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ABSTRACT
This paper presents the design and implementation of PCube, a
phase-based parallel packet decoder for concurrent transmissions
of LoRa nodes. The key enabling technology behind PCube is a
novel air-channel phase measurement technique which is able to
extract phase di�erences of air-channels between LoRa nodes and
multiple antennas of a gateway. PCube leverages the reception
diversities of multiple receiving antennas of a gateway and scales
the concurrent transmissions of a large number of LoRa nodes, even
exceeding the number of receiving antennas at a gateway. As a
phase-based parallel decoder, PCube provides a new dimension to
resolve collisions and supports more concurrent transmissions by
complementing time and frequency based parallel decoders. PCube
is implemented and evaluated with synchronized software de�ned
radios and o�-the-shelf LoRa nodes in both indoors and outdoors.
Results demonstrate that PCube can substantially outperform state-
of-the-art works in terms of aggregated throughput by 4.9⇥ and the
number of concurrent nodes by up to 5⇥. More importantly, PCube
scales well with the number of receiving antennas of a gateway,
which is promising to break the barrier of concurrent transmissions.

CCS CONCEPTS
•Networks!NetworkProtocolDesign; •Computer Systems
Organization! Embedded Systems.

KEYWORDS
Low-Power Wide-Area Networks, LoRa, Concurrent Transmission
ACM Reference Format:
Xianjin Xia, Ningning Hou, Yuanqing Zheng and Tao Gu. 2021. PCube:
Scaling LoRa Concurrent Transmissions with Reception Diversities. In The
27th Annual International Conference on Mobile Computing and Networking
(ACM MobiCom ’21), October 25–29, 2021, New Orleans, LA, USA. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3447993.3483268

1 INTRODUCTION
Low Power Wide Area Networks (LPWANs) [30, 45, 56] are emerg-
ing as a compelling paradigm for connecting Internet-of-Things
(IoT). In LPWANs, a gateway can cover tens of km2 and collect data
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Figure 1: Illustration of parallel packet decoding in phase
domain. (a) Multiple Rx antennas provide reception diversi-
ties, (b) Symbols of concurrent packets are clustered in I-Q
plane.

from low-power sensors at low data rates (few kbps) for long-term
operations (5⇠10 years). With the rapid development of LoRa tech-
nology and IoT applications, large numbers of LoRa-enabled IoT
devices will be densely deployed in large-scale IoT applications (e.g.,
environment monitoring, smart metering, etc.). As the communica-
tion range of LoRa is long, the number of LoRa nodes covered by a
gateway can be pretty large (e.g., thousands of nodes per gateway).
As all LoRa nodes operate in the same ISM band, the spectrum are
likely to get crowded with an ever-increasing number of LoRa de-
ployments. As a result, coexisting LoRaWANs would su�er serious
intra- and inter-network interference and collisions, resulting in
degraded network performance [3, 14]. To address this problem, we
aim to support more concurrent LoRa transmissions in the shared
spectrum.

MIMO (Multiple Input Multiple Output) technologies have been
widely used in wireless systems (e.g., WiFi, LTE) to enable concur-
rent transmissions and increase communication capacity [19, 20, 29,
36, 47, 54, 59, 60]. A recent work (Iris [12]) introduced Multi-User
MIMO (MU-MIMO) to support concurrent transmissions of sensor
nodes in LPWANs. However, the maximum concurrency supported
by MIMO LPWANs is limited by the number of receiving (Rx) an-
tennas of a gateway. It is hard to meet the capacity requirement
of LoRaWANs, where the number of IoT nodes can be orders of
magnitude larger than the number of Rx antennas. Ideally, we aim
to support more concurrent transmissions than the number of Rx
antennas of a gateway.

Latest advances of LoRaWAN (e.g., Choir [8], FTrack [51], NScale
[43]) explore parallel decoding of concurrent transmissions. Di�er-
ent from theMIMO-based method (e.g., Iris), those parallel decoding
methods leverage unique features of LoRa to separate concurrent
packets in frequency and time domains. For example, Choir [8]
leverages hardware imperfections and frequency diversities of LoRa
nodes to classify colliding symbols into di�erent packets according
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to unique features in frequency domain. FTrack [51] exploits timing
periodicity and edge misalignment of colliding symbols to separate
collisions in time domain. These works demonstrate that it is possi-
ble to resolve collisions and support concurrent transmissions of
multiple LoRa nodes with only one Rx antenna of a gateway.

Intuitively, is it possible to support more concurrent transmis-
sions with multiple antennas at a gateway? This question motivates
us to explore the possibility of combining the bene�t of multi-
antenna and LoRa-speci�c parallel decoding techniques to improve
concurrent transmission performance beyond the limits of conven-
tional MIMO and LoRa parallel decoders.

However, a simple combination of multiple antennas and existing
parallel decoders (e.g., Choir [8], FTrack [51]) does not lead to
better performance in concurrent transmissions, because di�erent
antennas receive the same packets with almost the same time and
frequency features. For example, if two colliding packets arrive at an
antenna at the same time and cannot be separated in time domain,
other collocated antennas cannot separate them in the time domain
either. Ideally, we expect multiple antennas can provide reception
diversities and add a new dimension so that we can resolve collisions
and support more concurrent transmissions.

To this end, we leverage the fact that packets of di�erent transmit-
ters go through di�erent wireless channels which imprint distinct
channel features (e.g., phase rotation) on their corresponding sym-
bols, while the symbols from the same transmitter pass through the
same wireless channel over the air (i.e., air-channel). As illustrated
in Figure 1(a), packets of two LoRa nodes pass through di�erent air-
channels, which lead to di�erent extracted channel phases. We can
extract channels from concurrent packets and separate colliding
symbols based on the channel information. Figure 2 shows extracted
channel phases of three colliding packets. The symbols are clus-
tered into di�erent groups in phase domain, which correspond to
their air-channels. As such, the channel phases of received symbols
essentially provide a new dimension to resolve collisions, which
complements the existing time-domain and frequency-domain par-
allel decoders. More importantly, one additional Rx antenna creates
# new air-channels to all # concurrent transmitters. In case that
the air-channels of two packets produce similar phases at an Rx
antenna, we can create reception diversities using multiple Rx an-
tennas as shown in Figure 1(a), and separate collided packets at a
new Rx antenna as illustrated in Figure 2(b,c). We expect to enable
more concurrent transmissions with more Rx antennas of a gate-
way. As long as two transmitters are separated in physical space,
we should be able to separate their concurrent transmissions in
channel space by adding more reception diversities.

However, the design and implementation of a phase-based paral-
lel decoder entails tremendous technical challenges in practice. First,
it is challenging to measure channel phases from symbols of each
packet, as signals of concurrent LoRa packets interleave together in
demodulation windows. To address this problem, we leverage the
fact that symbols of concurrent packets generally carry di�erent
payload data, which are encoded with di�erent initial frequencies
of LoRa chirps. As such, we can dechirp the signals in a demodula-
tion window and separate concurrent symbols into distinctive FFT
bins as illustrated in Figure 1(b). We then extract the phase of each
frequency component from the FFT results to measure channel
phases of concurrent symbols.

