Before each experiment, we reset the battery of smartphones to

be full. For static dataset allocation, we divide each dataset equally

among all the training devices since they have similar resource

capacity and pre-load a sub-dataset to each device in advance to

simplify our evaluation. We first evaluate the performance of Chain-

scheduler. We then compare MDLdroid to Federated Learning. Fi-

nally, we conduct a series of experiments to discover optimized

parameters to trade-off between resource used, training accuracy

and scalability.

4.4 Performance of Chain-scheduler

To evaluate Chain-scheduler, we select two resource-agnostic

schedulers (i.e., Tree-scheduler and Ring-scheduler) as the baseline.

We also use both DGE and the threshold-based greedy-exploration

(TGE) (i.e., the exploration only relies on the given threshold with-

out decaying) approaches (§3.3.2) as the baseline to compare with

our TDGE approach and evaluate the performance of the explo-

ration strategy when training Chain-scheduler.

4.4.1 Experimental Setup.

For a fair benchmark comparison, we simulate the resource dy-

namicity scenarios in reality for each device in MDLdroid. Specifi-

cally, we randomly allocate resources for each training device while

assuring a maximum of 50% of the devices being in busy state.

To evaluate our re-learning mechanism, we randomly modify the

resource state of some devices being busy or free to emulate the

conditions mentioned in Figure 5b. We run each experiment 50

times and report the performance and resource usage presented in

the following sections.

4.4.2 Exploration Strategy of Chain-scheduler.

In this experiment, we first compare TDGE with both DGE and

TGE in term of training time. Figure 8a shows the average training

time for each exploration strategy in a network size ranged from 3

to 9 devices. Result shows that TDGE outperforms TGE and DGE

in training time by 1.2x and 1.3x less, with a standard deviation of

1.9x and 2.1x less, respectively. In addition, Figure 8b shows the

convergence of cumulative reward in each strategy in a network

size of 8 devices. The triangle markers indicate convergence points.

We observe that TDGE converges 1.2x and 1.4x faster than TGD

and DGE, respectively. As a result, TDGE can accelerate the process

of Chain-scheduler training.

80

Authorized licensed use limited to: RMIT University Library. Downloaded on October 28,2020 at 01:37:29 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

Figure 8: Chain-scheduler training comparison by different

exploration strategies. (a) Training time; (b) Convergence of

cumulative reward

(a) (b)

Figure 9: Resources reduction in re-learning conditions.

(a) Time and (b) Battery

4.4.3 Performance in Re-learning.

In this experiment, we evaluate TDGE under a re-learning sce-

nario in terms of training time and battery consumption. Figure 9a

shows that TDGE outperforms DGE with less training time, espe-

cially in more-device scenarios (e.g., 1.5x less when the number of

devices is larger than 7). Figure 9b shows that on average TDGE

consumes 1.3x less battery consumption than DGE. Similarly, more

battery savings are observed in TDGE with more devices.

4.4.4 Scheduling Performance.

In this experiment, we compare Chain-scheduler with Tree-

scheduler and Ring-scheduler in terms of training time and energy

balance using the HAR dataset in Table 1. Figure 10a shows that

on average ChainSGD-scheduler outperforms Tree-scheduler and

Ring-scheduler by 23% and 53% less training time, respectively. In

addition, more time savings are observed in ChainSGD-scheduler

when the number of devices increases. Figure 10b shows that Ring-

scheduler achieves the minimal energy variance among three, and

ChainSGD-scheduler reduces energy variance by 40% on average

compared to Tree-scheduler. This experiment demonstrates that

ChainSGD-scheduler achieves the best trade-off between training

time and energy variance compared to Tree-scheduler and Ring-

scheduler.

4.5 Performance of MDLdroid

To give a comprehensive evaluation for the performance of MDL-

droid, we compare MDLdroid with the Federated Learning (FL) [7]

from training accuracy and resource used perspectives. Besides, we

(a) (b)

Figure 10: Scheduling performance comparison. (a) Latency;

(b) Energy balance

choose a server-based approach to further ensure the training accu-

racy to be reliable. we next explore the optimized resource-accuracy

trade-off options and limitations of MDLdroid.

