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We present FinDroidHR, a novel gesture input technique for off-the-shelf smartwatches. Our technique is designed to detect 10
hand gestures on the hand wearing a smartwatch. The technique is enabled by analysing features of the Photoplethysmography
(PPG) signal that optical heart-rate sensors capture. In a study with 20 participants, we show that FinDroidHR achieves 90.55%
accuracy and 90.73% recall. Our work is the first study to explore the feasibility of using optical sensors on the off-the-shelf
wearable devices to recognise gestures. Without requiring bespoke hardware, FinDroidHR can be readily used on existing
smartwatches.
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1 INTRODUCTION
Smart wearable devices are becoming increasingly popular and leading to new ways of interaction in our daily
life. Recently, smartwatches and smart fitness bands have proliferated and received wide adoption, such as the
Apple Watch, Android Wear and Fitbit Band. However, interaction with these wearable devices is still limited by
physical buttons and screen-touching technologies. Since the screens of smartwatches are significantly smaller
than smartphones, it remains inconvenient and inefficient to interact with smartwatches through touch alone.

This work is supported by the Australian Research Council (ARC) Discovery Grant, DP180103932.
Author’s address: Y. Zhang; T. Gu, School of Science, RMIT University, VIC 3000 Melbourne, Australia, E-mail: zac.lhjzyzzoo@gmail.com;
tao.gu@rmit.edu.au; C. Luo; V. Kostakos, School of Computing and Information Systems, University of Melbourne, VIC 3010 Parkville,
Australia, E-mail: CHUL3@student.unimelb.edu.au; vassilis.kostakos@unimelb.edu.au; A. Seneviratne, CSIRO’s Data61, Locked Bag 9013
Alexandria NSW 1435 Australia, E-mail: Aruna.Seneviratne@data61.csiro.au.
Authors’ addresses: Yu Zhang, RMIT University and CSIRO’s Data61, zac.lhjzyzzoo@gmail.com; Tao Gu, RMIT University, tao.gu@rmit.edu.au;
Chu Luo, The University of Melbourne, CHUL3@student.unimelb.edu.au; Vassilis Kostakos, The University of Melbourne, vassilis.kostakos@
unimelb.edu.au; Aruna Seneviratne, The University of New South Wales and CSIRO’s Data61, Aruna.Seneviratne@data61.csiro.au.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the Association for Computing Machinery.
2474-9567/2018/3-ART56 $15.00
https://doi.org/10.1145/3191788

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 2, No. 1, Article 56. Publication date: March 2018.

https://doi.org/10.1145/3191788
https://doi.org/10.1145/3191788


56:2 • Y. Zhang et al.

Moreover, smartwatch touch interaction requires using both hands, and by definition obscures the already small
screen. Therefore, hand-free or other novel interaction solutions have became a key requirement in daily life.
While a large body of previous work [12] [10] [36] have focused on novel ways of interacting with smart-

watches, they require bespoke or additional hardware which may not be readily available. Therefore, it can
be quite beneficial to develop smartwatch interaction techniques that solely rely on the off-the-shelf built-in
hardware/sensors, including the rich set of biosensors aimed at healthcare purposes [9]. On the other hand,
a few of prior works [45] use the inertial measurement unit (IMU) (accelerometers and gyroscopes) built-in
wearable devices to recognise basic hand gestures as input with a fairly appropriate accuracy. However, as the
IMU sensors are usually sensitive to motions and environmental effects [29], such as ambient motion, altitude,
and even Earth’s gravity, they may be limited to perform in some certain cases. Hence, is there any other proper
way to enable hand-free interactions on the off-the-shelf wearable devices for more use cases?

In this paper, we present FinDroidHR, a novel way of interacting with smartwatches by investigating biosen-
sors on the off-the-shelf smartwatches. FinDroidHR relies on optical heart rate monitors that are largely and
increasingly embedded in off-the-shelf smartwatches, enabling users to perform various gestures with the hand
wearing smartwatch. Our work extends a large body of previous work that aims to develop a hands-free user
gesture input technique on smartwatches.
Conceptually, our technique relies on what Abowd has termed "your noise is my signal" [1]. Specifically, the

heart rate monitors on the back side of smartwatches (i.e. facing the users’ skin) use Photoplethysmography, a
process that measures blood volume changes in the microvascular bed of users’ tissue. Previous work has shown
that Photoplethysmography is susceptible to noise caused by "motion artefacts" or hand gestures in general [28].
This has meant that hand and finger motions affect the volume of blood in the users’ tissue, introducing noise to
the heart rate measurements.
In summary, our work makes the following contributions:
• We demonstrate how the noise captured by Photoplethysmography (PPG-based) heart rate monitors can in
fact be mapped to specific hand gestures that users perform. As such, we have developed a novel mechanism
called the Gradient-based Movement Detection (GMD) Unit for detecting hand gestures using the heart
rate monitor on commodity smartwatches.
• To quantify all practically potential hand gestures for PPG-based wearable devices, we conduct a sufficient
gesture study based on all participants’ feedback. A proposed set of 26 gestures is identified after the analysis
of the study. From these, we have finally identified a conflict-free set of 10 gestures for our recognition
purpose.
• We propose an effective set of PPG features for our interaction recognition purpose. We first use brute-force
strategy to explore PPG signal features from time-frequency domain. We then perform 3 well-developed
feature selection algorithms combined with 2 widely used classifiers to cross validate the selected feature
set.
• We evaluate our system in both stationary study and motion study with 20 participants. Besides, we
implement an IMU-based alternative system to compare our system side by side. The results highlight the
strengths of our PPG-based technique over the IMU-based solution in power consumption and stability
aspects.

2 RELATED WORK

2.1 Enhanced Smartwatch Interaction
Substantial previous work has aimed to extend or augment the standard touchscreen-based interaction capability
of smartwatches. WatchIt [33] enhanced watchbands with input gestures including slider controls and touch input.
This mechanism relies on cheap, low-power, 1-D position sensors as additional hardware under the watchband,
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and enables interaction in eyes-free contexts. Similarly, Baudisch et al. [8] proposed embedding a touch pad
onto the rear of very small devices, such as the bottom surface of a watchband. When pressure is applied, the
ring of elastic silicone inside the touch pad can create a conductive path to send the activation signal. With this
touch pad, back-of-device interaction can be implemented independent of the device size, thus overcoming the
inherently limited potential for touch-based interaction on small screens.
For smartwatches with round touchscreen, Ashbrook et al. [4] designed wedge-shaped touchable buttons

around the touchscreen perimeter. Driven by electronics in the bezel, the extra buttons provide user shortcuts.
They found that the error rate of input is affected by the angular and radial width of buttons. Similarly, Xiao
et al. [46] transformed the watch face to a mechanical interface which allows coarse physical manipulations,
including twisting and tilting. Mimicking the flexibility of various possible physical controls, this transformation
introduced a new modality for smartwatch interaction. Exploiting finger areas on the hand wearing a smartwatch,
DigitSpace [18] created a thumb-to-fingers interface as a touch pad. This interface allows keyboard-like text
input and 2-D gestures.
In our own work, FinDroidHR aims to enhance smartwatches interaction beyond the touch screen, but also

provides a novel and practical modality for one-handed and eyes-free interaction.

2.2 Using the Human Body as an Input Surface
Increasingly, research has focused on new interaction techniques that use the human body as the medium. For
instance, SkinTrack [51] allows wearable devices to continuously track touch on human skin. Based on a ring
emitting AC signals and a wristband with multiple electrodes, this system can compute 2D finger touch traces
by detecting phase differences of the signals. With sufficient training data, this system is able to identifytouch
events at 99% accuracy and a target rework of 7.6mm on average.

The iSkin [43] system introduced a new type of skin-worn sensors to track touch events on human body. The
sensors are bio-compatible, stretchable "stickers" impregnated with conductive traces, which can capacitively
sense finger touches. The evaluation results show that the sensors are able to bend (within radii of 5mm) and
stretch (within 30%) with moving the skin. Similarly, SkinMarks [44] also enable on-body interactions using
"stickers" made of sub-millimetre electrodes. SkinMarks can precisely localise input on fine body landmarks from
gestures such as touch, squeeze and bend. In addition, it can output visual lights on these body landmarks.

A limitation of these methods is that users must wear extra input/output modules beyond the intended device
on body. Comparatively, FinDroidHR only uses the PPG sensor embedded in smartwatches, measuring the blood
volume changes inside skin tissue to support hand and finger gesture recognition.

2.3 Mobile Sensor Gesture Recognition
Substantial work has focused on sensor-based gesture recognitions. Saponas et al. [37] presented a system for
directly sensing muscle activity by EMG sensors to detect delicate gestures. Lu et al. [27] used an accelerometer
sensor for detecting larger-scale gestures and a SEMG for small-scale gestures to improve recognition accuracy.
Alternatively, WristFlex [14] relied on on force sensitive resistors (FSR) to detect tendon movement. Beyond
EMG-based approaches, an advantage of this approach is low power consumption, whereas the building prototype
time and cost are high for integrating with existing wearable devices.

In short, existing approaches require extra hardware support, which increase the cost and reduce the wearability
of detecting hand and finger-based gestures. Furthermore, many such sensors are not intended to beworn routinely
and longitudinally. Comparatively, FinDroidHR works with off-the-shelf smartwatches or fitness bands, and can
be comfortably worn longitudinally, even in one’s sleep. Similarly, Serendipity [45] employed IMU sensors on
smartwatches to classify hand gestures for interaction purpose. However, it is lack of a sufficient gesture study
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and only 5 gestures are proposed for the system. By contrast, we tailored a hand gesture set for our system based
on a full gesture study.

2.4 Near Distance Gesture Interaction
An important body of work relevant to our own has considered methods to enable interaction between humans
and devices at a short distance. For instance, Fingerpad [10] used a nail-mounted set of Hall sensor and reader
to capture 2D gestures from an index finger and thumb on the same hand. Since each posture has a different
magnetic field strength, this system is able to achieve 92-93% accuracy for a moving or stationary user, enough to
support general input tasks on mobile devices. Similarly, PocketTouch [36] is able to recognise finger-strokes
through fabric, such as a pocket of pants. This approach relies on a customised multi-touch capacitive sensing
pad, and allows users to interact with a mobile device using stroke-based gesture input and text entry.