(a) Three concurrent packets with closely-aligned symbol edges
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Figure 2: Reception diversities help decodemore concurrent
packets: air-channels of Packet #2 and Packet #3 have the
same phase at antenna #1, all three packets have distinctive
channel phases at antenna #2.

Second, it is non-trivial to correctly extract air-channel infor-
mation from raw phase measurements of concurrent symbols. The
phases of symbols are a�ected not only by air-channels but also
by various frequency and phase uncertainties of radio hardware,
such as o�set of carrier frequencies between transmitter and re-
ceiver (i.e., CFO) and random clock o�set of signal sampling (i.e.,
STO) [2]. Besides, the hardware of LoRa modem also add random
phase shifts to transmitted symbols, leading to unpredictable inter-
symbol phase variance. To address these practical issues, we exploit
the speci�c frame structure of LoRa preamble and SFD (i.e., Start
Frame Delimiter) to estimate and calibrate for frequency o�sets. We
further mitigate the impact of hardware-induced phase variance
by examining the corresponding phase measurements of Rx-pairs.
Finally, we obtain consistent phase measurements of air-channels
as shown in Figure 2(b,c).

We design and implement PCube, a Phase-based Parallel Packet
decoder for concurrent transmissions of LoRa nodes. PCube uses
multiple Rx antennas at a gateway to resolve collisions and enable
concurrent LoRa transmissions. PCube calibrates the frequency
o�sets of received signals to extract correct frame timing of each
packet. PCube then measures phases of all concurrent symbols
in a demodulation window. PCube mitigates inter-symbol phase
variance and extracts air-channel phase of each symbol with Rx-
pairs. Finally, PCube groups symbols to their corresponding packets
according to distinct air-channel phases. PCube iterates to recover
more packets from collisions.

We build a prototype system with 40 commodity o�-the-shelf
LoRa nodes and 8 synchronized USRPs as a gateway. We evaluate
PCube via testbed experiments both indoors and outdoors. Our
evaluations demonstrate that PCube can support up to 5⇥ more
concurrent transmissions than MIMO. The aggregated network
throughput of PCube is 4.9⇥ higher than the best throughput of
existing LoRa parallel decoders and MIMO. PCube scales well with
network size and the number of Rx antennas of a gateway.
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The contributions of our paper are summarized as follows.
• We propose to separate LoRa packet collisions in the phase
domain, which complements existing time-domain and frequency-
domain approaches for LoRa collision recovery.

• We design techniques to estimate and calibrate for frequency
and phase uncertainties of radio hardware, and present meth-
ods to reliably measure channel phases of concurrent packets
in the presence of collisions.

• We design and implement a phase-based parallel packet
decoder (PCube) for LoRa, which scales concurrent transmis-
sions beyond the number of reception antennas of a gateway.

2 A PRIMER ON LORA
Chirp Spread Spectrum (CSS). LoRa adopts a Chirp Spread Spec-
trum (CSS) modulation technique, which modulates symbols with
chirp signals in a pre-con�gured bandwidth (⌫, ). The frequency
of a chirp increases (i.e., up-chirp) or decreases (i.e., down-chirp)
linearly over time at a rate : = ⌫, 2

2(� , where (� corresponds to the
spreading factor of CSS. A base chirp sweeps from �⌫,

2 to ⌫,
2 and

can be represented as ⇠ (C) = 4 92c (
:
2 C� ⌫,

2 )C . CSS changes initial
frequencies of base chirps to modulate di�erent symbols. The signal
of a symbol can be represented as follows.

( (C, 5B~<) = ⇠ (C) · 4 9 (2c 5B~<C+iB~<) , (1)

where 5B~< and iB~< represent the initial frequency and initial
phase of the chirp signal, respectively.

Demodulation. LoRa demodulates a symbol by measuring the
initial frequency of chirp signal. The signal of a received symbol is
represented as below.

~ (C) = ⌘ · ( (C, 5B~<) + =(C), (2)

where ⌘ denotes the communication channel between transmitter
and receiver and =(C) denotes noises. To demodulate 5B~< from
~ (C), LoRa �rst de-chirps~ (C) bymultiplying the conjugate of a base
chirp (⇠�1 (C)) then performs Fast Fourier Transform (FFT), which
produces / (5 ) = ��) (~ (C) · ⇠�1 (C)). The frequency response of
FFT peak in / (5 ) corresponds to the demodulated frequency of a
symbol as follows.

5̃B~< = argmax
58

k/ (58 )k, (3)

where 58 = 8 · ⌫,2(� denotes the frequency response of the 8C⌘ FFT
bin (8 = 0, 1, · · · , 2(� � 1).

LoRa packet reception. A receiver continuously samples a
channel to detect incoming packets. To facilitate packet detection,
LoRa prepends a packet with a preamble which consists of a number
of base chirps followed by a Start Frame Delimiter (SFD) composed
of 2.25 down-chirps before the start of packet payload. A receiver ex-
tracts frame timing from a preamble, then locates and demodulates
symbols in payload.

Concurrent transmission. When two LoRa nodes transmit
simultaneously with the same SF and BW parameters, their signals
collide at a gateway as follows.

~ (C) = ⌘1 · (1 (C, 5B~<1) + ⌘2 · (2 (C + �g, 5B~<2) + =(C), (4)

where (1 (C, 5B~<1) and (2 (C, 5B~<2) correspond to the symbols of
two nodes, �g denotes the time o�set between two concurrent
symbols, and ⌘8 represents the communication channel from node
8 to receiver.

Air-channel. The communication channel from a transmitter
to a receiver involves not only wireless channel over the air (i.e., air-
channel) but also RF chains of Tx and Rx radios. Due to hardware
imperfection of radios, the end-to-end communication channel may
vary over time. In contrast, air-channel remains invariant during a
short time (i.e., coherent time of wireless channel).

3 PCUBE IN A NUTSHELL
PCube develops a new paradigm of air-channel based concurrent
transmissions. It is built on an observation that air-channel basi-
cally remains coherent and imprints consistent phase features on
received symbols of a packet. The phase features can be regarded as
hidden information encoded by the air-channel from a transmitter
to a receiver. PCube recovers the hidden information and uses them
to help decode concurrent transmissions.

Di�erent from MIMO which estimates channels between Tx-Rx
pairs by sending and receiving probe signals [19, 20, 38], PCube
requires to extract air-channel from each symbol of a received data
packet. PCube exploits the distinct air-channels traversed by con-
current packets to group symbols into their corresponding packets
for parallel packet decoding. As air-channels change across Rx an-
tennas, a gateway can create more spatial diversities by adding
more Rx antennas to enhance its capability of parallel decoding. It
turns out the spatial diversity can scale up combinatorially beyond
the number of Rx antennas, which is promising to break the barrier
of MIMO-based concurrent transmissions.