4.5.1 Experimental Setup.

For performance benchmarking, we use FL as our baseline, which

is implemented based on a master-slave structure, i.e., the same

system architecture, to keep training computational and commu-

nication costs identical for fair comparison. In addition, we also

compare the training accuracy of MDLdroid vs. the server-based

approach by running training with the same model configurations

on a desktop computer using all the 6 datasets. To measure battery

consumption, we use Java refection to access the system instance

of BatteryStatsImpl after rooting the smartphones. To monitor real-

time CPUs and memory consumption on smartphone, we use An-

droid Debug Bridge (ADB) commands.

4.5.2 MDLdroid vs. FL.

We compare the overall performance of MDLdroid vs. FL from

three resource perspectives—peak-memory overhead, training time,

and network energy balance.

Peak-Memory Figure 11a plots the peak-memory value for each

approach with a network size ranged from 1 to 9 using the PAMA2

dataset based on LeNet. Result shows that the peak-memory over-

head of the master device in FL increases linearly with the number

of devices, while MDLdroid remains stable at low overhead due to

only a pair of devices is involved during each model aggregation

task.

Training Time Figure 11b shows that the training time in MDL-

droid is effectively saved by 1.5x on average compared to FL. The

training time in MDLdroid decreases with the network size in-

creased. While the training time in FL presents a U-shaped curve

as the communication time for model aggregations gradually in-

creases. This is due to the efficient design of both model aggregation

scheduling (§3.3) and resource-aware broadcasts (§3.2.3) in MDL-

droid.

Network Energy Balance Figure 11c shows that the energy

consumption of each device for model aggregation in MDLdriod is

much less than that of the master device in FL, especially in more

device scenarios. The result shows a training device in MDLdriod

achieves 5.8x energy consumption reduction for communication on

average compared to the master device in FL. In addition, another

key observation is that MDLdroid achieves better energy balance

among devices as MDLdroid evenly distribute model aggregation

81

Authorized licensed use limited to: RMIT University Library. Downloaded on October 28,2020 at 01:37:29 UTC from IEEE Xplore. Restrictions apply.

0 5 10
Devices

200

250

300

M
em

or
y(

M
B

)

MDLdroid
FL

(a)

0 5 10
Devices

1

2

3

4

5

6

T
im

e(
s)

104

MDLdroid
FL

(b)

0 5 10
Devices

0

200

400

600

B
at

te
ry

(m
A

h)

MDLdroid
FL

(c)

3 50 56 20

950
1097

Server Smartphone
0

500

1000

1500

T
im

e(
m

s)

Traning
Load Data
Batch Time

(d)

Figure 11: MDLdroid vs. FL performance comparison. (a)

Memory; (b) Time; (c) Battery consumption; (d) One batch

training time breakdown comparison

tasks to each device during scheduling. Since MDLdroid requires a

training device to periodically report its resource condition via a

tiny BLE message, the actual battery consumption to send model

parameters is much smaller than that using BS, e.g., fully training

PAMA2 by 20 Epoch on a single device with roughly 15 mAh out

of 3600 mAh cost.

4.5.3 Trade-off between Resource and Accuracy.

Both model aggregation frequency and training iteration Epoch

can significantly impact the balance between resource and accuracy.

In this experiment, we evaluate the trade-off between resource and

accuracy in three aspects—training accuracy by a given threshold,

battery consumption by maximum battery, and training time. In

addition, we design 5 trade-off parameters, i.e., 1-E20, 2-E20, 10-

E20, 1-E30, and 1-E40, where each of them represents the number

of model aggregation rounds per Epoch—the number of training

iteration Epoch.

