
Ontology Based Context Modeling and Reasoning using OWL

Xiao Hang Wang
1, 2

, Da Qing Zhang
1
, Tao Gu

1, 2
, Hung Keng Pung

2

1
 Institute for Infocomm Research, Singapore 119613

2
 School of Computing, National University of Singapore, Singapore 119260

xwang@i2r.a-star.edu.sg, gutao@comp.nus.edu.sg,daqing@i2r.a-star.edu.sg,

punghk@comp.nus.edu.sg

Abstract
In this paper we propose an OWL encoded context

ontology (CONON) for modeling context in pervasive

computing environments, and for supporting logic-

based context reasoning. CONON provides an upper

context ontology that captures general concepts

about basic context, and also provides extensibility

for adding domain-specific ontology in a

hierarchical manner. Based on this context ontology,

we have studied the use of logic reasoning to check

the consistency of context information, and to reason

over low-level, explicit context to derive high-level,

implicit context. By giving a performance study for

our prototype, we quantitatively evaluate the

feasibility of logic based context reasoning for non-

time-critical applications in pervasive computing

environments, where we always have to deal

carefully with the limitation of computational

resources.

1. Introduction
Recent years have witnessed rapid advances in the

enabling technologies for pervasive computing. It is

widely acknowledged that an important step in

pervasive computing is context-awareness.

Computational entities in pervasive environments

need to be context-aware so that they can adapt

themselves to changing situations. With the advance

of context aware computing, there is a increasing

need for developing formal context models to

facilitate context representation, context sharing and

semantic interoperability of heterogeneous systems.

In previous works, both informal and formal

context models have been proposed. Informal context

models are often based on proprietary representation

schemes which have no facilities to ease shared

understanding about context between different

systems. Among systems with informal context

models, Context Toolkit [1] represents context in

form of attribute-value tuples, and Cooltown [2]

proposed a Web based model of context in which

each object has a corresponding Web description.

Formal context models commonly employ formal

modeling approaches to manipulate context. Karen et

al. [3] model context using both ER and UML

models; context can be easily managed with

relational databases. Anand et al.[4] represented

context in Gaia system as first-order predicates

written in DAML+OIL. Existing formal context

models support formality and address a certain level

of context reasoning. However, none of them has

addressed formal knowledge sharing, or has shown a

quantitative evaluation for the feasibility of context

reasoning in pervasive computing environments,

where we always have to face resource-constraint

devices.

In this paper, we present an ontology-based

formal context model to address critical issues

including formal context representation, knowledge

sharing and logic based context reasoning. We will

present the detailed design of our context model and

logic based context reasoning scheme. Through

performance analysis, we will show a quantitative

evaluation for context reasoning in pervasive

computing environments. The rest of this paper is

divided into five sections. In section 2, we introduce

ontology definitions and Semantic Web. In section 3

we describe the design of our context model

(CONON). Section 4 shows how logic based context

reasoning can be used to enhance context-awareness.

Section 5 describes our prototype implementation;

followed by the performance evaluation. Section 6

summarizes this paper.

2. Ontology and Semantic Web
The term “ontology” has a long history in

philosophy, in which it refers to the subject of

existence. In the context of knowledge management,

ontology is referred as the shared understanding of

some domains, which is often conceived as a set of

entities, relations, functions, axioms and instances.

There are several reasons for developing context

models based on ontology:

Knowledge Sharing. The use of context ontology

enables computational entities such as agents and

services in pervasive computing environments to

have a common set of concepts about context while

interacting with one another.

Logic Inference. Based on ontology, context-

aware computing can exploit various existing logic

Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops (PERCOMW’04)
0-7695-2106-1/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 16:56:13 UTC from IEEE Xplore. Restrictions apply.

reasoning mechanisms to deduce high-level,

conceptual context from low-level, raw context,

and to check and solve inconsistent context

knowledge due to imperfect sensing.

Knowledge Reuse. By reusing well-defined Web

ontologies of different domains (e.g., temporal and

spatial ontology), we can compose large-scale

context ontology without starting from scratch.