The air-channel based concurrent transmissions mainly target at
communications of stationary IoT nodes or nodes with low-mobility.
PCube can support a large number of LoRa nodes to transmit con-
currently with non-orthogonal parameters (e.g., the same carrier
frequency, spreading factor and bandwidth). It is complementary to
existing concurrent transmissions supported by LoRaWANs which
use orthogonal parameters or multi-channels. PCube runs on a
gateway with multiple Rx antennas. It aggregates the signals of
all Rx antennas to calibrate frequency and phase for air-channel
extraction. All computations involved in parallel packet decoding
are put in the gateway side, and PCube requires no modi�cation to
end nodes.

4 AIR-CHANNEL BASED CONCURRENT
TRANSMISSION

4.1 Challenges of Air-channel Extraction
PCube relies on the phases of air-channels to group concurrent
symbols into their corresponding packets. It extracts air-channels
from symbols of concurrent packets by overcoming a number of
practical challenges.

(1) Inter-packet interference. Though the symbols of concurrent
packets interleave together, they can be disentangled in frequency
domain due to timing misalignment and frequency di�erence of
chirps. For instance, we can use a standard demodulation method
to demodulate the received signals of two concurrent symbols. It
will produce two frequencies corresponding to the two symbols. As
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long as the demodulated frequencies are separated in FFT Bins, we
can measure the phase of each symbol from distinctive FFT Bins.
However, the raw phase measurements correspond to the phases of
end-to-end communication channels, which di�er from the phases
of air-channels.

(2) Distortions of radio hardware. The end-to-end communication
channel ⌘ is composed of RF chains of transmitter and receiver
radios (denoted by ⌘A 5 ) and air-channel (denoted by ⌘08A ). The raw
channel measurements (i.e., ⌘ = ⌘08A · ⌘A 5 ) from received symbols
can be a�ected by various RF components of Tx and Rx radios. We
summarize the primary sources of frequency and phase distortions
introduced by radio hardware as below.

Central Frequency O�set (CFO). Due to hardware imperfection,
the oscillator frequency of a LoRa node may be di�erent from a
gateway, resulting in central frequency o�set. CFO can lead to
frequency deviation of received symbols, as well as phase rotations
across symbols of a packet.

Sampling Timing O�set (STO). Due to narrow bandwidth and low
sampling rates of LoRa radio, the time o�set between packet arrival
and time of being sampled by a radio can be relatively long [2]. It
can cause non-negligible distortions to the frequency and phase of
received symbols.

Radio frequency leakage. LoRa radio is subject to frequency leak-
age when the frequency of transmitted signals changes from one
chirp to another (e.g., at the boundary of two symbols) [52]. It
adds unpredictable phase shifts to transmitted symbols, leading to
inter-symbol phase variance.

The preamble of a LoRa packet is conventionally designed for
frequency and frame synchronization. Our work uses preambles
for channel phase calibration. However, preambles may su�er from
inter-packet interference. PCube develops a novel method to sepa-
rate preambles of concurrent packets, and uses separated pream-
bles (i.e., collision-free) for frequency and phase calibration. In the
following, we will investigate how various factors a�ect phase
measurements and propose calibration methods for air-channel
extraction.

4.2 Separating Concurrent Preambles
We detect preambles of concurrent LoRa packets by correlating
received signals with a standard base chirp. Even when two pream-
bles collide, their chirp frequencies are still separable in FFT due
to misalignment of frame timing among concurrent transmissions
[51]. As shown in Figure 3(b), the preamble chirp corresponds to
5B~< = 0 (i.e., Bin #1) after demodulation, while frequencies in
other FFT bins correspond to interference. Ideally, we can clear the
FFT bins of interference and use Bin #1 to restore a preamble chirp.
However, it su�ers information loss since CFO and STO can result
in fractional frequencies represented by sidelobes.

Notice that an integer frequency (i.e., when �5 = 0) can be pre-
cisely represented by a single FFT bin with the highest magnitude
as shown in Figure 4(a,d). If we remove fractional part �5 from
the raw frequency of preamble chirp, the resulting signal will be
precisely represented by a single FFT bin, i.e., Bin #1 in Figure 3(b).
Then, we can safely clear interference frequencies in other FFT bins
without a�ecting the preamble chirp. After that, we can add �5
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Figure 3: Separating preamble chirp from collisions: (a) col-
lided chirps, (b) interference removal in FFT, (c) restore �5 ,
(d) separated preamble chirp.
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Figure 4: FFT representation of fractional frequencies (�5 ).
�⌫8= denotes the frequency resolution of FFT.

back to Bin #1 to restore the original preamble chirp without loss
of CFO/STO information, as illustrated in Figure 3(c,d).

In practice, we estimate the fractional frequency of a preamble
chirp by searching �5 that can maximize the magnitude of FFT
Bin #1 after compensating �5 to the received raw signal. As �5 is
estimated based on the FFT magnitude of preamble chirp (i.e., Bin
#1), the method is resistant to noise and interference because the
power of noise and interference do not accumulate in Bin #1. To
accelerate the searching process, we �rst use grid search to �nd a
coarse �5 within ±1 FFT bin and next use binary search to �nd � 5̃
in a con�ned range.

4.3 Compensating for CFO and STO
The residual frequency o�sets of received signals (i.e., CFO and
STO) impact PCube in two aspects: (1) CFO and STO can lead to
phase rotations across symbols of the same packet. The phase rota-
tions, if not calibrated, would result in incorrect symbol grouping
and decoding results. (2) CFO and STO may distort frame timing
detection of a packet. Incorrect frame timing would lead to packet
decoding errors. It may also introduce asynchronous frame timing
issues among packet receptions of di�erent antennas, impairing
PCube’s performance. We estimate CFO and STO of concurrent
packets from their separated preambles.

Central Frequency O�set (CFO). The mismatched oscillator
frequencies between transmitter and receiver radios result in CFO.
We represent a received symbol with CFO as below.

~ (C) = ⌘08A · 4�9 (2c�525 >C+i>B2 ) · ( (C, 5B~<) + =(C), (5)

where �52 5 > and i>B2 are the oscillator frequency o�set and phase
o�set between transmitter and receiver radios.

Intuitively, we can compare received preamble chirps with stan-
dard base-chirp and use Maximum Likelihood Estimation (MLE)
to �nd �52 5 > . This approach, however, does not work for LoRa
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Figure 5: Residual frequency o�sets (i.e., CFO and STO) lead
to incorrect detection of frame timing.

(a) Preamble chirp (b) SFD chirp

FFT Bin #

1  64 128 192 256

A
b

s
. 

F
F

T

0

50

100

150

-15.29 kHz

2×∆f
cfo

(c) CFO estimation

Figure 6: Estimating CFO with preamble up-chirp and SFD
down-chirp. The white dashed lines indicate the real chirp
edges.

because preamble chirps are not correctly located in the presence
of CFO and STO. For instance, Figure 5 shows the edges of pre-
amble chirps detected from received raw signals in comparison
with the correct chirp edges. The preamble chirps are incorrectly
located with several samples deviating from the real edges. We need
a method that can reliably estimate CFO even if preamble chirps
are located incorrectly.

Let~?A4 (C) denote the received signal of a preamble chirp.~?A4 (C+
�C) denotes the detected preamble chirp, which deviates from real
chirp edges with a time o�set �C due to impacts of CFO and STO.
The goal is to estimate CFO with ~?A4 (C + �C).