Scalability We observe that the training accuracy decreases

after applying trade-offs, as shown in Figure 12. With the network

size increases, the training data size for each device decreases,

resulting that the learning convergence rate of a DL model becomes

slow. However, Figure 12 indicates the accuracy can be improved if

we enlarge the Epoch from 1-E20 to 1-E40, while the training time

and battery cost increase as shown in Figure 14 and 13, respectively.

Therefore, the scalability of network may be limited by the trade-off

between resource and accuracy.

Battery Saving To explore the battery limitations by different

trade-offs, we continually charge smartphones during the experi-

ment. Specifically, the battery consumption can be reduced by 2x

to 8.5x compared to single-device training, as shown in Figure 13.

Table 3: Training Accuracy Comparison

Datasets State-of-art Server FL-B Chain-B Chain-Off

HAR 96% [1] 93.8% 92.7% 92.5% 90.0%

PAMAP2 90%+ [34] 97.6% 94.7% 95.2% 90.7%

MHEALTH 90% [3] 92.3% 91.0% 90.2% 85.4%

UniMiB 85% [1] 96.1% 93.3% 93.6% 91.5%

sEMG 88% [22] 89.2% 86.3% 85.8% 84.6%

OPPO 85% [35] 88.6% 87.5% 86.9% 84.7%

With the number of devices increases, the battery consumption can

be effectively shared among multiple devices.

Training Time Reduction Figure 14 shows that the training

time of MDLdroid is reduced by 2x on average compared to single-

device training. Besides, the training time is significantly increased

if the model aggregation frequency increases since sending model

gradient parameters via BS is time-consuming depending on the

model size of dataset.

Training Speed Limitation Figure 11d reveals that loading

one batch data from file to memory has a huge latency on device

using DL4J libraries. The same result can be found on the server. As

DL4J requires to convert data into an INDArray, the speed of this

step depends on the performance of hardware (i.e., CPUs). Since

DL4J uses only CPUs on Android, the latency is much larger than

that on the server. Using accelerators available on the mobile device

[8] may largely improve the training process.

In summary, MDLdroid accelerates training by 2x to 3.5x as

shown in Figure 14 and reduces battery consumption by 2x to 8.5x,

compared to single device as shown in Figure 13. With the number

of training Epoch increases, the training accuracy is increased by

2.5% on average as shown in Figure 12, but much more battery

and time are consumed. While increasing model aggregation fre-

quency can sightly improve training accuracy with a small impact

on battery usage. However, the training time is increased by up

to 2x due to heavy communication cost , as shown in Figure 14.

Therefore, we choose 1-E20 as the optimized resource-accuracy

option to achieve the best performance. Finally, Table 3 summarizes

the comparison result of training accuracy, and MDLdroid achieves

reliable state-of-the-art results. In the table, FL-B denotes the best

accuracy on FL, Chain-B denotes the best accuracy on MDLdroid

and Chain-Off denotes the accuracy on MDLdroid after trade-off.

5 DISCUSSION AND LIMITATION

In this section, we discuss several limitations in our current proto-

type implementation.

Training Time The long training time in Figure 14 may not be

very practical for end users in reality. However, the training speed

of the prototype implementation depends on several factors: 1) the

speed of reading training data from a CSV file on mobile device is

low as shown in Figure 11d. 2) the training performance on single

device is strongly limited by DL4J libraries; 3) the used standard

model structures are large for mobile training, and advanced light-

weight models should be applied in practice, such as MobileNet [16].

Further improving training time will leave for our future works.

Bluetooth Limitation As an initial prototype system, we use

Bluetooth Low Energy for building a mesh network to simplify our

implementation. However, when the model complexity increases,

82

Authorized licensed use limited to: RMIT University Library. Downloaded on October 28,2020 at 01:37:29 UTC from IEEE Xplore. Restrictions apply.

