
Ontology Modeling of a Dynamic Protocol Stack

LiFeng Zhou1 , Hung Keng Pung 1 , Lek Heng Ngoh 2 , Tao Gu1
1 School of Computing, National University of Singapore, Singapore

2 Institute for Infocomm Research, Singapore
{zhoulife, punghk, gutao}@comp.nus.edu.sg, lhn@i2r.a-star.edu.sg

Abstract

This paper proposes a formal approach for protocol

information modeling and validation leveraging on
ontological techniques. We demonstrate the advantage
of our approach through prototyping a protocol
management system for representation of
communication protocols and composition of protocol
stacks. The prototype has an ontology-based model to
describe meta-data of protocols and protocol stacks in
a systematic way. Consequently, the retrieval of
protocols and the validation of protocol stacks are
realized by corresponding operations on the ontology
model. Owing to the better expressiveness of RDFS, the
ontology model can describe protocols with higher
‘fidelity’. Our experimental results show that the
ontology-based protocol management system is
operable and provides expressive knowledge modeling
without compromising the performance.

1. Introduction

With the rapid advancement in media technologies
and networks, distributed multimedia applications are
expected to be deployed in an environment that is more
dynamic and heterogeneous than ever before. Effective
QoS provisioning is more challenging as multiple end-
to-end components – from applications, hosts’ OS and
middleware to the underlying networks – are interacting
and intertwining in very complex ways. This has led
researchers to focus on different aspects of QoS
provisioning in a fashion similar to the layered approach
in network systems design. As a result, silos of QoS
solutions (each particular to one QoS dimension) have
been invented, which often led to instability and overall
inefficiency of end-to-end QoS provisioning due to poor
coordination between respective QoS efforts.

In view of this, we have proposed a semantic-based
QoS control and management framework (QCMF) for a
cooperative end-to-end QoS provisioning [5]. It aims at
accommodating and coordinating existing QoS
mechanisms at three main QoS entity levels - network
level, middleware level and user/application level and
study their behaviors and inter-relationships.

This paper focuses on the middleware level QoS
modeling, with emphasis on the semantic modeling of
communication protocols and protocol stacks.
Traditional protocol stack in end-hosts is static in nature
and hence is not able to re-compose to suit demanding
networked multimedia applications over diverse runtime
environments. For example, once a protocol stack is
established for applications at build time, runtime
restructuring of the stack to deal with resource scarcity
is normally not supported. In view of this, we have
proposed a dynamic protocol framework (DPF) [1],
which overcomes such limitations of static protocol
stacks by providing protocol stack adaptation at runtime.

The key enabler of DPF is a protocol management
system which deals with representation of protocols and
composition of protocol stacks. This paper proposes an
ontology-based approach to the modeling and
processing of protocol/stack information. It has the
advantages of being expressive, flexible and
interoperable with other QoS systems (e.g., QoS-
enabled applications) in end-to-end QoS coordination.
The proposed ontology-based approach of representing
protocol’s properties and protocol stack’s composition
serves as a design paradigm for the semantic modeling
of other QoS systems along the end-to-end path. The
common semantic modeling approach of QoS systems
will facilitate the exchange and processing of their QoS
information, which can in turn result in better
interoperability in QoS control and management among
these systems.

The rest of this paper is organized as follows. Section
2 discusses related work; Section 3 presents an overview
of QCMF and DPF. Section 4 describes the ontology
model of protocol layers, protocols and stacks.

The work reported in this paper has been funded in part by the
Agency for Science, Technology and Research (A*STAR) of
Singapore under Grant 0520150024.

3531-4244-0419-3/06/$20.00 ©2006 IEEE

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 17:04:39 UTC from IEEE Xplore. Restrictions apply.

Implementation results and performance evaluation are
presented in Section 5. This is followed by a conclusions
and future work in section 6.

2. Related work

Much research has been done in the area of dynamic
composition of protocol stacks. However, most of them
have taken an ad-hoc approach to design proprietary and
exploratory protocol management systems which lacks
formality and expressiveness.

