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a b s t r a c t

Monitoring daily activities of a person hasmany potential benefits in pervasive computing.
These include providing proactive support for the elderly and monitoring anomalous
behaviors. A typical approach in existing research on activity detection is to construct
sequence-based models of low-level activity features based on the order of object usage.
However, these models have poor accuracy, require many parameters to estimate, and
demand excessive computational effort. Many other supervised learning approaches have
been proposed but they all suffer from poor scalability due to themanual labeling involved
in the training process. In this paper, we simplify the activity modeling process by
relying on the relevance weights of objects as the basis of activity discrimination rather
than on sequence information. For each activity, we mine the web to extract the most
relevant objects according to their normalized usage frequency. We develop a KeyExtract
algorithm for activity recognition and two algorithms, MaxGap and MaxGain, for activity
segmentation with linear time complexities. Simulation results indicate that our proposed
algorithms achieve high accuracy in the presence of different noise levels indicating their
good potential in real-world deployment.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

With the unprecedented, enduring, and pervasive ageing of the human population [1], there is a growing interest
in conducting research into pervasive computing to improve healthcare support for the elderly population [2,3]. One
such promising research area that can generate a variety of useful applications for the elderly is the research in Human
Activity Recognition (HAR). A typical application of HAR is to monitor Activities of Daily Living (ADLs) [4,5] of the elderly
and cognitively impaired people, detect anomalous behavior, and provide them with proactive assistance [6–8]. Another
potential application ofHAR is an activity-based adaptation such as lowering the TVvolumeduring phone calls andproviding
instructions or directions to first time users of unfamiliar appliances.
There are several ways to acquire data for HAR using different sensor systems:

(1) Analyze the signals generated by remote observation of the subject using audio and video sensors.
(2) Attach sensors to the body of the subject to track and identify primitive human actions.
(3) Attach sensors to objects and track their usage.
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Option (1) [9–19] is rather complex to implement because audio and video information require processing of highly
multidimensional data. Moreover, both types of processing are regarded as intrusive technologies. Option (2) is promising
and requires an inexpensive technology for recognizing primitive sequences of movements [20,14,21–23,11,24,21] such as
walking, jogging, sitting, jumping, etc. We refer to these basic movements as human actions. However, using signals from
sensors in different parts of the body to identify goal-oriented activities and ADLs such as cooking pasta and making tea
is more difficult to achieve in this context because the signals are highly variable. Since goal-oriented activities require
interaction with objects in the environment, many recent papers [25,26,20,27,28] have shown that this problem is better
addressed using option (3). This is the direction of research conducted in this paper. In our work, human activities refer to
goal-oriented activities that involve the manipulation of objects (e.g. cooking, making tea) captured through the use of any
object sensing technologies such as RFIDs.
The application of HAR to ADLs faces several challenges because of the large number of activities to be tracked. This is

compounded by the observation that each activity can be performed in several ways. Onemajor challenge is to find a robust
model that can capture the most relevant information in mapping the low-level features to high-level concepts that can be
optimally exploited by healthcare applications.
The straightforward way of obtaining activity models is to learn them from the data produced by each subject. The

traditional recognition approach to acquire such models is to apply machine learning techniques to labeled and manually
segmented sensor traces [29–31]. However, this approach is impractical in real-world scenarios as potential users have to
spend a significant amount of time in generating and labeling the training data. Moreover, this approach does not directly
address the segmentation problemwhich is a prerequisite step for activity recognition inmostmachine learning approaches.
Recent works [25,26,20,27,28,18,19] suggest an interesting and promising direction in feature detection. The approach

is based on dense object-based sensing technology, where objects used in activities are tracked by RFID tags and the activity
models are derived by mining the web [27]. The order of objects in performing activities with probabilistic distributions is
extracted using supervised learning and used as the basis to represent activities either as Hidden Markov Models (HMM),
Dynamic Bayesian Networks (DBN), or as Suffix Trees.
These models perform well at classifying hand-segmented object use traces. However, they rely on the object order

that may fail to capture the intrinsic characteristics of any particular activity in real-world conditions. This is because an
activity can be performed in several ways using different order and cardinality of objects. Failing to totally capture such
characteristics of activities may significantly limit the accuracy and applicability of the model that relies particularly on
object sequence.
In most cases of ADL, the lists of relevant objects for a particular activity are similar and do not vary significantly even

when the activity is performed in different ways. Hence, it is reasonable to derive the model by extracting a complete set of
relevant objects of an activity from a text corpus such as theweb, rather than relying on the order of objects. This observation
is the main motivation for the development of our activity recognition and segmentation algorithms.
In this paper, we propose unsupervised algorithms to segment the activity trace and recognize the corresponding

activities. Our recognition and segmentation algorithms work under the following principles:

1. Each object has relatively varying degrees of relevance in different activities.
2. Certain objects are highly discriminatory and their presence can be used to recognize activities.
3. Comparing the relative weights of nearby objects in two adjacent activities can be used to detect their boundary.