2 4 6 8
Devices

88

90

92

94

A
cc

ur
ac

y(
%

)

1-E20
1-E30
1-E40
2-E20
10-E20

(a) HAR

2 4 6 8
Devices

0

50

100

1-E20
1-E30
1-E40
2-E20
10-E20

(b) sEMG

2 4 6 8
Devices

80

90

100

1-E20
1-E30
1-E40
2-E20
10-E20

(c) UniMiB

2 4 6 8
Devices

80

90

100

1-E20
1-E30
1-E40
2-E20
10-E20

(d) PAMAP2

2 4 6 8
Devices

70

80

90

100 1-E20
1-E30
1-E40
2-E20
10-E20

(e) MHEALTH

2 4 6 8
Devices

0

50

100

1-E20
1-E30
1-E40
2-E20
10-E20

(f) OPPORTUNITY

Figure 12: Training accuracy by trade-off options

2 4 6 8
Devices

0

0.2

0.4

0.6

B
at

te
ry

(m
A

h)

104 1-E20
1-E30
1-E40
2-E20
10-E20

(a) HAR

2 4 6 8
Devices

0

0.2

0.4
104

1-E20
1-E30
1-E40
2-E20
10-E20

(b) sEMG

2 4 6 8
Devices

0

0.2

0.4

0.6
104

1-E20
1-E30
1-E40
2-E20
10-E20

(c) UniMiB

2 4 6 8
Devices

0

1

2
104

1-E20
1-E30
1-E40
2-E20
10-E20

(d) PAMAP2

2 4 6 8
Devices

0

0.2

0.4
104

1-E20
1-E30
1-E40
2-E20
10-E20

(e) MHEALTH

2 4 6 8
Devices

0

0.5

1
104

1-E20
1-E30
1-E40
2-E20
10-E20

(f) OPPORTUNITY

Figure 13: Training battery consumption by trade-off options

2 4 6 8
Devices

0

2

4

T
im

e(
s)

104 1-E20
1-E30
1-E40
2-E20
10-E20

(a) HAR

2 4 6 8
Devices

0

0.2

0.4

0.6
104

1-E20
1-E30
1-E40
2-E20
10-E20

(b) sEMG

2 4 6 8
Devices

0

5

10

15
104

1-E20
1-E30
1-E40
2-E20
10-E20

(c) UniMiB

2 4 6 8
Devices

0

5

10

15
104

1-E20
1-E30
1-E40
2-E20
10-E20

(d) PAMAP2

2 4 6 8
Devices

0

1

2

3
104

1-E20
1-E30
1-E40
2-E20
10-E20

(e) MHEALTH

2 4 6 8
Devices

0

2

4

6
104

1-E20
1-E30
1-E40
2-E20
10-E20

(f) OPPORTUNITY

Figure 14: Training time by trade-off options

sending a large number of model parameters via BS may suffer long

latency due to low bandwidth available in Bluetooth, and hence will

affect the overall training performance. Since Wi-Fi Direct [36] has

been widely available on smartphones and it offers much higher

bandwidth, a hybrid solution can be implemented to use Wi-Fi

Direct in the model aggregation process to reduce the communica-

tion cost between devices. Furthermore, proper model compressing

techniques [29] can be applied for effective communication, which

we leave for our future work.

Future User Inference and ApplicationsMDLdroid primar-

ily targets personal sensing applicationswhich are privacy-sensitive

with low-latency response requirement for continually model in-

ference and update, but the framework can be applied to a wide

range of DL-based low-latency applications with a moderate model

size, such as real-time surveillance, image recognition, and natural

language processing. The prototype user inference of MDLdroid

is mainly used for experiments. Since end users may not need to

manually set complex parameters for training, we plan to embed

the MDLdroid into mobile OS to offer automatic background train-

ing, and develop a wider variety of applications to fully explore the

capability of MDLdroid in our future work.