We demonstrate that CFO can be reliably estimated with a pre-
amble up-chirp and SFD down-chirp. The chirps in preamble and
SFD share the same CFO and STO. We extract a preamble chirp and
an SFD chirp based on the frame timing detected from received raw
signals. Both chirps deviate �C from their real edges and thus corre-
spond to~?A4 (C +�C) and~B 5 3 (C +�C), respectively, as illustrated in
Figure 6(a,b). Since the same time o�set (i.e., �C ) transforms into op-
posite frequency o�sets for preamble up-chirp and SFD down-chirp
[43], we can remove the e�ect of timing o�set �C by multiplying
~?A4 (C +�C) with ~B 5 3 (C +�C), which produces the following (noise
=(C) is omitted for clarity).

~?A4 (C + �C) · ~B 5 3 (C + �C) = (⌘08A )2 · 4�92c (2�525 > )C (6)

We perform FFT on the resulting signal of Eq.(6), as shown in Figure
6(c). The FFT peak indicates the integer frequency of 2�52 5 > .

Sampling Timing O�set (STO). Incoming signal ~ (C) will be
sampled by an Analog-to-Digital Converter (ADC) into discrete
samples ~ [=]. The time o�set between signal arrival and sampling

time of a receiver (i.e., STO) introduces frequency and phase dis-
tortion to received chirps. As illustrated in Figure 7(a), �)B denotes
time o�set of STO. The time o�set would transform into a frequency
o�set �5BC> and a phase o�set iBC> for a chirp signal. The received
samples are essentially the signals as below.

~ [=] = 4 9 (2c�5BC>C+iBC> ) · ~ (C), C =
=

�B
(7)

where �5BC> = ⌫, 2

2(� �)B and iBC> = 2c 5B~<�)B .
As STO is determined by both the arrival time of packet and

sampling timing of receiver, STO changes across packets. It means
that we cannot estimate STO in prior and calibrate for all packets.
Instead, we should estimate and calibrate STO on a per-packet basis.

We estimate STO from the separated preambles of concurrent
packets after CFO compensation. Since �)B is basically less than a
sample, �5BC> in�uences the fractional part of FFT bins and can be
determined and compensated with the searching algorithm as in
Section 4.2. Figure 7(b) displays the CDF of �5BC> measured from
500 LoRa packets. As expected, �5BC> generally follows a uniform
distribution in [0, 1) ⇥ ⌫,

2(� .

4.4 Extracting Air-channel Phase
After compensating received signals for CFO and STO, we expect
to obtain consistent phase measurements from symbols of the same
packet. Figures 9(a) and (b) compare phase measurements from
symbols of a packet before and after CFO and STO compensation.
We see from the �gure that phase measurements in preamble be-
come invariant. However, there are inter-symbol phase variations
in payload.

We �nd that the signals transmitted by commodity LoRa radio
su�er from frequency leakages, which can lead to inter-symbol
variation of phase measurements. Figure 8(a) presents a chirp signal
transmitted by Semtech SX1276 radio. We can observe weak power
leaking from main frequencies (i.e., frequency leakage) when the
chirp signal transits from the maximum frequency to the minimum.
Speci�cally, we compare the samples transmitted by SX1276 against
an ideal chirp signal of the same symbol. A phase shift is observed
around positions of frequency leakage as shown in Figure 8(b).
Figures 8(c,d) further compare phase measurements of chirp signals
from windows A and C (i.e., before and after the phase shift). The
phase measurements di�er by 165� because of the phase shift of
transmitted samples. As frequency leakages also appear at the edges
of payload symbols, it would add phase shifts to adjacent symbols,
leading to inter-symbol variation of phase measurements as shown
in the payload part of Figure 9(b).

We take CFO, STO and inter-symbol phase variation into account
and characterize the received signal of a LoRa symbol as below.

~ (C) = ⌘08A · 4�9 (2c�525 >C+i>B2 )4 9 (2c�5BC>C+iBC> )4 9iE0A|                                                 {z                                                 }
⌘A 5

·( (C, 5B~<),

where iE0A represents the phase variance introduced by frequency
leakages of LoRa radio.

Note that the initial phase of symbol ( (C, 5B~<) is iB~< , and
the phase of air-channel ⌘08A is denoted by i08A . After we remove
CFO and STO, the phase measurement from ~ (C) becomes q =
i08A � i>B2 + iBC> + iE0A + iB~< . As the goal is to extract phase of
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Figure 9: Phasemeasurements: (a) from received raw signals;
(b) after compensating for CFO and STO; (c) after calibrating
for both frequency and phase.

air-channel (i.e., i08A ), we need to remove phase uncertainties of
radio hardware (i.e., i>B2 ,iBC> ,iE0A , iB~<) from q to derive i08A .

We use two synchronized Rx antennas (named an Rx-pair) to
calibrate hardware phase uncertainties. For clarity, we denote the
two antennas of an Rx-pair by Rx1 and Rx2 respectively. As the
signals received by Rx1 and Rx2 correspond to the same packet,
they share the same inter-symbol phase variation (iE0A ) and symbol
initial phase (iB~<), because iE0A and iB~< are determined by Tx
radio and thus are invariant at Rx1 and Rx2. Besides, as Rx1 and
Rx2 share the same clock source, the phase of oscillator frequency
and STO remain the same. We can remove phase uncertainties of
both Tx and Rx radios by subtracting the phase measurements of
Rx1 and Rx2, which gives q1 � q2 = i08A1 � i08A2 .

Phase Di�erence of Air-channels (PDoA). i08A1 �i08A2 repre-
sents the phase di�erence between air-channels from transmitter
to Rx1 and Rx2, termed Phase Di�erence of Air-channels (PDoA). In
practice, we extract PDoA with a pair of Rx antennas. We sepa-
rately process received signals of each antenna (e.g., CFO and STO
compensation) and measure phases of demodulated symbol (i.e., q1
and q2). We extract PDoA of a symbol by subtracting the raw phase
measurements of two antennas of the Rx-pair (i.e., q1 � q2). Figure
9(c) presents the PDoA measurements from symbols of the packet

in Figure 9(a,b). We can observe that the PDoA stays constant across
symbols in both preamble and payload of a packet.

4.5 PDoA based Parallel Decoding
PCube relies on an Rx-pair to receive and decode concurrent pack-
ets. Upon detecting concurrent LoRa packets, PCube separates the
preamble of each packet from collisions, then uses separated pream-
bles to calibrate for CFO and STO and extract symbol edges. After
that, PCube can correctly locate the payload symbols of di�erent
packets and demodulate symbols for each packet.

Although we can separate preamble of a packet from collisions,
the same method cannot be used to extract payload symbols of
the packet without the prior knowledge on the initial frequency of
payload chirps. In the presence of concurrent transmissions, more
than one symbols will be detected in a demodulation window as
shown in Figure 10(a,b).

