
Minimizing Inter-server Communications by Exploiting Self-similarity in Online
Social Networks

Hanhua Chen, Hai Jin
Services Computing Technology and System Laboratory

Cluster and Grid Computing Laboratory
School of Computer Science and Technology

Huazhong University of Science and Technology
Wuhan, 430074, China
{chen,hjin}@hust.edu.cn

Ning Jin, Tao Gu
Department of Mathematics and Computer Science

University of Southern Denmark
5230 Odense M, Denmark
{njin,gu}@imada.sdu.dk

Abstract—Efficiently operating on relevant data for users in
large-scale online social network (OSN) systems is a challenging
problem. Storage systems used by popular OSN systems often
rely on key-value stores, where randomly partitioning the data
of users among servers across the data centers is the defacto
standard. Although by using DHTs, the random partition
scheme is highly scalable for hosting a large number of users,
it leads to costly inter-server communications across data
centers due to the complexity of interconnection and interaction
between OSN users. In this paper, we explore how to reduce
the inter-server communications by retaining the simple and
robust nature of OSNs. We propose a data placement solution
atop OSN systems to divide users among servers according to
the interaction-locality-based structure. Our approach exploits
a simple, yet powerful principle of OSN interactions, self-
similarity, which reveals that the inter-server communication
cost is minimized under such intrinsic structure. Our algorithm
avoids a significant amount of inter-server traffic as well as
achieves load balance among servers across the data centers.

We demonstrate the existence of self-similarity in large-
scale Facebook traces including 10 million Facebook users
and 24 million interaction events. We conduct comprehensive
trace-driven simulations to evaluate this design exploiting the
unique feature of self-similarity. Results show that our scheme
significantly reduces the traffic and latency of the existing
schemes.

Keywords-Self-similarity, interaction graph, inter-server
communications, data center, online social networks

I. INTRODUCTION

Since the emergence of online social networks (OSNs),
such as Facebook, Orkut, and Flickr, hundreds of millions
of users have started to use OSNs to share information on
the Internet. The most popular OSN system, i.e., Facebook,
serves more than nine hundred million active users [3] using
more than sixty thousand servers located in multiple data
centers over the world [1]. Users login, organize events, and
search for specific contents. OSNs differ from traditional
web applications significantly: they handle highly person-
alized contents [4], [9] and most importantly they deal

with highly interactive operations, producing non-traditional
workloads [22].

Currently, popular OSNs commonly utilize scalable key-
value stores, where random partition is the defacto strategy
for data placement. For example, Facebook utilizes Cas-
sandra [11] as the underlying databases for storing user
inbox. Specifically, Cassandra uses a ring infrastructure and
consistent hashing [10] to provide high scalability. The
consistent hash function assigns each user-id and a server
address in the system an m-bit identifier using a base
hashing function such as SHA-1. In this manner, a user’s
data is placed on the first server with the hashing value
equaling to or following the hashed identifier of the user.
Each server becomes responsible for the region along the
ring between itself and its predecessor, so that departure or
arrival of a server node only affects its immediate node and
other nodes remain unaffected.

Based on the consistent hashing mechanism, friend-scale
operations can be very costly. Due to the defacto random
partition strategy (such as the default RandomPartitioner
option in Cassandra of Facebook) introduced by consistent
hashing, friends of a user are assigned to different random
servers across the data centers. For example, if a user
u has a set of neighbors {vi, i > 0}, the data of the
neighbors will be placed on different servers according to
the hashed key values key(vi). When user u organizes
an event among a number of selected one-hop neighbors,
relevant messages will be pushed to all the servers hosting
these selected neighbors, raising a large amount of inter-
server communications. This can also result in unpredictable
response time, determined by the highest latency server.
The problem can be particularly acute under heavy data
center loads, where network congestion can cause severe
network delay. Though the DHT-based scheme is elegant
and scalable, random partition of highly interconnected OSN
data across the data centers incurs heavy inter-server traffic.

To alleviate the problem caused by the defacto random
partition, existing schemes commonly leverage the proper-

978-1-4673-2447-2/12/$31.00 c©2012 IEEE.

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 16:37:31 UTC from IEEE Xplore. Restrictions apply.

ties of the social graphs. Such schemes assume that social
links indicate real user interactions over OSNs. For example,
by combining a dynamical partition strategy based on social
graph with a user-level replication, Pujol et al. [18] achieves
local data semantics for all users. A recent research by
Wilson et al. [22], however, shows that users in OSNs do
not interact with most of their friends at all. For the vast
majority of Facebook users, 20% of their friends account
for 70% of all interactions, implying that social links, and
the social graphs they form, are not accurate indicators of
information flows between users. Another problem of the
partition scheme based on social links in [18] is that the
highly dynamic social graph may result in costly replica
moving overhead.

Our design philosophy departs from the existing work in
such a way that we seek to retain the simple and robust
nature of OSNs. Instead of simply leveraging the features
of social graphs on OSNs, we have analyzed the interaction
graph [22] using a large-scale Facebook trace including 10
million users and 24 million interaction events. We identify
a powerful principle: the structure of Facebook interaction
graph holds feature of self-similarity, a well known and
ubiquitous underlying driving force which minimizes the
dissipation of cost/energy in dynamic process [5].

Based on this finding, we propose a novel data placement
strategy in OSN systems, which leverages the interaction
locality to avoid inter-server interactions while achieving
load balance among servers. We conduct comprehensive
simulations using real-world traces to evaluate the perfor-
mance of our design. Results show that our data placement
scheme significantly reduces the network traffic and latency
of existing schemes.

The main contributions of this work are twofold.

• We identify self-similarity in the structure of Facebook
interaction graph, using a large-scale trace including
10 million Facebook users and 24 million interaction
events. We also demonstrate that the structure of Face-
book social graph has no such feature.