We mined the web for each activity and extract the most relevant objects. An object’s relevance weight is based on
its normalized tf-idf (term frequency–inverse document frequency) scores [32–35]. In text mining and information
retrieval communities, tf-idf is a common weighting scheme to determine the relative degree of importance of a term to
a document in a corpus. In tf-idf, terms with high tf-idf has high term frequency occurrence in a group of documents
but low global frequency in a corpus. For instance, in a collection of howto activities, the term ‘‘the’’ has a very low ‘‘tf-idf’’
score because it appears in almost all documents. In contrast, the term ‘‘coffee’’ will have a higher tf-idf score because it
only has a high frequency in documents pertaining to ‘‘how to make coffee’’. A detailed discussion on how to compute the
tf-idf score can be found in Section 3.2.
OurKeyExtract algorithmperforms the recognition task by searching for highly discriminatory objects in an unsegmented

activity trace. An activity trace contains a sequence of objects used in a set of consecutive non-interleaving activities.
Furthermore, we propose two algorithms, MaxGap and MaxGain, to detect the boundary of any two adjacent activities in
a trace based on the objects’ relative weights. We analyze the effectiveness of our proposed algorithms using simulation
and report our findings based on 100 randomly generated activity traces.
In summary, this paper makes three main contributions:

1. We propose the concept of relative weight discrimination by mining activities on the web. We extract objects involved
in individual activities and assign corresponding weights to these objects based on their relevance to the activities. We
then search these highly discriminatory objects to recognize activities.

2. We dissociate the recognition from the segmentation process. We propose a KeyExtract algorithm to recognize activities
in a trace based on the key objects of individual activities, as well as two algorithms, MaxGap and MaxGain, to further
segment the trace. A key object in an activity is the object with the highest tf-idf score.

3. We validate our algorithms using 100 random traces of 13 activities, and analyze their effectiveness and limitations.
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As our first research attempt on HAR, we realize that the proposed algorithms in this paper still have certain drawbacks.
First, our approach can only recognize and segment non-interleaving human activities in a pre-determined list, similar to
most previous approaches [25,27,28,18,19]. Second, in order to give a contextual help to the subject, we need to mine the
web to construct amodel for each activity in the list beforehand and be able to situate the subject’s actions in relation to this
model. Moreover, we assume each activity in the list has a unique key object. If this assumption does not hold true, our algo-
rithm’s accuracywill degrade in proportion to the number of these activities sharing common key objects. For instance, our al-
gorithmhas no problemdiscriminating ‘‘fry eggs’’ and ‘‘make coffee’’ activities because their respective key objects (eggs and
coffee) are unique.However, ifwe add in the list of activities ‘‘makemocha cake’’ inwhich coffee or egg canbe a key object, our
algorithms’ performancewill have lower accuracy. Lastly, an activity can only be recognized in our approach after the subject
touches the key object of this activity, which makes the key objects critical for both the accuracy and timeliness of the HAR
performance.While it is beyond the scope of this paper, we consider all these issues to be very important research directions
of our ongoing work. On the other hand, we believe our approach is quite suitable to segment and recognize ADL traces for
research purpose, i.e. other researchers canmine the data already segmented by our approach and extractmore information.
Similar tomost previous approaches [25,27,28,18,19], our paper focuses on addressing the recognition and segmentation

problem for non-interleaving human activities. Handling interleaving activities remains a challenging problem in HAR.
While it is beyond the scope of this paper, we consider it to be a very important research direction in our future work.
The rest of the paper is organized as follows.We present relatedwork in Section 2.We describe howwe build our activity

models through webmining in Section 3. We propose our algorithms for activity recognition and segmentation in Section 4
and evaluate their performance in Section 5. We conclude the paper with future research directions in Section 6.

2. Related work

This section reviews the major approaches to human activity recognition. For HAR based on object usage, let A and O
be a set of all activities and all objects, respectively, such that ai = {o1, . . . , om}, ai ∈ A, o1≤j≤m ∈ O, and {o} ⊂ O. For a
typical activity trace input consisting of a sequence of objects [o1, o2, . . . , ow] representing consecutive activities, HAR has
two important subproblems:
1. Segmentation Problem. Find the corresponding set of segments or clusters C of objects belonging to unknown activities.
In other words, formulate a transformation from [o1, o2, . . . , ow] → [c1, . . . , cx] with {o}1≤m≤x = c1≤m≤x, c1≤m≤x ∈ C ,
and x ≤ w.

2. Recognition Problem. Identify the corresponding unknown activities for each segment of objects in an activity trace. In
other words, find the appropriate function f such that the mapping of the subset of objects to a particular activity ak,
f : {o}m → ak or f : cm → ak, is correct.