Intuitively, as symbols of concurrent packets are received by
the same Rx-pair with di�erent air-channels, the multiple symbols
detected in a demodulation window are expected to have di�erent
PDoAs. Figure 10(c) presents the PDoAmeasurements from symbols
of the two packets shown in Figure 10(a). We see that the PDoAs of
symbols form two horizontal lines corresponding to air-channels of
the two packets. It motivates us to distinguish symbols of a target
packet from interference by leveraging PDoA measurements.

However, as di�erent packets usually have di�erent CFOs and
STOs, it is non-trivial to extract PDoAs for concurrent symbols that
coexist in the same window. Fortunately, the CFOs and STOs of
concurrent packets can be mitigated with a pair of synchronized Rx
antennas. To be speci�c, PCube �rst dechirps raw signals from the
same demodulation window of each Rx antenna and performs FFTs.
Let /1 (5 ) and /2 (5 ) denote the FFT of dechirped signals of Rx1
and Rx2, respectively. Note that demodulated symbols appear at the
same FFT bin in /1 (5 ) and /2 (5 ). Although symbols of di�erent
packets may have di�erent CFOs and STOs, the corresponding
symbols of the same packet which appear in the same FFT bins in
/1 (5 ) and /2 (5 ) would share the same CFO and STO. As such, we
can multiply /1 (5 ) with the conjugate of /2 (5 ) (denoted as / ⇤

2 (5 ))
for each FFT bin to remove the CFOs and STOs for all concurrent
symbols in a demodulation window, which is represented as below.

Z(5 ) = /1 (5 ) · / ⇤
2 (5 ). (8)

Figure 10(d) plots the results of Z(5 ), where each frequency peak
corresponds to a symbol and the phase readings of the peaks are
PDoAs of the corresponding symbols.
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Figure 10: Illustration of extracting PDoA for concurrent symbols and PDoA based packet decoding.

To recover symbols of a target packet from collisions, PCube �rst
demodulates the raw chirp signals in each demodulation window
and removes CFOs/STOs for concurrent symbols according to Eq.(8).
It extracts all demodulated symbols (target and interference) from
each window and plots all detected symbols in an I-Q plane as
shown in Figure 10(e) where each point represents a symbol. We
see that demodulated symbols form two clusters in the I-Q plane,
which correspond to di�erent PDoAs of the two packets. PCube
extracts the PDoA of a target packet from the separated preamble
and selects the cluster of symbols that can best match the PDoA.
Symbols in the selected cluster can then be decoded with a standard
LoRa decoder, which �nishes the extraction of a target packet from
concurrent transmissions. After that, PCube aligns demodulation
window with another packet and iterates the above operations to
decode more concurrent packets.

4.6 Scaling with Rx Diversities
In case that two concurrent packets have similar air-channel phases,
it would cause ambiguities to PDoA-based symbol classi�cation
and result in decoding errors. As the number of concurrent trans-
missions increases, we can anticipate serious PDoA ambiguities for
packet decoding. PCube solves this problem by leveraging channel
diversities of multiple Rx antennas of a gateway.

We leverage the fact that the same packet can be received by
di�erent antennas with di�erent air-channels. If two packets su�er
PDoA ambiguities at one Rx-pair because of the same angle-of-
arrival (AoA) or similar channel conditions, they can still be sepa-
rated at another Rx-pair. As such, an intuitive method is to iterate
through all Rx-pairs to combat PDoA ambiguity for packet decod-
ing. However, the method does not scale well because it becomes
more likely to su�er from PDoA ambiguities at all Rx-pairs as the
number of concurrent packets increases. As illustrated in Figure 11,
a target packet (e.g., Pkt #1) cannot be separated from interference
at anyone of the Rx-pairs.

We observe that due to air-channel diversities among concurrent
packets, PDoAmeasurements of di�erent packets change di�erently
across di�erent Rx-pairs. We exploit the observation to combine
PDoAmeasurements of multiple Rx-pairs to selectively strengthen a
target packet. As illustrated in Figure 11 (Step 2), we �rstly eliminate
PDoA di�erence of a target packet across Rx-pairs by rotating
the raw PDoA measurements of the target packet to phase 0 for
each Rx-pair, and then combine all demodulated symbols of "
Rx-pairs in the I-Q plane. As the rotated symbols of the target
packet are aligned in phase, they will be coherently combined and
strengthened. Meanwhile, the symbols of interference packets are
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Figure 11: Combining PDoA measurements of multiple Rx-
pairs.

incoherently combined and weakened due to phase heterogeneity
from the target packet. As a result, symbols of the target packet
and interference symbols are separated apart in the I-Q diagram
as illustrated in Figure 11 (Step 3). Next, we can apply the PDoA
based parallel decoding method (Section 4.5) to extract symbols of
the target packet from collisions. The key step of Rx-pair rotation
and combining is as follows.

Z2><18=4 (5 ) =
"’
8=1

F8 · Z(8) (5 ) · 4�9%⇡>� (8 ) (5C0A64C ) . (9)

BymultiplyingZ(8) (5 ) with 4�9%⇡>� (8 ) (5C0A64C ) , we rotate the PDoA
of target packet to phase 0, where Z(8) (5 ) denotes the demodulated
frequency results (in FFT) of the 8C⌘ Rx-pair, and %⇡>�(8) (5C0A64C )
represents the PDoA of a target packet at the 8C⌘ Rx-pair measured
from the separated preamble of the target packet. To mitigate the
e�ect of heterogeneous SNRs among di�erent Rx-pairs, we assign
F8 = kZ(8) (5 )k/Õ"

:=1 kZ
(8) (5 )k based on the signal strength of

each Rx-pair.

5 EVALUATION
5.1 Methodology
Multi-antenna gateway. We build a LoRa gateway using USRP
SDRs (N210 with WBX daughterboards) based on the gr-lora
open-source project [16]. We connect SDRs with an external clock
source (CDA-2990) to form a synchronizedmulti-antenna system, as
shown in Figure 12 (Left). The raw PHY samples are sent to a laptop
through a 100 Gigabit Ethernet Switch (HUAWEI CloudEngine
S1730S-L24T-A). The laptop runs PCube decoder implemented in
MATLAB to process the raw PHY samples. A multi-antenna LoRa
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Gateway 

 LoRa node
CDA-2990

Figure 12: PCube implementation.

gateway can be developed at low-cost similar to a widely available
multi-antenna WiFi access point.

LoRa nodes. We use commodity LoRa nodes as transmitters.
The LoRa nodes are composed of Dragino LoRa shields [7] em-
bedded with Semtech SX1276 radios. We connect LoRa shields to
Arduino Uno boards to con�gure the SX1276 chips. We set the
default central frequency, bandwidth (BW), spreading factor (SF),
coding rate (CR), and transmission power of LoRa communication
as 925MHz, 250kHz, 10, 4/8, and 23 dBm, respectively.

Experiment setup. We evaluate PCube over four months of
experiments in a university and neighborhoods spanning 1.08 km
⇥ 1.2 km. We conduct experiments in both indoors and outdoors
(see Figure 13). The testbed consists of 40 LoRa nodes and a multi-
antenna gateway. In outdoor experiments, the gateway is deployed
at rooftop of a 54m high building as shown in Figure 12. LoRa nodes
are con�gured to transmit in Low Data Rate (LDR) mode to better
combat packet failures during experiments.