Beyond 2D gestures, Chen et al. [12] proposed uTrack which instruments the back of the thumb as well as the
back of fingers with magnetometers for enabling 3D input. To localise the 3D position of the thumb-mounted
magnet, they designed a searching algorithm with a positioning accuracy of 4.82 mm and 303 dpci (dots per cube
inch). The results of a user study showed that users can effectively complete several pointing tasks using uTrack.
Conceptually, FinDroidHR also enables such near-distance interaction: finger and hand gestures can be

recognised as input on a smartwatch without extra sensors.

2.5 Acoustic-driven Gesture Interaction
Several approaches have enhanced mobile interaction using acoustic-based localisation. For example, FingerIO
[32] configures a device to become an active sonar that emits inaudible sound signals and recognises the echoes of
fingers near the microphones. SoundWave [17] leverages Doppler shifts from acoustic transmissions to recognise
gestures like moving the hand away from or towards the device. Jess et al. [30] propose a ultrasound-based
system for imaging changes of inside mid-forearm when performing 10 discrete hand gestures, which achieves
an accuracy above 98%. However, the system relies on a heavy ultrasound imaging device and can not be applied
for daily use.

In contrast, FinDroidHR relies on light effects through human skin, rather than sound waves, for the recognition
of centimetre-level finger gestures. Besides, it is mainly developed for actual daily use.

2.6 RF-based Gesture Recognition
Radio-frequency techniques have also been used to enable diverse gesture recognition systems. For instance,
AllSee [19] is a low-power gesture-recognition system that can fetch the information of a gesture from current
wireless signals (e.g., TV transmissions). It solely relies on RFID tags and power-harvesting sensors. In through-
the-pocket circumstances, evaluation results indicate that AllSee can classify a set of eight gestures with a mean
accuracy of 97%.
Beyond home scenarios, WiDraw [39] makes use of WiFi interference to enable gesture recognition without

any wearable devices. To track the user’s hand trajectory, WiDraw extracts the Angle-of-Arrival values of wireless
signals received by a nearby mobile device. Based on commodity wireless cards, a prototype can track the user’s
hand with a median accuracy of 5 cm. Also, a prototype of a mid-air handwriting application using WiDraw can
achieve a mean accuracy of 91% for word recognition tasks involving letters, words, and sentences.
However, only a limited number of off-the-shelf smartwatches have embedded Wi-Fi modules. Hence, FinD-

roidHR uses the heart rate monitoring sensor only, which is already available on most of existing smartwatches
and fitness bands.
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(a) PPG Signal Collection by FinDroidHR (b) Heart rate monitor embedded in off-the-shelf smart-
watch

Fig. 1. FinDroidHR uses optical heart rate monitors embedded in off-the-shelf smartwatches to allow the hand and fingers
to be appropriated for gesture recognition via a heart rate monitor sensor.

2.7 Photoplethysmography’s Potential Advantages
The traditional optical approach for interaction with wearable device mainly replies on Infrared (IR) proximity
sensors to recognise gestures, coupled with computer vision. For example, HoverFlow [24] and GestureWatch [21]
develops their prototypes with multiple IR proximity sensors to recognise coarse hand gestures for around-device
interaction. Using a customized wrist-worn device, Kei et al. [31] implement the idea of IR reflection to track
finger position using the back-of-hand as an input surface. Furthermore, Skin Buttons [25] integrate tiny IR
proximity sensors as projectors into the smartwatch to represent click icons on users’ skin. However, they all
require extra sensors and instrumentation.
From the set of biosensors available on commodity smartwatches, most promising for gesture input is Pho-

toplethysmography (PPG), which is an optical technique for monitoring the volumetric changes in body [9].
PPG sensors on smartwatches use a low-cost LED light to illuminate the tissue, and Photodetectors to measure
the variations of absorbed and reflected light by the blood flow [9]. A number of previous studies [34] [2] [41]
have successfully employed the PPG techniques in the context of biosensing. Therefore, we hypothesise that the
Photoplethysmography-based sensors on smartwatches can potentially be an appropriate way for sensing hand
gestures.

3 FINDROIDHR METHODOLOGY AND SYSTEM DESIGN
We use an off-the-shelf Samsung Gear S3 frontier smartwatch to build our gesture recognition system, as shown
in Figure 1. In a pilot study we choose to develop on the Android Platform as the accessibility and functionality
of Android Wear OS is more comprehensive than the Tizen Wearable OS. However, we could not access the heart
rate sample data by most of Android smartwatches, since both of the Andoird API and the driver of the kernel do
not support the access of raw signal data.
FinDroidHR achieves centimetre-level finger-gesture recognition by using a green-light-based heart rate

monitor on the smartwatch. Figure 2 demonstrates the system work flow of FinDroidHR. There are 4 major
components: an off-line PPG data collection application, a Signal Processing unit, a Gradient-based Movement
Detection (GMD) unit, and a Classification unit. Since PPG signals contains noise from the wrist, the challenge is
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Fig. 2. FinDroidHR gesture recognition workflow.

to accurately identify the gesture movements for usable gesture recognition. We adopt a noise removal technique
called GMD to overcome this challenge.
We first introduce our design principles of the gestures that our system can recognise. After given the set of

recognised gestures, we describe the mechanisms of raw data collection. Next, we give the details of using GMD.
Finally, we explore the selected feature set of PPG signals for improvements in gesture recognition.

3.1 Gesture Design
Our gesture design for smartwatch interaction relies on the wearable interaction design principle described in
[38]. Since our technique is based on using the PPG biosensor embedded inside smartwatches to detect the blood
volume changes of tissue, our design principle is an application of the fact that the hand gestures instantly make
a change to the blood volume of hands. Besides, all proposed gestures should be designed as easy-to-use in daily
life, because we make an assumption that people could interact with smartwatches by FinDroidHR naturally and
friendly without any hesitations and confusions. Based on these 2 design ideas, we next select a suitable gesture
set for our system.
In the prior work of wearable design [28] [48] [45] [20], 3 portions of arms on body are mainly involved: the

forearm portion, the wrist portion and the finger portion, as shown in Figure 3a. For our practical purposes, the
forearm portion should be stationary to provide a fixed height when users are looking at the watch. Therefore,
the forearm portion is not considered in our watch gesture design. Thus, both the wrist portion and finger portion
are adopted in our design.
There are 3 sub-portion areas which can generate a distinct hand movement leading to a fast change in the

blood volume of hands. According to the construction of hands shown in Figure 3b, the wrist, phalanxes and
fingers are able to create effective gestures. However, some of them may be difficult to perform in reality. For
instance, when people perform a clicking movement by the middle finger, the ring finger will spontaneously
move. Thus, we mark out those segments which represent as the hard-to-use areas in Figure 3b to contribute to
our final gesture set selection.
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Table 1. Designed Gesture Set for FinDroidHR Recognition.

Proposed Hand Gesture Set
Involved portion areas Atomic gestures Unique gestures Easy-to-use gestures
Wrist (W) only 2 - 2
Phalanx (P) only 5 - 1
2 Fingers (F) 5 - 2
P and 2 F 4 3 4
P and 3 F - 2 -
P and 4 F 2 - 2
P and 5 F 2 1 2
In total: 26 13

Table 2. FinDroidHR conflict-free gesture set.

Core Finger Gesture List
No. Short

Name
Full Name Description

1 clhand Close Hand Fully clench hand from relaxed mode (P + 5F )
2 downhand Down Hand Turn down hand from horizontal mode (W )
3 downrob Down Rub Fingers Using thumb rubs index from top to bottom (P + 2F )
4 index Index Finger Flicking Flicking index by thumb (2F )
5 midringclk Middle and Ring Fingers Clicking Using both of middle and ring clicking (P + 2F )
6 ophand Open Hand Fully open hand from relaxed mode (P + 5F )
7 pinch Pinch Fingers A squeeze with thumb and index (P + 2F )
8 pullhand Pull 4 Fingers Pull 4 Fingers back from open palm mode (P + 4F )
9 pushhand Push 4 Fingers Push out 4 Fingers from close palm mode (P + 4F )
10 uphand Up Hand Turn up hand from horizontal mode (W )

Theoretically, the potential number of hand gestures is close to infinite and tons of gestures can be combined
by different fingers and arm angles. Thus, to reduce the complexity of hand gestures is a key process for actual
gesture design. Prior work [20] explore a reduced conflict-free set of 43 gestures extracted from a video-taped
study by participants, and all mentioned gestures are developed based on real daily use. Similarly, we also conduct
a related study to collect participants’ feedbacks for our gesture set design following our design principles. Table
1 indicates all gestures that we collect from participants’ feedbacks. Overall, according to our design, there are 26
proposed gestures in total based on the actual experience of participants. After the gesture selection process, 13
out of 26 gestures are identified as easy-to-use gestures from participants’ feedback.

Finally, we identify 10 out of 13 gestures as conflict-free, and the reason for conflict recognition will be discussed
at the limitation section. Thus, we propose a set of 10 conflict-free gestures for smartwatch interaction based on
the PPG techniques. These gestures are also related to the 4 proposed easy-to-use portion areas: wrist, proximal
phalanxes, thumb and index finger in Figure 3b. Furthermore, Figure 4 shows all our gestures, with the detailed
description for each gesture in Table 2.
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(a) Up to 3 segments of users’ arms that will be involved
in the action of watching watches: (a) the forearm; (b)
the wrist; (c) fingers.

(b) The deconstruction of whole palm for gesture identi-
fications: there are 3 portion areas that can be performed
as hand gestures, A - fingers, B - phalanxes, C - wrist
(the green segments are represented as easy-to-use areas
and the yellow segments are represented as hard-to-use
areas).

Fig. 3. FinDroidHR gesture design.

3.2 On-line VS Off-line Training Data Collection
Since the heart rate monitor is embedded in the smartwatch, developing an application as a bridge between the
sensor and users is essential for our work. We first attempt to develop the application via TCP protocol in on-line
mode to directly send the PPG data to the host computer, as previous studies have done [48] [49] [34], and shown
in Figure 5a.
However, after a few practical tests, we conclude that this approach is too cumbersome due to the need for

data cables. Thus, we adopt an off-line data collection strategy whereby local-data access is used. This makes it
more practical to collect data from many users. To transfer data from watch to our database, we use the Smart
Development Bridge (SDB) powered by the Tizen via commands. Figure 5 shows our off-line data collection
application.
According the Tizen Wearable API [15], the maximum frequency that the heart rate sensor offers is 100Hz,

and the green light amplitude is in the range of [0, 1081216]. Finally, we use 100Hz PPG signal data with 200Hz
sample rate according to the Nyquist Theorem, and these are also used for the frequency domain feature analysis.