• Based on the observation, we propose a novel data
placement strategy for large-scale OSNs, which avoids
a significantly large amount of inter-server communi-
cations as well as achieves load balance among servers
across the data center. Trace-driven simulation results
show that the scheme can significantly reduce the inter-
server traffic.

The rest of the paper is organized as follows. Section
2 reviews related work. In Section 3, we investigate the
principle of self-similarity in Facebook interaction graph.
In Section 4, we propose the data placement scheme based
on the self-similar structure of interaction graph. In Section
5, we evaluate the performance of this design. Section 6
concludes the paper.

II. RELATED WORK

OSNs are popular infrastructures for user communication
and interaction on the Internet, which are also widely used
to mitigate email spam [6], improve Internet search [14],
and defend against Sybil attacks [21]. Serving hundreds
of millions of users, OSN systems are indeed among the
Internet’s most popular destinations [22].

It is not news that large-scale distributed systems are
notoriously difficult to manage. One effective way to op-
timize the design tradeoffs and guide efficient solution
is to understand the system properties which reflects the
behavior of users. The recent rapid growth of OSNs has also
attracted much interest of research in network structures and
properties. Mislove et al. [15] present a measurement study
on popular OSNs. Their analysis of the social graphs of mul-
tiple OSNs demonstrates the power-law, small-world, and
scale-free properties of existing OSNs. Their observations
reveal that OSNs contain a large, strongly connected core
of high-degree nodes, surrounded by many small clusters
of low-degree nodes. This suggests that high-degree nodes
in the core are critical for the connectivity and the flow
of information [9]. Gómez et al. [7] conduct statistical
analysis on OSNs and show that the degree distributions
of OSNs are better explained by log-normal instead of
power-law. Leskovec et al. [12] introduce the concept of
network community profile plot to characterize the qual-
ity of a community in OSNs. Newman [16] investigates the
property of community structure in large-scale networks and
propose an algorithm that uses “edge betweenness” to detect
communities. Pujol et al. [18] propose to combine a dynamic
social graph partition strategy with a user-level replication
strategy to achieve local data semantics for users. Most of
existing work assumes that social links indicate real user
interactions over OSNs.

However, the resent research by Wilson et al. [22] shows
that the actual interaction activity on Facebook is sig-
nificantly skewed towards a small portion of each user’s
social links. The results show that for the vast majority of
Facebook users, 20% of their friends account for 70% of
all interactions and a user do not interact with most of his
friends. Their observation reveals that social links, and the
social graphs they form, are not accurate indicators of social
relationships between users. Following this observation, in
this work, we take a closer look at the user interactions.
We identify self-similarity, a principle feature of information
flow in large-scale popular OSNs. We further propose a
novel data partition scheme to minimize the inter-server
communications by leveraging this unique feature.

III. MODEL

In this section, we present an empirical study of OSN
user interactions using real-world traces from Facebook.
At first, we briefly introduce the concept of interaction
graph [22]. Next, we define a formal mathematical model to

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 16:37:31 UTC from IEEE Xplore. Restrictions apply.

optimize interaction locality by partitioning the interaction
graph. Then we measure the traces we collected. At last, we
investigate the feature of self-similarity.

A. Interaction Graph

Most of the existing work leverages social graphs to model
an online social network. These schemes assume that all
social links in the network denote a uniform level of real-
world interpersonal association. However, recent analysis on
large-scale Facebook interaction traces shows that interac-
tion activity is significantly skewed towards a small portion
of each user’s social links [22].

To model OSN systems more accurately, Wilson et al.
suggest to use interaction graph [22]. Different from social
graph, where each link represents the relationship between
a pair of users, the interaction graph should better differ-
entiate between users’ active friends (with recent frequent
interactions) and those they merely associate with by name.

Mathematically, an interaction graph of an OSN system
is defined as a graph G = (E, V), where V denotes the
set of participants and E denotes the set of interaction links
with interaction rate greater than a threshold. The threshold
is determined by two parameters, n and t, where n denotes
a minimum number of interaction events, and t stipulates a
window of previous time during which interactions occurred.
For example, only the social links reciprocally interact at
least once (n = 1) in the last year (t = 1 year) are
considered as interaction links. In the interaction graph, a
user’s interaction degree is the number of interaction links
associated with him.

The advantages of using interaction graph rather than the
social graph are twofold: 1) the interaction graph better
represents the user behavior and the information flow across
OSNs; 2) the design based on the statistical interaction
graph has more stable performance and efficiency than that
using the social graph (we will show this in Section 5
using experiment results based on large-scale traces from
real-world system). Hence, in this work we model an OSN
following the concept of interaction graph [22] and take a
closer look at user interactions.

B. Interaction Locality

We use the following symmetric adjacency matrix A with
Boolean entries aij to quantify the interaction links, where
eij is a link with reciprocal interactions performed between
participants i and j.

aij =

{
1 if(eij ∈ E)

0 if(eij �∈ E)
(1)

Suppose the interaction graph is partitioned into a set of
r interaction communities {Ci, 1 ≤ i ≤ r}. We use an
r × r symmetrical matrix whose elements cmn represents

the fraction of all edges that link vertices in interaction
community Cm to those of Cn,

cmn =

∑
vi∈Cm

∑
vj∈Cn

aij

∑
vi∈V

∑
vj∈V

aij

(2)

The diagonal elements ckk quantify the fraction of inter-
action links that fall within Ck,

ckk =

∑
vi∈Ck

∑
vj∈Ck

aij

∑
vi∈V

∑
vj∈V

aij

(3)

Let δi be the fraction of all the ends of the interaction
links that are attached to vertices in Ci. We can calculate
δi straightforward by noting that δi =

∑

1≤j≤r

cij . If the ends

of links are connected together randomly, the expected frac-
tion/probability of the resulting links that connect vertices
within Ci is δ2i .

