
Mining Emerging Sequential Patterns for

Activity Recognition in Body Sensor Networks

Tao Gu1, Liang Wang1,2, Hanhua Chen1,3,
Guimei Liu4, Xianping Tao2, and Jian Lu2

1 University of Southern Denmark
{gu,wang,hhchen}@imada.sdu.dk

2 Nanjing University
{txp,lj}@nju.edu.cn

3 Huazhong University of Science and Technology
4 National University of Singapore

liugm@comp.nus.edu.sg

Abstract. Body Sensor Networks offer many applications in healthcare,
well-being and entertainment. One of the emerging applications is rec-
ognizing activities of daily living. In this paper, we introduce a novel
knowledge pattern named Emerging Sequential Pattern (ESP)—a se-
quential pattern that discovers significant class differences—to recognize
both simple (i.e., sequential) and complex (i.e., interleaved and concur-
rent) activities. Based on ESPs, we build our complex activity models
directly upon the sequential model to recognize both activity types. We
conduct comprehensive empirical studies to evaluate and compare our so-
lution with the state-of-the-art solutions. The results demonstrate that
our approach achieves an overall accuracy of 91.89%, outperforming the
existing solutions.

Keywords: Body sensor networks, activity recognition, data mining.

1 Introduction

The recent advance of wireless sensing and the development of miniaturized
sensors have led to the use of Body Sensor Networks (BSNs). A BSN consists
of a number of sensor nodes, placed or implanted on a human body, which
provide sensing and wireless communication capabilities. Such systems offer
many promising applications in healthcare, assistive living, well-being, sports,
and entertainment. One of the applications is recognizing activities of daily liv-
ing. In such an application, user observations in the form of a continuous sen-
sor data stream are collected from various sensor nodes and transmitted to a
gateway device. Useful features will be first extracted from the sensor data to
train an appropriate activity classifier, which can then be used to identify new
observations.

P. Sénac, M. Ott, and A. Seneviratne (Eds.): MobiQuitous 2010, LNICST 73, pp. 102–113, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Mining Emerging Sequential Patterns for Activity Recognition 103

Recognizing activities using BSNs has attracted many research interests from
academic researchers and industry participants. Most of the existing work focus
on recognizing sequential activities (i.e., one activity after another in a timeline)
in different settings [1–5]. However, the situations in real life are more com-
plex since people often multitask when performing their daily activities. Such
multitasking can occur in an interleaved (i.e., switching between the steps of
two or more activities) or concurrent (i.e., performing two or more activities
simultaneously) manner. Little work has been done in addressing complex issues
rise in recognizing sequential, interleaved and concurrent activities in a unified
framework. Existing solutions, such as Interleaved Hidden Markov Model [6] and
Factorial Conditional Random Field [7], rigidly model interleaved or concurrent
activities using Markov chains which require proper training. However, in real
life, there exists many different ways in which activities can be interleaved and
performed concurrently, e.g., when performing an activity, one may start another
activity any time interleavedly or concurrently. Hence, it may not be feasible, if
not impossible, to construct the complete models for interleaved and concurrent
activities through training.

In this paper, we investigate an efficient way to recognize both simple and
complex activities. By analyzing the trace involving both simple and complex
activities, we observe many unique feature sets for each sequential activity and
there exists an inherent sequential order among these features. In addition, we
observe that the sequential order of the feature sets will not be changed regardless
of whether this activity is performed sequentially, interleavedly, or concurrently.
Intuitively, such sequential orders correspond to the intermediate steps or sub-
actions of an activity, e.g., in the brushing teeth activity, there exists a sequential
order—taking a toothbrush, squeezing toothpaste, brushing, and washing with wa-
ter. Discovering such sequential orders (complete or partial orders) provides an
additional, useful discriminator to recognize the activities which are performed
interleavedly or concurrently.

To address the aforementioned problem, we aim to eliminate the training
process of interleaved and concurrent activities. To achieve this, we propose a
novel knowledge pattern, named Emerging Sequential Pattern (ESP), to capture
unique contrast sequential patterns among different activity classes, and build
our activity models based on ESPs. While the sequential activity model requires
a training process, our complex activity models are built directly upon the se-
quential model without training. In this way, our system has a great flexibility
and applicability for real-life applications. We design and implement our activity
models and recognition algorithms in our ESP-based Activity Recognizer (ES-
Par). Through comprehensive empirical and comparison studies, we demonstrate
both the effectiveness and flexibility of our proposed system.