Metrics.We evaluate the performance of parallel decoding with
three metrics: (1) Packet Reception Ratio (PRR) of concurrent pack-
ets, (2) network throughput de�ned as the aggregated data rate of
correctly decoded packets, and (3) maximum number of concurrent
packets that can be decoded.

Comparison. We compare PCube against four benchmarks: (1)
LoRaWAN — a standard LoRa packet decoder without parallel de-
coding capability; (2) Choir [8] — a parallel decoder with collision
resolving in frequency domain; (3) FTrack [51] — a parallel decoder
with collision resolving in time domain; and (4) MIMO — an oracle
Multi-User MIMO scheme using multiple Rx antennas where the
channels between transmitters and Rx antennas are measured in
prior. Note that the original decoders of Choir, FTrack and stan-
dard LoRaWAN do not use multi-antenna. For fair comparisons,
we decode signals of each Rx antenna and select the best decoding
results as their �nal results.

5.2 Air-channel Measurement
Intra-packet coherence.We �rst test the coherence of air-channels
during a packet reception. We measure the di�erence between
PDoAs of symbols and the average PDoA of a packet (i.e., termed
phase deviation) to characterize the intra-packet coherence of air-
channel. As shown in Figure 14(a), PDoA measurements may vary
across symbols when a packet is received with poor SNRs. The
phase deviation generally follows a Gaussian distribution as shown

38
m

(a) Indoor layout

1.
2k
m

PCube Gateway
LoRa node

(b) Outdoor layout

Figure 13: Testbed settings of PCube.

in Figure 14(b). Figure 14(c) displays deviations of PDoA measure-
ments under di�erent SNRs ranging from -10dB to 20dB. We see
that phase deviations are smaller than 0.05c when SNR<0dB, and
approach to 0 as SNRs increase. It validates that air-channels can be
a�ected by channel conditions but generally remain stable within
a packet duration.

Concurrent channel measurements. We next evaluate PDoA
measurements in the presence of concurrent transmissions. We �rst
measure PDoA from collision-free packets to obtain groundtruth
for performance evaluation. Then, we add up PHY samples of two
packets and measure PDoA of each packet using the interleaved
signals. Figure 15(a) displays the PDoA measurement errors. We
see 70% of the measurements have < 0.1c phase errors, indicating
that the impact of inter-packet interference is small.

We further examine the impacts of frequency gaps of concurrent
symbols on PDoA measurements. We change the initial frequency
and power of interfering symbols, and present the results in Figure
15(b-d). We have three observations: (1) Interference may distort
the PDoA measurement of a target symbol if the frequency gap
between concurrent symbols is smaller than 7 FFT Bins (i.e., 7⇥⌫,

2(� ).
(2) Interference may cause large phase distortions (e.g., > 0.2c )
while the interference power is comparable or higher than the
power of target symbol as shown in Figure 15(c,d). (3) Interference
symbols do not distort PDoA measurements when the frequency
gap is larger than 7 FFT Bins, even when the interference power
is strong. It means that we can reliably measure air-channels of
concurrent symbols and group symbols accordingly to the correct
packets when the chirp frequency of concurrent symbols di�er by
7 or more FFT Bins. This enables PCube to handle parallel packet
decoding in most cases because both the frequency di�erence and
timing misalignment of concurrent symbols contribute to gaps of
chirp frequency. In case that the frequency gaps fall within 7 FFT
Bins, the PDoA measurements of concurrent symbols are likely to
su�er distortions due to inter-symbol interference. This problem
can be mitigated by combining multiple Rx-pairs for reliable PDoA
measurements, which is evaluated in the following experiment.

Multi-antenna gains. This experiment investigates the e�ects
of multiple Rx antennas on PDoA measurements. Figure 16(a) eval-
uates the deviations of PDoA measurements from low-SNR packets
using di�erent numbers of Rx antennas. As expected, the deviations
become smaller when the data of more Rx-pairs are combined. It
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Figure 14: PDoAmeasurements of a single packet: (a) PDoAmeasurements when SNR-5dB, (b) PDoA deviation follows Gauss-
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Figure 15: PDoA measurements of concurrent packets: (a)
PDoA measurement errors of concurrent symbols, (b-d) Im-
pacts of interference power on PDoA measurements.

demonstrates that more Rx-pairs are bene�cial to combating low
SNRs.

Figures 16(b) compares the normalized magnitudes of target
symbols and interference when we combine data of 4 Rx-pairs. We
see that the magnitude of 90% target symbols are higher than 0.95.
In contrast, 90% interference symbols have magnitude lower than
0.8. Figures 16(c) and (d) examine the impacts of the number of
Rx antennas on normalized magnitudes of target and interference
symbols, respectively. We observe that the magnitude of target
symbols are close to 1 across various SNRs, as Rx-pair combining
can align target symbols and enhance signal strength. In contrast,
the normalized magnitude of interference symbols become weaker
as more Rx-pairs are combined, since interference symbols are
generally mis-aligned in phase. As a result, target symbols and
interference can be separated apart farther in I-Q plane and thus
be distinguished more reliably when more Rx-pairs are employed.

5.3 Parallel Decoding Performance
Scalability performance. We conduct this experiment with in-
door settings as shown in Figure 13(a). We setup a gateway with
up to 8 Rx antennas using 8 synchronized USRP SDRs. The number
of LoRa nodes increases from 1 to 40. To ensure that all nodes are
synchronized and transmit simultaneously, we use a control node
to broadcast beacons every �ve seconds. Other nodes listen to bea-
cons and respond a 20-Byte data packet. The gateway receives the
signals of concurrent packets and decodes with di�erent decoders
to evaluate the scalability performance.

Figure 17(a) presents the measured throughput of di�erent de-
coders. The throughput of standard LoRaWAN is the lowest since
it cannot decode concurrent packets. Parallel decoders PCube and

FTrack yield increasing throughput as more nodes transmit simul-
taneously. The throughput of PCube increases faster than FTrack
due to bene�ts of multiple antennas. The throughput of PCube ap-
proaches the ideal upper-bounds of throughput produced by oracle
MIMO when the number of concurrent packets is 1⇠8. However,
the throughput of MIMO stops increasing when the number of
concurrent transmissions exceeds 8 (i.e., the maximum number of
Rx antennas). In contrast, PCube continuously increases and can
support more concurrent transmissions beyond the number of Rx
antennas. PCube yields a maximum throughput of 42kbps when
decoding 40 concurrent packets, which is 4.9⇥ higher than the best
throughput produced by existing parallel decoders (i.e., FTrack and
MIMO).

We evaluate the bene�ts of multiple Rx-pairs by comparing per-
formance of PCube when using 2 Rx antennas and 8 antennas.
PCube (8 Rx) uses all data of 8 Rx antennas for Rx-pair combining.
PCube (2 Rx) corresponds to the PDoA-based parallel decoder with-
out Rx-pair combining as presented in Section 4.5. For fairness, we
run PCube (2 Rx) with data of di�erent Rx-pairs of 8 antennas and
select the best decoding results. As shown in Figure 17(a), PCube
(8 Rx) is capable of decoding more concurrent packets than PCube
(2 Rx). The throughput increment of PCube (8 Rx) over PCube (2
Rx) is more than 50%.

