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Abstract 
 
This paper proposes a formal approach for protocol 

information modeling and validation leveraging on 
ontological techniques. We demonstrate the advantage 
of our approach through prototyping a protocol 
management system for representation of 
communication protocols and composition of protocol 
stacks. The prototype has an ontology-based model to 
describe meta-data of protocols and protocol stacks in 
a systematic way. Consequently, the retrieval of 
protocols and the validation of protocol stacks are 
realized by corresponding operations on the ontology 
model. Owing to the better expressiveness of RDFS, the 
ontology model can describe protocols with higher 
‘fidelity’. Our experimental results show that the 
ontology-based protocol management system is 
operable and provides expressive knowledge modeling 
without compromising the performance.  
 
1. Introduction 
 

With the rapid advancement in media technologies 
and networks, distributed multimedia applications are 
expected to be deployed in an environment that is more 
dynamic and heterogeneous than ever before. Effective 
QoS provisioning is more challenging as multiple end-
to-end components – from applications, hosts’ OS and 
middleware to the underlying networks – are interacting 
and intertwining in very complex ways. This has led 
researchers to focus on different aspects of QoS 
provisioning in a fashion similar to the layered approach 
in network systems design. As a result, silos of QoS 
solutions (each particular to one QoS dimension) have 
been invented, which often led to instability and overall 
inefficiency of end-to-end QoS provisioning due to poor 
coordination between respective QoS efforts.  

In view of this, we have proposed a semantic-based 
QoS control and management framework (QCMF) for a 
cooperative end-to-end QoS provisioning [5]. It aims at 
accommodating and coordinating existing QoS 
mechanisms at three main QoS entity levels - network 
level, middleware level and user/application level and 
study their behaviors and inter-relationships.  

This paper focuses on the middleware level QoS 
modeling, with emphasis on the semantic modeling of 
communication protocols and protocol stacks. 
Traditional protocol stack in end-hosts is static in nature 
and hence is not able to re-compose to suit demanding 
networked multimedia applications over diverse runtime 
environments. For example, once a protocol stack is 
established for applications at build time, runtime 
restructuring of the stack to deal with resource scarcity 
is normally not supported. In view of this, we have 
proposed a dynamic protocol framework (DPF) [1], 
which overcomes such limitations of static protocol 
stacks by providing protocol stack adaptation at runtime.  

The key enabler of DPF is a protocol management 
system which deals with representation of protocols and 
composition of protocol stacks. This paper proposes an 
ontology-based approach to the modeling and 
processing of protocol/stack information. It has the 
advantages of being expressive, flexible and 
interoperable with other QoS systems (e.g., QoS-
enabled applications) in end-to-end QoS coordination. 
The proposed ontology-based approach of representing 
protocol’s properties and protocol stack’s composition 
serves as a design paradigm for the semantic modeling 
of other QoS systems along the end-to-end path. The 
common semantic modeling approach of QoS systems 
will facilitate the exchange and processing of their QoS 
information, which can in turn result in better 
interoperability in QoS control and management among 
these systems.  

The rest of this paper is organized as follows. Section 
2 discusses related work; Section 3 presents an overview 
of QCMF and DPF. Section 4 describes the ontology 
model of protocol layers, protocols and stacks. 

The work reported in this paper has been funded in part by the 
Agency for Science, Technology and Research (A*STAR) of 
Singapore under Grant 0520150024. 
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Implementation results and performance evaluation are 
presented in Section 5. This is followed by a conclusions 
and future work in section 6. 
 
2. Related work 
 

Much research has been done in the area of dynamic 
composition of protocol stacks. However, most of them 
have taken an ad-hoc approach to design proprietary and 
exploratory protocol management systems which lacks 
formality and expressiveness. 

Rwanda [4] and its successor Chameleon [11] focus 
on providing tailored protocol services to support 
diverse requirements of different media types. Rwanda 
models a protocol stack as a linear list of protocol 
objects which represents a QoS such as reliable delivery 
or encrypted communication. All information is 
implemented by a Java class and is runtime retrieved via 
reflection for configuration. However, both Rwanda and 
Chameleon have only designed a few protocol 
properties for demonstration purpose. The systematic 
modeling of protocol properties and efficient processing 
of protocol information for stack configuration is not 
considered in their projects. 