The rest of the paper is organized as follows. Section 2 discusses the related
work. Section 3 describes ESP and the mining algorithm. We then present ES-
Par in Section 6. Section 7 reports our empirical studies, and finally, Section 8
concludes the paper.

104 T. Gu et al.

2 Related Work

To classify activities in BSNs, probabilistic models are typically used due to the
non-deterministic nature of human activity. Probabilistic models can be cate-
gorized into static and temporal classification. In the static model, features are
first extracted from sensor readings, and then a static classifier is applied for
classification. Typical static classifiers include näıve Bayes used in [1,2], decision
tree used in [1, 9], and k-nearest neighbor used in [1, 2]. Multiple binary classi-
fiers can be exploited to recognize interleaved and concurrent activities; however,
this solution may not work properly because many activities share the common
features.

In temporal classification, state-space models are typically used to enable
the inference of activity labels. We name a few examples here: Hidden Markov
Models (HMMs) used in [3, 4] and Conditional Random Fields (CRFs) used
in [4, 6]. Recent work showed that Interleaved Hidden Markov Model [6] can be
used to model interleaved activities and Factorial Conditional Random Field [7]
can be used to model concurrent activities. However, they require a predicting
instance must have its model presented in the training dataset. On one hand, this
implies that the training dataset has to be large enough to build the complete
models for interleaved and concurrent activities. Any partial model will result
in loss of accuracy. On the other hand, in real life, there exists a great variety
of ways in which activities can be interleaved and performed concurrently by
different individuals. As a consequence, it may not be possible to obtain the
complete models for interleaved or concurrent activities through training. Hence,
the applicability and flexibility of these solutions are limited.

The solution presented in this paper is fundamentally different than the exist-
ing work by introducing a new knowledge pattern—ESP. We use ESP to build
the models for interleaved or concurrent activities directly on the sequential
activity model without training. In this way, our system is more easy to train.
ESPs extend our earlier approach of Emerging Pattern based model [8] by taking
the sequential order of observations into account, and mining unique contrast,
sequential patterns to achieve better classification accuracy.

3 Emerging Sequential Pattern

In this section, we introduce ESP and present an algorithm to efficiently mine
ESPs. ESP is motivated by the concept of Emerging Pattern [11] which is a
kind of contrast patterns among unordered features/items. ESP greatly extends
Emerging Pattern by considering the inherent sequential information among
sequences and discovering the unique contrast sequential patterns.

3.1 Definitions

Let I = {i1, i2, · · · , in} be a set of items and C = {C1, C2, · · · , Ck} be a set of
class labels. An itemset is a subset of I. A sequence is an ordered list of non-
empty itemsets, denoted by s = 〈e1, e2, · · · , em〉, where ei is a non-empty itemset

Mining Emerging Sequential Patterns for Activity Recognition 105

and it is also called an element of s. Each sequence has a class label Ci ∈ C. We
use label(s) to denote the class label of a sequence s. In the context of activity
recognition, items are feature items, elements are feature vectors, sequences are
segments of traces within a continuous period of time that belong to the same
activities, and the class labels of the sequences are the activities they belong to.

Given two sequences s1 = 〈a1, a2, · · · , an〉 and s2 = 〈b1, b2, · · · , bm〉, if there
exists integers 1 ≤ i1 < i2 < · · · < in ≤ m such that a1 ⊆ bi1 , a2 ⊆ bi2 , · · · ,
an ⊆ bin , then we say s1 is a subsequence of s2, and s2 is a super-sequence of
s1, denoted as s1 ≺ s2. If s1 ≺ s2, we also say s2 contains s1.

Definition 1. (Support of a Sequential Pattern) Given a sequence database
D, the support of a sequence s in D is defined as the number of sequences in D
that contain s, denoted as supD(s) = |{si|s ≺ si, si ∈ D}|.
Note that the support of a pattern is defined as the number of distinct sequences
containing it instead of the total number of occurrences. The support of s in D
with respect to a particular class C is defined as the number of sequences in D
with label C that contain s, that is, supD(s, C) = |{si|s ≺ si, si ∈ D, label(si) =
C}|.
Definition 2. (Frequent Sequential Pattern) Given a user-specified mini-
mum support threshold min sup, if supD(s) ≥ min sup, then we say s is a
frequent sequential pattern in D.