Figure 17(b) examines Packet Reception Ratio (PRR) performance.
The PRR of PCube stays close to 1 and decreases slightly to 0.88
when the number of concurrent packets increases to 40. As expected,
the PRR of MIMO decreases dramatically when the number of
concurrent packets exceeds 8. Similarly, PRRs of Choir and FTrack
drop as more nodes transmit simultaneously, indicating limited
decoding capabilities (e.g., FTrack4 and Choir2 packets).

We de�ne decoding capability as the maximum number of con-
current packets that can be decoded under certain PRR criteria.
Figure 17(c) evaluates the decoding capability of PCube under 2⇠8
Rx antennas. Di�erent from MIMO whose decoding capability in-
creases linearly with the number of Rx antennas, the decoding
capability of PCube �rst increases ‘super-linearly’ then reaches the
maximum when more than 6 Rx antennas are employed. PCube
can break the limit of MIMO by decoding more packets than the
number of antennas. For example, PCube can concurrently decode
37 packets with PRR>90% when 8 antennas are used, which is 4.6⇥
of the decoding capability of conventional MIMO.
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Figure 16: PDoAmeasurements with multiple antennas: (a) Impacts of multi-antenna on PDoAmeasurements (SNR<0dB), (b)
Magnitudes of target symbols and interference when combining 4 Rx-pairs, (c,d) Impacts of antenna number (# ) on magni-
tudes of target symbols and interference, respectively.
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Figure 17: Scalability evaluation: (a,b) Throughput and Packet Reception Ratio as the number of concurrent transmissions
increases; (c) Decoding capability of PCube and MIMO; and (d) Comparison of computation overhead.

Computation overhead. Figure 18(a) compares time overheads
of various parallel decoders. We run these decoders on a desktop
to decode 2, 4 and 8 concurrent packets and measure the decoding
time respectively. We use the decoding time of standard LoRa de-
coder as a benchmark to normalize time measurements of parallel
decoders. We see that MIMO runs the fastest, and Choir spends the
longest time due to high overhead of frequency feature extraction
(e.g., 10,240 samples for each FFT). PCube has shorter decoding time
than FTrack when using 2 Rx antennas. When more antennas are
used, PCube’s decoding time increases yet is still shorter than the
time of Choir. As expected, it generally takes more time to decode
more concurrent packets. It means that PCube can handle concur-
rent transmissions on demand in a �exible manner. If no collision
occurs or a few packets collide together, we use less Rx antennas
(e.g., 2 Rx) for lower computation overhead. To support large-scale
LoRaWANs with more concurrent transmissions, we can increase
the number of antennas of gateways for higher decoding capability.
In this case, PCube indeed incurs higher computational overhead
to gateways. It will not be a problem because gateways are usu-
ally powerful enough in terms of both computation capability and
power supply. In practice, we can reduce the decoding time using
high-end gateways and hardware acceleration (e.g., FPGA).

SNR & packet con�gurations. This experiment examines the
impacts of SNR and LoRa packet con�guration on PCube perfor-
mance. We set up 20 nodes to transmit simultaneously and run

PCube to decode packets using 2, 4 and 8 Rx antennas, respectively.
We carry out experiments outdoors as shown in Figure 13(b), and
change the transmission power and locations of LoRa nodes to
evaluate a wide range of SNRs. The results are presented in Figure
18(a). We observe that PCube performs better under high SNRs; and
more Rx antennas can help decode more packets. For example, the
PRR of PCube when SNR>0dB increases from 55.8% to 88.1% as the
number of Rx antennas increases from 4 to 8. The PRR improvement
is more substantial when SNR<0dB.

Figures 18(b) and (c) evaluate the PRR of PCube with di�erent
settings of LoRa Spreading Factor (SF) and Bandwidth (BW) when
SNR>0dB. Generally, PCube performs better with larger SF and
BW. It means that large SF and BW settings can better support
concurrent transmissions. But larger SF and BW also correspond to
higher costs of packet decoding and power consumption. An inter-
esting result is that by adding more antennas (e.g., 8 Rx), PCube can
decode packets of small SF and BW with PRR>90%. It allows LoRa
nodes to transmit concurrently with power e�cient parameters
and achieve comparable PRR performance.

Near-far e�ects. In this experiment, we set up two LoRa nodes
(A and B) to transmit concurrently. We change the distances from
two nodes to gateway to study the impact of near-far e�ects on
PCube performance. We carry out experiments in an outdoor open
space. Both nodes have line-of-sight path to the gateway. Node
A is placed at a �xed location with 80m away from the gateway.
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Figure 18: Impacts of (a) SNR (b) spreading factor and (c) bandwidth on PCube when decod-
ing 20 concurrent packets.
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Figure 19: Impact of near-far
e�ects.

We move node B to 8 locations 20m⇠400m from the gateway. The
gateway receives 100 collided packets of the two nodes at each
location.

Figure 19 compares PRRs of two nodes at di�erent locations. The
PRRs of node B without collision are plotted as baseline comparison
for the performance of collision recovery of node B’s packets at
di�erent locations. We see that the PRR of node A stays higher than
85% across all settings, regardless of the location of node B. This
is because the signal strength of node A is high enough for packet
decoding. In contrast, the PRR of node B drops dramatically when
node B moves to 150m away or farther from the gateway, where
the signal strength of node B becomes much weaker than that of
node A. We observe that weak transmissions (e.g., node B) are more
likely to su�er packet failures in presence of strong concurrent
transmissions (e.g., node A).

Proximity of AoA & node locations. If LoRa transmitters are
adjacent in physical locations, their air-channels are likely to re-
semble each other. This experiment tests the performance of PCube
on decoding collided packets for closely-located transmitters with
the same AoA. We perform the experiment indoors with two LoRa
nodes as illustrated in Figure 20(a). The two nodes are aligned along
the median line of an Rx-pair of a gateway. We move node 2 along
the line to change distances between node 1 and node 2, during
which the two nodes are aligned with the same angle in relative to
the Rx-pair.

We expect that PDoA measurements would be around phase 0
for both nodes because the two nodes have equal distance to the
two Rx antennas. Surprisingly, we observe that even when node 1
and node 2 collocate with a distance shorter than 1cm, their collided
packets can still be separated in phase domain as shown in Figure
20(b). Note that although the two nodes are aligned, their signals
can be received by an Rx antenna not only from the direct path,
but also from many indirect paths due to multi-path e�ects. As a
result, even though the length of direct paths are equal for the two
transmitters, their signals may propagate through di�erent paths
to reach two antennas of the Rx-pair. Besides, even if two nodes are
aligned to an Rx-pair, they can be mis-aligned to other Rx-pairs.