Dynamic Layered Protocol Stack (DLPS) [3] of 
Microsoft provides a method to dynamically build a 
protocol stack for data transfer. A stack description file 
has been designed comprising a plurality of individual 
protocol layer description so that the plurality of all 
these layer descriptions together define which protocol 
layers will be included in the protocol stack when it is 
constructed. However, DLPS has not touched on the 
issue of modeling properties of protocol stacks as a 
collection of individual protocols. Furthermore, each 
protocol in DLPS is described individually without 
considering the re-use of common characteristic of 
protocols. For example, all video codec protocols have 
properties such as the number of tracks and sampling 
rate, which can be abstracted as a base knowledge for 
codecs of that category. 

In [12], component description is introduced to 
represent protocol building blocks. Each component is 
described by a list of provided properties and required 
properties. The former declares the functionality that can 
be provided by a component while the latter defines its 
conditions to be satisfied by others (e.g., downward and 
upward dependencies).  An algorithm to select building 
blocks is also presented where the solving strategy of 
stack composition is to match the requested properties of 
one component with the provided properties of others. 
However, their work has only focused on the 
dependency properties of protocols and neglected the 
importance of other protocol properties in runtime stack 
building. For example, the selection of G.723 protocol 

or MPEG protocol to stream audio flows runtime should 
depend on the resource availability since they have the 
same dependency on the RTP protocol. A selection 
algorithm considering only one searching factor (e.g., 
dependency as used in [12]) surely would not find an 
optimal stack composition in practice.  

Among all the above projects, protocol modeling is 
accomplished by individual efforts making use of either 
programming languages elements or proprietary data 
structures [14]. These work lack of generality and most 
likely cannot provide customized and expressive 
descriptions for protocols and stacks. In this paper, we 
present our ontology-based protocol model using RDFS 
that addresses these shortcomings. The ontological 
approach to QoS modeling is initiated from the semantic 
web community. However, reported work [7][8][9] so 
far is limited to the description of web services’ QoS 
properties for service matching and selection. In 
contrast, we propose in this and other papers semantic 
modeling and sharing of QoS information for QoS 
components (e.g., network and middleware) along the 
end-to-end path, thus forming a knowledge basis for 
correct QoS configuration and adaptation. 
 
3. QCMF and DPF overview 
 

The semantic-based QoS control and management 
framework (QCMF) is our research effort for a holistic 
approach to end-to-end QoS provisioning by 
considering and coordinating QoS mechanisms from 
different dimensions for end-to-end benefit. The 
motivation of QCMF is based on the identification of 
two shortcomings in current QoS tools and technologies. 

Firstly, most current QoS researches focus on 
individual aspects and areas of the QoS provisioning 
mechanisms (e.g., within application, middleware or 
network), with less attention being paid to the 
collaboration between these facilities. These isolated 
viewpoints will lead to undesirable or inefficient 
solutions with respect to end-to-end QoS. For instance, 
it is not sufficient to rely purely on the QoS provisioning 
mechanics in end-hosts to guarantee the performance of 
a multimedia flow from a sender to a receiver. The 
network in between should also play a role in assuring 
the quality of the flow if such supports really exist (e.g., 
in a DiffServ [15] network). Hence, we assert that any 
useful end-to-end QoS solution must consider the 
coordination of QoS mechanisms between layers or 
components (such as those in end-hosts and in network) 
and manage them in a cohesive and co-operative 
fashion. 

Secondly, current QoS solutions mainly focus on the 
mathematical calculation of QoS parameters (e.g., [6]) 
while neglecting the semantic meanings of QoS terms. 
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In our view, the explicit representation and 
differentiation of QoS concepts and their relations is 
equally important for a correct QoS configuration and 
adaptation end-to-end. A simple example can be 
illustrated in a grid scenario where a user requests his 
job to be executed by a UNIX (compatible) server. 
During QoS negotiation, a service provider running in a 
Linux environment would not be selected for job 
execution in a traditional keyword-based matching. 
However, if we can setup an ontology for relevant QoS 
knowledge representation (in this case is a QoS ontology 
about OS information), semantic QoS negotiation can be 
fulfilled to reason and acknowledge the QoS 
compatibility between the job requester and supplier. 