6 RELATEDWORK

Decentralized Deep Learning For decentralized framework, the

existing work [18] proposes a theoretical model based on a fixed

directed graph to offer a decentralized SGD algorithm to exchange

model gradient parameters with its one-hop neighbors. However,

if the relationship between the device and its one-hop neighbor

is one-to-many, the device still suffers huge resource overhead

which is similar to the master device case. On the other hand,

as the underlying topology is a fixed graph, it cannot properly

be performed in a real-time condition with resource dynamicity.

By contrast, MDLdroid presents a dynamic chain-directed SGD

algorithm based on a mesh network with a Chain-scheduler that

enables a resource-aware model aggregation process to minimize

training latency and reduce training resource overhead.

Resource-awareMobileDeepLearningMost of existingworks

about resource-aware mobile DL mainly focus on inference tasks.

NestDNN [12] proposes a multi-tenant framework that can enable

a resource-aware on-device to efficiently execute inference tasks

for mobile vision applications. Besides, MCDNN [12] presents a

framework that can execute multiple mobile vision applications

based on cloud-based inference solution. In MDLdroid, we fully

implement and execute both DL training and inference tasks on

devices.

83

Authorized licensed use limited to: RMIT University Library. Downloaded on October 28,2020 at 01:37:29 UTC from IEEE Xplore. Restrictions apply.

Resource-aware Task Scheduling The latest works [5] [33]

propose to use a MARL based approach to solve task scheduling

based on distributed network, which achieves fair performance.

However, due to on-device resource limitation, the MARL imple-

mentation cannot well perform with training task on device. In

contrast, MDLdroid applies a single agent-based DQN approach to

deal with resource-aware task scheduling.

7 CONCLUSION

Towards pushingDL on devices, in this paper, we presentMDLdroid,

a novel decentralized mobile DL framework to enable resource-

aware on-device collaborative learning for personal mobile sensing

applications. MDLdroid achieves a reliable state-of-the-art model

training accuracy on multiple off-the-shelf mobile devices. The

key advantages of MDLdroid include on-device mobile DL, high

training accuracy, low resource overhead, low latency for model

inference and update, and fair scalability.

ACKNOWLEDGMENTS

This work is supported by Australian Research Council (ARC) Dis-

covery Project grants DP180103932 and DP190101888.

REFERENCES
[1] Davide A., Alessandro G., Luca O., Xavier P., and J L Reyes-Ortiz. 2013. A

Public Domain Dataset for Human Activity Recognition using Smartphones. In
ESANN’13.

[2] S. Abdallah and M. Kaisers. 2016. Addressing Environment Non-Stationarity by
Repeating Q-learning Updates. Journal of Machine Learning Research (2016).

[3] Oresti B., Rafael G., Juan A. H., Miguel D., Hector P., Ignacio R., Alejandro S., and
Claudia V. 2014. mHealthDroid: A Novel Framework for Agile Development of
Mobile Health Applications. In Ambient Assisted Living and Daily Activities.

[4] Amin B. Abkenar, Seng Loke, Arkady Zaslavsky, and Wenny Rahayu. 2019.
GARSAaaS: group activity recognition and situation analysis as a service. JISA’19
(2019).

[5] D. b. noureddine, Atef G., and Samir A. 2017. Multi-agent Deep Reinforcement
Learning for Task Allocation in Dynamic Environment. In ICSOFT’17.

[6] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin Calo.
2019. Analyzing Federated Learning through an Adversarial Lens. In ICML’19.

[7] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, Chloé
Kiddon, Jakub Konecný, S. Mazzocchi, H. B. McMahan, T. V. Overveldt, D. Petrou,
D. Ramage, and J. Roselander. 2019. Towards Federated Learning at Scale: System
Design. CoRR (2019).

[8] Yitao Chen, Saman Biookaghazadeh, and Ming Zhao. 2018. Exploring the Capa-
bilities of Mobile Devices Supporting Deep Learning. In HPDC ’18.

[9] Jeffrey D., Greg S. C., Rajat M., Kai C., Matthieu D., Quoc V. L., Mark Z. M.,
Marc’Aurelio R., Andrew S., Paul T., Ke Y., and Andrew Y. N. 2012. Large Scale
Distributed Deep Networks. In NIPS’12.