We use the following equation to measure the strength of
interaction locality [16],

Q =
∑
k

(ckk − δ2k) (4)

Here, ckk − δ2k is the fraction of the edges that fall within
Ck minus the expected value of the same quantity if edges
fall at random. The larger the deviation is with Ck, the
more distinct the interaction locality feature is within Ck. By
summing up the deviations of all the interaction communities
in the given division, Q quantifies the strength of interaction
locality of the entire network. It is not difficult to see that if
a particular division does not give more within-community
interactions than would be expected by random chance, the
model will obtain the minimum value Q = 0. Values other
than 0 indicate deviations from randomness.

Hence, by optimizing the division to obtain the maximum
value of Q, we can achieve the partition with the strongest
interaction locality.

C. Algorithm for Optimizing Interaction Locality

As aforementioned, a high value of Q represents a distinct
feature of interaction locality. The division of a given inter-
action graph can be achieved by optimizing divisions over all
possible combinations to obtain the maximal Q. However,
exhaustive optimization of Q is very costly. The number
of ways to divide n vertices into m non-empty groups is
at least exponentially in n. Thus, the optimizing speed is
extremely important in designing a practical algorithm, since
existing popular OSNs have hundreds of millions of active
users. In this paper, we employ a “greedy” algorithm for

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 16:37:31 UTC from IEEE Xplore. Restrictions apply.

100 101 102 103 104

0

0.2

0.4

0.6

0.8

1

Degree

P
r(

X
>x

)

interaction graph
social graph

100 101 102 103
10−5

10−4

10−3

10−2

10−1

100

Degree

C
lu

st
er

in
g

C
oe

ffi
ci

en
t

social graph
interaction graph

0 2 4 6 8 10 12
x 105

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Optimizing Steps

Q

interaction graph
social graph

Figure 1. Interaction degree VS. social degree Figure 2. Clustering coefficient Figure 3. Locality optimization

optimization, which is believed to perform fast over large-
scale networks [16].

The pseudo code in Algorithm 1 specifies our optimizing
scheme in detail. The algorithm starts with an initial state Γ0,
in which each vertex is a single-member community. At each
step, the pair merges if it results in the largest increase in Q.
The merge operation continues iteratively until the value of
Q converges to the maximum value. Comparing to the other
heuristics, the greedy-like approach is more efficient for
large-scale networks. In the following, we further speed up
the greedy algorithm by taking some optimization strategies.

Looking at each merging step. The change of Q value
is ΔQ = Cij + Cji − 2δiδj . In an undirected graph with
Cij = Cji , we have ΔQ = 2(Cij − δiδj). It is not
difficult to see that joining two interaction communities
with no direct edges connecting them results in a negative
ΔQ. Therefore, the pairs most likely to join are those with
more interaction edges between them, where the interaction
locality is preserved most. Consider an interaction graph
with m edges and n nodes. Each step costs time c1m to find
the largest ΔQ, where c1 is a constant time for computing
ΔQ of one pair. When joining two communities, some of
Cij should be updated and this time spent will not exceed
c2n, where c2 is a constant. Thus, each optimizing step
takes the worst time of about c1m+ c2n. In the worst case,
the joining operations will take n − 1 steps to achieve the
maximum Q, making only one single community left finally.
Thus, the worst time cost is (c1m+ c2n)n.

In large-scale OSNs, the number of nodes in the complete
interaction graph can be hundreds of million. Although
current graph analysis platform of OSN company has e-
nough capacity to deal with such large-scale graph by using
distributed memory and processing model, the complexities
of space and time for algorithm should both be carefully
considered for efficiency. According to the real-world traces
we collected from Facebook, typically m is ten times larger
than n (i.e.,m � n). Thus, in the worst case, the time
complexity is likely to be O(mn), where most of the time
of the algorithm is spent on finding the largest ΔQ in each
step. By utilizing a heap structure, the time complexity on
finding the largest ΔQ in each step can be bounded by
O(logm). Meanwhile, we get extra expenses for joining two
communities in order to maintain the heap of ΔQ, the total

time cost is now (c3 logm + c4n)n, where c3 and c4 are
constants different from c1 or c2. Though in the worst case,
the time spent is still O(n2) in a sparse graph, the constant
coefficient has been greatly decreased since m is many times
of n in real-world OSNs.

D. Traces

1) Collection: In this work, we use the interaction traces
provided by Ben [22]. The large-scale Facebook trace in-
cludes 10 million users and 24 million interaction events
from the 22 largest regional networks on Facebook. The
large-scale interaction trace is quite representatives for real-
world systems.

We have also developed a distributed crawler to collect the
social graph traces from Facebook. The distributed crawler
written in Java runs in three workstations in parallel each
using 100 threads. We have discovered more than two
million Facebook users during the period 10 May - 25 June
2011 using three workstations.

2) Analysis: In this section, we analyze the collect-
ed Facebook traces. First, we compare the properties of
Facebook interaction graph with those of the social graph.
We first analyze some general properties including degree
distribution, clustering coefficient, and average path length,
and then take a closer look at the property of interaction
locality. Then, we further investigate the sub-interaction-
graph and try to identify the unique feature of the structure
of the interaction graph.

Interaction degree. Figure 1 plots the social degree and
interaction degree of Facebook traces. The result shows that
interaction degree does not scale equally with social degree.
Statistically, the average interaction degree of Facebook
users is 7.48 while the corresponding number of social graph
is 92. It is clear that if all Facebook users interact with each
of their friends at least once during the time window, the
distribution of the interaction degree is in agreement with
the social degree. This, however, is a far cry from the case,
indicating that social links mismatch actual relationships.