3.2.1 Near object detection. During the actual data collection procedure, we find a couple of issues regarding
the heart rate sensor of the watch. First, as shown in Figure 6a, once we activate the sensor, the data of the first
2 seconds exhibit strong fluctuation. We assume that the sensor may perform some initial bootstraping before
actually returning actual readings. Thus, we discard the first 2 seconds of data.
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Fig. 4. The conflict-free gestures detected by our system (top-left to bottom-right): Close Hand, Down Hand, Down Rub
Finger, Index Flicking, Middle and Ring Clicking, Open Hand, Pinch Fingers, Pull 4 Fingers, Push 4 Fingers, and Up Hand.

Second, the data validity of the heart rate sensor depends on how the green light is reflected from the user’s
skin. Figure 6b shows that the readings are affected by the distance between the sensor and skin. Once the sensor
is close to the user’s wrist skin, the data is valid without perceivable fluctuation. However, if the sensor is moved
away from surface, the readings will effectively become invalid. Therefore, to ensure that our training data is
valid, we incorporate a near object detection mechanism in our application. When the watch is moved away
from the user’s skin, the application will automatically ignore the readings.
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(a) An on-line data application implementation, which
requires connection to a host computer for receiving
data in real-time via TCP.

(b) Implemented for off-line data collection, which offers
a local data storage for efficiently collecting data.

Fig. 5. On-line vs. off-line FinDroidHR data collection.

(a) The initial 2s of data fluctuates on the Samsung Gear
S3.

(b) Data changes depending on distance to the surface
of skin.

Fig. 6. Two data collection issues that affect reliability.

3.2.2 Collection by fixed time window. We initially use a 10s time window for data collection, which means
that we ask participants to perform each gestures that lasted 10s, because we need to sufficiently analyse data to
extract features. However, the total time for the experiments becomes too long in this way. In addition, feedbacks
from our first participants indicate that they are not willing to use gesture that take so much time. After a set
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of data validation, we finally use 3s as a fixed time window for data collection and gesture detection. Thus, we
apply this time window in our final implementation which offers a 3s window for each gesture.

3.3 PPG Signal Preprocessing Unit
We use signal smoothing and normalization techniques to reduce noise and errors of the raw sensor readings. As
a number of sophisticated denoising and normalization techniques have been proposed for signal preprocessing
[9], our preprocessing unit employs some of them to improve the quality of the readings for the GMD unit
process.

3.3.1 Signal denoising. Since prior work [40] shows that using the wavelet transform techniques to process
PPG signal achieves a good filtered output, we employ the Discrete Wavelet Transform (DWT) [22] to smooth
the signal. Figure 7 (A) shows a raw PPG signal collected by the heart rate sensor, and the shape of the raw PPG
signal incorporates a small fluctuation during the whole time window. Comparatively, Figure 7 (B) shows the
changes of the signal after using DWT to smooth, and the output of the denoising is significantly improved.

3.3.2 Normalization. In the data collection procedure, we find that the value range of the green light on the
heart rate sensor of the Gear S3 [15] varied in an unexpected way. The gap value between 2 sets of data may
be over 1e6. We assume that the heart rate sensor of the Gear S3 may be designed to have some light power
modulated mechanisms to ensure the accuracy of the PPG signal. Thus, we apply signal normalization to the
PPG data to standardise each signal stream to the same unit level. Hereby, assuming that N is the length of the
original signal S , the normalized signal Sn is given by [5]:

Sn =
S√∑N
i=1 |S2

i |
N

(1)

Figure 7 (C) shows the output of the normalization processing. The value of each signal is scaled around 0,
which is helpful for the subsequent GMD Unit and Classification Unit.

3.4 Gradient-based Movement Detection (GMD) Unit
We propose a core unit using gradient-based techniques to further filter the noise from the PPG signal. In prior
work, gradient-based algorithms or strategies are widely used for image denoising [50], object recognition fields
[7], and hand-writing or documentation recognition [26]. The advantage of using a gradient-based technique to
remove noise is that the gradient processed signal can retain some distinct features which are more sensitive to
noise than other standard edge-based algorithms [7]. Additionally, using the gradient-based approach, machine
learning techniques tend to attain better classification result for high-dimensional patterns [26].
Once the signal is converted to a gradient curve, the noise is usually presented to be centralized or crowded

together since the noise tends to intrinsically have high frequency. In this way, the noise can be easily extracted
from the original signal or detected by linear search algorithms. As the gradient-processed PPG signal has a
similar performance after the meticulous observations, we finally use the GMD unit system for our gesture
recognition.

Our GMD unit contains 2 major procedures: stationary mode analysis, and gesture segment selection. The first
procedure of GMD mainly focuses on the generation of the Heart Rate Noising Threshold from the stationary
mode analysis. It can filter the periodic heartbeat noise [13] and nonspontaneous movements [28]. Conversely,
the second procedure of GMD is to detect and select the segment which represents an actual gesture movement
using the generated threshold.
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Fig. 7. FinDroidHR PPG Signal Processing Work Flow: The above data represents the Open Hand Gesture Detection within
the fixed time window 3.2.2. (A) shows the original sensor data collected by a heart rate monitor; (B) is the de-noised signal
by the Wavelet Denoising Algorithm; (C) represents the signal normalised on the y-axis; (D) converts the normalized signal
into the gradient domain and finds multiple movement segments by the HR threshold and extra essential parameters of our
Gradient processing approach; (E) identifies one of the segments as a gesture; (F) maps the selected gradient segment to the
original normalised signal and passes the movement signal segment for further feature extraction.

Figure 7 shows that a normalized PPG signal is processed by the 2 procedures of the GMD unit to generate its
actual segment representing a gesture movement. Table 3 illustrates 5 essential parameters of the GMD unit. The
detailed use of each parameter is addressed in the next sections.

3.4.1 Stationary mode analysis. The purpose of the stationary mode analysis is to find a set of peaks by the
given stationary mode data set. Then the absolute maximum peaks work as the Heart Rate (HR) Threshold
in Table 3 for denoising the effect of heartbeats, and we measure the mean distance between these peaks as
the Peak-to-peak Distance (PPD) in Table 3 for separating the data into different small movement segments
subsequently. The benefit is the improvement of the adaptability when different participants use FinDroidHR.
We attempt to use statistic techniques to calculate a universal threshold to remove the heartbeat noise and
non-spontaneous movements for all participants. However, according to our empirical investigation, the signals
vary across different demographic characteristics, such as age, height, weight and gender. Thus, dynamically
detecting and extracting different heart rate noising threshold for each user is necessary for our work, instead of
simply generating a universal noising threshold.
Regarding Heart Rate Detection, most of prior work has aimed to accurately detect the heartbeats in PPG

signals. For example, the work in [13] performs Heart Rate Detection in a noisy environment, and proposed
a detection algorithm with the short term autocorrelation approach to determine the heart rate against other
noising including motion artefacts. In our work we are interested to remove heartbeats. The difference is that
we attempt to calculate a threshold by measuring the heart rate in order to remove the heartbeat noise, which
inversely purifies the finger gesture movements by using the gradient-based filtering approaches.
Due to the effect of the gradient process, the normalized PPG signal is converted into a fluctuated gradient

curve from its original shape. This leads to an issue that there is more difficulty in accurately identifying the real
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Table 3. An Overview of the Essential Parameters in the GMD Unit: more detailed use cases are in the related algorithm
sections.

GMD Unit Essential Parameter Set
No. Short Name Real Name Description
1 SWS Shift Window Size Input of the proposed Find Peaks

algorithm. The default value is 10, which
splits the length of the given signal by a
10-point window size.

2 HR Threshold Heart Rate Noise Threshold Output of the proposed HR-filter
algorithm. Representing a range to
distinguish either valid movement data or
noise, which is generated by searching an
absolute maximum peak based on the
stationary mode data set.

3 PPD Peak-to-peak Distance Output of the proposed HR-filter
algorithm. Representing a mean of the
peak-to-peak distance of the gradient
processed data. Applied for the segment
separation in the segment selection
procedure.

4 MSTW Minimal Segment TimeWin-
dow

Representing a minimal actual gesture
movement time length, which is observed
by real test measurements. The default
value is 15, which means 150 ms: if a
movement is less than this, the movement
will be treated as a nonspontaneous
movement. In the case, it is used to filter
the nonspontaneous movement noise.
3.4.2

5 SSO Side Search Offset Input of the proposed GMD algorithm.
The default value is a half of PPD. Applied
in the segment selection procedure.

peaks of the curve. Since the general peak-finding algorithms will report many invalid peaks in our case, we have
to make it smooth for finding a small subset of valid peaks. Thus, we use a Signal Smoothing approach to address
this issue. There is a large number of well-known algorithms aiming to smooth a signal. The Moving Average
Filter algorithm [6] is widely used in such smoothing signal circumstances, but it can not properly preserve the
original frequency components of data, and has transient effects which are not suitable for our work. Hence, it is
important to find another proper smoothing algorithm that preserves such fluctuated frequency of the curve to
accurately find an absolute maximum peak of the curve.
The Savitzky-Golay filter algorithm [6], instead, is suitable for our goals because it is designed to keep the

original frequency of the data and account for the transient effects. However, after several practical tests, the
results of using the Savitzky-Golay filter algorithm provided by Matlab are not sufficiently accurate for finding
the peaks. The problem is that the original shape and amplitude of the data is still partially modified, so that the
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generated HR threshold and PPD are not effective to remove the heartbeats in many cases. To generate more
accurate HR threshold and PPD, we propose an improved Signal Smoothing filter called the HR-filter for this
work.

The idea of the HR-filter algorithm is inspired by the Signal Smoothing approaches. It shifts a time window
linearly to compare neighbours and find peaks. However, the difference is that there is no need to smooth the
signal. Therefore, the HR-filter does not include any smoothing operations by polynomial fitting, which improves
the algorithm performance, beyond the Savitzky-Golay filter. Here we present the HR-filter algorithm as pseudo
code 1 including the Find Peaks function 2.
In terms of the Findpeak algorithm 2, because it is designed as a linear search for split neighbour segment

comparison, its time complexity is O(n).