As mentioned, the proposed QCMF framework aims 
at accommodating existing or new QoS mechanisms at 
three levels and studying their interactions with respect 
to end-to-end QoS configuration and adaptation. We 
believe a key step toward the solution lies in the 
representation and organization of QoS meta-
information to facilitate knowledge understanding and 
exchange along the end-to-end path. This paper focuses 
on the middleware level QoS modeling, with emphasis 
on the semantic modeling of communication protocols 
and protocol stacks. 

At middleware level, we have designed a dynamic 
protocol framework (DPF) [1], which can provide 
dynamic protocol stack composition at call-setup time 
and re-composition (i.e., protocol swapping) at runtime. 
In the context of QCMF, DPF offers one possible 
dimension of QoS adaptation within the communication 
protocol stack which can supplement current prevailing 
QoS solutions at application or network level. The 
operations of DPF (e.g., runtime re-composition of 
stacks) are triggered by QCMF as the outcome of a 
coordinated decision-making process among different 
QoS dimensions and are transparent to end-users.  
 
4. An Ontology-Based Model for DPF 
 
4.1. Design considerations 
 

In line with the semantic modeling of other QoS 
components in QCMF, we have chosen an ontology-
based approach to model protocols and manage the 
dynamic composition of protocol stacks for the 
following reasons: firstly, ontology is a formal 
description of concepts and relationships, which is 
expressive in describing notions, their relations and 
restrictions. Ontology provides a means for formulating 
semantic models of knowledge while other schemas 
such as XML can only produce a data model (which is a 
tree); secondly, the use of ontology enables different 
QoS components in QCMF to have a common 

understanding of QoS knowledge while interacting with 
one another. The identification of the semantic meanings 
of QoS concepts is essential in information sharing 
along the end-to-end QoS provisioning path; lastly, 
ontology-based approach facilitates the machine 
processing and reasoning of QoS concepts as is 
demonstrated in [5].  

Semantic QoS modeling also contributes to restoring 
the runtime portability of QoS demanding applications 
in heterogeneous environments. Take the protocol stack 
composition in an end-host as an example. In end-to-end 
QoS provisioning, the selection of a targeted protocol in 
forming a stack is dependent on multiple factors such as 
the availability of that protocol in the end-host and the 
preference of the communication peer. Hence it is 
meaningless to explicitly bind an application to a 
specific protocol beforehand. Instead, our semantic 
approach for QoS modeling allows applications to 
specify their protocol need (e.g., resource reservation 
feature) rather than fixing the name of a protocol. Based 
on the semantics of each available protocol runtime, 
appropriate protocols (e.g., RSVP [17]) will be fetched 
automatically to compose a protocol stack that fulfills 
application requirements.  

To realize our ontology model, RDFS [10], a W3C 
recommended language for defining ontologies has been 
employed. The selection of RDFS rather than OWL [21] 
in our project is based on a realistic balance of language 
capability and performance: RDFS is sufficient for 
modeling of protocols (as can be seen from next 
sections) and is faster than OWL in ontology processing. 

The architecture and workflow of DPF is shown in 
Figure 1. The protocol management system is basically 
composed of two sub-modules: a protocol ontology base 
which represents and stores protocol information 
ontologically and an inference engine which takes 
protocol ontology as input and interacts with other 
components of DPF throughout the lifecycle of a session 
to guarantee the correct composition of protocol stacks. 
Details about the modeling and manipulation of protocol 
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information will be presented in the following sections. 
Particulars about functional manipulation of protocols 
(.e.g., protocol insertion or swapping) in DPF can be 
found in our previous paper [1] and patent [2]. 
 
4.2. Ontology modeling of layers 
 

In this section, we introduce our ontology-based 
protocol modeling and classification. Since each 
protocol in DPF provides a specific service, we define 
an overall service class in RDFS expression (see Figure 
2) to capture the common properties that exist in various 
protocols. These common properties include layer name 
(where the protocol lies in the stack), protocol name 
(what is the protocol) and class name (where to find the 
functional code of the protocol). Other common 
properties such as dependency and compatibility will be 
addressed in the next section.  