Rwanda [4] and its successor Chameleon [11] focus
on providing tailored protocol services to support
diverse requirements of different media types. Rwanda
models a protocol stack as a linear list of protocol
objects which represents a QoS such as reliable delivery
or encrypted communication. All information is
implemented by a Java class and is runtime retrieved via
reflection for configuration. However, both Rwanda and
Chameleon have only designed a few protocol
properties for demonstration purpose. The systematic
modeling of protocol properties and efficient processing
of protocol information for stack configuration is not
considered in their projects.

Dynamic Layered Protocol Stack (DLPS) [3] of
Microsoft provides a method to dynamically build a
protocol stack for data transfer. A stack description file
has been designed comprising a plurality of individual
protocol layer description so that the plurality of all
these layer descriptions together define which protocol
layers will be included in the protocol stack when it is
constructed. However, DLPS has not touched on the
issue of modeling properties of protocol stacks as a
collection of individual protocols. Furthermore, each
protocol in DLPS is described individually without
considering the re-use of common characteristic of
protocols. For example, all video codec protocols have
properties such as the number of tracks and sampling
rate, which can be abstracted as a base knowledge for
codecs of that category.

In [12], component description is introduced to
represent protocol building blocks. Each component is
described by a list of provided properties and required
properties. The former declares the functionality that can
be provided by a component while the latter defines its
conditions to be satisfied by others (e.g., downward and
upward dependencies). An algorithm to select building
blocks is also presented where the solving strategy of
stack composition is to match the requested properties of
one component with the provided properties of others.
However, their work has only focused on the
dependency properties of protocols and neglected the
importance of other protocol properties in runtime stack
building. For example, the selection of G.723 protocol

or MPEG protocol to stream audio flows runtime should
depend on the resource availability since they have the
same dependency on the RTP protocol. A selection
algorithm considering only one searching factor (e.g.,
dependency as used in [12]) surely would not find an
optimal stack composition in practice.

Among all the above projects, protocol modeling is
accomplished by individual efforts making use of either
programming languages elements or proprietary data
structures [14]. These work lack of generality and most
likely cannot provide customized and expressive
descriptions for protocols and stacks. In this paper, we
present our ontology-based protocol model using RDFS
that addresses these shortcomings. The ontological
approach to QoS modeling is initiated from the semantic
web community. However, reported work [7][8][9] so
far is limited to the description of web services’ QoS
properties for service matching and selection. In
contrast, we propose in this and other papers semantic
modeling and sharing of QoS information for QoS
components (e.g., network and middleware) along the
end-to-end path, thus forming a knowledge basis for
correct QoS configuration and adaptation.

3. QCMF and DPF overview

The semantic-based QoS control and management
framework (QCMF) is our research effort for a holistic
approach to end-to-end QoS provisioning by
considering and coordinating QoS mechanisms from
different dimensions for end-to-end benefit. The
motivation of QCMF is based on the identification of
two shortcomings in current QoS tools and technologies.

Firstly, most current QoS researches focus on
individual aspects and areas of the QoS provisioning
mechanisms (e.g., within application, middleware or
network), with less attention being paid to the
collaboration between these facilities. These isolated
viewpoints will lead to undesirable or inefficient
solutions with respect to end-to-end QoS. For instance,
it is not sufficient to rely purely on the QoS provisioning
mechanics in end-hosts to guarantee the performance of
a multimedia flow from a sender to a receiver. The
network in between should also play a role in assuring
the quality of the flow if such supports really exist (e.g.,
in a DiffServ [15] network). Hence, we assert that any
useful end-to-end QoS solution must consider the
coordination of QoS mechanisms between layers or
components (such as those in end-hosts and in network)
and manage them in a cohesive and co-operative
fashion.

Secondly, current QoS solutions mainly focus on the
mathematical calculation of QoS parameters (e.g., [6])
while neglecting the semantic meanings of QoS terms.

354

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 17:04:39 UTC from IEEE Xplore. Restrictions apply.