We are interested in sequential patterns that can distinguish sequences of differ-
ent classes. We expect such patterns to occur frequently in one class and rarely
in other classes. The discriminative power of a sequential pattern s with respect
to a class C is defined as follows:

dpower(s,C) = p(C|s) · p(C|s) =
supD(s, C)

supD(s)
· (|D| − supD(s)) − (supD(C) − supD(s, C))

|D| − supD(s)

where p(C|s) is the probability of class C if s is present, and p(C|s) is the
probability of other classes if s is absent. The range of dpower(s, C) is [0,1].
The higher the dpower value is, the more discriminative the pattern is. In the
ideal case, all sequences containing s belong to class C (p(C|s)=1), and all the
sequences that do not contain s belong to classes other than C (p(C|s)=1), and
we have dpower(s, C)=1.

Definition 3. (Emerging Sequential Pattern) Given a user-specified min-
imum support threshold min sup and minimum discriminative power threshold
ρ, if sup(s) ≥ min sup and dpower(s, C) ≥ ρ, then we say s is an emerging
sequential pattern with respect to class C.

Our task here is to enumerate the ESPs with sup ≥ min sup and dpower ≥ ρ
from training sequences, and then use them to recognize the activities of new
sequences. To mine ESPs, we use the pattern growth approach and propose an
algorithm named ESPMiner presented in the next section.

106 T. Gu et al.

Fig. 1. Our mining framework

3.2 Mining ESPs

The search space of the sequential pattern mining problem can be represented
as a prefix tree as shown in Fig. 1. In this tree, each node represents a se-
quential pattern, and it is a prefix of its children nodes. A sequential pattern
s = 〈e1, e2, · · · , ek〉 can be extended in two ways: (1) element extension: one
new item is added to the last element ek; and (2) sequence extension: one new
element containing only one item is added after ek. For element extension, we
sort the items in lexicographical order, and an item can be added to an element
only if the item is larger than all the existing items in the element. For example,
an element e = {b} can be extended by item c but cannot be extended by item
a. The purpose of this restriction is to avoid generating the same pattern more
than once.

ESPMiner explores the search space in depth-first order, and it generates a
sequential pattern from its prefix. The support of sequential patterns has the
anti-monotone property. That is, the support of a sequential pattern is always
no larger than that of its sub-sequences. ESPMiner uses this property to prune
the search space. It starts from the empty pattern 〈〉 and recursively adds items
to the pattern until the support of the pattern is below the minimum support
threshold.

Algorithm 1 illustrates ESPMiner. When it is first called, s=〈〉 and Ds = D.
For each sequential pattern s, ESPMiner scans its projected database Ds to find
its frequent element extensions and sequence extensions (line 1). An item x is a
frequent element extension of s = 〈e1, e2, · · · , ek〉 if s′ = 〈e1, e2, · · · , ek ∪ {x}〉 is
frequent. An item x is a frequent sequence extension of s if s′ = 〈e1, e2, · · · , ek, {x}〉
is frequent. ESPMiner constructs the project databases of extensions of s from
Ds (line 2). If a sequence in Ds contains s′ = 〈e1, e2, · · · , ek ∪ {x}〉 or s′ =
〈e1, e2, · · · , ek, {x}〉), then the sequence is put into the projected database of s′.
Next, ESPMiner outputs s′ if dpower(s′, C) ≥ ρ (lines 5-7, lines 12-14), and then
extends s′ recursively (line 8, line 15).

3.3 Mining ESPs for Activity Recognition

We then apply ESPMiner to mine the ESPs for activity recognition. Before
the mining process, we first need to convert the data stream to a sequence of

Mining Emerging Sequential Patterns for Activity Recognition 107

Algorithm 1. The ESPMiner Algorithm
Input: s = 〈e1, e2, · · · , ek〉 is the frequent sequential pattern currently being processed;

Ds is the projected database of s;
min sup is the minimum support threshold;
ρ is the minimum discriminative power threshold;

Output: Mined ESPs

1: Scan Ds to find frequent extensions of s, denoted as Felm(s) and Fseq(s), where Felm(s) contains
frequent element extensions of s, and Fseq(s) contains frequent sequence extensions of s;

2: Scan Ds a second time to construct projected databases for super-sequences of s that extend s
by one new item in Felm(s) or Fseq(s);

3: for all items x ∈ Felm(s) do
4: s′ = 〈e1, e2, · · · , ek ∪ {x}〉;
5: if dpower(s′) ≥ ρ then
6: output s′;
7: end if
8: DFSMine(s′, Ds′ , min sup, ρ);
9: end for
10: for all items x ∈ Fseq(s) do
11: s′ = 〈e1, e2, · · · , ek, {x}〉;
12: if dpower(s′) ≥ ρ then
13: output s′;
14: end if
15: DFSMine(s′, Ds′ , min sup, ρ);
16: end for

observation vectors by concatenating all of the raw data in a fix time interval
(set to one second in our experiments), and then we extract useful features as
follows.