Major approaches to HAR based on object-sensing technology can be roughly divided into two major classes:
• sequence-based models such as Hidden Markov Model (HMM) [27,36] or Dynamic Bayesian Networks (DBN) [25,15],
and Conditional Random Fields (CRF) [37,38]
• machine learning algorithms [29,24] such as Naïve Bayes Classifier, Artificial Neural Networks (ANN), and Support Vector
Machines (SVM).

Unlike in the human action recognition researches where both sequence-based and machine learning models are
commonly used [39,14,16,21,23], researches in object-sensing technologies for HAR tend to favor sequence-based models
such as HMM, DBN, and CRF. One reason is that the latter models work well because human activities are composed of
finite sequences of discrete events or states. Moreover, most machine learning approaches work on the assumption that the
activity trace input is already segmented which is not realistic. Manual segmentation is time-consuming and not practical
in a real-world setting and automatic segmentation is a non-trivial problem in HAR.
A typical approach in machine learning is to model the mapping of an activity based on the collection of objects that

are active disregarding temporal or sequence information. One typical model with this assumption was proposed by Tapia
et al. [29]. They relied on a set of sensors to detect object usage for each ADL activity included in their research. They
employed a Naïve Bayesian classifier to predict the activity labels using a manually segmented input of the activity trace.
While the learning of the mapping function may be trivial, their approach fails to address the segmentation problem which
is a prerequisite step for the processing of inputs using this model. Moreover, their supervised machine learning technique
typically requires pre-training of manually segmented and labeled data which is a time-consuming process.
An alternative and popular approach is to learn the probabilities both of the object’s usage and order in all the activities

they are involved. Philipose et al. [25] proposed to use RFID tags attached to objects of interest and represented activities
as a probabilistic order of objects used. These activity models were then converted into DBN. They reported good results but
their approach also involves hand labeling of the training data which is a time-consuming process in a real-world condition.
Perkowitz et al. [27] proposed an interesting direction towards an unsupervised approach to activity recognition by

extending thework of Philipose et al. [25]. Recognizing the problem of using supervised learning for the DBN, they proposed
the idea to mine the web using Google’s API to determine automatically the probability values of object usage and their
sequence for the DBN. However, without segmentation, they have to rely on the sliding window technique for recognition
which is noisy in cases where the window contains a boundary. Also, they fail to study the ideal window size for optimal
recognition. Moreover, modeling sequence information is a permutation problem which suggests that their model may fail
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Fig. 1. Web-based activity mining.

to capture completely the sequence probabilities and the idiosyncrasy of certain activities. Failure to capture such intrinsic
characteristics may limit their model’s accuracy in real deployments.
Wyatt et al. [28] partially addressed the issue of completeness and idiosyncrasy bymining theweb in awider scope. They

presented a bootstrap method that can produce labeled segmentations automatically. Their model abstraction uses a large
number of labeled web pages as the training set in which human efforts are involved. They used these labeled web pages for
the computation of the usage probabilities of objects which are needed to assemble an HMM for HAR. Then, they generate
a generic model from the mined model using the Viterbi Algorithm and replace the HMM’s observed probabilities with the
computed Maximum Likelihood observation probabilities. Their segmentation algorithm is based on the likelihood that a
particular observation is generated by a n-length path starting at a certain state and self-transitioning n − 1 times. They
use Kullback-Leibler (KL) divergence for recognition by comparing the similarity between labeled activities with unlabeled
ones. In this model, activity recognition is finding a match between labeled and unknown activities within a user-defined
KL-distance threshold.
There are several shortcomings using Wyatt’s proposed model. First, the Viterbi algorithm requires a significant amount

of space to compute. Moreover, the KL-divergence between finite-state models cannot be solved mathematically and no
computationally efficient algorithm exists. These issues limit the applicability of their model in real-world applications.
Second, the segmentation is based on the duration of an activity thatmay vary greatly fromone user to another. The accuracy
may drop when their activity models were applied to real-world scenarios. Finally, although they used the generic mined
models to segment the trace into labeled instances of activities, their segmentation process is sequential in nature such that
any error in one segment may affect the segmentations of the subsequent traces.
The work in this paper borrows the idea of mining the web [28,27] to extract object usage information for activity

modeling. Instead of using sequence information, however, our model relies on the appropriate weight assignment of
relevant objects for discrimination. In this way, our model is not influenced by the idiosyncrasy of performing any activity
by different individuals and is more practical for real-world deployment. The segmentation of the activity trace in two or
more adjacent activities is an important and challenging issue in any activity recognition system. We address this problem
by developing algorithms which operate locally within the context of two adjacent activities such that the segmentation
process in one segment does not affect the segmentation process in other segments of the trace. This approach is in contrast
to the sequential segmentation commonly employed in previous researches where an error in the segmentation process in
one segment affects the subsequent ones. Using a simple model, our activity recognition and segmentation algorithms only
require linear time complexity which is ideal for real-world deployment.