Clustering coefficient. Clustering coefficient is another
measure of degree to which nodes in a graph tend to cluster
together. It is defined as the ratio of the number of links
that exist between a node’s one-hop neighborhood to the
exhaustive number of links that could exist. Mathematically,

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 16:37:31 UTC from IEEE Xplore. Restrictions apply.

100 101 102 103

0

0.2

0.4

0.6

0.8

1

Degree

C
D

F

sub−component 1
sub−component 2
sub−component 3

100 101 102 103
10−4

10−3

10−2

10−1

Degree

C
lu

st
er

in
g

C
oe

ffi
ci

en
t

sub−component 1
sub−component 2
sub−component 3

0 0.5 1 1.5 2 2.5 3 3.5
x 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Optimizing Steps

Q

sub−component 1
sub−component 2
sub−component 3

Figure 4. Degrees of sub-graphs Figure 5. Clustering coefficient of sub-graphs Figure 6. Optimizing procedure of sub-graphs

for a node with m neighbors and e edges between those
neighbors, the clustering coefficient can be calculated by:

2e
m(m−1) . Figures 2 plots the clustering coefficient of the
traces. The results show that users with lower degrees have
higher clustering coefficients. The results show that the
clustering coefficient of the social graph is much higher than
that of the interaction graph.

Interaction locality. On top of each trace we collected,
we run Algorithm 1 to optimize the interaction locality until
the maximum Q is obtained. Figure 3 shows the optimizing
process of the fast heuristic algorithm obtaining the best
Q using the interaction trace and topology trace. Results
show that the best Q values of interaction graph and social
graph are 0.578 and 0.524, respectively, which are much
larger than those of random graphs. The high values of Q
reveal distinct feature of locality in OSN systems. In Fig.3,
each curve depicts the whole Q optimizing process from
the beginning to the end. Figure 3 also illustrates that each
optimizing curve consists of several sub-curves. It is not
difficult to see that the gradients of each sub-curve change
in a similar way: the slope is very high at the beginning and
then drops while the curve becomes flat. The whole curve
changes periodically until they reach a max value of Q.

We further examine the optimized division that archives
the best Q. The results show that the procedure of Algorithm
1 ends at the state that the interaction graph are divided
into hundreds of different interaction communities. When we
take a closer look at the communities, we find that the best Q
is mainly contributed by several dominating communities. To
uncover the properties of the huge components, we conduct
further analysis over the three top-components. Figures 4, 5
and 6 plot the degree distribution, cluster coefficient and the
best Q for the three largest sub-communities, respectively.
The results are in good agreements with the results for the
entire network presented in Figures 1, 2 and 3. Here, to
investigate the interaction locality feature of these huge sub-
communities, we further perform Algorithm 1 over these
three huge communities. The procedure returns with best
Q values similar with that of the entire interaction graph,
indicating these interaction sub-networks also show distinct
feature of locality, like their parent.

Such striking similarity between the structures of the

entire interaction graph and its sub-graph shown above raises
the possibility that the OSN interaction graph might self-
organize into a self-similar structure, which is proven to be
the underlying driving force to minimize the dissipation of
energy/cost during dynamical process [19]. In the following,
we make further exploration of the feature of self-similarity
using a standard measure.

E. Identifying Self-Similarity in the Interaction Graph

It is not difficult to see that in Algorithm 1 when we
obtain the global maximum Q, if we do not stop the
merging procedure (this can be easily achieved by repeating
merging the pairs which have minimal Q decrease), all the
nodes will eventually be merged into a single collection.
With this simple extension to Algorithm 1, we consider
the entire merging process. It is clear that we can use a
binary tree to represent the community merging process.
Specifically, at the beginning of the process, there is a
collection of individual leaves standing for all the users
(single-member communities) in the interaction graph. In
the iterative process of Algorithm 1, each merging operation
chooses a pair which improves the interaction locality most
if the pair merges into a larger community. Thus, the newly
formed community can be represented as a bifurcation. With
this merging operation continuing, at the end of the process,
a binary tree will be formed as shown in Fig.7(a). We call
this binary tree the interaction community tree. The root of
the tree depicts the whole interaction graph while each of
its children represents a sub-structure.

According to our analysis in Section 3.D, the possibil-
ity that the interaction graph might self-organize into a
form with some cost-oriented quantity optimized is quite
appealing and deserves further investigation. To answer
this question, we use a standard self-similarity measure
for binary-tree structures: the Horton-Strahler (HS) index,
originally introduced by Horton and Strahler [20]. Following
the HS index measure, consider the binary tree depicted in
Fig.7(b). The leaves of the tree are assigned an HS index
i = 1. For any given branch that ramifies into two sub-
branches with HS indices i1 and i2, the index is calculated
by [20]:

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 16:37:31 UTC from IEEE Xplore. Restrictions apply.

A B

C D

E F

G H

I

1 1

1

2

1 1

1

2

1 1

1

2

3

(a) (b)

Figure 7. Self-similarity in interaction graph of online social networks

i =

{
i1 + 1 if i1 = i2
max(i1, i2) if i1 �= i2

(5)

Note that the index of a branch changes if and only if it
meets a branch with higher or equal index. For interaction
communities tree, the interpretation of the HS index is the
following. The index of an interaction community changes
when it joins an interaction community with same or higher
index. Consider, for example, the lowest levels: individuals
(with i = 1) join to form a group (with i = 2), which in turn
will join other groups to form a second level group (i = 3).
Therefore, the index reflects the level of aggregations of
interaction communities. Once the HS index of each branch
is known, the number of branches Ni with index i can be
added up. In the example shown in Fig.7, there are nine
branches with index 1 (N1 = 9), three branches with index
2 (N2 = 3), and one branch with index 3 (N3 = 1).