ALGORITHM 1: Generate HR Threshold and Mean PPD

input :A List of Stationary Mode Data List of size l
output :A HR_threshold and A PPD
shi f t_window ← 10 ; // the default value of the SWS in Table 3

PeakList ← ∅;
Distances ← ∅;
for i ← 1 to l do

rowdata ← List[i];
[peaks, indexs] ← Findpeak(rowdata, shi f t_window);
PeakList[i] ← Mean(peaks) ; // In order to balance the effect of the nonspontaneous movements

Distances[i] ← FindDistance(indexs) ; // Calculate the distance between each pair of peaks

end
MaximumPeak ← GetMax(PeakList);
MinimumPeak ← GetMin(PeakList);
if Absolute(MinimumPeak) > MaximumPeak then

HR_threshold ← Absolute(MinimumPeak);
else

HR_threshold ← MaximumPeak ;
end
PPD ← Mean(Distances) +distance_o f f set ; // Round toward The closest integer, which can be divisible by

the shift_window

return A pair of HR_threshold and PPD;

3.4.2 The effect of nonspontaneous movements. In the stationary mode analysis, all participants are asked to
keep their body position stationary and look at the watch without any other movements. Ideally, the data should
represent only their periodic heartbeats. However, the collected data is often aperiodic with some short-term high
frequency data circled in Figure 8. According to prior work [28], Yuka et al. pointed out that the heart rate can be
sensitively contaminated by any kinds of small movements which are difficult to observe, such as respiration or
nervous system activity. Thus, the data involves nonspontaneous movement or some slight movement that is
difficult to manually observe. We refer to these as nonspontaneous movements.
Since nonspontaneous movements are considered unexpected data, data collection in high frequency within

a short time period will strongly affect the algorithm. As a result, the algorithm may generate many invalid
peaks. To address this problem, we update the algorithm conditions by a mean operation on the selected peaks to

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 2, No. 1, Article 56. Publication date: March 2018.



FinDroidHR: Smartwatch Gesture Input with Optical Heartrate Monitor • 56:15

ALGORITHM 2: Search for Peak Points by the Given Gradient Signal

input :A List of Signal Data List of size l and the SWS defined in Table 3 shi f t_window
output :A List of Peaks and A List of Indexs
Struct Point contains

float value;
int index;

end
i ← 1;
Peaks ← ∅;
Indexs ← ∅;
Front_point ← Point ;
Rear_point ← Point ;
Middle_point ← SelectMax(i, shi f t_window,List); // Select the maximum value within a shift_window

while i < l do
i ← i + shi f t_window ; // Moving to the next point of the input List

Rear_point ← SelectMax(i, shi f t_window,List);
Peak ← IsPeak(Front_point ,Middle_point ,Rear_point) ; // Check whether the value of Middle point is

greater than both of Front point and Rear point.

if Peak is not empty then
Add Peak .value into the List Peaks;
Add Peak .index into the List Indexs;

Front_point ← Middle_point ;
Middle_point ← Rear_point ;

end
return Peaks and Indexs;

balance the negative effect of the nonspontaneous movements before finding the absolute maximum peak value.
The pseudo code 1 presents this enhanced method.

On the other hand, nonspontaneous movements are generally identified as short-term invalid peaks, which are
also treated as a kind of noise that the GMD Unit has to filter. We observe all gesture movements average time
window length to provide a minimal segment time window in Table 3 as a threshold to appropriately minimise
the effect of the nonspontaneous movements.

Figure 8 shows an example of running the HR-filter algorithm to process the stationary mode signal data. The
bottom red line is the absolute maximum peak value, which also represents the HR threshold for this certain data.
When we collect a set of data, we add a mean operation for each selected peak to balance the effect of unexpected
nonspontaneous movements.

3.4.3 The Shift window size dissuasion. Regarding the HR-filter algorithm 1, we keep the value of the SWS in
table 3 as default 10, since we achieve the best segment selection outcomes by the default value in this work.
However, the SWS can be modified in further study since there is a negative correlation between the SWS and
the HR threshold. If the SWS is reduced, the smoothing window is shorter. And the quantity of selected peaks
with smaller values will increase. By then, if we perform a mean operation, the HR threshold will decrease as
there are more small values in the peak set. On the other hand, if the SWS increases , the smoothing window is
enlarged. Then, the quantity of selected peaks will drop and a few peaks with maximum value will remain in the
peak set. In this way, the HR threshold will be increased after the mean operation. We find that the change of
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Fig. 8. The above signal is collected when participants remain in the stationary mode without performing any gestures.
The HR-filter algorithm 1 calculates a threshold to remove the heart rate against the gesture movements. Additionally, the
mean peak-to-peak distance is used to split the signal into multiple small segments. Furthermore, the signal contains a few
instances of nonspontaneous movements 3.4.2, which typically occurs at the beginning and the end of the data sequence.

the SWS depends on the quality of the PPG data. For instance, if the collected data set includes data which is
contaminated by the nonspontaneous movements, we recommend to reduce the SWS to balance the influence, as
the mean of peaks is increased by the noisy data. Thus, the performance of the SWS can be validated based on
the collected data set.

3.4.4 Movement segment detection. In this section, we propose the movement segment detection algorithm
aiming to detect one or more possible gesture movements on the processed non-noise data set. Since we apply the
HR threshold generated by the HR filter, the gradient data is separated into a noise set and a non-noise set, which
is implemented by the ExtractMove function in code 3. Next, the non-noise data set is what we are interested.

First of all, once a non-noise data set is generated, the PPD in Table 3 is applied for segment separation. As we
assume the PPD as the maximum distance between 2 peaks, if the length of the non-noise set is greater than
the PPD, it will be split to multiple subsets by the PPD. Each subset represents a possible movement. This is
implemented by the SplitSeдment function in code 3.
Secondly, we believe that the shape of a complete gesture data is S_shaped , which includes at least one

maximum peak and one minimum peak by the data observation. If this kind of typical data is processed to a
gradient data, the shape will be a U _shaped parabola. Besides, we aim to extract an approximately complete
segment to represent the gesture movement from one time window. Therefore, the proposed movement segment
detection algorithm can be used. The idea of this algorithm is inspired by the greedy strategy. We design the
selection function for linear neighbour searching both sides of the non-noise data set until finding the point
which is closest to 0 on each side of data. The implementation is in code 3. As this algorithm is a linear searching,
the complexity is O(n).
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Figure 9 gives an example to explain the above 2 steps. A ExtractMove processed non-noise data set is split by
the SplitSeдment function to 2 different segments. Using the Side Search Offset (SSO) to searching both sides
of each non-noise set, the search stops at the red-cross marked position. Finally, we obtain 2 approximately
complete segments to represent the possible movements within the current whole time window.

There is a challenge in this algorithm implementation: the segment overlap issue. The reason is that the default
state of the SSO is not applicable for searching the end points. We attempt to use a random value, such as 30 or
40, for SSO, which is greater than the PPD. However, the output signal shows that one segment overlaps the
other. Then, after several tests, we find that the maximum SSO should be the half of the PPD to ensure that the
side searching range will not affect the other segment.

ALGORITHM 3: Movement Segment Detection

input :A List of Signal Data List of size l and the HR_Threshold and the PPD
output :A Matrix of Movement SegmentsMove of size a × b
search_o f f set ← PPD/2 ; // The Side Search Offset (SSO), which is defined in the Table 3

Points ← ∅;
Gradient_list ← Gradient(List) ; // Calculate the gradient data by the given signal

Points ← ExtractMove(HR_Threshold); // Select all points which are greater or less than the
HR_threshold as movement points. Meanwhile, remove the points in the range [0, search_o f f set] and
[l − search_o f f set] due to the nonspontaneous movements

Move ← SplitSegment(Points); // Segment set separation process, splitting the points into different

movement segment lists

// Search both sides of each segment group by SSO until find the gradient value is closest to 0 in

order to extract a complete movement period

for i ← 1 to a do
seдment ← Move[i];
lenдth ← size of seдment ;
le f t_end ← False;
riдht_end ← False;
le f t_index ← 1;
riдht_index ← lenдth;
while True do

if le f t_index − search_o f f set < 1 then
le f t_end ← True;

if riдht_index + search_o f f set > lenдth then
riдht_end ← True;

if le f t_end and riдht_end then
Break;

// Search both sides until the value of the neighbours is closest to 0

le f t_min_index ← FindEdgeMin(le f t_index − search_o f f set , le f t_index);
riдht_min_index ← FindEdgeMin(riдht_index , riдht_index + search_o f f set);

end
Add le f t_min_index and riдht_min_index intoMove[i];

end
return Move;
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Fig. 9. Gradient-based Movement Detection Algorithm 3: this algorithm requires a couple of inputs: HR threshold and
Peak-to-peak distance (generated by the stationary mode detection algorithm 1). The final processed signal is in Figure 7 (E),
which shows a green marked segment marking the gesture movement.

3.4.5 Movement segment selection. In this section, we propose a segment selection algorithm with double
filter conditions to target one segment from the above detected multiple segments. Algorithm 4 describes the
process. Since a set of approximately complete segments is generated by the segment detection procedure, we
aim to pick up the real movement segment from this set.
The target function of this algorithm is to find the segment with the |MaxPeak−to−peak_Amplitude |. However,

this is not applicable for the segments contaminated by the nonspontaneous movements, as these movements
usually have the |MaxPeak−to−peak_Amplitude | and outperform the real candidate from the set. To tackle this
issue, we design the segment selection algorithm with double filter function to remove these nonspontaneous
movements. The first filter condition is based on the MSTW defined in Table 3. Since the nonspontaneous
movements have high frequency but with short time window, when the time window is less than the MSTW, the
segment will be removed from the set. While the MSTW is measured by our observation, and actual the minimum
time window is 15, which means 150ms to perform the pinky gesture. By doing so, most of nonspontaneous
movements can be filtered, but a few of them are still left. Then, we present the second filter condition for the one
side checking. As we noticed that the shapes of nonspontaneous movements are regularly either increasing or
decreasing, we can identify them by checking whether a segment is monotonic. Thus, theOnesideCheck function
with code 4 is applied to check the monotone of each segment. Finally, the output signals of both filter conditions
are highly accurate for the GMD Unit.
Thereby, we integrate all proposed techniques into FinDroidHR implementation. Figure 10 depicts a final

outcome by the GMD Unit that a downhand gesture is successfully selected from the fixed time window.
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ALGORITHM 4: Find A Real Movement from a List of Movement Segments

input :The Matrix of Movement SegmentsMove of size a × b and theMSTW defined in Table 3 and the PPD
output :A Gesture MovementMove_Seдment
Max_peak ← 0;
Move_Seдment ← ∅;
for i ← 1 to a do

Seдment ← Move[i];
isBothSide ← OnesideCheck(Seдment ,MSTW , PPD); // First filter the points of the nonspontaneous

movements as many as possible

if isBothSide is True then
Max_point ← FindMax(Seдment);
Min_point ← FindMin(Seдment);
Peak ← Absolute(Min_point) +Max_point ;
// Second filter the rest of nonspontaneous points. The valid points should be greater than

the defined MSTW. Then select one of segment which has the maximum amplitude as a real
gesture segment

if Peak > MSTW andMax_peak < Peak then
Max_peak ← Peak ;
Move_Seдment ← Seдment ;

end
return Move_Segment;

3.5 PPG Signal Feature Extraction
In this section, we fully explore all potential features for PPG signal recognition. According to prior work [9]
[34] [3], we select in total 69 features across time-frequency domain from all 5 perspectives, including the
Peak-to-peak analysis [13], the Power spectrum analysis [34], the Discrete wavelet transform (DWT) frequency
domain analysis [22], the Maximum entropy computing analysis [11] [42], and the Fast Dynamic Time Warping
(FDTW) to calculate the similarity distance [16] [9]. Detailed description for each feature is in the Appendix
A. Since our work adopts the gradient-based techniques, the features of gradient data are equally important
to classification. Thus, both original selected segments and gradient selected segments are used to extract the
feature set with a double size (i.e., 138 features).