<rd fs : C l a s s  rd f : ID=" Se rv i ce" />  
<rd f s : C l a s s  rd f : ID="T r anspo r t ">  
    < rd f s : sub C l a s sO f  rd f : re sou rc e="# Se r v i c e" />  
</ r d f s :C l as s> 
…  
<rd f s : P ro pe r t y  r d f : ID=" c l a s s Na me" > 
    < rd f s :do ma i n  rd f : r esou rc e=" #S er v i c e" />  
</ r d f s :P rope r t y> 
<rd f s : P ro pe r t y  r d f : ID="p ro t o co l Na me" > 
    < rd f s :do ma i n  rd f : r esou rc e=" #S er v i c e" />  
</ r d f s :P rope r t y> 

 
We then classify protocols into layer categories 

according to their positions in the protocol stack. Such 
classification is based on the observation that protocols 
of the same layer usually provide similar functionalities. 
For example, network layer protocols specifically 
provide connectivity service among hosts. Hence 
ontology models can be established on a per-layer basis 
to describe the common functionalities provided by that 
layer. Each layer extends the fundamental service class 
and also defines layer specific attributes. Figure 3 shows 
an example of one property specific to the codec layer. 
The scope that this property applies to is defined by the 
domain expression, which provides isolation of property 
usage at grammatical level. All properties of a layer, 
either inherited from the basic description of service 
class or specifically defined in that layer definition, 
together form the ontology model of a layer.  

<rd fs : P ro pe r t y  r d f : ID=" su ppo r t ed I np u t Fo rm at s ">  
    < rd f s :do ma i n  rd f : r esou rc e=" #Co de c" />  
    < rd f s : r ang e  rd f : reso u rc e=" xsd :S t r i ng " / >  
</ r d f s :P rope r t y> 

       
Four layer categories have been developed for DPF 
currently: Network layer, Transport layer, Media-aware 
layer and Application layer. Network layer contains 
layer 2 protocols such as IP and IPX while transport 
layer includes TCP and UDP. Media-aware layer 
accommodates protocols related to media transmission 
such as RTP. The composition of application layer is 
more complex than other layers. Protocols in this layer 
have been designed to serve applications with diverse 
nature. There are no uniform criteria to define the 
common features of application layer protocols. Rather, 
the characteristics of these protocols depend on the 
application domain concerned. For example, in the 
context of multimedia transmission, these application 
layer protocols refer to codec which provide diverse 
encoding and decoding functions for media data. 

In view of this, we classify application layer 
protocols according to the application domain they 
serve. Three categories of application protocols have 
currently been defined in DPF: codec protocols, security 
protocols and session control protocols. Such a 
classification is extensible in nature in that more detailed 
classification is also possible to provide fine-grained 
descriptions. For example, the category of codec 
protocols can be further divided into audio and video 
codec sub-categories, both of which can be further 
partitioned into RTP-based or non-RTP-based codec 
types (see Figure 4). A hierarchical layer model can thus 
be setup and extended on demand to classify protocol 
types in more details. 
 
4.3. Ontology modeling of protocols 
 

The hierarchical ontology model of layers serves as 
the template to model protocols belonging to that layer. 
An individual protocol is defined as an instance of a 
specific layer. Thus the ontology model of a protocol 

Figure 2. Entry point: class service and its properties  

Figure 3.  “supportedInputFormats” is a property of codec layer 
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can be setup according to the layer ontology. For 
example, TCP is defined as an instance protocol of 
transport layer.  Figure 5 shows a partial definition of 
TCP ontology model. Properties such as port are 
specific to the transport layer and are defined by the 
transport layer ontology. Other properties such as 
className and dependency are derived from service 
class. The layer ontology is reusable among protocols of 
the same layer. Hence the ontology model of another 
transport layer protocol (e.g., SPX) can also be 
portrayed based on transport layer ontology model. 