The bifurcation ratios Bi are then defined by [20]:

Bi =
Ni

Ni+1
(6)

When Bi = B for all i where B is a constant, the structure
is determined to be self-similar, because the overall tree can

Algorithm 1 Finding best Q

FindingBestQ(Γ0)
1: Γ ← Γ0; Γbest ← Γ0, Q ← QΓ0 ;
2: repeat
3: ΔQ� ← 0;
4: for (each pair(Ci, Cj) within Γ) do
5: calculate ΔQij ← Qij −Q;
6: /* Qij is value after merging Ci and Cj */
7: if(ΔQij > ΔQ�) then
8: ΔQ� ← ΔQij ;
9: i� ← i; j� ← j;

10: /* ΔQmax ← max{ΔQij}; */
11: end if
12: end for
13: if(ΔQ� > 0) then
14: Γ ← join community(Ci

�, Cj
�);

15: Q ← Q + ΔQ�;
16: end if
17: until(ΔQ� < 0)
18: return(Γ);

0 2 4 6 8 10 12
−10

−5

0

5

10

15

HS index, k

Fr
eq

ue
nc

y
lo

g
N k

interaction graph
random graph
social graph

Figure 8. Measurement of self-similarity using HS Index

be viewed as being composed of B subtrees, which in turn
are composed of B smaller subtrees with similar structures
and so forth for all scales [8].

Thus, when self-similarity holds, Ni, the number of
branches with HS index i, can be computed according to
the function: Ni = N1/B

i−1. In Fig. 8, we obtain a fitting
of this function for the interaction graph, social graph and
a random graph, respectively. The results yield excellent
agreement for the interaction graph, while for the social
graph and the random graph much worse agreement are
obtained. We can further calculate the standard deviation δBi

of the bifurcation ratios Bi, which approximates zero if self-
similarity holds. By comparing δBi of Facebook interaction
graph with that of the social graph and the random graph
with same sizes, we conclude that the interaction graph of
the Facebook is self-similar with B = 3.29 and δBi

= 0.75,
while both the social graph (with B = 24 and δBi = 46.58)
and random graph (with B = 4.47 and δBi = 3.53)
significantly deviate from self-similarity.

The above standard measure leads us to realize that the
community structure of the interaction graph is self-similar.
Rinaldo’s research shows that such a self-similar structure
minimizes the dissipation of energy/cost [19]. As pointed
out in a recent paper [5], such scaling properties of networks
are ubiquitous. The result in Fig.8 shows that the behavior
we observe in the interaction graph in Facebook is in
good agreement with the argument [5]. Such an agreement
suggests that a common principle of cost optimization could
be the underlying driving force in the information flow in
popular OSNs. Based on this fingerprint of OSNs, we design
a data placement algorithm to minimize the communication
cost in OSNs in Section 4.

IV. DATA PLACEMENT STRATEGY

The objective of our data placement strategy is to mini-
mize the inter-server communication cost by fully utilizing
the feature of self-similarity which optimizes the interaction
locality. The basic idea is to place the data of the users within
an interaction community into the same server. In this way, a
significant fraction of operations between users can be han-
dled locally, avoiding a large amount of unnecessary inter-
server communications across the data centers. The problem
here is that Algorithm 1 may divide the entire interaction

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 16:37:31 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Data placement
DivideUsersToServers(CommTree,N,K)

1: for i = 1 to K do
2: Cap[i]← N/K;
3: end for
4: MaxCap ← max(Cap[i], i = 1 to K)
5: MaxServ ← server with MaxCap
6: repeat
7: SubTree ←FindSubTree(CommTree,MaxCap)
8: Put users in SubTree into MaxServ
9: Cut SubTree from CommTree

10: MaxCap ← max(Cap[i], i = 1 to K)
11: MaxServ ← server with MaxCap
12: until (CommTree->users == 0)

Algorithm 3 Finding the largest sub-tree
FindSubTree (Tree root, Integer capacity)

1: if (root->users ≤ capacity)
2: return (root)
3: else
4: left = FindSubTree(root->leftChild)
5: right = FindSubTree(root->rightChild)
6: if (left->users > right->users)
7: return (left)
8: else
9: return (right)

10: end if
11: end if

graph into a number of communities with different sizes.
In practice, it is not trivial to consider how to achieve load
balance when putting data of OSN users to the servers across
the data center. For this reason, it is desirable to partition
the set of interaction locality preserved communities into
a set of servers in the data center, and make each server
host similar number of users. We propose the strategy which
divides OSN data into the servers across data centers in
Algorithm 2 in detail.

The main idea of Algorithm 2 is to cut sub-trees from the
interaction community tree (illustrated in Fig. 7) obtained
by Algorithm 1, and put all the users on the same sub-tree
into the same server. To achieve load balance, we need to
assign similar number of leaves to different servers. Here
we assume that all the servers have the same capacity.
We can easily adapt the scheme to cope with the problem
with heterogeneous servers using virtual server techniques.
Assume we have a number of K servers in the data center,
each having equal capacity, and a number of N users in
the network. Algorithm 2 attempts to put a number of N

K
users into each server for balancing the load. The division
starts from the root. Each time we try to find a sub-tree
with a maximum number of leaves which can be placed
into a server that has enough capacity to hold the users.
This process is repeated until all the leaves are assigned.