3.6 Selected Feature Set by Different Selection Algorithms
To explore the effectiveness and feasibility of our proposed 138-feature set, we select 3 well-developed feature
selection algorithms to perform cross-validation on the reduced feature subsets. We employ the Sequential feature
selection (SFS) algorithm [3], Random subset feature selection (RSFS) algorithm [49], and ReliefF feature selection
algorithm [35] on the feature set. The results of the evaluation are shown in Table 4.

4 EVALUATION
We first investigate the influence of the level of wearing tightness for PPG signals. Subsequently, we report a
controlled experiment with 20 participants to evaluate our system performance. Overall, our evaluation focuses
on the following 7 aspects:
• The performance difference when using dominant vs. non-dominant hand.
• The performance difference across 3 body poses when performing gestures.
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Fig. 10. The GMD unit detecting a downhand gesture.

• The performance difference under both user motion and ambient motion conditions compared with an
implemented IMU based gesture recognition system.
• The accuracy of SVM and Random Forest classifiers using 3 selected feature sets.
• The effectiveness of our Gradient-based Movement Detection (GMD) Unit.
• The comparison between actual gesture time window and selected gesture time window by GMD.
• The added power consumption of FinDroidHR compared to the baseline use.

Because PPG biosensor measures blood, and the blood in our body is often affected by ambient temperature
and emotional reaction, all tests take place in indoor conditions with a stable temperature (25 to 26 degrees) and
outdoor conditions with a stable temperature (21 to 23 degrees), no emotional effects are involved through the
whole session tests. All participants are in good health condition without any heart situations.

4.1 Wearing Style
In practical daily life, people may have different styles to wear smartwatches. Some people would like to wear
loosely for most of time, while others prefer to wear tightly to secure smartwatches. On the other hand, as the
heart rate monitor of smartwatches is an optical-based sensitive PPG biosensor, different wearing positions may
affect the PPG signals, and then the extracted features from PPG signals in time-frequency domain may vary as
well. To ensure our system performance, we conduct a test to explore the effects of different wearing styles to
PPG signals.
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Table 4. FinDroid Selected Feature Set. Detailed feature descriptions are in Appendix A.

Selected Feature Set for Different Algorithms
Algorithm Features Original Signal Features Gradient Signal Features
Sequential feature
selection (SFS)

16 meanS(1),
meanHPSDMED(21),
medianHPSDMED(23),
meanLMAXE(56),
maxGRAE(67)

meanS(1), stdS(2), medianS(3),
stdPKA(8), disDTW(10), entroS(14),
stdHPSDME(16), medianLME(38),
maxLMINE(49), minLMAXE(53),
medianGRAE(69)

Random forest
feature importance
(RFFI)

20 meanS(1), entroS(14),
medianHPSDST(20),
stdHPSDMED(22),
maxLMAXE(50),
meanLMAXE(56),
medianGRAE(69)

meanS(1), medianPKT(6),
meanPKA(7), medianPKA(9),
medianPSD(13), entroS(14),
stdHPSDME(16),
medianHPSDST(20),
stdMINHPSD(28), medianE(47),
maxLFDTW(48), maxLMAXE(50),
minLMINE(52)

ReliefF feature
selection (RF)

25 stdS(2), meanHPSDME(15),
medianHPSDME(17),
meanHPSDMED(21),
medianHPSDMED(23),
meanMINHPSD(27),
medianMINHPSD(29),
stdLME(37), meanLMED(42),
minLFDTW(51),
medianLMAX(62)

meanS(1), stdS(2), disDTW(10),
meanHPSDME(15),
medianHPSDME(17),
meanHPSDMED(21),
medianHPSDMED(23),
meanMAXHPSD(24),
meanMINHPSD(27),
medianMINHPSD(29), stdLME(37),
meanLMINE(55), stdLFDTW(57),
medianLMAX(62)

4.1.1 Loose wearing. We first map 6 most possible positions when wearing watch loosely, and Figure 11a
demonstrates these positions. For each position, we perform the ophand gesture to point out differences.
Figure 12a clearly indicates that the PPG signals are changed by different wearing positions in time-domain

when performing the same ophand gesture. As can be seen from the figure, the purple line representing the
position E shows a huge fluctuating when doing the gesture, while the position A also significantly affects the
signal’s amplitude. Besides, the curve of the position F shows a negative wave, which is different from others.
In fact, the first blue line of the position D (Common Snug) is the most valid and reliable signal for our system,
but the change of the position D is the smallest among these positions. Since the PPG signals are sensitively
affected by different positions, the extracted features from the time-domain have also been changed to be invalid
to our system. On the other hand, Figure 12b shows the signals in gradient-time domain. We can also easily see
that there are a large movement when wearing different positions except the best comfort and reliable position
D. These incorrect movements will leverage inappropriate features to our system so that the performance of
FinDroidHR will also be influenced. Therefore, to ensure a fair performance by using our system, the position D
for a snug fit is selected as the ideal wearing position, which is close to the wrist around 1cm to 2cm and the
heart rate monitor has to directly face the skin.
To improve the fault-tolerant of our system, we applied an instant position check mechanism for our system

to avoid invalid signal data. And the idea behind the mechanism relies on checking whether the signal has such
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(a) The possible watch positions if wearing loosely: A is
on the wrist (against the bone), B is outward slant, C is
inward slant, D is the common snug wearing (close to
wrist around 1cm), E is top of the wrist and F is facing
down to hand

(b) 2 Levels for tightness test: position A is the tightest
option, while position B is common comfort wearing
option.

Fig. 11. Wearing Tightness Check.

huge amplitude changes in both time and gradient domains. Once users are performing gestures by inappropriate
positions, our system will give users a message or notice to reminder wearing properly.

4.1.2 Tight wearing. In terms of wearing smartwatches tightly, we choose 2-level options on the watch to
adjust the tightness. Figure 11b shows that option A is tighter than option B. Similarly, we manage a test whether
different tightness can be able to influence PPG signals. For each option, we still use ophand gesture to analyse.
Figure 13a in the time domain illustrates that the signal by option A wearing tight has a slightly bigger

fluctuation than by option B, while Figure 13b in the gradient domain shows that there is no major or huge
difference between both options, and the values of both signals’ amplitude are identified as valid and correct
data to our system. However, one practical issue is emerged that some of P + F andW gestures by option A
are harder to perform than by option B. It is because that the wrist can not be able to flexibly move as usual
after wearing tight, which affect to gesture performance. However, wearing tight benefits to recognise gestures
because it increases the blood pressure on the wrist.
From these, we summary that both tightness options work fine to our system. Considering from wearing

comfort perspective, we still recommend to wear the smartwatch for a common snug fit.
In conclusion, the recommended style is to wear watch close to the wrist with a snug fit. We also ask all

participants to wear by this proposed style to take all tasks.

4.2 Experimental Methodology
We recruit 20 participants (14 male and 6 female) ranging in age from 23 to 31 years (mean 27 years), height
from 158cm to 182cm and weight from 48kg to 85kg. As the tasks are time-consuming to these participants, we
separated them into 4 study groups (5 people per group) with different sessions to assess them by all given tasks.
Besides, there are 2 major studies involved in our project, the stationary study and the motion study.
Before the tasks, we ask participants to first keep their hand steady for the stationary mode analysis 3.4.1

to generate each participant’s HR threshold and PPD for both stationary study and motion study. If the task
condition is changed, for example changing from sitting to standing, participants will need to take the analysis
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(a) 6 wearing positions by performing Open Hand gesture
showing in time domain.

(b) 6 wearing positions by performing Open Hand gesture
showing in gradient-time domain.

Fig. 12. Comparison Different Wearing Position.

(a) 2 tightness levels by performing Open Hand gesture
showing in time domain.

(b) 2 tightness levels by performing Open Hand gesture
showing in gradient-time domain.

Fig. 13. Comparison Different Tightness Level.

again before performing hand gestures. Besides, we ensure that each of the task conditions can only be changed
to the next when it is completed. Subsequently, participants have a short training session to get familiar with the
set of 10 gestures.
For the stationary study (Study 1), we initially perform a "wearing preference test". We ask participants

to perform our experimental tasks (i.e. the gestures) when sitting down, and using both their dominant and
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(a) The wearing preference results by 4 groups of partici-
pants.

(b) The pose results by 4 groups of participants.

Fig. 14. Stationary Study. Overall, the averages of the HR threshold varied in a small range across each study group.

non-dominant hands. Subsequently, we ask participants to wear the watch in their non-dominant hand only, and
perform the gestures under 3 different poses: sitting down, sitting down while leaning on a table, and standing
still.
For the motion study (Study 2), all participants are asked to perform gestures in 2 conditions, walking in the

garden and taking public transportations. We choose taking trams to be the task as their swaying situation is
ideal to test the effects of ambient motions.
In each condition, participants perform each gesture around 20 to 25 times (3s/time fixed time window for

collection 3.2.2), and the collection application on the watch records both PPG signals and IMU sensor signals
simultaneously for comparison.