For acceleration data, we compute five common features—DC mean, variance,
energy, frequency-domain entropy and correlation. The DC mean is the mean
acceleration value in a time interval. Variance is used to characterize the stabil-
ity of a signal. Energy captures the data periodicity, and it is calculated as the
sum of the squared discrete FFT component magnitudes of a signal. Frequency-
domain entropy helps to discriminate activities with similar energy values, and
it is calculated as the normalized information entropy of the discrete FFT com-
ponent magnitudes of a signal. Correlation between axes is especially useful for
discriminating between activities that involve translation in just one dimension.
It is computed for every two axes of each accelerometer and all pair-wise axes
combinations of two different accelerometers. For RFID reading or location in-
formation, we use object name or location name as features. We then transform
these observation vectors into feature vectors. A feature vector consists of many
feature items, where a feature item refers to a feature-value pair. Feature vec-
tors are indexed by a simple encoding scheme and will be used as inputs to the
mining process.

The mining process leverages on sequential activity instances only. Specifically,
for each sequential activity class SAi, we mine a set of ESPs to contrast its
instances, DSAi

, against all other activity instances D′
SAi

, where D′
SAi

= D −
DSAi

and D is the entire sequential activity dataset. After mining, we obtain
a set of ESPs for each sequential activity. Table 1 presents an ESP subset for
making oatmeal. Columns 3 and 4 show the corresponding values of support and
dpower, respectively.

108 T. Gu et al.

Table 1. An ESP Example for making oatmeal

ESP Support dpower

{ACCEL BODY X MEAN@(−900.75 ∼ −822.75],

ACCEL LEFT X MEAN@(214.39 ∼ 352.87], LOCATION@kitchen};
{ACCEL LEFT X MEAN@(543.27 ∼ 843.19],

ACCEL LEFT Z MEAN@(441.53 ∼ 847.59]};
{ACCEL RIGHT Z MEAN@(467.36 ∼ 701.17], OBJECT@tablespoon};
{LOCATION@kitchen}; {OBJECT@burner}

75.0% 1.0

4 ESP-Based Activity Recognition

4.1 ESPar Overview

We first give an overview of ESPar. The input is the sensor data stream which
will be first pre-processed into a sequence of feature vectors. ESPar operates
in two phases—model training and activity recognition. In the training phase,
a training dataset consisting of sequential activity instances will be used to
train our activity models. In the recognition phase, given a sequence of feature
vectors (i.e., St, t = 0 ∼ T), we first segment its sequence using a sliding window
(i.e., LAi) to obtain a test instance (i.e., St∼t+LAi

, t = 0 ∼ T), and then we
apply our recognition algorithm to label this sequence segment. This process
will be performed recursively, and each sequence segment will be assigned with
a candidate label. For each pair of consecutive sequence segments we label, we
apply a boundary detection algorithm to detect the boundary, and adjust the
length of each sequence segment according to the new boundary. The above
recognition processes will be performed recursively until the end of the sequence.
In the following sections, we first describe our activity models. We then present
the ESPar algorithm.

4.2 Sequential Activity Model

We design the activity model for each sequential activity SAi based on a set of
ESPs (i.e., ESPSAi) we mined from sequential activity instances. Each set of
ESPs contains many subsets in which a single ESP can sharply differentiate the
class membership of a fraction of the test instance St∼t+LSAi

that contains the
ESP. To make use of each subset of ESPs to achieve good overall accuracy, we
combine the strength of each ESP based on the aggregation method described
as follows.