<Tr ans po r t  rd f : ID ="TC POut ">  
    < l ay e r N am e>p ro t o co l . s r v . T ra nspo r t</ l ay e rN am e> 
    < p ro t o co lN a me> TC P</ p ro t o co lN am e> 
    < c l a s sN a me>t r anspo r t . T CPOut </ c l as s Na m e> 
    < upp e rDep d> NU LL </u pp erD epd > 
    < l ow erD epd y> N etwo r k . I P< / l owerD ep d> 
    < r e l i ab i l i t y >t r ue </ re l i ab i l i t y>  
    < po r t >4088< /po r t>  

<po l a r i t y> 1</ po l a r i t y>  
…  

</T ran spo r t>  

The ontology models of layers and protocols are 
recorded in the protocol ontology base as two RDFS 
documents: schema and instance. These two files are 
runtime processed in the inference engine for grasping 
semantic features of protocols and relations among 
them. At the stage of protocol stack composition/re-
composition, suitable protocol components are retrieved 
from the inference engine to compose a protocol stack. 
As explained before, to ensure the flexibility of 
deploying applications in heterogeneous run-time 
environment, DPF allows applications to describe their 
desired protocol service features at design-time instead 
of explicitly bounding a specific protocol. Hence the 
retrieval of suitable protocols from inference engine is 
not restricted to just match the name of a protocol. In 
fact, every property of a protocol in DPF can be used as 
a criterion to select a protocol component. For example, 
if the stack specification from users requires a reliable 
data transmission, reliability will then be used as the 
keyword to possibly retrieve TCP as one of the stack 
component. 

Our ontological design to protocol and stack 
modeling has several advantages compared with a 
traditional java inspection based approach (such as that 
employed in [4]). Firstly, the maintenance and 
modification of protocols are expressive and flexible. 
For example, erasing a protocol instance only requires 
the update of instance file while the modification of 
layer ontology only involves the refreshment of schema 
file. Secondly, both layer model and protocol model are 
encoded in RDFS language where information is 

accessible to other end-to-end QoS components. 
Thirdly, the ontology-based approach for protocol 
modeling can easily provide customized and expressive 
specifications for protocols/stacks and enable code 
reusability as has been demonstrated. Finally, protocol 
information can be semantically compared, reasoned 
and understood by different machines in a distributed 
environment.  
  
4.4. Stack modeling and validation 
 

In DPF, a protocol stack is a protocol graph that 
consists of a vector of protocols in the sequence of 
layers. Hence, ontology model of a protocol stack is 
defined as the integration of ontology models of 
protocols comprising that stack. As protocol stack is 
dynamically composed at runtime, stack ontology is a 
memory model to describe the features of a transient 
stack. Different combination of protocols will produce 
stacks with different characteristics. The 
characterization of stack is essential for deciding 
whether the stack composition can suffice 
application/user requirements or not. For example, 
<G723, RTP, UDP, IP> is a protocol stack for audio 
transmission. This stack is characterized by having low 
perception quality (derived from G723 protocol model), 
unreliable data transmission (derived from UDP 
protocol model) and supports real time session control 
(derived from RTP protocol model). If an end-user can 
accept medium to low audio perception quality, then 
such kind of stacks can be employed at runtime in case 
of resource scarcity. 

On the other hand, not every combination of 
protocols forming a stack is valid. For example, the 
stack composition <JPEG, RTP, UDP, IPX> for video 
streaming is not acceptable because UDP is not 
compatible with IPX. To describe the compatibility 
among protocols in constituting a protocol stack, we 
introduce a special property element – compatibility – to 
capture such relationship, as is shown in Figure 6.  