3. Activity model

To recognize an activity being performed by a subject, we first need to obtain the activity model. Given a set of activities
A = {a1, a2, . . . , ap}, we build our activity models consisting of a set of all terms T = {t1, t2, . . . , tm} used for each activity
a ∈ A, together with their associated usage weights W . This process has two major steps as presented in the following
subsections.

3.1. Mining the web

First, we obtain a set of terms T = {t1, t2, . . . , tm} used for defining each activity a ∈ A from a set of howto instructions
in the web. Similar to [27,28], we extract relevant instructions for a particular activity using search engines such as Google,
or specific web sites such as www.ehow.com. Since the relevance of these instructions returned by search engines may vary
significantly, we focus on two specific websites: wikihow (www.wikihow.com) and ehow (www.ehow.com). Both sites
provide comprehensive instructions for many household activities such asmake tea,make coffee, brush teeth, take pills, etc.
Fig. 1 shows a brief description of the processes involved in extracting relevant terms for a particular activity. Each

howto activity has a collection of documents describing the different ways contributors of ehow and wikihow perform this
activity.
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Algorithm 1: Term Extraction Algorithm

Input: Objects: O = {o1, o2, o3, . . . , on} ;
Howtos: HWS = {H1,H2,H3, . . . ,Hp};
where: Hi = {html | html ∈ Activity i}, i = 1, . . . , p ;
StopList S = {s1, s2, s3, . . . , sq};
where: si ∈ {verbs, adjectives, pronoun, preposition}

Result: Terms T = {t1, t2, t3, . . . , tm};
begin

foreach H ∈ HWS do
foreach html ∈ H do

words = html.tokenize();
words.stem() ;
words.remove(S);
words.match(O);
T.push(words);

return T.unique;
end

First, a collection of these html howtos is transformed into plain text and stemmed using Porter’s Stemming Algorithm
[40]. In stemming, morphological variants of terms (e.g., singular vs. plural) which have similar semantic interpretations are
considered to be equivalent and reduced to their stemmed or root forms. This process reduces the number of distinct terms
needed to represent any activity, thereby saving processing time and storage space. Second, the number of relevant terms
is further reduced by removing terms appearing in the stoplist [40–43,32] (e.g., verbs, adjectives, pronouns, adverbs, false
nouns, etc.). Finally, only terms found in the database of objects are retained. The database of objects can be easily built by
extracting information from a server that has stored the IDs of objects in the physical space. The filtering processmakes sure
that false nouns (e.g., water, switch, etc.) but with object mapping in the physical space do not appear in the stoplist. The
simplifying assumption of using unordered collection of terms or words, disregarding sequence or grammar is popularly
know as bag-of-wordsmodel in the text mining community [19]. The term extraction process is summarized in Algorithm
1. Note that in the algorithm, the final collection of terms has corresponding equivalent objects in the real world (filtered by
words.match()).

3.2. Determining object relevance weight

Next, we identify the usage weights for each term obtained in the previous step for each activity. By observing that the
occurrence frequency of a term in a particular instruction closely parallels the weight of the corresponding object in real
usage, we determine the relevance weightW of each term t ∈ a ∈ A by computing its tf-idf score [44,34,35].
The tf-idf computation is based on two factors: locality and generality of occurrence of the term in given documents.

Locality (tf) is measured based on the total number of occurrences of the term over all documents. On the other hand,
term’s generality is based on the frequency of documents where the term occurs. Relevant terms have high term frequency
but low document frequency [44,34,35]:

tf-idfai = |t
a
i | × log

|Da|
|da : tai ∈ da| + 1

(1)

where:
tf-idfai → tf− idf of term i in activity a ∈ A;

|tai | → term frequency of term i in activity a ∈ A;
|Da| → total number of documents in activity a ∈ A;

|da : tai ∈ d
a
| → number of docs where term i appears in activity a ∈ A.

Eq. (1) implies that if a term is too common, it occurs in almost all documents and will have a very low tf-idf score.
The factor, log |Da|

|da:tai ∈d
a|+1 , demotes words if they occur in almost all documents (too general terms) and promotes words

that occur in a limited number of documents (specific terms).
Since weight computation varies significantly from one activity to another because of heterogeneous sources,

normalization is needed to establish a common basis of comparison among relative term weights in different activities.
Eq. (2) describes the normalization technique used in this paper:

W ai =
log(tf-idfai )

maxnaj=1{log(tf-idfaj )}
(2)
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Table 1
A partial view of mined ADL models.