Semantic Web [5] is an effort that has been going

on in the W3C to provide richer and explicit

descriptions of Web resources. The essence of SW is

a set of standards for exchanging machine-

understandable information. Among these standards,

Resource Description Framework (RDF) provides

data model specifications and XML-based

serialization syntax, Web Ontology Language

(OWL) [6] enables the definition of domain

ontologies and sharing of domain vocabularies. OWL

is modeled through an object-oriented approach, and

the structure of a domain is described in terms of

classes and properties. From a formal point of view,

OWL can be seen to be equivalent to description

logic (DL), which allows OWL to exploit the

considerable existing body of DL reasoning

including class consistency and consumption, and

other ontological reasoning.

We believe that Web ontology and other Semantic

Web technologies can also be employed in modeling

and reasoning about context information in pervasive

computing environments.

3. CONON: The Context Ontology
In this section we present an extensible CONtext

ONtology (CONON) for modeling context in

pervasive computing environments.

Due to evolving nature of context aware

computing, completely formalizing all context

information is likely to be an in-surmountable task.

However, we found that location, user, activity and

computational entity are most fundamental context

for capturing the information about the executing

situation. These contextual entities not only form the

skeleton of context, but also act as indices into

associated information. The objectives of our context

model include modeling a set of upper-level entities,

and providing flexible extensibility to add specific

concepts in different application domains.

In realistic pervasive computing environments,

applications and services are usually grouped as a

collection of sub-domains for different intelligent

environments (e.g., home, office or vehicle). Context

in each domain shares common concepts that can be

modeled using a general context model, while differs

significantly in detailed features. Therefore, the

separation of application domains encourages the

reuse of general concepts, and provides a flexible

interface for defining application-specific knowledge.

We divide our context model into upper ontology and

specific ontology. The upper ontology is a high-level

ontology which captures general features of basic

contextual entities. Specific ontology is a collection

of ontology set which define the details of general

concepts and their features in each sub-domain.

Office-Domain Ontology

Home-Domain Ontology

ContextEntity

PersonLocationCompEntity Activity

Device

Service

Application

Network

ScheduledActivity

DeducedActivity

Legend: owl:Class rdfs:subClassOf

U
pp

er

O
nt

o
lo

gy IndoorSpace

OutdoorSpace

Agent

D
om

ai
n-

S
pe

ci
fic

O
nt

ol
og

ie
s

owl:Property

...

...

...

...

...

 Figure 1. Partial Definition of CONON upper ontology

CompEntity
locatedIn

locatedIn

locatedIn

longtitude
latitude

altitude

e
n

g
a

g
e

dI
n

Activity utilize

ScheduledActivity

DeducedActivity

Device

startTime
endTime

temperature

lighting

noiseLevel

weatherCondOutdoorSpace

humidity

Party

Movie

Dinner

Shower

Entry

Corridor

curtainStatus

windowStatus

doorStatusname

homeAddress

situation

Person

nearBy

status

mode

CellPhone

volum
e

DVDPlayer

volume

Room

IndoorSpace

Legend:
Upper Class Specific Class owl:Property

volumeTV

rdfs:subClassOf

Cooking

Anniversary

Location
locatedIn

Garden

Dooryard

age . . .
. . .

. . .

. . .

.

Building

Figure 2. Partial definition of a specific ontology for

home domain

Figure 1 shows the upper context ontology (the

partial OWL serialization is show in figure 3). The

context model is structured around a set of abstract

entities, each describing a physical or conceptual

object including Person, Activity, Computational

Entity (CompEntity) and Location, as well as a set of

Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops (PERCOMW’04)
0-7695-2106-1/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 16:56:13 UTC from IEEE Xplore. Restrictions apply.

abstract sub-classes. Each entity is associated with its

attributes (represented in owl:DatatypeProperty) and

relations with other entities (represented in

owl:ObjectProperty). The built-in OWL property

owl:subClassOf allows for hierarchically structuring

sub-class entities, thus providing extensions to add

new concepts that are required in a specific domain.

Figure 2 shows a partial definition of specific

ontology for a smart home application domain.

Besides general classes defined in CONON upper

ontology, a number of concrete sub-classes are

defined to model specific context in a given

environment (e.g., the abstract class IndoorSpace of

home domain is classified into four sub-classes

Building, Room, Corridor and Entry).