[10] deeplearning4j. 2019. NDArrays: How Are They Stored in Memory? Deeplearn-
ing4j: Open-source, distributed deep learning for the JVM (2019).

[11] Yunbin Deng. 2019. Deep Learning on Mobile Devices - A Review. CoRR (2019).
[12] Biyi F., Xiao Z., and Mi Z. 2018. NestDNN: Resource-Aware Multi-Tenant On-

Device Deep Learning for Continuous Mobile Vision. In MobiCom ’18.
[13] S. Gupta, W. Zhang, and F. Wang. 2016. Model Accuracy and Runtime Tradeoff

in Distributed Deep Learning: A Systematic Study. In ICDM’16.
[14] T. Hoefler, C. Siebert, and W. Rehm. 2007. A practically constant-time MPI Broad-

cast Algorithm for large-scale InfiniBand Clusters with Multicast. In IPDPS’07.
[15] Seyed Amir Hoseini-Tabatabaei, Alexander Gluhak, and Rahim Tafazolli. 2013. A

Survey on Smartphone-Based Systems for Opportunistic User Context Recogni-
tion. CSUR’13 (2013).

[16] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. MobileNets:
Efficient Convolutional Neural Networks for Mobile Vision Applications. CoRR
(2017).

[17] Jeya Vikranth Jeyakumar, Liangzhen Lai, Naveen Suda, andMani Srivastava. 2019.
SenseHAR: A Robust Virtual Activity Sensor for Smartphones and Wearables. In
SenSys’19.

[18] Zhanhong Jiang, Aditya Balu, Chinmay Hegde, and Soumik Sarkar. 2017. Collab-
orative Deep Learning in Fixed Topology Networks. In NIPS’17.

[19] Jakub Konecný, H. Brendan McMahan, Daniel Ramage, and Peter Richtárik.
2016. Federated Optimization: Distributed Machine Learning for On-Device
Intelligence. CoRR (2016).

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Classi-
fication with Deep Convolutional Neural Networks. In NIPS’12.

[21] J. Leon Kröger, Philip R., and T. Rahman B. 2019. Privacy Implications of Ac-
celerometer Data: A Review of Possible Inferences. In ICCSP ’19.

[22] Sergey L., Nadia K., Innokentiy K., Victor K., and Valeri A. M. 2018. Latent Factors
Limiting the Performance of sEMG-Interfaces. Sensors (2018).

[23] Xiangru L., Ce Z., Huan Z., Cho-Jui H., Wei Z., and Ji L. 2017. Can Decentralized
Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized
Parallel Stochastic Gradient Descent. In NIPS’17.

[24] Nicholas D. Lane and Petko Georgiev. 2015. Can Deep Learning Revolutionize
Mobile Sensing?. In HotMobile ’15.

[25] Francisco Laport-López, Emilio Serrano, Javier Bajo, and Andrew T. Campbell.
2019. A review of mobile sensing systems, applications, and opportunities.
KAIS’19 (2019).

[26] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning
applied to document recognition. Proc. IEEE (1998).

[27] En Li, Zhi Zhou, and Xu Chen. 2018. Edge Intelligence: On-Demand Deep
Learning Model Co-Inference with Device-Edge Synergy. In MECOMM’18.

[28] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. 2014. Scaling
Distributed Machine Learning with the Parameter Server. In OSDI’14.

[29] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J. Dally. 2017. Deep
Gradient Compression: Reducing the Communication Bandwidth for Distributed
Training. CoRR (2017).

[30] Daniela M., Marco M., and Paolo N. 2017. UniMiB SHAR: a new dataset for
human activity recognition using acceleration data from smartphones. CoRR
(2017).

[31] E. L. M., Saeed A., Mark M., Matthew K., Julie A. K., Tanzeem C., Geri G., and Dan
C. 2016. Mobile Manifestations of Alertness: Connecting Biological Rhythms
with Patterns of Smartphone App Use. In MobileHCI ’16.