4.3 Stationary Study
4.3.1 Different hands wearing preference. We test whether there are differences between using dominant

hand and using non-dominant hand. Figure 14a indicates the differences of the HR threshold using both hands
across 4 study groups of participants. The HR threshold varies in a tolerant range. The values of PPD are in the
range from 30 to 35, which also fluctuated slightly. Therefore, the classification results of using dominant and
using non-dominant hand under the sitting mode show an identical average ranging in accuracy from 82.82% to
90.55%. The results show that there is no major difference regarding using different hands, when the heart rate of
the participant is stable. A minor difference is that using non-dominant hand to perform the gestures is more
convenient than using dominant hand, as also confirm by participants’ feedback. All subsequent tests therefore
use participants’ non-dominant hand.

4.3.2 Poses. Our tests reflect 3 common poses that users may adopt when interacting with watches in everyday
settings: sitting on a chair, sitting and leaning the arm on a table, and standing still. All participants were asked
to perform the gestures in these 3 different poses. Figure 15 shows one of the participants perform gestures in
each of the 3 poses.
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(a) Sitting Pose

(b) Leaning Pose (c) Standing Pose

Fig. 15. Three regular use circumstances with different poses of the smartwatch, including: Sit, Sit with the forearm leaning
on a table, and Stand.

Before the experiment, we hypothesis that there is a correlation between the HR threshold and pose. Since
the blood pressure of the wrist is associated with changes in the relative position of the arm, we expect that the
result of the classification may be affected by the changes of the HR Threshold. However, the results indicate that
there is no significant relation between the HR threshold and pose. Figure 14b shows the average HR threshold
changes for three participants in different poses. The results vary: study group 1 has the highest average HR
threshold in sitting, while study group 2 and 4 have the highest HR threshold when standing. Thus, we can
not identify the hypothesised correlation in the experiments. However, it is still possible to propose an adapted
HR-threshold approach to improve our system in the future.
Additionally, we investigate the influence of the different poses on the results of the gesture classification.

Results show an identical average ranging in accuracy from 82.82% to 90.55% and recall from 82.8% to 90.73%.
From the input of the GMD Unit, we find that there are two main reasons why different poses do not affect the
result of the classifications. First, the HR thresholds by each participant vary in a tolerant small range, as shown
in Figure 14b. Second, the value of the PPD for each participant is the same under different poses. Thus, the
outcomes of the GMD Unit are close to each other. From a practical aspect, as the arm portions of participants
remained horizontal in the different poses, the heart rate of each participant is relatively stable. Hence, the
changes of the HR threshold are minor. In summary, results show that switching the proposed 3 poses while
using FinDroidHR do not influence the performance of gesture recognition.

4.4 IMU Recognition System Implementation
As mentioned in the related work section, several hand gesture recognition systems rely on built-in IMU sensors.
To evaluate our PPG-based technique for hand gesture recognition compared to IMU solutions, we alternatively
implemented our IMU system inspired by one typical system [45].
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Fig. 16. The result of IMU-based system for 10 proposed gestures classification by SVM classifier.

We employed the build-in IMU sensors on the Samsung Gear S3 by an accelerometer with 3 axes and a
gyroscope with 3 axes to collect gesture data. According to the work [45], we also take the magnitude of the
combined axes (

√
x2 + y2 + z2,

√
x2 + y2,

√
x2 + z2,

√
y2 + z2) into account. We calculate all 7 axes of both sensors

for a total of 182 features. By using the SFS feature selection method, there are 17 out of 182 features selected to
improve the classification process.
To ensure the data consistency of both FinDroidHR and IMU-based system when performing gestures, we

apply the same 100Hz frequency with 200Hz sample rate to both accelerometer and gyroscope signals, and
collected all 3 kinds of signal data simultaneously.

Figure 16 shows that our IMU-based system achieved an average high accuracy of 98.27% and recall 98.3% for
our proposed 10-gesture recognition in Study 1. Besides, we perform the system by Random Forests classifier to
evaluate the effectiveness, and the result was still an average high accuracy of 97.27% and recall 97.3%.

Overall, in the Study 1, the IMU-based system outperform FinDroidHR compared with each achieved average
accuracy. Due to the purposes of sensor, it is not a surprising evidence that the IMU sensors are more precise and
sensitive than the PPG biosensors.

4.5 Motion Study
In this study, we evaluate whether our technique is feasible for motion conditions, since users usually interact
with smartwatches under motion noise in daily life. Meanwhile, to compare with the IMU-based solution, we
conduct 2 motion tasks and 1 extra intensive task to fully evaluate both systems.

4.5.1 Ambient motion. In most common cases, the ambient motion may take place when users are driving or
taking public transportations, and the motion by those vehicles may affect the performance for both FinDroidHR
and IMU-based system. Hence, we design the motion task aiming to explore the effects of the ambient motion
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(a) Walking in the Garden. (b) Taking Tram.

Fig. 17. Motion Study Circumstances.

(a) The Changes of HR Threshold in Both User Motion and
Ambient Motion.

(b) Under Cycling Motion Condition.

Fig. 18. HR Threshold Comparison for Different Motion Circumstances.
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(a) Processed PPG Signals by GMU under Taking Tram Con-
dition.

(b) Collected IMU Signals under Taking Tram Condition.

Fig. 19. Performing Open Hand Gesture to Simultaneously Collect both PPG and IMU Data with Ambient Noise.

to gesture recognition. Considering that the way of taking public transportations may generate more ambient
motions than other cases, we then preform the task on trams which have a free-zone in Melbourne. Figure 17b
shows that one of participants is performing all gestures on tram by standing.
As mentioned in the experiment condition, we first ask participants to do the stationary analysis to measure

their heart rates before collecting gesture data for the whole study 1 and 2, which is a kind of manual way to
initialise the HR Threshold and PPD for GMU use. Figure 18a shows that the average value of HR Threshold
under tram condition is slightly increased compared with the stationary mode, and the value of PPD is identical as
30. This result indicates that the ambient noise of trams has no major effect to participants’ heart rate condition.

After the attempted classification, the result of FinDroidHR remains the accuracy from 82.82% to 90.55%, while
the result of the IMU-based system is slightly decreased to 92.73%. Besides, Figure 19a and Figure 19b demonstrate
both PPG signals and IMU signals side by side. We find that there is no impact for the ophand gesture recognition
in both time domain and gradient domain by GMU process. Similarly, there is no major noise for IMU signals to
identify the ophand gesture with only some small tolerant fluctuations.

4.5.2 Walking condition. We next conduct a walking task that all participants are asked to walk in the garden,
which is shown in Figure 17a. In the practical perspective, we ask participants to walk at a usual speed without
any rush. The average speed varies in the range from 3.5 to 4 km/h.

Figure 18a illustrates that the HR Threshold has a distinct increase among these 3 conditions, while the value
of PPD is still the same. Since walking is a slightly intensive motion compared with the stationary mode and
taking tram, the heart rate condition of each participant has been affected a bit.

On the other hand, the result of the attempted classification by FinDroidHR under walking condition is relatively
stable, which achieves the accuracy from 82.82% to 86.36%. In contrast, the accuracy of IMU-based system is
modified to around 81.82%, which is relatively decreased. From both Figure 20a and Figure 20b, we observe that
the GMU can remove most of motion noise by adjusted walking HR Threshold to ensure the performance for
classification process, while the IMU signals have a number of observable noise, especially for the gyroscope
sensor data. That is the reason why the result of IMU-based solution becomes unstable under the effects of motion
noise.
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(a) Processed PPG Signals by GMU under Walking Condi-
tion.

(b) Collected IMU Signals under Walking Condition.

Fig. 20. Performing Open Hand Gesture under User Motion Noise.

4.5.3 Circling motion. To extend the motion study, the more intensive circling motion condition is considered
in our work. Practically, users may interact with the smartwatches during some workouts. We then perform
an extra jogger task to discover the limits of both FinDroidHR and IMU-based system. Due to some practical
issues that this task is quite difficult for most of participants, only a few of them are involved to perform this task.
However, we still obtain some interesting insights based on the small-scale jogger data set.

First of all, Figure 18b shows that the value of the HR Threshold during jogger has a huge increase compared to
other 3 conditions, and the value of PPD has been smaller to 20. This result indicates that the heart rate condition
of each participant has a sufficient change when performing intensive motions. Besides, Figure 21a shows that our
GMU technique can accurately identify the ophand gesture even under the jogger condition. On the other hand,
Figure 21b demonstrates that it is hard to identity gestures by using IMU-based system because the motion noise
has taken over the gesture. After the classification attempt, the average accuracy of FinDroidHR is going down to
about 73.6%. The reason is that some of gestures, such asmidrinдclk and pinch, are performed inappropriately as
conflict gestures with others. Since participants are under running mode, they can not concentrate to perform
some finger gestures well. However, the accuracy ofW , P + 4F and P + 5F is still over 82.82%. Unlike FinDroidHR,
the IMU-based system fails to recognise most of gestures because of the significant motion noise.

In conclusion, the IMU-based solution outperform FinDroidHR in Study 1, while it becomes less stable because
of different motion noises in Study 2. In contrast, the overall performance of FinDroidHR is relatively stable with
a reliable accuracy, and our GMU technique shows high feasibility and effectiveness for hand gesture recognition
in different cases.

4.6 Results and Gesture Classification
We use a linear support vector machine (SVM) classifier and a Random Forests classifier, as they are widely used
and easy to implement. After feature selection (Table 4), we test both classifiers using the selected feature sets
respectively. All results are processed and validated in 10-fold cross-validation. Overall, Random Forests using
the SFS feature set achieves an average accuracy of 82.82%, precision 82.9% and recall 82.8%, as shown in Figure
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(a) Processed PPG Signals by GMU under Jogger Condition. (b) Collected IMU Signals under Jogger Condition.

Fig. 21. Performing Open Hand Gesture under Jogger Condition.

(a) The confusion matrix for the SVM Classifier. (b) The confusion matrix for the Random Forest Classifier.

Fig. 22. Classifier performance.

22b. The SVM classifier with a linear kernel using the SFS feature set achieves the best results with an average of
accuracy 90.55%, precision 90.55% and recall 90.73%, as shown in Figure 22a.

From the confusion matrix for the gestures, we observe that the 5 PandF combined gestures (clhand , downrob,
ophand , pinch and pullhand) outperform the otherWonly and Ponly gestures. Besides, their results are more
stable than the other compared by both classifiers. In particular, the classification of downrob in both classifiers
achieves high accuracy. However, the pinch and themidrinдclk are confused with each other in some samples,
as the changes of the blood by both gestures are occasionally similar.