In our view, the explicit representation and
differentiation of QoS concepts and their relations is
equally important for a correct QoS configuration and
adaptation end-to-end. A simple example can be
illustrated in a grid scenario where a user requests his
job to be executed by a UNIX (compatible) server.
During QoS negotiation, a service provider running in a
Linux environment would not be selected for job
execution in a traditional keyword-based matching.
However, if we can setup an ontology for relevant QoS
knowledge representation (in this case is a QoS ontology
about OS information), semantic QoS negotiation can be
fulfilled to reason and acknowledge the QoS
compatibility between the job requester and supplier.

As mentioned, the proposed QCMF framework aims
at accommodating existing or new QoS mechanisms at
three levels and studying their interactions with respect
to end-to-end QoS configuration and adaptation. We
believe a key step toward the solution lies in the
representation and organization of QoS meta-
information to facilitate knowledge understanding and
exchange along the end-to-end path. This paper focuses
on the middleware level QoS modeling, with emphasis
on the semantic modeling of communication protocols
and protocol stacks.

At middleware level, we have designed a dynamic
protocol framework (DPF) [1], which can provide
dynamic protocol stack composition at call-setup time
and re-composition (i.e., protocol swapping) at runtime.
In the context of QCMF, DPF offers one possible
dimension of QoS adaptation within the communication
protocol stack which can supplement current prevailing
QoS solutions at application or network level. The
operations of DPF (e.g., runtime re-composition of
stacks) are triggered by QCMF as the outcome of a
coordinated decision-making process among different
QoS dimensions and are transparent to end-users.

4. An Ontology-Based Model for DPF

4.1. Design considerations

In line with the semantic modeling of other QoS
components in QCMF, we have chosen an ontology-
based approach to model protocols and manage the
dynamic composition of protocol stacks for the
following reasons: firstly, ontology is a formal
description of concepts and relationships, which is
expressive in describing notions, their relations and
restrictions. Ontology provides a means for formulating
semantic models of knowledge while other schemas
such as XML can only produce a data model (which is a
tree); secondly, the use of ontology enables different
QoS components in QCMF to have a common

understanding of QoS knowledge while interacting with
one another. The identification of the semantic meanings
of QoS concepts is essential in information sharing
along the end-to-end QoS provisioning path; lastly,
ontology-based approach facilitates the machine
processing and reasoning of QoS concepts as is
demonstrated in [5].

Semantic QoS modeling also contributes to restoring
the runtime portability of QoS demanding applications
in heterogeneous environments. Take the protocol stack
composition in an end-host as an example. In end-to-end
QoS provisioning, the selection of a targeted protocol in
forming a stack is dependent on multiple factors such as
the availability of that protocol in the end-host and the
preference of the communication peer. Hence it is
meaningless to explicitly bind an application to a
specific protocol beforehand. Instead, our semantic
approach for QoS modeling allows applications to
specify their protocol need (e.g., resource reservation
feature) rather than fixing the name of a protocol. Based
on the semantics of each available protocol runtime,
appropriate protocols (e.g., RSVP [17]) will be fetched
automatically to compose a protocol stack that fulfills
application requirements.

To realize our ontology model, RDFS [10], a W3C
recommended language for defining ontologies has been
employed. The selection of RDFS rather than OWL [21]
in our project is based on a realistic balance of language
capability and performance: RDFS is sufficient for
modeling of protocols (as can be seen from next
sections) and is faster than OWL in ontology processing.

The architecture and workflow of DPF is shown in
Figure 1. The protocol management system is basically
composed of two sub-modules: a protocol ontology base
which represents and stores protocol information
ontologically and an inference engine which takes
protocol ontology as input and interacts with other
components of DPF throughout the lifecycle of a session
to guarantee the correct composition of protocol stacks.
Details about the modeling and manipulation of protocol

355

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 17:04:39 UTC from IEEE Xplore. Restrictions apply.

information will be presented in the following sections.
Particulars about functional manipulation of protocols
(.e.g., protocol insertion or swapping) in DPF can be
found in our previous paper [1] and patent [2].