<owl:Class rdf:ID="ContextEntity"/>
 <owl:Class rdf:ID="Location">
 <rdfs:subClassOf rdf:resource="#ContextEntity"/>
 </owl:Class>
 <owl:ObjectProperty rdf:ID="longtitude">
 <rdf:type rdf:resource="FunctionalProperty">
 <rdfs:domain rdf:resource="Location">
 <rdfs:range rdf:resource="xsd:double">
 </owl:ObjectProperty> ...
<owl:Class rdf:ID="IndoorSpace">
 <rdfs:subClassOf rdf:resource="#Location"/>
 <owl:disjointWith rdf:resource="#OutdoorSpace"/>
 </owl:Class>
 <owl:ObjectProperty rdf:ID="locatedIn">
 <rdf:type="owl:TransitiveProperty"/>
 <rdfs:domain rdf:resource="#Entity"/>
 <rdfs:range rdf:resource="#Location"/>
 <owl:inverseOf rdf:resource="#contains "/>
 </owl:ObjectProperty> ...

Figure 3. Partial OWL serialization of the upper ontology

4. Context Reasoning
When taking a formal approach to model context,

context can be processed with logical reasoning

mechanisms. The use of context reasoning has two

folds: Checking the consistency of context, and

deducing high-level, implicit context from low-level,

explicit context.

To explain the role of context reasoning in

context-aware computing, we present a smart phone

scenario in which a mobile phone can adapt to a

user’s current situation. By defining preference

profiles, users can customize the behaviors of the

augmented mobile phone. For example, when the

user is sleeping in the bedroom or taking a shower in

the bathroom, incoming calls are forwarded to voice

mail box; when the user is cooking in the kitchen or

watching TV in the living room, the volume of the

ring is turned up; when the user is having dinner with

the family in the dining room, the phone is set to

vibrate mode. Obviously, high-level context can not

be directly acquired from sensors; it is reasoned from

sensor-driven, low-level context such as physical

location and environmental information.

 In this section, we will describe context reasoning

based on CONON to demonstrate the key feature of

the ontology based context model. We choose to

implement context reasoning by using first-order

predicates. The structure of the first-order predicate

has tree fields - a subject an object and a verb. For

example, the physical location context “Wang is

located in the bed room” can be described as (Wang,

locatedIn, Bedroom). We believe that logics are very

powerful tools for reasoning with context knowledge,

and they are sufficient for general pervasive context-

aware systems as is demonstrated later.

The reasoning tasks in our work are grouped into

two categories: ontology reasoning using description

logic, and user-defined reasoning using first-order

logic.

4.1. Ontology Reasoning
Description Logic allows specifying a

terminological hierarchy using a restricted set of first-

order formulas. The equivalence of OWL and

description logic allows OWL to exploit the

considerable existing body of DL reasoning fulfill

important logical requirements. These requirements

include concept satisfiability, class subsumption, class

consistency, and instance checking.

Table 1 shows a sub-set of reasoning rules that

support OWL-Lite entailed semantics.

Table 1. Parts of OWL ontology reasoning rules

Transitive-
Property

(?P rdf:type owl:TransitiveProperty) (?A ?P ?B)

(?B ?P ?C) (?A ?P ?C)

subClassOf (?a rdfs:subClassOf ?b) (?b rdfs:subClassOf ?c)

(?a rdfs:subClassOf ?c)

subProperty-
Of

(?a rdfs:subPropertyOf ?b)

 (?b rdfs:subPropertyOf ?c)

 (?a rdfs:subPropertyOf ?c)

disjointWith (?C owl:disjointWith ?D) (?X rdf:type ?C)

 (?Y rdf:type ?D)

 (?X owl:differentFrom ?Y)

inverseOf (?P owl:inverseOf ?Q) (?X ?P ?Y)

 (?Y ?Q ?X)

In addition, ontology reasoning is also useful in

other aspects of context aware computing. For

example, in the example context ontology described

in previous section, we define the relation ‘locatedIn’

between a ‘ContextEntity’ and a ‘Location’ as an

‘owl:TransitiveProperty’ relation, and the relation

‘contains’ as the ‘inverse property’ of ‘locatedIn’.

Therefore, we can make use of the rules entailed by

OWL to reason with physical location. An example

Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops (PERCOMW’04)
0-7695-2106-1/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 16:56:13 UTC from IEEE Xplore. Restrictions apply.

result is shown in Table 3. Explicit context is

acquired from context sources directly, while implicit

context is the additional information deduced from

explicit context. For example, knowing the user

‘Wang’ is currently ‘locatedIn’ the room ‘Bedroom’,

which in turn is a part of the ‘Home’ building,

description logic can be used to conclude that ‘Wang’

is located in ‘Home’ building as the spatial relation

‘locatedIn’ is transitive.