Subsequently, we provide the ROC curve of all classified gestures to evaluate the specificity and sensitivity of
our classifiers, as shown in Figure 23. Although ROC curve is typically used in evaluating binary classification
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Fig. 23. ROC Curve of FinDroidHR Gestures.

cases [23], we adapt our classifiers to compute the prediction score of each class over the rest of classes as a binary
case to generate the ROC curve (i.e., one class against the others). Overall, our classifiers achieve an average
AUC of 98.95%, which is effective and feasible from classification perspective.

4.7 Effectiveness of the GMD Unit
We further evaluate the effectiveness of our Gradient-based Movement Detection Unit. Figure 24 shows that the
results of both classifiers had a great improvement after using the GMD Unit. We observe in Figure 24a that the
average accuracy by SVM is improved by 24% by the process of the GMD Unit, from 66% to 90%. Meanwhile, the
average accuracy for Random Forest is also increased from 61.6% to 82.8%. Overall, the results show that the
performance of the GMD Unit is reliable and feasible for our purposes.

4.8 Evaluation of Selected Gesture Time Window by GMD
To further evaluate the reliability of our segment selection algorithm in the GMD Unit, we measured all actual
time windows for gestures by observation and compare them to the outcomes of the algorithm to explore
the performance difference. Since some of finger gestures are performed very quickly, such asmidrinдclk and
pullhand , we attempt to record their completion time by a stopwatch. The result of the comparison is shown in
Figure 25, with the average in accuracy of our segment selection algorithm compared to the actual time window
is around 85.5%, which is practical and effective for gesture recognition.

4.9 Power Consumption
On most of smartwatches, the heart rate sensor use is restricted to save power. The sensor will typically awake
within a short time when users intend to measure their heart rate, and only be continuously activated during the
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(a) Using SVM (b) Using Random Forests

Fig. 24. The improvement by using the proposed Gradient-based Movement Detection Unit.

Fig. 25. Movement Time Window comparison between observed actual gesture time window and the segment time window
selected by our movement detection approaches.

intensive workout mode for recording fitness data even if the screen is turned off. As FinDroidHR also requires
the heart rate sensor to work continuously during the usage, the power consumption may be higher than usual
usage. Hence, we apply a sleep mechanism to tackle this issue, where the heart rate sensor will sleep once the
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Fig. 26. Power consumption comparison among using FinDroidHR, IMU sensors and general use for half an Hour with the
same interaction movements. The screen was kept awake during the test.

smartwatch screen is turned off. In this way, the power cost can be significantly reduced during the period when
users do not use the devices.
To quantify the power consumption of FinDroidHR, we conduct a measurement test. During the test, the

watch screen is kept as always on. We compare 3 cases: FinDroidHR, IMU and general-purpose use. For each of
these 3 cases, we perform the test for 30 minutes. For general use, we preform the bezel rotation every 5s for
the selection action. For FinDroidHR and IMU, we programmed the sensors and our recognition processes to
automatically collect and process data every 5s to match the bezel function respectively. Figure 26 depicts the
power consumption in 3 cases, showing that there is a 3% additional energy cost when using FinDroidHR system.
This indicates that using the heart rate sensor has a non-negligible impact on energy consumption. Compared
to IMU, the overhead of FinDroidHR is slightly lower than that of IMU. The reason for this may be that the
algorithm of our IMU system takes slightly more battery, but the cost by both IMU and FinDroidHR can still be
treated as identical in actual usage. Considering that half an hour of intensive usage time is an extremely long
interaction on smartwatches, the energy consumption of FinDroidHR is tolerable in most use cases.

5 DISCUSSION AND FUTURE WORK
Our approach enables a hand-free interaction on smartwatches. While a number of techniques have been reported
in literature, a key advantage of our approach is that it does not require additional hardware, but rather relies on
an existing PPG biosensor available on smartwatches. Our analysis has provided a number of insights regarding
useful PPG features for effective gesture recognition in general, which can benefit other researchers. More broadly,
our system can be used in a number of scenarios, and was indeed designed as drop-in replacement for the existing
input modalities of smartwatches.
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(a) Turn down the hand to select options.

(b) Open hand to quick launch the Calendar application.

Fig. 27. Sample use cases: Turn down the hand to simulate the down bezel event for different option selection. Open hand to
quick launch another application in the smartwatch.

5.1 Taking on/off Watch during Session
We make an assumption that people may intend to take on/off their smartwatches frequently within a short
time in practical daily use. In this case, we managed several breaks in each participant’s test and asked them
to take off and on smartwatches for a quick recovery. Besides, the break interval is usually given as short, and
participants should need to keep their current pose or motion mode until the sub-test is completed. For example,
each break is planed within 1 to 3 mins and no break is over 3 mins or longer. If participants are performing in
the stationary study by standing, they are required to keep standing to take breaks, and they can not change the
current condition to walking as mentioned in 4.2. All processed results show that there is no effect of taking on
or off smartwatch occasionally to our system. However, taking off watch for a long break or randomly changing
task conditions might affect the results, as participants’ heart rate could be unstable in this case. Thus, proposing
a dynamic adapted HR-threshold approach should be applied to support our system in future work.

5.2 PPG-based Gesture Recognition Vs. Other Approaches
The experimental results show that our PPG-based system is able to provide reliable gesture recognition for a set
of 10 gestures. The results show that both SVM and Random Forests classifier achieved an accuracy of 90.55% and
82.82% respectively. Meanwhile, the Gradient-based Movement Detection (GMD) Unit that we propose provided
a substantial accuracy improvement of 24%.
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A large number of existing interact techniques on smartwatches involve extra hardware components which
are customised, inconvenient or expensive. Compared to previous work, an advantage of PPG-based gesture
recognition is that PPG is already available on off-the-shelf smartwatches, meaning that the method can be easily
deployed to these watches. Also, to adopt our technique, users do not need to purchase and install extra hardware
modules. In practice, users can wear smartwatches for very long periods (e.g., working all day), so that they
can start instant interaction with smartwatch in daily life without spending time to wear a interaction-specific
sensors.
Furthermore, beyond RF-based gesture recognition systems, an important strength of our technique is that

PPG sensors consumes relatively low power. Considering that our system has a sleep mode during screen-off
states, the disturbance on the regular usage of smartwatches is non-trivial but negligible. Although RF-based
gesture recognition can be achieved by Wi-Fi antennae which are embedded on a small number of smartwatches,
they are highly power-hungry hardware modules [47]. RF-based gesture recognition drains the watch battery
very quickly, impeding other kinds of interactions and computations required by users.

5.3 Useful Features for PPG-based Gesture Recognition
In Table 4, we show that some features are good indicators of gestures on smartwatches, such as the mean value
of the given signal and fast dynamic time warping (FDTW) distance, just to name a few.Results show that both
classifiers gained higher accuracy using only a subset of features, compared to using all. This finding indicates
that the quality of features, rather than the quantity, plays a critical role in accurate classification models. A large
number of features with redundancy may not be helpful to improve the recognition performance. Relying on the
results of our feature evaluation, future work can conduct further investigation using other classifiers to improve
the accuracy or minimise the computational cost without sacrificing the accuracy.

In addition, this reduction of features can decrease the computational cost of training and using classification
models. To train a model, the time complexity of Random Forests is O(m × n × log(n)) wherem is the number of
features and n is number of instances; SVM with a linear kernel, O(m × n2). If the classifier uses only 16 or 20
features to train a model, it can save more than 80% of computation as compared to using all 69 features on the
watch’s CPU. A direct benefit is the extra speed in training a model and real-time gesture recognition. Also, it is
worth nothing that CPU consumes more power than any sensor and modules, except the screen, on smartwatches.
Hence, the reduction of features is necessary to build energy-efficient and accurate gesture recognition systems,
leading to longer time of interaction between users and smartwatches.

5.4 Implications for Interaction Design
We summarise a number of typical impacts of our work to current wearing smartwatches circumstances in daily
life.

5.4.1 One-hand interaction. Our PPG-based gesture recognition system facilitates one-handed interaction.
Common scenarios whereby one-handed interaction can be useful include standing in a crowded bus, tram
or train, cycling, or driving. Similar to other one-handed gesture input approaches, smartwatch applications
can map a number of gestures 2 onto their functions. To support more functions than the number of gestures,
applications can use a sequence of these gestures as a complex gesture. For instance, the message reader can
define the sequence clhand → ophand as turning to next page.
In addition, our work system also allows eyes-free interaction. A typical use case is multi-device interaction

where users use smartwatch as an input device for another device (e.g., a large display board) which users look at.
Without gaze, it is hard for users to accurately press a button on the smartwatch screen. To enable such eye-free
interaction, smartwatch applications can define a communication protocol which can encode and decode gestures
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based on our system. When users complete a predefined gesture in 2, the smartwatch applications should also
provide audio or tactile feedback to users.

5.4.2 Gesture set availability. For most of current mainstream smartwatches, such as the Moto 360 2nd , the
LG Urbane 2nd , and the HuaWei Watch, etc., they offer 1 or 2 buttons on one side of the watch. They also
typically include a touch screen with 4 single direction touching actions and single click actions for interaction.
Besides, the Samsung Gear G3 has 2 buttons, and a touch screen. It also has a watch bezel that users can turn
clockwise or anti-clockwise for quick selection. Overall, our proposed gesture set is sufficient to serve these
target smartwatches on marketplace as input replacements.

5.4.3 Example deployment of FinDroidHR. We intend to implement a system-level touch event simulation
that allows FinDroidHR to fully replace the manufacturer’s way of using buttons and touch screen for watch
interaction. However, due to the Tizen Wearable OS system architecture, we can not intercept or generate the
system touch or button events to replace them with FinDroidHR. Instead, we have built our own application and
simulated those events in this application to evaluate FinDroidHR. Figure 27 shows 2 example use cases. The first
one is to do the selection action without touching or turning the bezel by using downhand gesture with the pinch
gesture as the click action so that users can interact with watch in a hand-free way. The second case is that users
can use the ophand gesture to quickly launch another application from FinDroidHR without any touching. It
offers a shortcut to favourite applications.

5.5 Limitations and Future Work
5.5.1 Conflict gestures. In the gesture design section 3.1, we propose a original set of 13 out of 26 gestures

selected by the easy-to-do purpose shown in Table 1. However, we finally identify the set of 10 out of 13 gestures
to be valid and effective. The main reason for the second selection is that we identified a few of gestures in
conflict with others after initial classification attempt.