The self-similarity principle is indeed the theory founda-
tion of our design. Since the result in Fig.8 shows that the

Algorithm 4 Placement adjustment
Adjust (Operation)
1: switch Operation
2: case: AddUser
3: MaxCap ← max(Cap[i], i = 1 to K)
4: MaxServ ←server with MaxCap
5: Put Operation ->user in MaxServ
6: case: RemoveUser
7: Remove Operation ->user
8: case: AddLink
9: u1 ← Operation ->edge ->from;

10: u2 ← Operation ->edge ->to;
11: op ← mincut(move u1 ->u2, move u2 ->u1, do

nothing);
12: execute op
13: case: RemoveLink
14: for user in (Operation ->edge ->from, Operation

->edge ->to) do
15: MinCut ← mincut(user ->i, i = 1 to K)
16: MinServ ← server with MinCut
17: move user to MinServ
18: end for
19: case: AddServer
20: Operation ->Server ->users = 0
21: case: RemoveServer
22: Operation ->Server ->Cap = 0
23: for all user in Operation ->Server do
24: Adjust(AddUser user);
25: end for
26: end switch

interaction community binary tree is self-similar, each sub-
tree cut for user data placement is also self-similar according
to the principle of self-similarity. By putting the users in a
self-similar sub-tree into a same server in the data center,
our data placement strategy would be cost optimized.

In real-world systems, the data placement design should
be able to deal with incremental updates/changes of users,
interaction links, and number of servers. Instead of re-
computing the interaction community tree, we design an
incremental adjust algorithm for the dynamic changes in
the interaction graph. We describe the detailed adjustment
scheme coping with the dynamic changes in Algorithm 3.
In Section 5, based on the experiments using the twelve-
month real world Facebook user interaction traces, we will
further show that the incremental adjustment has very slight
influence on system performance and efficiency. Hence, in-
frequent re-construction of the entire interaction community
tree is sufficient for good performance.

V. EVALUATION

In this section, we evaluate the performance of our data
placement scheme using trace-driven simulations. At first,
we describe the details of the simulation setups. Then we
compare our scheme with existing schemes. In the evalu-
ation, we use Cassandra [11], Facebook’s key-value store
as the baseline. We also simulate the little engine scheme
recently proposed by Pujol et al. [18], and examine the

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 16:37:31 UTC from IEEE Xplore. Restrictions apply.

0 1000 2000 3000 4000 5000 6000 7000
0%

20%

40%

60%

80%

100%

Traffic

C
D

F

SimTree
ΔSimTree
LittleEngine
Cassandra

0 0.05 0.1 0.15 0.2
0%

20%

40%

60%

80%

100%

Latency (s)
C

D
F

SimTree
ΔSimTree
LittleEngine
Cassandra

0 1 2 3 4
x 105

0%

20%

40%

60%

80%

100%

Traffic

C
D

F

SimTree
ΔSimTree
LittleEngine
Cassandra

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0%

20%

40%

60%

80%

100%

Latency (s)

C
D

F

SimTree
ΔSimTree
LittleEngine
Cassandra

Figure 9. Traffic of wall post Figure 10. Latency of wall post Figure 11. Traffic of profile update Figure 12. Latency of profile update

performance improvement of our scheme against the little
engine scheme.

A. Simulation setups

We simulate both our data placement scheme and previous
design including the little engine scheme and the Cassandra
strategy using the ns-2 simulator. In order to better represent
real-world OSN systems, we consider both the underlying
physical data-center network and the logical OSN interaction
graph. The physical network should represent the real topol-
ogy with data center characteristics. Previous studies have
shown that the existing large-scale data centers commonly
use a fat-tree architecture [17]. A fat-tree built from k-port
switches can support non-blocking communications among
1
4k

3 end hosts using 5
4k

2 individual k-port switches. The
fat-tree as a whole is split into k individual pods, with each
pod supporting non-blocking operation among 1

4k
2 hosts. To

simulate the underlying data center networks, we generate
a fat-tree network with rich configuration information, in-
cluding bandwidth configuration, latency, and so forth. For
simulating our data placement strategy, we deploy the users
into the underlying physical data center servers according to
the algorithms we present in Section 4.

In the simulation, we use the traces provided by Ben et
al. [22], which include ten million Facebook users and 24
million interaction event logs. The large-scale traces collect-
ed during more than a whole year well represent the real-
world system. We use the interaction traces in the first six
months in a year to form the initial interaction graph. Using
it, we obtain the interaction community tree to leverage the
self-similarly to achieve an initial data placement. We utilize
the interaction traces in the second half year for the adjust-
ment of Algorithm 2, where data placement adjustment due
to newly added users and interaction links are performed
according the the adjust algorithm described in Algorithm 3
in Section 4. In the evaluation, we examine how the dynamic
changes in the interaction graph influence the performance
and efficiency of our scheme. In the simulation, we first fix
the number of data-center servers at 1024. We implement
Cassandra and the little engine scheme and compare the
performance of our scheme with them. Next, we change the
scale of the network to further examine the performance of
our design more clearly.

In the simulation, we consider different kinds of opera-
tions with three well accepted categories: event-driven, push-

on-change, and pull-on-demand [2]. Accordingly, the user
operations include wall post, profile update, and user login.
We describe the three styles in greater detail as follows.

Event-driven: when a user interacts with selected neigh-
bors, the information should be written to those neighbors.
We use this style to simulate the operation of wall post.

Push-on-change: in this style, a status change will be
written to all relevant neighbors. We use this style to
simulate user profile update. When a user changes his/her
key data in the profile, the update should be pushed into his
relevant neighbors at once.

Pull-on-demand: when a user needs to read, the system
should pull the required data from relevant neighbors. We
simulate user login using this style. When a user logins,
the system updates his/her home page, which includes all
updates from relevant neighbors.

B. Metrics

Our design considers both user-perceived service quality
and system efficiency. Quality focuses on the latency, while
efficiency focuses on the network traffic in data center.
We compute the costs using underlying physical network
configurations.

Short latency is always desirable for user operations in
OSN systems. Latency for an operation is the sum of the
underlying latency over each hop in the data center network.
The time required to send a network message includes
the propagation time as determined by the link distance
between servers and the transmission time determined by
the data size and bandwidth capacity in each routing hop.
When evaluating the latency we ignore the time spent for
local processing, since local data operations are commonly
extremely fast due to the fact that most of the operations in
Facebook involve only memory access (Memtable), instead
of disk access (SSTable) [11].