Table 2. Reasoning about location using ontology

(?P rdf:type owl:TransitiveProperty)

(?A ?P ?B) (?B ?P ?C) (?A ?P ?C)

DL
Reasonin
g Rules

(?P owl:inverseOf ?Q) (?X ?P ?Y)

 (?Y ?Q ?X)

IN

P
U

T

Explicit
Context

<owl:ObjectProperty rdf:ID="locatedIn">
 <rdf:type="owlTransitiveProperty"/>
 <owl:inverseOf rdf:resource="#contains"/>
</owl:ObjectProperty>
<Person rdf:ID="Wang">
 <locatedIn rdf:resource="#Bedroom"/>
</Person >
< Room rdf:ID="Bedroom">
 < locatedIn rdf:resource="#Home"/>
</ Room>

 O

U
T

P
U

T

Implicit
Context

<Person rdf:ID="Wang">
 <locatedIn rdf:resource="#Home"/>
</Person >
<Building rdf:ID="Home">
 < contains rdf:resource="#Bedroom"/>
 < contains rdf:resource="#Wang"/>
</Building>
<Room rdf:ID="Bedroom">
 < contains rdf:resource="#Wang"/>
</Room>

Table 3. User-defined context reasoning rules
Situation Reasoning Rules

Sleeping (?u locatedIn Bedroom) (Bedroom lightLevel LOW)

 (Bedroom drapeStatus CLOSED)

(?u situation SLEEPING)

Shower-
ing

(?u locatedIn Bathroom)

 (WaterHeater locatedIn Bathroom)

 (Bathroom doorStatus CLOSED)

 (WaterHeater status ON)

(?u situation SHOWERING)

Cooking (?u locatedIn Kitchen) (ElectricOven locatedIn
Kitchen)

 (ElectricOven status ON)

(?u situation COOKING)

Watching-
TV

(?u locatedIn LivingRoom)

 (TVSet locatedIn LivingRoom)

 (TVSet status ON)

(?u situation WATCHINGTV)

Having-
Dinner

(?u locatedIn DiningRoom)

(?v locatedIn DiningRoom)

(?u owl:differentFrom ?v)

(?u situation HAVINGDINNER)

4.2. User-Defined Reasoning

A more flexible reasoning mechanism is user-

defined reasoning. Through the creation of user-

defined reasoning rules within the entailment of first-

order logic, a wide range of higher-level, conceptual

context such as “what the user is doing” can be

deduced from relevant low-level context. Table 3

shows the user-defined context reasoning rules that

are employed to derive user’s situation in the smart

phone scenario.

5. Prototype Implementation
In this section, we will present results of our

preliminary experiments with context reasoning. The

objectives of these experiments are to conduct a

quantitative feasibility study for logic reasoning in

pervasive computing environments, and provide

useful information for the implementation of context

reasoning.

We used our prototype implementation of two

context reaonsers (description logic based ontology

reasoner and first-order logic based situation

reasoner) to carry out experiments. Context reasoners

are built using Jena2 Semantic Web Toolkit [7],

which supports rule-based inference over OWL/RDF

graphs. To synthesize large-scale context dataset, we

have merged CONON and CYC Upper Ontology [8]

to create several context datasets ranging from small-

scale (about 1K RDF triples) to large-scale (more

than 10K RDF triples). The size of the dataset is

measured in term of the number of RDF triples, each

of which represents a single S-V-O predicate. For

example, a datasets containing 2534 OWL classes

and instances is parsed into 10234 RDF triples.

Current version of CONON containing 197 OWL

classes (or 790 triples) can be seen as a small-scale

context dataset, while CYC Upper Ontology

containing 2885 classes (or 18777 triples) is a large-

scale context dataset. The experiments have been

conducted on a set of Linux workstations with

different hardware configurations (512 MB RAM

with P3/600 MHz, P3/1.2 GHz, and P4/2.4 GHz).

The ontology reasoner we have tested is associated

with the DL rule set consisting of all 111 axioms

entailed by OWL-Lite, and the situation reasoner

applies a rule set containing of 10 forward-chaining

rules that we have partially described in table 2.