As we can see from both the confusion matrix shown in Figure 28a and ROC curve shown in Figure 28b, this
classification attempt fails because the conflict situation happened. In this attempt, 3 of gestures are major false
negatives, the indexclk of P, pinky of 2F and uprob of P + 2F . Meanwhile, the ROC curve of 13 gestures also
indicates that the AUC values of these 3 gestures are evidently lower than others. From these, we find that the
uprob was heavily in conflict with the downrob. Since these 2 gestures could be preformed reversely, the changes
of blood volume behind the gestures might be similar and the classifiers can not properly distinguish them by the
selected PPG features. Besides, the pinky is mainly in conflict with themidrinдclk , because we found that the
movements of both gestures were not strong, and normally when themidrinдclk is performed, the pinky finger
is affected to move with both middle and ring fingers. Moreover, the indexclk was partially in conflict with the
index as using the same finger to perform different gestures might not have huge differences.

In our work, since the maximum frequency of PPG signal on the Samsung Gear S3 is offered as 100Hz, we can
not increase it further to collect more samples to analyse whether there is a positive correlation between the data
rate and the number of reliable gestures. Therefore, we decide to reduce the size of original gesture set to be 10
for the accuracy improvement. Thus, the idea of using PPG-based biosensor to detect hand gesture is limited for
complex gesture recognition in our current work.

5.5.2 Inherent PPG sensor limitations. Our work makes a number of assumptions in section 4. First, if users
have health issues, such as obesity, diabetes, and arterial diseases, they may not be able to use FinDroidHR, as
these conditions may result in an unstable heart rate which affects the accuracy of classification. It is unclear if
blood flow artefacts can be automatically detected and removed under such conditions.
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(a) The Classification Matrix for original 13 gestures (b) The ROC Curve of original 13 gestures

Fig. 28. Conflict Gestures Identification.

Second, since the PPG sensor requires the skin to be clean to absorb and reflect the green light, users who
have tattoos on the wrist may also not be able to use FinDroidHR. Similarly, since the change of temperature can
influence blood volume, our PPG system may not work in cold weather conditions.
Finally, the current FinDroidHR implementation offers a 3s detection time window and only one movement

can be processed within the given window. At this moment, it cannot detect high-speed continuous gesture
movements. For example, if users perform multiple gesture movements during the 3s detection time window,
only the most significant movement will be identified by FinDroidHR as a valid gesture.

5.5.3 Future work. Future research can investigate other classification techniques to further improve the
accuracy of gesture recognition. A possible direction is to use deep learning approaches, such as convolutional
neural networks, to infer gestures from the PPG spectrogram without defining features. Future work can also
introduce new features to help current classifiers (i.e., SVM and Random Forests) to improve accuracy. Since a
significant number of smartwatches run Android OS, generalising our system to Android is a necessary step of
deployment. Despite the fragmentation challenge (i.e.,different manufacturers customise Android differently),
it may be possible to overwrite the OS kernel and sensor drivers to make our system compatible on Android.
Ultimately, a new dynamic movement detection mechanism without using the detection time window is also
possible to support the detection of continuous gesture movements.

6 CONCLUSION
In this paper we present FinDroidHR, a novel technique for hand gesture input relying on optical heart rate
monitors embedded in most off-the-shelf smartwatches. We demonstrate that our system can recognise a set of
10 gestures with an an average accuracy of 90.55% and recall of 90.73%, without significant impact on battery
life of a smartwatch. We also propose a technique of gradient-based noise removal and feature construction
which achieves a substantial accuracy improvement for gesture recognition by 24%. Our system does not require
bespoke hardware and can readily be implemented on existing smartwatches.
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A ALL EXTRACTED FEATURES

PPG All Features
No. Feature Name Feature Type Description
1 meanS Time Domain Mean of the given signal
2 stdS Time Domain Std of the given signal
3 medianS Time Domain Median of the given signal
4 meanPKT Time Domain Mean of the Peak-to-peak Time Windows
5 stdPKT Time Domain Std of the Peak-to-peak
6 medianPKT Time Domain Median of the Peak-to-peak Time Windows
7 meanPKA Time Domain Mean of the Peak-to-peak Amplitude
8 stdPKA Time Domain Std of the Peak-to-peak Amplitude
9 medianPKA Time Domain Median of the Peak-to-peak Amplitude
10 disDTW Time Domain Fast Dynamic Time Warping (FDTW) Distance
11 meanPSD Frequency Domain Mean of the Power Spectral Density (PSD)
12 stdPSD Frequency Domain Std of the Power Spectral Density (PSD)
13 medianPSD Frequency Domain Median of the Power Spectral Density (PSD)
14 entroS Frequency Domain Shannon Entropy of the given signal
15 meanHPSDME Frequency Domain Mean of the high-pass signal PSD mean after Max En-

tropy process
16 stdHPSDME Frequency Domain Std of the high-pass signal PSD mean after Max Entropy

process
17 medianHPSDME Frequency Domain Median of the high-pass signal PSD mean after Max En-

tropy process
18 meanHPSDST Frequency Domain Mean of high-pass signal PSD std after Max Entropy

process
19 stdHPSDST Frequency Domain Std of high-pass signal PSD std after Max Entropy process
20 medianHPSDST Frequency Domain Median of high-pass signal PSD std after Max Entropy

process
21 meanHPSDMED Frequency Domain Mean of high-pass signal PSD median after Max Entropy

process
22 stdHPSDMED Frequency Domain Std of high-pass signal PSD median after Max Entropy

process
23 medianHPSDMED Frequency Domain Median of high-pass signal PSD median after Max En-

tropy process
24 meanMAXHPSD Frequency Domain Mean of the maximum high-pass signal PSD
25 stdMAXHPSD Frequency Domain Std of the maximum high-pass signal PSD
26 medianMAXHPSD Frequency Domain Median of the maximum high-pass signal PSD
27 meanMINHPSD Frequency Domain Mean of the minimum high-pass signal PSD
28 stdMINHPSD Frequency Domain Std of the minimum high-pass signal PSD
29 medianMINHPSD Frequency Domain Median of the minimum high-pass signal PSD
30 meanMAXL Frequency Domain Mean of the maximum low-pass signal peak after Max

Entropy process

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 2, No. 1, Article 56. Publication date: March 2018.



FinDroidHR: Smartwatch Gesture Input with Optical Heartrate Monitor • 56:39

31 stdMAXL Frequency Domain Std of the maximum low-pass signal peak after Max En-
tropy process

32 medianMAXL Frequency Domain Median of the maximum low-pass signal peak after Max
Entropy process

33 meanMINL Frequency Domain Mean of the minimum low-pass signal peak after Max
Entropy process

34 stdMINL Frequency Domain Std of the minimum low-pass signal peak after Max En-
tropy process

35 medianMINL Frequency Domain Median of the minimum low-pass signal peak after Max
Entropy process

36 meanLME Frequency Domain Mean of the low-pass signal mean after Max Entropy
process

37 stdLME Frequency Domain Std of the low-pass signal mean after Max Entropy pro-
cess

38 medianLME Frequency Domain Median of the low-pass signal mean after Max Entropy
process

39 meanLST Frequency Domain Mean of the low-pass signal std afterMax Entropy process
40 stdLST Frequency Domain Std of the low-pass signal std after Max Entropy process
41 medianLST Frequency Domain Median of the low-pass signal std after Max Entropy

process
42 meanLMED Frequency Domain Mean of the low-pass signal median after Max Entropy

process
43 stdLMED Frequency Domain Std of the low-pass signal std after Max Entropy process
44 medianLMED Frequency Domain Median of the low-pass signal std after Max Entropy

process
45 meanE Frequency Domain Mean of the high-pass signal Entropy after Max Entropy

process
46 stdE Frequency Domain Std of the high-pass signal Entropy after Max Entropy

process
47 medianE Frequency Domain Median of the high-pass signal Entropy afterMax Entropy

process
48 maxLFDTW Frequency Domain Maximum low-pass peak by the first Discrete Wavelet

Transform (DWT) process
49 maxLMINE Frequency Domain Maximum low-pass peak by the minimum high-pass sig-

nal Entropy after Max Entropy process
50 maxLMAXE Frequency Domain Maximum low-pass peak by the maximum high-pass sig-

nal Entropy after Max Entropy process
51 minLFDTW Frequency Domain Minimum low-pass peak by the first Discrete Wavelet

Transform (DWT) process
52 minLMINE Frequency Domain Minimum low-pass peak by the minimum high-pass sig-

nal Entropy after Max Entropy process
53 minLMAXE Frequency Domain Minimum low-pass peak by the maximum high-pass sig-

nal Entropy after Max Entropy process
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54 meanLFDTW Frequency Domain Mean low-pass signal by the first Discrete Wavelet Trans-
form (DWT) process

55 meanLMINE Frequency Domain Mean low-pass signal by the minimum high-pass signal
Entropy after Max Entropy process

56 meanLMAXE Frequency Domain Mean low-pass signal by the maximum high-pass signal
Entropy after Max Entropy process

57 stdLFDTW Frequency Domain Std low-pass signal by the first Discrete Wavelet Trans-
form (DWT) process

58 stdLMINE Frequency Domain Std low-pass signal by the minimum high-pass signal
Entropy after Max Entropy process

59 stdLMAXE Frequency Domain Std low-pass signal by the maximum high-pass signal
Entropy after Max Entropy process

60 medianLFDTW Frequency Domain Median low-pass signal by the first Discrete Wavelet
Transform (DWT) process

61 medianLMINE Frequency Domain Median low-pass signal by the minimum high-pass signal
Entropy after Max Entropy process

62 medianLMAX Frequency Domain Median low-pass signal by the maximum high-pass signal
Entropy after Max Entropy process

63 EFDTW Frequency Domain High-pass signal Entropy by the first Discrete Wavelet
Transform (DWT) process

64 minE Frequency Domain Minimum high-pass signal Entropy after Max Entropy
process

65 maxE Frequency Domain Maximum high-pass signal Entropy after Max Entropy
process

66 maxGRAE Frequency Domain Maximum gradient of high-pass signal Entropy after Max
Entropy process

67 meanGRAE Frequency Domain Mean gradient of high-pass signal Entropy after Max
Entropy process

68 stdGRAE Frequency Domain Std gradient of high-pass signal Entropy after Max En-
tropy process

69 medianGRAE Frequency Domain Median gradient of high-pass signal Entropy after Max
Entropy process

Table 5. FinDroidHR All Feature Set
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