< r d f s :P rope r t y  rd f : ID=" com pat i b i l i t y " >  
    < rd f s :do ma i n  rd f : r esou rc e=" #S er v i c e" />  
    < rd f s : r ang e  rd f : reso u rc e=" xsd :S t r i ng " / >  
</ r d f s :P rope r t y> 
 
<  r d f s :P rope r t y  rd f : ID="  upp e rDep d"> 
    < rd f s :do ma i n  rd f : r esou rc e=" #S er v i c e" />  
    < rd f s : r ang e  rd f : reso u rc e=" xsd :S t r i ng " / >  
</ r d f s :P rope r t y> 

As pointed out previously, dependency is another 
important property of protocols which describes the 
reliance of one protocol on other protocols. For 
example, H263_RTP is a JMF (Java Media Framework 
[18]) video codec whose deployment requires the 

Figure 6.  RDFS definition for compatibility and dependency  

Figure 5.  TCP is of (rdf:) type transport and is modeled 
according to the transport layer ontology model
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presence of RTP in the protocol stack. We introduce an 
additional property element – lowerDepd – to describe 
such a dependency as the desired protocol RTP reside 
below H263_RTP in the protocol stack. It’s also 
possible that a protocol requires other protocols to 
appear on top of it in the stack. For example, TCP/UDP 
and IP are always bundled together in the protocol stack. 
Thus IP protocol has a dependency on upper side 
transport layer protocols (either TCP or UDP). We also 
introduce a property element – upperDepd – to describe 
such a requirement. The definition of the upperDepd 
property is also shown in Figure 6. 

Compatibility and dependency are modeled as 
properties of the basic service class since all protocols 
may have such requirements. The dependency and 
compatibility knowledge of each protocol is supplied by 
protocol developers. To ensure that all protocols in the 
stack can cooperate properly with each other, stack 
validation is enforced once a stack is defined. The stack 
validation goes through two stages: grammatically check 
and specification check. The former one guarantees that 
dependencies of every protocol and compatibility of the 
stack are satisfied. The latter one makes sure that the 
stack is configured in accordance with user/application 
requirements. Those stacks that pass the validation 
check are legal stacks and will be negotiated among 
communication peers for the initiation of data 
transmission. 
 
5. Implementation and evaluation 
 

We have implemented the ontology-based protocol 
management system in Java on J2SE 1.5.0 platform. 
JMF is used as the runtime environment for multimedia 
streaming. 11 protocols, namely RTP, TCP, UDP, IP, 
G711 codec, G723 codec, GSM codec, MPEG codec, 
H263 codec, JPEG codec and affined 
encryption/decryption, have been classified into 4 layers 
and modeled respectively. The layer and protocol 
ontology consists of 24 classes and 62 properties. The 
Jena Semantic Web Toolkit [13] has been chosen as the 
inference library to load RDFS models about protocols 
and explore relations among layers and protocols (e.g., 
protocol dependencies).  

TABLE 1.  Time-taken in DPF management functions 

Time (ms) Operation 
DPF-2  DPF-1 

Creation of SyncMaster 453 484 

Creation of SyncSlave 250 320 

Creation of Ontology Model (total) 1563 - 

 Loading of schema/data file 1313 - 

 Creation of inference model 250 - 

Creation of Java Protocol Registry - 3645 

Load of Java Protocol Registry - 104 

Start-Up Protocol Stack Composition  

(total) 

1446 1632 

 Discovery of protocol components 93 500 

 Creation of protocol stack 1 1 

 Query protocol dependency 2 1 

 Check stack validation 31 30 

Runtime Protocol Stack Re-composition 

(total) 

148 168 

 Discovery of targeted protocol 1 5 

 Re-creation of protocol stack 1 1 

 Query protocol dependency 1 2 

 Check new stack validation 27 29 

 
Experiments have been conducted to evaluate the 

performance of ontology-based DPF (named as DPF-2) 
with emphasis on the semantic protocol discovery and 
stack validation. The configuration of the testbed is as 
follows: two DELL PCs with Pentium IV processor 2.4 
GHz and 512MB memory are employed as end-hosts. 
Microsoft Windows XP is the primary operating system 
on these machines. Every end-host holds a local 
protocol ontology base which provides ontology models 
for layers and protocols. For end-to-end communication, 
these two end-hosts act as media sender and receiver 
respectively. One of the end-host also serves as the 
synchronization manager (SyncMaster) to coordinate the 
communication. We obtained our measurements from 
initiation of audio/video streaming and runtime 
swapping of codecs (or transport layer protocols). The 
results of the experiment are shown in Table 1. For 
comparison, we have also implemented a Java 
introspection based protocol system (named as DPF-1) 
similar to that of Rwanda [4] and gathered measurement 
under the same environment setting.  