4.2. Ontology modeling of layers

In this section, we introduce our ontology-based
protocol modeling and classification. Since each
protocol in DPF provides a specific service, we define
an overall service class in RDFS expression (see Figure
2) to capture the common properties that exist in various
protocols. These common properties include layer name
(where the protocol lies in the stack), protocol name
(what is the protocol) and class name (where to find the
functional code of the protocol). Other common
properties such as dependency and compatibility will be
addressed in the next section.

<rd fs : C l a s s rd f : ID=" Se rv i ce" />
<rd f s : C l a s s rd f : ID="T r anspo r t ">
 < rd f s : sub C l a s sO f rd f : re sou rc e="# Se r v i c e" />
</ r d f s :C l as s>
…
<rd f s : P ro pe r t y r d f : ID=" c l a s s Na me" >
 < rd f s :do ma i n rd f : r esou rc e=" #S er v i c e" />
</ r d f s :P rope r t y>
<rd f s : P ro pe r t y r d f : ID="p ro t o co l Na me" >
 < rd f s :do ma i n rd f : r esou rc e=" #S er v i c e" />
</ r d f s :P rope r t y>

We then classify protocols into layer categories

according to their positions in the protocol stack. Such
classification is based on the observation that protocols
of the same layer usually provide similar functionalities.
For example, network layer protocols specifically
provide connectivity service among hosts. Hence
ontology models can be established on a per-layer basis
to describe the common functionalities provided by that
layer. Each layer extends the fundamental service class
and also defines layer specific attributes. Figure 3 shows
an example of one property specific to the codec layer.
The scope that this property applies to is defined by the
domain expression, which provides isolation of property
usage at grammatical level. All properties of a layer,
either inherited from the basic description of service
class or specifically defined in that layer definition,
together form the ontology model of a layer.

<rd fs : P ro pe r t y r d f : ID=" su ppo r t ed I np u t Fo rm at s ">
 < rd f s :do ma i n rd f : r esou rc e=" #Co de c" />
 < rd f s : r ang e rd f : reso u rc e=" xsd :S t r i ng " / >
</ r d f s :P rope r t y>

Four layer categories have been developed for DPF
currently: Network layer, Transport layer, Media-aware
layer and Application layer. Network layer contains
layer 2 protocols such as IP and IPX while transport
layer includes TCP and UDP. Media-aware layer
accommodates protocols related to media transmission
such as RTP. The composition of application layer is
more complex than other layers. Protocols in this layer
have been designed to serve applications with diverse
nature. There are no uniform criteria to define the
common features of application layer protocols. Rather,
the characteristics of these protocols depend on the
application domain concerned. For example, in the
context of multimedia transmission, these application
layer protocols refer to codec which provide diverse
encoding and decoding functions for media data.

In view of this, we classify application layer
protocols according to the application domain they
serve. Three categories of application protocols have
currently been defined in DPF: codec protocols, security
protocols and session control protocols. Such a
classification is extensible in nature in that more detailed
classification is also possible to provide fine-grained
descriptions. For example, the category of codec
protocols can be further divided into audio and video
codec sub-categories, both of which can be further
partitioned into RTP-based or non-RTP-based codec
types (see Figure 4). A hierarchical layer model can thus
be setup and extended on demand to classify protocol
types in more details.

4.3. Ontology modeling of protocols

The hierarchical ontology model of layers serves as
the template to model protocols belonging to that layer.
An individual protocol is defined as an instance of a
specific layer. Thus the ontology model of a protocol

Figure 2. Entry point: class service and its properties

Figure 3. “supportedInputFormats” is a property of codec layer

356

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 17:04:39 UTC from IEEE Xplore. Restrictions apply.

can be setup according to the layer ontology. For
example, TCP is defined as an instance protocol of
transport layer. Figure 5 shows a partial definition of
TCP ontology model. Properties such as port are
specific to the transport layer and are defined by the
transport layer ontology. Other properties such as
className and dependency are derived from service
class. The layer ontology is reusable among protocols of
the same layer. Hence the ontology model of another
transport layer protocol (e.g., SPX) can also be
portrayed based on transport layer ontology model.