Make tea Make coffee Make pasta Fry egg
Object Weight Object Weight Object Weight Object Weight

Tea 1.00 Coffee 1.00 Pasta 1.00 Egg 1.00
Water 0.85 Water 0.86 Flour 0.88 Pan 0.99
Cup 0.83 Cup 0.85 Pepper 0.85 Oil 0.78
Sugar 0.75 Pot 0.82 Water 0.84 Burner 0.76
Teapot 0.75 Grinder 0.80 Sauce 0.83 Spatula 0.69
Pot 0.74 Filter 0.79 Tomato 0.81 Lid 0.66
Bowl 0.72 Sugar 0.76 Cheese 0.80 Water 0.65
Lemon 0.70 Coffeemaker 0.73 Garlic 0.80 Bowl 0.60
Kettle 0.70 Creamer 0.72 Oil 0.80 Butter 0.60
Microwave 0.67 Tablespoon 0.72 Pot 0.79 Dish 0.60

Note: All weights are normalized using the log smoothing function.

where:

W ai → normalized weight of term i in activity a ∈ A;
tf-idfai → tf− idf of term i in activity a ∈ A;

na → total number of terms in activity a ∈ A.

This normalization ensures that the topmost term has 1.0 weight and the relative distances of succeeding terms based
on their weights do not have a high variability due to the smoothing effect of the log transformation. Moreover, this
transformation lessens the strong bias in weights of the topmost terms.
We have mined 30 ADL models, and Table 1 lists a partial set of activity models mined from ehow and wikihow with

their corresponding top 10 terms ordered by their normalized weights.

4. Algorithms for activity recognition and segmentation

Based on activitymodels obtained in the previous section,we can nowapply thesemodels for the development of activity
recognition and segmentation algorithms.

4.1. Recognizing activities based on relevance weights

The activity models obtained (Table 1) reveal the sets of relevant terms used in activities. The topmost term has the
highest relevance for each particular activity. Another important observation is that the topmost terms are unique among
all the activity models. These observations hold true in most of the ADL models we mined. This suggests that recognition
of activities can be based on searching the set of topmost terms with their normalized weights equal to 1.0. These topmost
terms are used as the key objects to discriminate various activities.
Algorithm 2 describes the steps involved in our activity recognition algorithm (KeyExtract) based on the above

observations. The occurrence of one of the key objects in a sequence of objects signifies the presence of an activity in the
neighborhood of these objects. The KeyExtract algorithm iterates through the entire trace to search for other key objects.
In a real application, a subject may touch other key objects unintentionally (noise) while a particular activity is being

performed. In this case, we examine the relevance of nearby objects based on their weights in the activity corresponding to
the current key object. If the sum of all the weights including the key object is 1.0, it reveals that only the key object weight
contributed to the summation while the rest of its neighbors have zero weights. This key object is considered as noise and
removed in the trace. While there may exist a set of key objects for each activity a ∈ A, we use only one key object in this
paper. The use of several objects as discriminants will be the subject of our future investigation.

4.2. Object-based activity segmentation

Once the activities have been identified by KeyExtract, the next task is to group objects in the trace according to
their corresponding activities. In a one-dimensional trace of non-interleaving activities, the problem of clustering can be
transformed into finding the boundary where the object use of one activity ends and the object use of the other activity
begins. This problem is referred to as the boundary detection problem or segmentation problemwhich is depicted in Fig. 2.
To address this problem, we propose two segmentation algorithms which work in an unsupervised manner. We observe

from our activity models that an object will have a high weight for a particular activity if it is important to this activity.
On the other hand, the same object will have a low weight for activities it has less or no relevance. Further, the weights of
adjacent objects in the same activity (e.g., object b and c in Fig. 2) do not significantly vary compared to the weights of two
adjacent objects belonging to two different activities (e.g., objects a and b in Fig. 2). Based on these heuristics, we introduce
our first segmentation algorithm:MaxGap.
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Algorithm 2: Activity Recognition Algorithm (KeyExtract)

Input: Object Sequence: O = [o1, o2, o3, . . . , on];
Terms: T = {t1, t2, t3, . . . , tm};
Activities: A = {a1, a2, a3, . . . , ap};
where:aj = {t | t ∈ T }, j = 1, . . . , p

Result: DetectedActivities = {i | W ai = 1} for certain activity a
begin

foreach oi ∈ O do
foreach a ∈ A do

foreach t ∈ a do
if (t = oi | W ai = 1.0) then

if
∑i+1
j=i−1W

a
j ≥ 1.0+ e, e > 0 (to handle noise) then

DetectedActivities.push(i)

return DetectedActivities;
end

Activity A

Activity B

main obj 1

main obj 2

Where is the
Boundary?

b

a

c

Fig. 2. Boundary detection problem.