Suppose an instance St∼t+LSAi
contains an ESP, X , whereX ∈ ESPSAi , then

the odds that St∼t+LSAi
belongs to SAi is defined as dpower(X). The differen-

tiating power of a single ESP is then defined by the odds and the fraction of the
population of class that contain the ESP. More specifically, the differentiating
power of X is given by dpower(X) ∗ supSAi(X). The aggregated probability of
St∼t+SAi

belongs to SAi is defined as follows.

aggr p(SAi, St∼t+SAi
) =

∑

X⊆St∼t+SAi
,X∈ESPSAi

dpower(X) ∗ supSAi(X) (1)

Mining Emerging Sequential Patterns for Activity Recognition 109

where supSAi(X) is the support of X in SAi. The ESP measurement of each
activity are then normalized by dividing them using the median probability
value in the training instances of that activity. Finally, the ESP measurement is
defined as follows.

esp(SAi, St∼t+LSAi
) =

aggr p(SAi, St∼t+LSAi
)

base p(SAi)
(2)

where base p(SAi) is the median probability value of aggr p(SAi, St∼t+LSAi
) in

the training data.
In addition to the ESP measurement, we model activity correlation (i.e., when

an activity SAj has been performed, the probability of another activity SAi be-
ing performed) in the design of our sequential activity model. We use condition
probability to model correlations between activities. We define the activity corre-
lation probability of SAi as P (SAi|SAj), which is the conditional probability of
SAi given SAj . The activity correlation probability for each sequential activity
can be easily obtained from the training dataset.

4.3 Interleaved and Concurrent Activity Models

The design of complex activity models is crucial. A common practice is to train
both interleaved and concurrent activity models from complex activity instances.
We design our complex activity model based on our sequential model only, elim-
inating the need for training. To illustrate, we denote CAi as both interleaved
and concurrent activities. We denote CAi as SAa & SAb) for an interleaved
activity and SAa + SAb for a concurrent activity, where two single sequential
activities SAa and SAb are involved in. We set the number of single activities
involved in interleaved or concurrent activities to two for illustrations although
in theory it can be more than two. We define the sliding-window length of CAi

as LCAi = LSAa +LSAb
, and use LCAi to get the test instance St∼t+LCAi

. Since
an instance of CAi containing both ESPSAa and ESPSAb

(i.e., some of the
steps that belong to SAa and SAb respectively are interleaved or overlapped),
the ESP measurement of CAi can be computed as follows.

esp(CAi, St∼t+LCAi
) = max[esp(SAa, St∼t+LCAi

), esp(SAb, St∼t+LCAi
)] (3)

The computation of activity correlation probability for interleaved and concur-
rent activities can be quite complex. There are three cases: a sequential ac-
tivity followed by an interleaved or a concurrent activity, an interleaved or a
concurrent activity followed by a sequential activity, and an interleaved or a
concurrent activity followed by another interleaved or concurrent activity. Given
the rational that a higher condition probability implies a stronger activity cor-
relation, we choose the maximum value of all possible condition probabilities
for all these cases. To illustrate, given CAj , where CAi = SAa & SAb or
CAi = SAa+SAb, the activity correlation probability of CAi, where CAj = SAc

& SAd or CAj = SAc + SAd, can be computed as follows.

110 T. Gu et al.

P (CAi|CAj) = max(P (SAa|SAc), P (SAa|SAd), P (SAb|SAc), P (SAb|SAd))
(4)

The computation of P (SAi|CAj) and P (CAi|SAj) follows the same method.
In summary, our activity model for sequential, interleaved and concurrent

activities is defined as follows.

Definition 4. (Activity Model) Given a time t and an activity Aj which ends
at t, for each activity Ai, a test instance St∼t+LAi

is obtained from t to t+LAi ,
the activity model of Ai is then defined as follows:

model(Ai, Aj , St∼t+LAi
) = esp(Ai, St∼t+LAi

) ∗ P (Ai|Aj)

4.4 The ESPar Algorithm

We are now ready to classify activities based on the above model. We first use a
sliding window based algorithm to segment the sequence. For each possible ac-
tivity, we obtain the test feature vectors using its corresponding sliding window
(the length is the average duration of this activity), and compute the proba-
bility based on Definition 4. We then assign the activity label with the highest
probability to the feature vectors. The process can be applied recursively to the
entire sequence. However, since the sliding-window length of each activity is an
approximation of its actual length, the segmentation may not be accurate. To
overcome this drawback, we use a boundary detection algorithm in [8] to detect
and adjust the boundary between two adjacent activities so that the next sliding
window can be applied from the correct boundary.