<Tr ans po r t rd f : ID ="TC POut ">
 < l ay e r N am e>p ro t o co l . s r v . T ra nspo r t</ l ay e rN am e>
 < p ro t o co lN a me> TC P</ p ro t o co lN am e>
 < c l a s sN a me>t r anspo r t . T CPOut </ c l as s Na m e>
 < upp e rDep d> NU LL </u pp erD epd >
 < l ow erD epd y> N etwo r k . I P< / l owerD ep d>
 < r e l i ab i l i t y >t r ue </ re l i ab i l i t y>
 < po r t >4088< /po r t>

<po l a r i t y> 1</ po l a r i t y>
…

</T ran spo r t>

The ontology models of layers and protocols are
recorded in the protocol ontology base as two RDFS
documents: schema and instance. These two files are
runtime processed in the inference engine for grasping
semantic features of protocols and relations among
them. At the stage of protocol stack composition/re-
composition, suitable protocol components are retrieved
from the inference engine to compose a protocol stack.
As explained before, to ensure the flexibility of
deploying applications in heterogeneous run-time
environment, DPF allows applications to describe their
desired protocol service features at design-time instead
of explicitly bounding a specific protocol. Hence the
retrieval of suitable protocols from inference engine is
not restricted to just match the name of a protocol. In
fact, every property of a protocol in DPF can be used as
a criterion to select a protocol component. For example,
if the stack specification from users requires a reliable
data transmission, reliability will then be used as the
keyword to possibly retrieve TCP as one of the stack
component.

Our ontological design to protocol and stack
modeling has several advantages compared with a
traditional java inspection based approach (such as that
employed in [4]). Firstly, the maintenance and
modification of protocols are expressive and flexible.
For example, erasing a protocol instance only requires
the update of instance file while the modification of
layer ontology only involves the refreshment of schema
file. Secondly, both layer model and protocol model are
encoded in RDFS language where information is

accessible to other end-to-end QoS components.
Thirdly, the ontology-based approach for protocol
modeling can easily provide customized and expressive
specifications for protocols/stacks and enable code
reusability as has been demonstrated. Finally, protocol
information can be semantically compared, reasoned
and understood by different machines in a distributed
environment.

4.4. Stack modeling and validation

In DPF, a protocol stack is a protocol graph that
consists of a vector of protocols in the sequence of
layers. Hence, ontology model of a protocol stack is
defined as the integration of ontology models of
protocols comprising that stack. As protocol stack is
dynamically composed at runtime, stack ontology is a
memory model to describe the features of a transient
stack. Different combination of protocols will produce
stacks with different characteristics. The
characterization of stack is essential for deciding
whether the stack composition can suffice
application/user requirements or not. For example,
<G723, RTP, UDP, IP> is a protocol stack for audio
transmission. This stack is characterized by having low
perception quality (derived from G723 protocol model),
unreliable data transmission (derived from UDP
protocol model) and supports real time session control
(derived from RTP protocol model). If an end-user can
accept medium to low audio perception quality, then
such kind of stacks can be employed at runtime in case
of resource scarcity.

On the other hand, not every combination of
protocols forming a stack is valid. For example, the
stack composition <JPEG, RTP, UDP, IPX> for video
streaming is not acceptable because UDP is not
compatible with IPX. To describe the compatibility
among protocols in constituting a protocol stack, we
introduce a special property element – compatibility – to
capture such relationship, as is shown in Figure 6.