Algorithm 3:MaxGap Algorithm

Input: Objects: O = {o1, o2, o3, . . . , on} ;
Terms: T = {t1, t2, t3, . . . , tm};
Activities: A = {a1, a2, a3, . . . , ap};
where: aj = {t | t ∈ T }, j = 1, . . . , p ;
DetectedActivities = {i | W ai = 1} for certain activity a

Result: Boundaries
begin

foreach (x, y) ∈ DetectedActivities s.t. ox, oy are adjacent do
for ctr = x to y do
RWctr = W xctr −W

y
ctr ;

for ctr = x to y− 1 do
GAPctr = RWctr − RWctr+1

Boundaries.push(ctr) such that GAPctr is maximum ;
return Boundaries;

end
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Fig. 3. Computing MaxGap.

To detect the boundary between two adjacent activities,A andB, theMaxGap algorithm computes the difference between
the weight of each object in activity A and its weight in activity B (RW : Relative Weight). If the object is more relevant to A
than B, then RW will be positive while the reverse, will be negative. It then computes the difference of each consecutive RW
pairs (gap), and the maximum gap is the boundary for these two activities. Algorithm 3 outlines theMaxGap approach. The
input of the algorithm is a sequence of objects, two ends of which are two different key objects. The output of the algorithm
is the location of an object where we should separate the two activities. Fig. 3 shows an example of finding the boundary
between two activities usingMaxGap. The complexity ofMaxGap is linear.
However, in cases where the two adjacent activities, A and B, share common objects, boundary detection will be

complicated if the common objects are located nearby the boundary. This is because their RWs will be close to zero. Fig. 4
illustrates such case in which cup and water are shared by both make tea and make coffee activities. TheMaxGap algorithm
may fail to work in this case.

Algorithm 4:MaxGain Algorithm

Input: Objects: O = {o1, o2, o3, . . . , on} ;
Terms: T = {t1, t2, t3, . . . , tm};
Activities: A = {a1, a2, a3, . . . , ap};
where: ai = {t | t ∈ Terms}, i = 1, . . . , p ;
DetectedActivities = {i | W ai = 1} for certain objects oi in activity a

Result: Boundaries
begin

foreach (x, y) ∈ DetectedActivities | ox, oy are adjacent do
for ctr = x to y do
RWctr = W x(octr)−W y(octr);

for ctr = x to y do
UpperSum=0; LowerSum=0;
for upper = x to ctr do
UpperSum += RWupper ;

for lower = ctr + 1 to y do
LowerSum += RWlower ;

GAINctr = UpperSum - LowerSum;
Boundaries.push(ctr) such that GAINctr is maximum ;

return Boundaries;
end
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Fig. 4. A walk-through example for MaxGain.

Table 2
ADLs used in our experiments.

1 Make coffee 8 Use computer
2 Make tea 9 Take pills
3 Make pasta 10 Laundry
4 Make oatmeal 11 Read books
5 Fry eggs 12 Watch TV
6 Make orange juice 13 Make phone phone call
7 Brush teeth

To address this issue, we proposeMaxGainwhich is outlined in Algorithm 4. The input is the same as that ofMaxGap. We
walk through the MaxGain algorithm using an example shown in Fig. 4. The first column is a segment of objects extracted
from a trace in one of our experiments described in the next section. Coffee and tea are the key objects for the make coffee
and make tea activities, respectively. For each possible object Xi (a candidate boundary), we compute the UpperSum and
LowerSum as shown in columns 4 and 5, respectively. The UpperSum is the sum of all RWs from coffee to Xi, while the
LowerSum is the sum of all RWs from Xi+1 to tea. We then compute the Gain for each candidate boundary, where Gain is
defined as the difference between UpperSum and LowerSum.
The result is shown in the last column. The object with the maximum value of Gain (MaxGain) is the boundary. In the

example shown in Fig. 4, the creamer object yields the maximum Gain of 5.28 which also indicates the location of the
boundary in the ground truth.
Compared toMaxGap,MaxGain considers the interplay of the group of objects between two adjacent activities.MaxGap

only makes use of the relationship between two adjacent objects. Intuitively, MaxGain tends to be more accurate and
noise-tolerant since it is ‘‘globally optimized’’. The complexity of MaxGain is also linear. When calculating the UpperSum
(or LowerSum) of each candidate boundary Xi, we can simply add (or subtract) the RW of Xi−1.