As can be seen from Table 1, the overall performance 
of DPF-2 is slightly better than its DPF-1 except that a 
one time initiation delay around 1.5 seconds is needed to 
initiate the ontology model. This overhead is incurred by 
Jena to read in and analyze the protocol ontology 
(schema and instance RDFS file) which contain 
ontology definition about layers and protocols (1313 
ms) and to create inference engine (250 ms). Despite 
such an initiation overhead, ontology-based DPF-2 can 
offer better expressiveness and flexibility than a Java 
inspection-based one as we have explained earlier. The 
time for creation of SyncMaster and SyncSlave is 
largely spent on establishing control channel between 
sender and receiver. Such control channel is launched 
using RMI (Remote Method Invocation) [19] registry 
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technology which is a server-side name service that 
allows RMI clients to get a reference to the server 
object. In DPF-2, this RMI registry is used for 
SyncMaster to announce its presence and for SyncSlave 
to retrieve and register with it. These two processes take 
453 ms and 250 ms respectively. Comparatively, DPF-1 
leverages on JINI [20] technology to publish and 
discover SyncMaster which takes 484/320 ms to finish. 
Hence the invocation delay of RMI and JINI are of the 
same level in our test. 

In DPF-1, the discovery of appropriate protocols 
from the protocol registry (a java class that records 
protocol properties) is achieved through introspection 
and takes half second. In DPF-2, such retrieval is 
performed by SPARQL [16] query language built-in 
Jena. We found that each query can be answered at the 
average rate of a few tens of milliseconds. Protocol 
dependency and compatibility is similarly checked by 
querying relevant information from inference engine, 
which can also be completed within a few milliseconds. 

We have also conducted a series of experiments to 
further evaluate the performance of ontology model over 
different scales of dataset. The size of dataset is 
measured in term of the number of RDF triples, each of 
which represents a single statement (S-V-O predicate). 
These triples are generated within RDFS inference 
engine by parsing and merging RDF class definition and 
instances contained in the protocol ontology base. We 
have focused on the loading and merging time of the 
protocol ontology which also involves checking the 
ontologies for inconsistencies and generating of RDF 
triples. Figure 7 shows the results of experiments on PCs 
and laptops of different CPU speeds. It’s not surprising 
to see that the initiation delay of RDF inference engine 
is proportional to the size of input dataset. However, as 
increments are linear, the delay is still acceptable even 
for a large dataset of 2261 triples (corresponding to 302 
RDFS classes, which are sufficiently large enough for 
modeling more than 100 protocols – created for testing 
purpose only); the initiation delay also depends on the 
CPU speed. A PC with higher CPU clock speed will 
require less time to prepare the inference engine. 
However, the difference in performance is not 

significant. On the other hand, we have found that after 
preparation, the inference engine can answer a query 
within tens of milliseconds in both small and large scale 
dataset settings. All these results suggest that it is 
feasible to employ RDF based ontology model to 
manage protocol knowledge even on less powerful hosts 
such as laptops.  
 
6. Conclusions and future work 
 

In this paper, we have presented a formal ontology-
based methodology to represent, access and retrieve 
protocol information. Protocol knowledge is modeled to 
(1) semantically select appropriate protocols that meet 
application requirements, (2) validate the composition of 
a protocol stack for build-time construction and runtime 
re-composition, and (3) facilitate QoS information 
exchange among end-to-end QoS components within the 
scope of our QCMF framework.  

Based on the ontology model for layers, protocols 
and protocol stacks, an adaptive middleware can be 
designed to support dynamic discovery of protocols, 
building/validation and runtime re-composition of the 
protocol stack. The evaluation results demonstrate a 
reasonable performance of our system on desktops. On 
the other hand, we observe ontology processing a quite 
time-consuming process, which may not be appropriate 
for resource-constrained devices such as PDA or 
handset. We plan to introduce a set of proxies in the 
future to take over the ontology processing task in the 
case of mobile multimedia streaming. The design of 
proxy architecture and efficient distribution of proxies 
for multiparty communications (e.g., distant 
conferencing) should also be carefully studied. 
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