< r d f s :P rope r t y rd f : ID=" com pat i b i l i t y " >
 < rd f s :do ma i n rd f : r esou rc e=" #S er v i c e" />
 < rd f s : r ang e rd f : reso u rc e=" xsd :S t r i ng " / >
</ r d f s :P rope r t y>

< r d f s :P rope r t y rd f : ID=" upp e rDep d">
 < rd f s :do ma i n rd f : r esou rc e=" #S er v i c e" />
 < rd f s : r ang e rd f : reso u rc e=" xsd :S t r i ng " / >
</ r d f s :P rope r t y>

As pointed out previously, dependency is another
important property of protocols which describes the
reliance of one protocol on other protocols. For
example, H263_RTP is a JMF (Java Media Framework
[18]) video codec whose deployment requires the

Figure 6. RDFS definition for compatibility and dependency

Figure 5. TCP is of (rdf:) type transport and is modeled
according to the transport layer ontology model

357

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 17:04:39 UTC from IEEE Xplore. Restrictions apply.

presence of RTP in the protocol stack. We introduce an
additional property element – lowerDepd – to describe
such a dependency as the desired protocol RTP reside
below H263_RTP in the protocol stack. It’s also
possible that a protocol requires other protocols to
appear on top of it in the stack. For example, TCP/UDP
and IP are always bundled together in the protocol stack.
Thus IP protocol has a dependency on upper side
transport layer protocols (either TCP or UDP). We also
introduce a property element – upperDepd – to describe
such a requirement. The definition of the upperDepd
property is also shown in Figure 6.

Compatibility and dependency are modeled as
properties of the basic service class since all protocols
may have such requirements. The dependency and
compatibility knowledge of each protocol is supplied by
protocol developers. To ensure that all protocols in the
stack can cooperate properly with each other, stack
validation is enforced once a stack is defined. The stack
validation goes through two stages: grammatically check
and specification check. The former one guarantees that
dependencies of every protocol and compatibility of the
stack are satisfied. The latter one makes sure that the
stack is configured in accordance with user/application
requirements. Those stacks that pass the validation
check are legal stacks and will be negotiated among
communication peers for the initiation of data
transmission.

5. Implementation and evaluation

We have implemented the ontology-based protocol
management system in Java on J2SE 1.5.0 platform.
JMF is used as the runtime environment for multimedia
streaming. 11 protocols, namely RTP, TCP, UDP, IP,
G711 codec, G723 codec, GSM codec, MPEG codec,
H263 codec, JPEG codec and affined
encryption/decryption, have been classified into 4 layers
and modeled respectively. The layer and protocol
ontology consists of 24 classes and 62 properties. The
Jena Semantic Web Toolkit [13] has been chosen as the
inference library to load RDFS models about protocols
and explore relations among layers and protocols (e.g.,
protocol dependencies).

TABLE 1. Time-taken in DPF management functions

Time (ms) Operation
DPF-2 DPF-1

Creation of SyncMaster 453 484

Creation of SyncSlave 250 320

Creation of Ontology Model (total) 1563 -

 Loading of schema/data file 1313 -

 Creation of inference model 250 -

Creation of Java Protocol Registry - 3645

Load of Java Protocol Registry - 104

Start-Up Protocol Stack Composition

(total)

1446 1632

 Discovery of protocol components 93 500

 Creation of protocol stack 1 1

 Query protocol dependency 2 1

 Check stack validation 31 30

Runtime Protocol Stack Re-composition

(total)

148 168

 Discovery of targeted protocol 1 5

 Re-creation of protocol stack 1 1

 Query protocol dependency 1 2

 Check new stack validation 27 29

Experiments have been conducted to evaluate the

performance of ontology-based DPF (named as DPF-2)
with emphasis on the semantic protocol discovery and
stack validation. The configuration of the testbed is as
follows: two DELL PCs with Pentium IV processor 2.4
GHz and 512MB memory are employed as end-hosts.
Microsoft Windows XP is the primary operating system
on these machines. Every end-host holds a local
protocol ontology base which provides ontology models
for layers and protocols. For end-to-end communication,
these two end-hosts act as media sender and receiver
respectively. One of the end-host also serves as the
synchronization manager (SyncMaster) to coordinate the
communication. We obtained our measurements from
initiation of audio/video streaming and runtime
swapping of codecs (or transport layer protocols). The
results of the experiment are shown in Table 1. For
comparison, we have also implemented a Java
introspection based protocol system (named as DPF-1)
similar to that of Rwanda [4] and gathered measurement
under the same environment setting.