5. Evaluation and results

To evaluate our proposed algorithms, we randomly extract from wikihow or ehow websites a sample of 13 ADLs as
shown in Table 2. They can generate more than 6 billion possible activity traces because in each activity, some object traces
may be missed and missing object can influence the segmentation process. We use 100 random traces out of the 6 billion
possibilities since the variability of the mean performances of the proposed algorithms based on their standard errors is
relatively small at this size.
To evaluate the robustness of our proposed algorithms in the presence of noise, we generate two kinds of noise, namely:

dummy and neighborhood noises. A dummy noise is an object with no weight [tf-idf = 0] added to the original activity
trace. On the other hand, neighborhood noises are randomly selected neighboring objects added to the original trace.
The level of noise is controlled using a probability value from 0 (i.e., no noise) to 0.50. For each level of noise with 100

activity traces, the evaluation of each proposed algorithm is subjected to 20 trials to minimize the standard error of their
mean performances. The performances of the proposed algorithms,MaxGap andMaxGain, are then compared to that of the
Random andMidPoint algorithms.
As its namesake suggests, the Random algorithm randomly selects the location of the boundary between two key objects.

It is expected to provide the worst performance among the four algorithms. If the average number of objects between any
two key objects is M , Random algorithm has 1/M chance of hitting the correct boundary of two adjacent activities. On the
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Fig. 5. Mean Absolute Error From Boundaries (MAEBs).

other hand, theMidPoint algorithmworks on the heuristic that the boundary is always locatedmidway between the two key
objects. If the distribution of the true boundary is random, both theMidPoint andRandom algorithmswill have similar results.
The performance comparison is based on the two metrics, namely: (i) Mean Absolute Error from the true Boundary

(MAEB) and (ii) Mean Percentage of the true Boundaries detected (MPB). MAEB is a continuous value that measures how
many objects away is the algorithm’s boundary from the true boundary. A good algorithmmust have aMAEB value near zero.
MPB, on the other hand, is the ratio between the number of true boundaries detected by the algorithm and the total number
of boundaries. A good algorithm has a MPB value near 100%. MAEB and MPB are summarized in the following equations:

MAEB =

T∑
j=1

N∑
i=1
|trBij − algBij|

N ∗ T
(3)

MPB =

T∑
j=1

Dj
Bj
× 100

T
(4)

where:
trB → true boundary;
algB → algorithm boundary;
N → total number of boundaries;
T → number of traces;
Dj → number of correctly detected boundaries;
Bj → total number of true boundaries in a trace

5.1. Results with dummy noise

Fig. 5 shows theMAEB trend (averaged in 20 trials) of each algorithm as the level of dummy noise increases.MaxGain has
the best performance followed by MaxGap with both Random and MidPoint performing the worst. MaxGain’s MAEB is only
slightly affected by the increasing noise level. Its error from the boundary with no noise is 0.27 (less than one object) and
at 50% noise level is only around 1 object. On the other hand, the performances of the rest of the algorithms significantly
worsened with the increasing noise level.
Moreover,MaxGain accuracy in detecting true boundary as shown in Fig. 6 is consistently around 88% MPB independent

of the noise level.MaxGap best performance is 79% average detection but decreases significantly with the increasing noise
level. Both the Random andMidPoint algorithms have worst performances in all noise levels.

5.2. Results with neighborhood noise

Fig. 7 shows the same trend from the previous plots, i.e., MaxGain has the best MAEB followed by MaxGap. Again, both
Random andMidPoint algorithms have consistently poor performances in all noise levels.
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Fig. 7. Mean Absolute Error From Boundaries (MAEBs).

Comparing MaxGain’s MAEBs in Figs. 5 and 7 indicate that its performance in the presence of the neighborhood noise is
better than its performance with the dummy noise. Its MAEB value for the neighborhood noise is consistently less than 0.4
in all noise levels. The same observation is true with the MaxGap performance, i.e., its MAEB with the neighborhood noise
is better than its MAEB with the dummy noise. Its MAEB value is consistently above 0.5 but does not exceed 1.0 in all noise
levels. Also, both Random andMidPoint MAEBs are better in the presence of neighborhood noise than with the dummy noise.
Fig. 8 shows that the MPBs of the four approaches are independent of the noise levels. Again, MaxGain has the best

mean boundary detection rate (89%) followed byMaxGap (79%) with Random andMidpoint performing the worst (both less
than 23%).
Comparing the performances of the algorithms between dummy and neighborhoodnoises suggest that the latter has lesser

negative effect on the performance of four approaches. This is encouraging because in many cases, neighborhood noises are
more common than dummynoises in the real setting.More often during data gathering of sensor output, noises are generated
by unintentionally touching neighboring objects or touching the same object several times. While the presence of dummy
noises always increases the search space between two adjacent key objects, the presence of neighborhood noises may actu-
ally reduce the search space. This is due to the possibility that the key object may appear several times in one activity. Since
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the four algorithms share the common technique of skipping the search space if the two adjacent activities are the same, it
reduces the search space in cases where the addition of neighboring objects include the key object. However, this technique
only works on the assumption that the neighborhood noise does not contain the key object belonging to another activity.