5 Empirical Studies

We now move to evaluate our proposed algorithm. In this section, we first de-
scribe the trace we use, and then present and discuss the results obtained from
a series of experiments.

5.1 Trace and Methodology

We use a real-wrold trace collected in [8]. The dataset consists of 26 sequen-
tial activities, 11 interleaved activities and 13 concurrent activities with a total
number of 532 instances. We use ten-fold cross-validation (a common technique
to evaluate predictive models) for our empirical studies. Note that the training
process involves sequential instances only.

We evaluate the performance of ESPar using time-slice accuracy which is a
typical technique in time series analysis. It represents the percentage of correctly
labeled time slices. The length of time slice Δt is set to 15 seconds as our ex-
periment shows different Δt does not affect the accuracy much. This time slice
duration is short enough to provide precise measurements for applications. The
metric of the time-slice accuracy is defined as follows.

T ime slice =
1

N

N∑

n=1

[inferred(n) = true(n)] (5)

Mining Emerging Sequential Patterns for Activity Recognition 111

Fig. 2. Breakdown for type of activities Fig. 3. Breakdown for overall accuracy

where [inferred(n) = true(n)] produces 1 when true and 0 when false; N = T
Δt ,

i.e., the total number of time slices.

5.2 Accuracy

In this experiment, we evaluate the accuracy of ESPar. ESPar achieves an ac-
curacy of 91.61% for sequential activity, 92.26% for interleaved activity, 92.32%
for concurrent activity, respectively, and an overall accuracy of 91.89%. Figure 3
shows the breakdown for the overall accuracy, and Fig. 2 shows the breakdown
for type of activities. One observation is that we obtain similar results for all the
three types of activities. Most confusion takes place in the following three cases:

Case 1: A sequential activity is predicted as another sequential activity, e.g.,
for a sequential activity washing face, our result shows while 51.2% of its en-
tire observation sequence is predicted correctly, 16.3% of them is predicted as
brushing teeth and 14.1% of them is predicted as brushing hair.

Case 2: In a complex activity, only one of the sequential activities is de-
tected and the other one is missed, e.g., for an interleaved activity reading
book/magazine & using phone, while 76.1% of its entire observation sequence
is predicted correctly, 19.1% of them is predicted as reading book/magazine (i.e.,
using phone is missed).

Case 3: A sequential activity is predicted as an interleaved or a concurrent
activity, e.g., while 75.6% of the entire sequence of reading book/magazine is
predicted correctly, 23.9% of them is predicted as an interleaved activity reading
book/magazine & using phone.

To analyze the above results, we suggest a number of reasons for Case 1.
Firstly, we observe many similarities among these activities such as similar hand
movements and the same location. Secondly, RFID sensors may not work in
some activities such as washing face since face towel is not tagged, or fail to
detect tagged objects due to out of range. Thirdly, many tagged objects may be
placed in close proximity. As a result, sensor noise may be introduced to the data
stream. For Cases 2 and 3, the above possibilities may hold as well. In addition,
for the two activities involved in a complex activity, ESPar seems to bias to the
longer one. Possible solutions include adding more sensor modalities, which we
leave for our future work.

112 T. Gu et al.

Table 2. Comparison Results

Classifier
Accuracy

Remark
Sequential

Activity

Interleaved

Activity

Concurrent

Activity
Overall

ESPar 91.61% 92.26% 92.32% 91.89% pattern based model

HMM 70.99% N.A. N.A. 70.99% temporal probabilistic model

CRF 86.93% N.A. N.A. 86.93% temporal probabilistic model

5.3 Comparison Studies

In this experiment, we compare ESPar with temporal models (HMMs and CRFs).
The results of the temporal models are based on sequential activities only since
both models can not be directly applied to recognize complex activities. For a
fair comparison, we use the same training and testing datasets for all the models.
Table 2 summarizes the results.

For each dataset, an HMM was trained and the Viterbi algorithm was used to
recover the state sequence; similarly for CRF. The result is shown in Table 2. ES-
Par outperforms both CRF (86.93%) andHMM (70.99%). This result can be prob-
ably explained as follows: First, the amount of training data is relatively small. In
such circumstance, mining the differences between classes tends to be more effec-
tive for building a discriminative model. Although CRF is also a discriminative
model, it focuses on mining the regularities in which a large amount of training
data is typically required. This result reveals that ESPar tends to be more effi-
cient with the same amount of training data. HMM, as a generative joint model,
is least effective due to the known shortcomings such as over-fitting the training
data and strong independence assumptions. ESPar also outperforms the Emerg-
ing Pattern based model [8], demonstrating that the ESP-based model is more
efficient because it mines not only the differences between classes, but also the
inherent ordering among activity sequences.