As can be seen from Table 1, the overall performance
of DPF-2 is slightly better than its DPF-1 except that a
one time initiation delay around 1.5 seconds is needed to
initiate the ontology model. This overhead is incurred by
Jena to read in and analyze the protocol ontology
(schema and instance RDFS file) which contain
ontology definition about layers and protocols (1313
ms) and to create inference engine (250 ms). Despite
such an initiation overhead, ontology-based DPF-2 can
offer better expressiveness and flexibility than a Java
inspection-based one as we have explained earlier. The
time for creation of SyncMaster and SyncSlave is
largely spent on establishing control channel between
sender and receiver. Such control channel is launched
using RMI (Remote Method Invocation) [19] registry

358

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 17:04:39 UTC from IEEE Xplore. Restrictions apply.

technology which is a server-side name service that
allows RMI clients to get a reference to the server
object. In DPF-2, this RMI registry is used for
SyncMaster to announce its presence and for SyncSlave
to retrieve and register with it. These two processes take
453 ms and 250 ms respectively. Comparatively, DPF-1
leverages on JINI [20] technology to publish and
discover SyncMaster which takes 484/320 ms to finish.
Hence the invocation delay of RMI and JINI are of the
same level in our test.

In DPF-1, the discovery of appropriate protocols
from the protocol registry (a java class that records
protocol properties) is achieved through introspection
and takes half second. In DPF-2, such retrieval is
performed by SPARQL [16] query language built-in
Jena. We found that each query can be answered at the
average rate of a few tens of milliseconds. Protocol
dependency and compatibility is similarly checked by
querying relevant information from inference engine,
which can also be completed within a few milliseconds.

We have also conducted a series of experiments to
further evaluate the performance of ontology model over
different scales of dataset. The size of dataset is
measured in term of the number of RDF triples, each of
which represents a single statement (S-V-O predicate).
These triples are generated within RDFS inference
engine by parsing and merging RDF class definition and
instances contained in the protocol ontology base. We
have focused on the loading and merging time of the
protocol ontology which also involves checking the
ontologies for inconsistencies and generating of RDF
triples. Figure 7 shows the results of experiments on PCs
and laptops of different CPU speeds. It’s not surprising
to see that the initiation delay of RDF inference engine
is proportional to the size of input dataset. However, as
increments are linear, the delay is still acceptable even
for a large dataset of 2261 triples (corresponding to 302
RDFS classes, which are sufficiently large enough for
modeling more than 100 protocols – created for testing
purpose only); the initiation delay also depends on the
CPU speed. A PC with higher CPU clock speed will
require less time to prepare the inference engine.
However, the difference in performance is not

significant. On the other hand, we have found that after
preparation, the inference engine can answer a query
within tens of milliseconds in both small and large scale
dataset settings. All these results suggest that it is
feasible to employ RDF based ontology model to
manage protocol knowledge even on less powerful hosts
such as laptops.

6. Conclusions and future work

In this paper, we have presented a formal ontology-
based methodology to represent, access and retrieve
protocol information. Protocol knowledge is modeled to
(1) semantically select appropriate protocols that meet
application requirements, (2) validate the composition of
a protocol stack for build-time construction and runtime
re-composition, and (3) facilitate QoS information
exchange among end-to-end QoS components within the
scope of our QCMF framework.

Based on the ontology model for layers, protocols
and protocol stacks, an adaptive middleware can be
designed to support dynamic discovery of protocols,
building/validation and runtime re-composition of the
protocol stack. The evaluation results demonstrate a
reasonable performance of our system on desktops. On
the other hand, we observe ontology processing a quite
time-consuming process, which may not be appropriate
for resource-constrained devices such as PDA or
handset. We plan to introduce a set of proxies in the
future to take over the ontology processing task in the
case of mobile multimedia streaming. The design of
proxy architecture and efficient distribution of proxies
for multiparty communications (e.g., distant
conferencing) should also be carefully studied.