5.3. Discussion

In examining the behavior of the above four boundary detection algorithms, we made sure that precision and recall of
the KeyExtract algorithm was maintained at 100% to maximize the number of boundaries to be detected. In real scenarios,
however, precision and recall are affected based on the two types of noises: False negative (fn) noise and False positive (fp)
noise:

precision =
tp

tp+ fp
(5)

recall =
tp

tp+ fn
(6)

where:
tp→ true positive;
fp→ false positive;
fn→ false negative.

False negative (fn) noise happens when a key object in the original trace is lost in the transmission or reported falsely
as another ordinary object by the sensor. This happens for example when an RFID reader fails to report the tag of the key
object or it receives corrupted IDs. This type of error is a common problem among all the sensor-based activity recognition
systems. Efforts to improve the reliability of sensor deployment and acquisition process require further investigation. Fig. 9a
illustrates this particular case. Assuming that the original trace has 5 activities identified by 5 key objects, error in reporting
Main3 would result in a failure of detecting Activity 3. The effect of noise, however, is local and has no influence on the
segmentation and recognition of activities in the other parts of the trace.
False positive (fp) noise happens when an ordinary object in the original trace is falsely reported by the sensor as a key

object. Another case of false recognition occurs when a subject unintentionally touches another key object while an activity
is being performed. Fig. 9b illustrates this particular case. Assuming that the original trace contains 4 activities identified by
the 4 key objects, an object between obj8 and obj9, reported by the sensor as a key object would result in a false recognition
of additional activity. Similar to the observation above, the effect of noise is local and does not affect the performance of
segmentation and recognition in the other parts of the trace.
Computation of precision and recall require actual experiments that will be the subject of our future investigation. Similar

to existing approaches, our KeyExtract algorithm depends on the reliability of the sensor deployment which is the subject of
ongoing investigation in many research laboratories. Currently, there are still many issues on the reliability of the RFID tag
readers and other sensors. One current option to offset this shortcoming and to maximize recallwill be to install redundant
sensors on the key objects to ensure that their usage will be properly detected and accurately reported. Also, precision
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(a) False negative.

(b) False positive.

Fig. 9. False negative and false positive noises.

can be improved by carefully planning an environmental setup that minimizes background noise due to unintentional
touching of unrelated objects in performing a particular activity. These shortcomings will hopefully be overcome as the
sensor technology matures in the near future.

6. Conclusion and future work

We propose an unsupervised approach to human activity recognition and segmentation in this paper. Instead of relying
on the order of object use, our approach exploits the discriminative trait of the usage frequency of objects in different activities.
We construct activity models by mining howto web pages containing instructions of household activities and extract
relevant objects based on theirweights (normalizedtf-idf scores). Theweights are then utilized to recognize and segment
an activity trace containing a sequence of objects used in a number of consecutive and non-interleaving activities.
We divide the activity recognition and segmentation into two separate processes. Based on a consistent pattern observed

in real-world traces, we propose an activity recognition algorithm, KeyExtract, which uses the list of discriminatory key
objects from all activities to identify the activities present in a trace. We further propose two heuristic segmentation
algorithms, MaxGap and MaxGain, to detect the boundary between each pair of activities identified by KeyExtract. The
boundary detection is based on the calculation, aggregation, and comparison of the relativeweights of all objects sandwiched
in any two key objects representing adjacent activities in a trace.
We have conducted simulation studies to validate the effectiveness of the proposed algorithms using 100 random traces

of 13 activities. The results demonstrate that our algorithms achieve much better accuracy in activity boundary detection
than Random andMidPoint algorithms under different noise levels.
One important issue that needs special attention in our future endeavor is how to deal with interleaving activities. The

majority of supervised machine learning approaches suffer from the strong assumption that the activities have already
been segmentedwithout discussing the process. On the other hand, temporal classificationmodels such as CRF (Conditional
Random Fields) and HMM (Hidden-Markov Models) assume that the activities are performed sequentially. Addressing the
problems in interleaving activities has important implications in real deployment setting. More often, incomplete activities
especially for aged people occur due to interruptions in performing another activity that needs urgent attention such as
receiving a phone call while boiling water or cooking. Detecting these interrupted and not completed activities are vital for
the safety of aged people living alone. We believe that adding more features such as sound [45], location [46], and other
context information may help address this problem in our future research work.
One direction of research we are investigating is how to effectively use several objects as discriminants [47,48] to make

the systemmore robust and improve recognition accuracy. Our undergoing research also tackles the problem in interleaving
activities. The challenge is to identify the different concurrent activities and develop a suitable clustering algorithm to
group objects into their corresponding activities. To approach this problem, we extend the idea of relevance weighting
discrimination by incorporating pairwise probability sequence information and apply a variant of K-Nearest Neighbor (KNN)
clustering with dynamic backtracking to enable cluster membership correction. Our preliminary results for two concurrent
activities are encouraging but more work has to be done to tackle three or more concurrent activities.
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