6 Conclusions

In this paper, we study the problem of recognizing sequential, interleaved and
concurrent activities using a BSN. We propose a novel Emerging Sequential
Pattern, and demonstrate that, leveraging on ESP, both simple and complex
activities can be effectively recognized in a unified framework.

For our future work, we will integrate more sensors such as acoustic sensor and
gyro sensor into our BSN. The more sensor modalities we use, and the stronger
ESPs we obtain. We will also explore the concept of ESPs to other classification
tasks.

Acknowledgement. This work was supported by the Danish Council for
Independent Research, Natural Science under Grant 09-073281, National 973
program of China under Grant 2009CB320702, National 863 program of China
under Grant 2009AA01Z117, Natural Science Foundation of China under Grants

Mining Emerging Sequential Patterns for Activity Recognition 113

60736015 and 60721002, Project for Core High Technology of the Ministry of Sci-
ence and Technology of China under Grant 2009ZX01043-001-06, and Jiangsu
Climbing Program under Grant BK2008017.

References

1. Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data.
In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17.
Springer, Heidelberg (2004)

2. Logan, B., Healey, J., Philipose, M., Tapia, E.M., Intille, S.: A long-term evalua-
tion of sensing modalities for activity recognition. In: Krumm, J., Abowd, G.D.,
Seneviratne, A., Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 483–500.
Springer, Heidelberg (2007)

3. Patterson, D., Fox, D., Kautz, H., Philipose, M.: Fine-grained activity recogni-
tion by aggregating abstract object usage. In: Proc. IEEE Int’l Symp. Wearable
Computers, Osaka (October 2005)

4. Vail, D.L., Veloso, M.M., Lafferty, J.D.: Conditional random fields for activity
recognition. In: Proc. Int’l Conf. Autonomous Agents and Multi-agent Systems,
AAMAS (2007)

5. van Kasteren, T.L.M., Noulas, A.K., Englebienne, G., Kröse, B.J.A.: Accurate
activity recognition in a home setting. In: Proc. Int’l Conf. Ubicomp, Seoul, Korea
(September 2008)

6. Modayil, J., Bai, T.X., Kautz, H.: Improving the recognition of interleaved activi-
ties. In: Proc. Int’l Conf. Ubicomp, Seoul, South Korea (September 2008)

7. Wu, T.Y., Lian, C.C., Hsu, J.Y.: Joint recognition of multiple concurrent activities
using factorial conditional random fields. In: Proc. AAAI Workshop Plan, Activity,
and Intent Recognition, California (July 2007)

8. Gu, T., Wu, Z., Tao, X., Pung, H.K., Lu, J.: epSICAR: An Emerging Patterns
based Approach to Sequential, Interleaved and Concurrent Activity Recognition.
In: Proc. IEEE Int’l Conf. on Pervasive Computing and Communications (Percom
2009), Galveston, Texas (March 2009)

9. Lombriser, C., Bharatula, N.B., Roggen, D., Tröster, G.: On-body activity recog-
nition in a dynamic sensor network. In: Proc. Int’l Conf. Body Area Networks,
BodyNets (2007)

10. Fayyad, U., Irani, K.: Multi-interval discretization of continuous-valued attributes
for classification learning. In: Proc. Int’l Joint Conf. on Artificial Intelligence, San
Francisco (1993)

11. Dong, G.Z., Li, J.Y.: Efficient mining of emerging patterns: discovering trends and
differences. In: Proc. ACM Int’l Conf. on Knowledge Discovery and Data Mining,
San Diego, CA, USA, pp. 43–52 (August 1999)

	Mining Emerging Sequential Patterns for Activity Recognition in Body Sensor Networks
	Introduction
	Related Work
	Emerging Sequential Pattern
	Definitions
	Mining ESPs
	Mining ESPs for Activity Recognition

	ESP-Based Activity Recognition
	ESPar Overview
	Sequential Activity Model
	Interleaved and Concurrent Activity Models
	The ESPar Algorithm

	Empirical Studies
	Trace and Methodology
	Accuracy
	Comparison Studies

	Conclusions
	References