Figure 20(c) presents the packet decoding performance of PCube
with di�erent node locations. We see that the packets of both nodes
are received with ratios higher than 90%, although the two nodes
are close to each other. In particular, the packet reception ratio
further increases to >95% as the number of Rx antennas increases
from 2 to 6. As a matter of fact, even if some collided packets are
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Figure 20: Impact of proximity of node locations: (a) Exper-
iment settings; (b) PDoA measurements from collided pack-
ets of the twonodeswhen�3  1cm; and (c) Packet reception
performance.

aligned in phase domain in some rare cases, we can still separate
the packets by creating reception diversities with more Rx antennas
because collided packets are not likely to have phases aligned at
all antennas. As long as the air-channel phases of collided packets
are di�erent to one of the many receiver pairs, PCube can support
their concurrent transmissions.

6 RELATEDWORK
Last few years have seen advances in LoRa technology such as
performance optimization [1, 5, 6, 9, 13, 22, 27, 34, 39, 57], LoRa
backscatter [18, 21, 28, 37, 40], LoRa sensing [4, 10, 32, 35, 53, 58],
and LoRa security [17, 23, 24, 49], etc.

Our work is most related to concurrent transmissions for LoRa
[26, 50, 61]. Choir [8] exploits the frequency o�sets introduced by
LoRa hardware to separate LoRa collisions. In practice, however,
the extracted frequency o�set is not reliable to classify colliding
symbols due to many in�uencing factors (e.g., STO, radio frequency
leakage). FTrack [51] leverages the misalignment of LoRa chirps
in time domain and detects the continuity of chirps within demod-
ulation windows to resolve LoRa collisions. mLoRa [48] detects
the time o�set between concurrent packets based on preamble cor-
relation results and separates collision samples in physical layer.
CoLoRa [44] classi�es LoRa symbols to their corresponding LoRa
packets according to the power level of the same frequency in
di�erent demodulation windows. NScale [43] ampli�es the time
o�sets between colliding packets with non-stationary signal scaling.
SCLoRa [25] resolves collisions by leveraging multi-dimensionality
and jointly considering frequency and time features. ALIGNER
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[33] proposes to avoid the potential ACK collision in concurrent
transmissions for low power wireless networks. Those previous
works mainly resolve collisions by leveraging the time domain and
the frequency domain information. Our work complements and
enhances the previous works by exploring a new dimension – phase
domain. Our work can help scale concurrent transmissions of LoRa
nodes by leveraging reception diversities of multiple Rx antennas
of a gateway.

In MAC layer, LMAC [11] enables carrier sensing of LoRa nodes
to avoid collisions. S-MAC [55] models the channel access prob-
lem as a channel scheduling problem and reduces collisions. The
MAC layer protocols can mitigate the collision problem but cannot
fundamentally avoid collisions such as hidden terminals.

We draw strength from previous e�orts that aim to enable concur-
rent transmission in Multi-User MIMO systems. IAC [15] presents
interference alignment and cancellation for decoding concurrent
sender-receiver pairs in MIMO networks. SAM [41] uses chain-
decoding to reliably decode concurrent frame transmissions and
implements with high performance software de�ned radios [42]. n+
[31] allows nodes to contend in random access not just for transmis-
sion time but also for the degree of freedom provided by multiple
antennas of WiFi stations. JMB [38] measures and synchronizes the
phase of multiple transmitters in a distributed manner to beamform
their signals and communicate with multiple clients in wireless
LAN.

Our work is also related to virtual MIMO in information the-
ory [46] which aims to support multiple transmitters to transmit
concurrently and make receivers collaborate to jointly decode the
concurrent transmissions. Virtual MIMO, however, requires the
symbol-level synchronization among distributed transmitters and
the transmission of raw physical layer samples among distributed
receivers. In practice, the tight synchronization is hard to achieve
especially for low-cost IoT devices and the raw sample transmis-
sion incur high communication overhead. Unlike virtual MIMO, our
work aims to enable concurrent transmissions of a large number
of single-antenna LoRa nodes without synchronization. Our work
scales the concurrency by exploiting the reception diversities of
multiple Rx antennas of a gateway.

7 DISCUSSION
Dynamic change ofCFO/STO.We note that as STO is determined
by both the arrival time of a packet and sampling time of a receiver,
it generally varies across di�erent packets. CFO may also change
over time due to hardware imperfection (e.g., clock drift). Despite
that, CFO and STO are relatively stable within a packet duration
and thus can be estimated and calibrated on a per-packet basis.
Even if clock drift takes places within a packet, as CFO and STO
dynamics remain the same across synchronized Rx antennas, the
time-varying features of CFO and STO can be well mitigated during
PDoA extraction with synchronized Rx-pairs.

Communication fairness. PCube can fairly decode all concur-
rent transmissions when the SNRs of packets are good. However, if
a weak packet collides with a strong packet, the weak transmission
is more likely to fail due to low SNR of the packet. Essentially, it is

because CFO and STO could be estimated and compensated incor-
rectly under low SNRs, which in turn leads to measurement errors
of channel phase and incorrect symbol classi�cation.

Power consumption. PCube improves the decoding capability
of LoRa gateways to decodemore concurrent packets that otherwise
could not be decoded due to collisions. If a gateway is capable of
decoding collided packets of concurrent transmissions, LoRa nodes
do not need to re-transmit when collision occurs, which also brings
energy bene�ts to LoRaWANs. More importantly, PCube does not
require modi�cations to the battery-powered LoRa nodes; it puts
all computation overheads at the gateway side. Although PCube
incurs higher overhead and more power consumption to gateways
when the number of collided packets increases, gateways with
su�cient computational resource and power supply can handle the
overheads in practice. We believe such a design trade-o� is worthy
for power-constrained LoRa transmitters.

Node mobility. If a node moves, the channel between node and
gateway may change across symbols of a packet. If we use the time-
varying channel phases to classify symbols of concurrent packets, it
may lead to errors in symbol classi�cation and packet decoding. In
this case, we can jointly use features in time, frequency and phase
domains for collision resolving. For example, as the symbol timing
of packets are generally stable in presence of node mobility, we
can �rstly separate packets from collisions based on symbol timing
(e.g., FTrack [51]). For the packets that cannot be separated in time
domain, we can check their phase-domain features to recover more
packets from collisions. PCube complements existing LoRa parallel
decoders by resolving collisions from a new dimension. We plan
to study node mobility and its impact on PDoA measurements and
extend our current classi�cation model that assumes static PDoAs
in the future.

8 CONCLUSION
This paper presents PCube — a phase-based parallel decoder that
can scale the concurrent transmissions of LoRa nodes with recep-
tion diversities of multiple receiving antennas of a gateway. We
overcome several practical challenges in accurately extracting air-
channel dependent phase features while canceling various in�u-
encing factors such as CFO, STO, and radio frequency leakage.
Experiment results demonstrate that PCube can scale communica-
tion concurrency beyond the number of receiving antennas. We
believe the design of PCube has wider implication. For example,
the method of measuring Phase Di�erence of Air-channels (i.e.,
PDoA) is promising in developing various systems such as phase-
based localization and tracking, wireless physical layer security,
and downlink MIMO for LoRaWANs.
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