OSN traffic has a significant impact on the underlying
data center network. Heavy traffic limits the scalability of
OSN systems. We define the traffic as network resource used
for performing an operation, which is mainly a function
of the length of the network links, the bandwidths, and
other related expenses [13]. Specifically, in the OSN system,
when a message is transferred from a user to another, the
message may actually traverses a path consisting of a set
of underlying physical links in the data centers. The traffic
cost is calculated by adding up the cost of the underlying

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 16:37:31 UTC from IEEE Xplore. Restrictions apply.

0 1 2 3 4 5 6
x 105

0%

20%

40%

60%

80%

100%

Traffic

C
D

F

SimTree
ΔSimTree
LittleEngine
Cassandra

0 0.2 0.4 0.6 0.8 1
0%

20%

40%

60%

80%

100%

Latency (s)
C

D
F

SimTree
ΔSimTree
LittleEngine
Cassandra

16 54 128 250 432 686 1024
0

1000

2000

3000

4000

5000

6000

7000

Number of Servers

Tr
af

fic

SimTree
LittleEngine
Cassandra

16 54 128 250 432 686 1024
0

0.05

0.1

0.15

0.2

Number of Servers

La
te

nc
y

(s
)

SimTree
LittleEngine
Cassandra

Figure 13. Traffic of users login Figure 14. Latency of users login Figure 15. Traffic with # of servers Figure 16. Latency with # of servers

links: Tc = M
∑

i=1
Li

Bi
, where M is the size of the

message and Li and Bi respectively represent the length and
the bandwidth of the ith physical link which the message
traverses in the underlying data center.

C. Results

Figure 9 plots the traffic of wall post, where 53.2% wall
posts using Cassandra have traffic less than 5.4 × 103. By
using our data placement scheme leveraging self-similarity,
more than 79.48% wall posts have such low traffic, while
less than 23.4% of the wall posts using little engine scheme
have such traffics. After incremental adjustment, 79.47% of
the wall posts using our scheme achieves such a low traffic.
The result reveals that our scheme greatly outperform exist-
ing schemes, while the dynamic changes of the interaction
graph have very slight influence on the performance of our
design. In the following, when presenting the results, we use
the name SimTree and ΔSimTree to denote our schemes
for short, while we use the name little engine to denote the
work by Pujol et al. [18]. The average traffic of wall posts
using Cassandra is 6.4× 103. The average traffics using our
SimTree and ΔSimTree schemes are only 4.0 × 103 and
4.02 × 103, while the average traffic using little engine is
5.3 × 103. The result shows that our scheme significantly
reduces the traffic of wall post using Cassandra by 37.5%
while reducing that using little engine by 24.5%.

Figure 10 illustrates the latency of wall post, where less
than 53.1% of the wall posts using Cassandra have latency
less than 0.14 seconds. By using our SimTree and ΔSimTree
schemes, more than 79.47% and 79.48% of the wall posts
have such short latencies, while about 23.4% of the wall
posts using little engine have such latency. The average
latency of wall posts using Cassandra is 0.17 seconds.
The average latencies of wall posts using our SimTree and
ΔSimTree schemes are only 0.1060 and 0.1068 seconds,
while little engine scheme needs 0.14 seconds. The result
shows that our design significantly reduces the latency of
wall post using Cassandra by 37.8%, while reducing that of
the little engine scheme by 24.3%.

Figure 11 plots the traffic of profile update operations,
where 49.3% profile updates using Cassandra have traffic
less than 6 × 104. By using our SimTree and ΔSimTree
schemes, more than 89.6% and 89.2% of the profile updates
have such low traffics, while only 55.5% little engine profile
updates have such low traffic. The average traffic of profile

updates using Cassandra is 1.2 × 105. The average traffics
using our schemes are only 2.30×104 and 2.37×104, while
the little engine profile updates needs an average traffic of
8.8 × 104. The result shows that our design significantly
reduces the traffic of profile updates using Cassandra by
80.3%, while greatly reducing that using the little engine
scheme by 73.1%.

Figure 12 shows the latency of profile update, where less
than 41.8% of the profile updates using Cassandra have
latency less than 0.2 seconds. By using our schemes, more
than 81.4% and 81.6% of the profile updates have such
short latencies, while only 43.1% profile updates using little
engine have such low latency. The average latency of profile
updates using Cassandra is 0.32 seconds, while the average
latencies using our schemes are only 0.15 and 0.14 seconds.
The little engine scheme needs an average latency of 0.26
seconds to update the profile. The results indicates that our
design significantly reduces the latencies of profile update
operations using Cassandra and little engine by 56.4% and
46.2%, respectively.

Figure 13 depicts the traffic of user login, where 81.5%
user login operations using Cassandra have traffic less than
2.5× 105. By using our data placement scheme leveraging
self-similarity, more than 87.9% of the user login operations
have such a low traffic, similarly with that of the little engine
scheme. After incremental adjustment, 87.7% of the login
operations using our scheme has such traffic. The average
traffic of Facebook login using Cassandra is 1.0× 105. The
average traffic using SimTree and ΔSimTree are 9.1× 104

and 8.9× 104, respectively.
Figure 14 shows the latency of user login operations,

where less than 77.1% of the user login operations using
Cassandra have latency less than 0.4 seconds. By using our
SimTree scheme, more than 83.3% of the user login have
such a short latency, while 82.9% of the login operations
using ΔSimTree scheme have such a short latency, very
similar with that of the little engine scheme. The average
latency of user login using Cassandra is 0.25 seconds, while
the average latencies using SimTree and ΔSimTree are only
0.23 and 0.22 seconds. The average latency by little engine
is 0.22 seconds.