[32] Riccardo Miotto, Fei Wang, Shuang Wang, and Xiaoqian Jiang. 2017. Deep
learning for healthcare: review, opportunities and challenges. Briefings in bioin-
formatics (2017).

[33] T. T. Nguyen, N. D. Nguyen, and S. Nahavandi. 2018. Deep Reinforcement Learn-
ing for Multi-Agent Systems: A Review of Challenges, Solutions and Applications.
CoRR (2018).

[34] A. Reiss and D. Stricker. 2012. Introducing a New Benchmarked Dataset for
Activity Monitoring. In ISWC’12.

[35] D. Roggen, A. Calatroni, M. Rossi, T. Holleczek, K. Förster, G. Tröster, P. Lukowicz,
D. Bannach, G. Pirkl, A. Ferscha, J. Doppler, C. Holzmann, M. Kurz, G. Holl, R.
Chavarriaga, H. Sagha, H. Bayati, M. Creatura, and J. d. R. Millàn. 2010. Collecting
complex activity datasets in highly rich networked sensor environments. In
INSS’10.

[36] A. A. Shahin and M. Younis. 2014. A framework for P2P networking of smart
devices using Wi-Fi direct. In PIMRC’14.

[37] Shaohuai Shi, Qiang Wang, Kaiyong Zhao, Zhenheng Tang, Yuxin Wang, Xiang
Huang, and Xiaowen Chu. 2019. A Distributed Synchronous SGD Algorithm
with Global Top-k Sparsification for Low Bandwidth Networks. CoRR (2019).

[38] Michel Tokic. 2010. Adaptive ϵ -Greedy Exploration in Reinforcement Learning
Based on Value Differences. In KI 2010: Advances in Artificial Intelligence.

[39] He Wang, Ted Tsung-Te Lai, and Romit Roy Choudhury. 2015. MoLe: Motion
Leaks Through Smartwatch Sensors. In MobiCom ’15.

[40] J. Wang, B. Cao, P. Yu, L. Sun, W. Bao, and X. Zhu. 2018. Deep Learning towards
Mobile Applications. In ICDCS’18.

[41] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and K. Chan. 2019.
Adaptive Federated Learning in Resource Constrained Edge Computing Systems.
J-SAC’19 (2019).

[42] J. Yang, H. Xu, and P. Jia. 2009. Task Scheduling for Heterogeneous Computing
Based on Bayesian Optimization Algorithm. In CIS’09.

[43] Jian Bo Yang, Minh Nhut Nguyen, Phyo Phyo San, Xiao Li Li, and Shonali
Krishnaswamy. 2015. Deep Convolutional Neural Networks on Multichannel
Time Series for Human Activity Recognition. In IJCAI’15.

[44] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. FederatedMachine
Learning: Concept and Applications. TIST’19 (2019).

[45] Kwangmin Yu, Thomas Flynn, Shinjae Yoo, andNicholas D’Imperio. 2019. Layered
SGD: A Decentralized and Synchronous SGD Algorithm for Scalable Deep Neural
Network Training. CoRR (2019).

[46] D. Zhang, X. Chen, D. Wang, and J. Shi. 2018. A Survey on Collaborative Deep
Learning and Privacy-Preserving. In DSC’18.

[47] Xiang Zhang, Lina Yao, Chaoran Huang, SenWang, Mingkui Tan, Guodong Long,
and Can Wang. 2018. Multi-modality Sensor Data Classification with Selective
Attention. In IJCAI-18.

[48] G. Zyskind, O. Nathan, and A. ’. Pentland. 2015. Decentralizing Privacy: Using
Blockchain to Protect Personal Data. In SPW’15.

84

Authorized licensed use limited to: RMIT University Library. Downloaded on October 28,2020 at 01:37:29 UTC from IEEE Xplore. Restrictions apply.