Figure 4 shows the results of the experiments. It is

not surprising to see that the run time performance of

logic-based context reasoning depends on three major

factors: size of context information, complexity of

reasoning rules, and CPU speed. The difference of

performance between different datasets shows that

context reasoning based on logics is a computational-

intensive task. However, reasoning under current CPU

speed is still feasible for non-time-critical applications.

Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops (PERCOMW’04)
0-7695-2106-1/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 16:56:13 UTC from IEEE Xplore. Restrictions apply.

For example, the real-time requirement for the smart

phone service is not likely to be critical so that the delay

of context reasoning (several seconds) is acceptable.

The results also shows that run time of context

reasoning largely depends on the complexity of rule

sets. The user-defined reasoner using small rule set

greatly outperforms the OWL reasoner with a large DL

rule set over identical context datasets.

Figure 4. Run time performance of context reasoning.

From the quantitative study of runtime

performance, we have a number of observations that

are useful for the design of context model and

context reasoning mechanism:

First, context reasoning is generally feasible for

non-time-critical applications. For time-critical

applications such as security and navigating systems,

we need to control the scale of context dataset and

the complexity of rule set. A tentative solution is to

perform static, complex reasoning tasks (e.g.,

description logic reasoning for checking

inconsistency) in an off-line manner.

Second, from system deployment point of view,

we need to de-couple context processing and context

usage in order to achieve satisfactory performance. In

this way, context reasoning is independently

performed by resource-rich devices such as a

residential gateway; ubiquitous services hosted by

thin clients can acquire high-level context from a

centralized service, instead of perform excessive

computation themselves.

Finally, the design of context model should take

account of scalability issue. Context aware services

in different domains shares most general concepts,

while there exists significant difference between the

ontologies they need. Hence, a scalable context

model should be able to separate domain-specific

ontologies for different system environments. The

design of upper-level and domain-specific ontologies

would take a promising step to control the scale of

context dataset.

6. Conclusion
Our study in this paper shows that ontology based

context model is feasible and necessary for supporting

context modeling and reasoning in pervasive computing

environments. We have implemented the CONON and

logic based context reasoning schemes. In addition, we

have conducted a performance study to evaluate the

feasibility for context reasoning in pervasive computing

environments. The work of this paper is a part of our

ongoing context aware service infrastructure [9], which

aims to provide an open, reusable infrastructure for

essential context aware mechanisms. In particular, our

design explores Web Ontology Language for context

modeling and knowledge sharing, hybrid reasoning and

learning for context interpretation, and Semantic Web

query for expressive context query and resource

discovery.

References
[1] A.K.Dey, et al. “A Conceptual Framework and a

Toolkit for Supporting the Rapid Prototyping of Context-

Aware Applications”, Human-Computer Interaction

Journal, Vol. 16(2-4), pp. 97-166, 2001.

[2] Tim Kindberg, et al. “People, Places, Things: Web

Presence for The Real World”, Technical Report HPL-

2000-16, HP Labs, 2000.

[3] Karen Henricksen, et al.“Modeling Context Information

in Pervasive Computing Systems”, Pervasive 2002.

[4] Anand Ranganathan, et al. “A Middleware for Context-

Aware Agents in Ubiquitous Computing Environments”,

USENIX International Middleware Conference, 2002.

[5] T. Berners-Lee, J. Hendler, and O. Lassila, “The

Semantic Web”, Scientific American may 2001.

[6] F. van Harmelen, et al. “Owl Web Ontology Language

Reference”, http://www.w3.org/TR/owl-ref/, 2002.

[7] Jena2 Semantic Web Toolkit:

http://www.hpl.hp.com/semweb/jena2.htm.

[8] CYC Upper Ontology:

http://www.cyc.com/cycdoc/vocab/vocab-toc.html.

[9] Daqing Zhang, Xiaohang Wang, Karianto Leman, and

Weimin Huang, “OSGi Based Service Infrastructure for

Context Aware Connected Homes”, In 1st International

Conference on Smart Homes and Health Telematics, 2003,

France.

Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops (PERCOMW’04)
0-7695-2106-1/04 $ 20.00 © 2004 IEEE

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 16:56:13 UTC from IEEE Xplore. Restrictions apply.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