References

[1] Liming An, Hung Keng Pung, Lifeng Zhou, “Design and

Implementation of a Dynamic Protocol Framework”,
Journal of Computer Communications, 2005

[2] Hung Keng Pung, Liming An, “System and Method For
A Dynamic Protocol Framework”, US patent
2005/0238050 A1, October 2005

[3] Pearson Malcom E, “Dynamic layered protocol stack”,
US patent US5903754, 1999

[4] Gerard Parr, Kevin Curran, “A Paradigm Shift in the
Distribution of Multimedia”, Communications of the
ACM, Vol. 43, No. 6, June 2000

[5] LiFeng Zhou, Hung Keng Pung, Lek Heng Ngoh, Tao
Gu, “Knowledge Modeling for End-to-End QoS
Provisioning”, Proc. 1st International Conference on
Telecommunications and Networking in China
(ChinaCom), 2006

[6] Zoubir Mammeri, “Towards a Formal Model for QoS
Specification and Handling in Networks”, Proc.

F igure 7 . Init iat io n de lay o f o nto lo gy mo del

1000

1200

1400

1600

1800

2000

2200

168 501 1001 1505 2261
Number of triples

Ti
m

e
ta

ke
n

(m
s)

P 4 3 .0 GH z P C

P 4 1.6 GH z P C

P M 1.4 GH z l a pt op

359

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 17:04:39 UTC from IEEE Xplore. Restrictions apply.

International Workshop on Quality of Service (IWQoS),
2004

[7] Chen Zhou, Liang-Tien Chia, and Bu-Sung Lee, “QoS
Measurement Issues with DAML-QoS Ontology”, Proc.
IEEE International Conference on e-Business
Engineering (ICEBE), 2005

[8] Glen Dobson, Russell Lock, Ian Sommerville, “QoSOnt:
an Ontology for QoS in Service-Centric Systems”, Proc.
UK e-Science AHM, 2005

[9] E. Michael Maximilien, Munindar P. Singh, “A
Framework and Ontology for Dynamic Web Services
Selection”, IEEE Internet Computing, 8(5):84-93,
September-October 2004

[10] Dan Brickley, R.V. Guha, “RDF Vocabulary Description
Language 1.0: RDF Schema”, World Wide Web
Consortium, January 2003

[11] Kevin Curran, Gerard Parr, “A middleware architecture
for streaming media over IP networks to mobile
devices”, Proc. IEEE Wireless Communications and
Networking Conference (WCNC), 2003

[12] I. Sora, etc. “Policies for dynamic stack composition”,
Technical Report, Dept. of CS, Leuven, Belgium, 2001

[13] HP lab, “Jena 2 - A Semantic Web Framework”,
http://www.hpl.hp.com/semweb/jena2.htm

[14] Vangelis Gazis, etc,. “Metadata Design for
Reconfigurable Protocol Stacks in Systems Beyond 3G”,
Wireless Personal Communications, January 2006

[15] S. Blake et al., “An Architecture for Differentiated
Services,” RFC 2475, December, 1998

[16] Eric Prud hommeaux, etc., “SPARQL Query Language
for RDF”, World Wide Web Consortium
http://www.w3.org/TR/rdf-sparql-query/

[17] R. Braden et al., “Resource Reservation Protocol (RSVP)
Version 1 Functional Specification”, RFC 2205,
September 1997

[18] Sun Microsystems, Inc., “Java Media Framework API”,
http://java.sun.com/products/java-media/jmf/

[19] Sun Microsystems, Inc., “Java Remote Method
Invocation”, http://java.sun.com/products/jdk/rmi/

[20] Sun Microsystems, Inc., “Jini Network Technology”,
http://www.sun.com/software/jini/

[21] Deborah L. McGuinness, Frank van Harmelen, “OWL
Web Ontology Language Overview”, World Wide Web
Consortium, Feburary 2004

360

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 17:04:39 UTC from IEEE Xplore. Restrictions apply.