Figure 15 illustrates how the traffic of the overall traces
changes with the data center scaling from 16 to 1024 servers.
The results show that when the number of servers in the data
center increases, the traffic of both the baseline schemes and

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 16:37:31 UTC from IEEE Xplore. Restrictions apply.

our scheme increase. As we use the Facebook trace with
fixed scale in the simulation, the increase of the number of
servers means that the users are distributed in wider range
of data center, causing more inter-server communications.
As we can see that the traffic improvements of our scheme
and the little engine scheme against Cassandra increases at
beginning but decreases in the end. At the point with 16
servers, our scheme significantly reduces the traffic of the
little engine scheme by 41.5%, while our scheme reduces
the traffic of Cassandra by 64.2%. Figure 16 shows that
the latency changes with the data center scaling similarly
with that of traffic. At the point with 16 servers, our scheme
reduces the latency of little engine scheme by 42.1%, while
it reduces the latency of Cassandra by 65.4%.

VI. CONCLUSION AND FUTURE WORKS

In this work, we demonstrate the existence of self-
similarity in the structure of interaction graph of online
social networks, revealing the underlying driving force in
OSNs which minimizes inter-server communication cost. We
further propose a novel data placement scheme based on
the self-similar structure of interaction graph which achieves
load balance among data center servers while keeping the
system operations as local as possible. We evaluate our
design using large-scale traces from Facebook and compare
our design with existing schemes. Results show that this
design can significantly reduce the latency and traffic of
operations over large-scale online social networks.

Our model and algorithm for interaction locality can be
easily extended to be applied to weighted networks in which
each interaction link has a numeric strength associated with
it rather than just zero or one. We will investigate how to
model the strength of an interaction link in the future work.

ACKNOWLEDGMENT

This work was supported by the grant from the Ph.D.
Programs Foundation of Ministry of Education of China
(No.20110142120080). We thank Mr. Shaoliang Wu for the
help in the simulation.

REFERENCES

[1] http://www.datacenterknowledge.com/archives/2010/06/28/
facebook-server-count-60000-or-more, 2010.

[2] http://highscalability.com/blog/2009/10/13/
why-are-facebook-digg-and-twitter-so-hard-to-scale.html,
2010.

[3] http://newsroom.fb.com/content/default.aspx?NewsAreaId=
22, 2012.

[4] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and D. S-
tarin, “Persona: an online social network with user-defined
privacy,” in SIGCOMM, 2009.

[5] M. Buchanan, “A game of chance,” Nature, vol. 419, p. 787,
2002.

[6] S. Garriss, M. Kaminsky, M. J. Freedman, B. Karp, D. Maz-
i‘eres, and H. Yu, “Re: Reliable email,” in NSDI, 2006.

[7] V. Gómez, A. Kaltenbrunner, and V. López, “Statistical anal-
ysis of the social network and discussion threads in slashdot,”
in WWW, 2008.

[8] T. C. Halsey, “The branching structure of diffusion-limited
aggregates,” Europhysics Letters, vol. 39, no. 1, p. 43, 1997.

[9] M. U. Ilyas, M. Z. Shafiq, A. X. Liu, and H. Radha, “A
distributed and privacy preserving algorithm for identifying
information hubs in social networks,” in INFOCOM, 2011.

[10] D. Karger, E. Lehman, T. Leightom, M. Levine, D. Lewin,
and R. Panigrahy, “Consisten hashing and random trees:
Distributed caching protocols for relieving hot spots on the
world wide web,” in STOC, 1998.

[11] A. Lakshman and P. Malik, “Cassandra: a decentralized
structured storage system,” ACM SIGOPS Operating Systems
Review, vol. 44, no. 2, pp. 35–40, 2010.

[12] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney,
“Statistical properties of community structure in large social
and information networks,” in WWW, 2008.

[13] Y. Liu, J. Han, and J. Wang, “Rumor riding: Anonymizing
unstructured peer-to-peer systems,” IEEE Transactions on
Parallel and Distributed Systems, vol. 22, no. 3, pp. 464–475,
2011.

[14] A. Mislove, K. P. Gummadi, and P. Druschel, “Exploiting
social networks for internet search,” in HotNets, 2006.

[15] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and
B. Bhattacharjee, “Measurement and analysis of online social
networks,” in IMC, 2007.

[16] M. Newman, “Fast algorithm for detecting community struc-
ture in networks,” Physical Review E, vol. 69, p. 066133,
2004.

[17] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang,
P. Miri, S. Radhakrishnan, V. Subramanya, and A. Vahdat,
“Portland: a scalable fault-tolerant layer 2 data center network
fabric,” in SIGCOMM, 2009.

[18] J. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris,
P. Chhabra, and P. Rodriguez, “The little engine (s) that could:
Scaling online social networks,” in SIGCOMM, 2010.

[19] A. Rinaldo, I. Rodriguez-Iturbe, R. Rigon, E. Ijjasz-Vasquez,
and R. L. Bras, “Self-organized fractal river networks,” Phys-
ical Review Letters, vol. 70, no. 6, pp. 822–825, 1993.

[20] A. N. Strahler, “Hypsometric (area-altitude) analysis of ero-
sional topography,” Bulletin of the Geological Society of
America, vol. 63, pp. 1117–1142, 1952.

[21] B. Viswanath, A. Post, P. K. Gummadi, and A. Mislove,
“An analysis of social network-based sybil defenses,” in
SIGCOMM, 2010.

[22] C. Wilson, B. Boe, A. Sala, K. Puttaswamy, and B. Zhao,
“User interactions in social networks and their implications,”
in EuroSys, 2009.

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 16:37:31 UTC from IEEE Xplore. Restrictions apply.

