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Person identification technology recognizes individuals by exploiting their unique, measurable physiological and behavioral
characteristics. However, the state-of-the-art person identification systems have been shown to be vulnerable, e.g., anti-
surveillance prosthetic masks can thwart face recognition, contact lenses can trick iris recognition, vocoder can compromise
voice identification and fingerprint films can deceive fingerprint sensors. EEG (Electroencephalography)-based identification,
which utilizes the user’s brainwave signals for identification and offers a more resilient solution, has recently drawn a lot of
attention. However, the state-of-the-art systems cannot achieve similar accuracy as the aforementioned methods. We propose
MindID, an EEG-based biometric identification approach, with the aim of achieving high accuracy and robust performance. At
first, the EEG data patterns are analyzed and the results show that the Delta pattern contains the most distinctive information
for user identification. Next, the decomposed Delta signals are fed into an attention-based Encoder-Decoder RNNs (Recurrent
Neural Networks) structure which assigns varying attention weights to different EEG channels based on their importance.
The discriminative representations learned from the attention-based RNN are used to identify the user through a boosting
classifier. The proposed approach is evaluated over 3 datasets (two local and one public). One local dataset (EID-M) is used for
performance assessment and the results illustrate that our model achieves an accuracy of 0.982 and significantly outperforms
the state-of-the-art and relevant baselines. The second local dataset (EID-S) and a public dataset (EEG-S) are utilized to
demonstrate the robustness and adaptability, respectively. The results indicate that the proposed approach has the potential
to be widely deployed in practical settings.
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1 INTRODUCTION
Over the past decade, biometric information has been widely used in identification and have gained more
acceptance due to their reliability and adaptability. Existing biometric identification systems are mainly based on
individuals’ unique intrinsic physiological features (e.g., face [11], iris [22], retina [32], voice [28], and fingerprint
[38]). However, the state-of-the-art person identification systems have been shown to be vulnerable, e.g., anti-
surveillance prosthetic masks can thwart face recognition, contact lenses can trick iris recognition, vocoder
can compromise voice identification and fingerprint films can deceive fingerprint sensors. In this perspective,
the EEG (Electroencephalography) based biometric person identification systems are emerging as promising
alternatives due to their high attack-resilience [16, 35]. EEG-based identification systems measure an individual’s
brain response to a number of stimuli in the form of EEG signals, which record the electromagnetic and invisible
electrical neural oscillations. An individual’s EEG signals are virtually impossible to mimic for imposter, thus
making this approach highly resilient to spoofing attacks encountered by other identification techniques 1.

However, research on EEG-based identification is still in its infancy, and several key challenges exist. One of the
most significant issues is the low identification accuracy as a result of the inherent low precision of EEG signals.
Accurate identification is challenging because the EEG data has very low signal-to-noise ratio. The state-of-the-art
approaches can achieve accuracy in the range of 80% to 95% [4, 16, 21, 37], which is not sufficient for practical
deployments, particularly in high security environments. Additionally, the identification algorithms are highly
dependent on the environment in which the EEG signals were collected and thus not robust and adaptable to a
broader range of scenarios. Changes in the application environment (e.g., the number of channels, the sampling
rate, and the training data size) may lead to the decrease of accuracy2. Thus, an EEG-based identification model
that may work well under one kind of application environment (e.g., 64 channels and 160 Hz), may not achieve
good performance in another application environment (e.g., 14 channels and 128 Hz). So far, we have not seen a
universal EEG-based identification algorithm which can perform well in a variety of real environments.

To address the aforementioned problems, we propose MindID, a Delta pattern EEG-based person identification
algorithm which is based on an attention-based recurrent neural network. At first, to eliminate the interference
of the slight shift brought by the environmental noise and the physical and mental state of the individuals, we
attempt to learn the robust and reliable representation by decomposing the EEG patterns. For this, we decompose
the full spectrum of EEG data into specific patterns (Delta, Theta, Alpha, Beta, and Gamma). Decomposed EEG
patterns (e.g., Theta, Alpha, Beta, and Gamma), have been employed for EEG signal classification (e.g., movement
task classification [27]) in some works. However, there is few existing work that has focused on the Delta pattern.
In this paper, we discover that the Delta pattern is the most discriminative and efficient pattern through our
analysis in Section 3. Moreover, we introduce the attention-based RNNs (Recurrent Neural Networks) [2] which
can automatically detect the most distinguishable information from the input EEG data. More importantly, the
attention mechanism3 automatically re-allocates the weights to extract most discriminative features that are

1For example, people can easily trick a fingerprint-based identification system by using a fake fingerprint film
(http://www.instructables.com/id/How-To-Fool-a-Fingerprint-Security-System-As-Easy-/ ) or a face-recognition-based identification system by
simply wearing a 200 dollars’ worth anti-surveillance mask (http://www.urmesurveillance.com/urme-prosthetic/ )
2This statement can be demonstrated in Section 5.7.
3Simply, attention mechanism refers to select the most pertinent piece of information rather than using all available information. Attention
Mechanisms in Neural Networks are based on the visual attention mechanism found in humans, and has been applied in computer version,
NLP areas.
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resilient to the change in environmental factors. Therefore, the proposed approach is robust under different
collection environments with changes to the EEG collection hardware, sampling rate, and channel numbers. The
efficiency of attention-based RNN framework has been demonstrated by the studies in speech recognition [2, 5],
NLP (Natural Language Processing) [1, 23, 39], and computer version [25].

Our main contributions in this paper are highlighted as follows:
• We present an EEG-based identification approach, MindID, which adopts a novel attention-based Encoder-
Decoder RNN framework for learning discriminative features among the user’s brainwaves and utilizes the
learned features to identify user identity through a boosting classifier. The attention mechanism enables
our approach to automatically search the most discriminative features for identification, and consequently
achieve robust and adaptive operation over different datasets collected from environments with varying
characteristics.
• We analyze the EEG pattern decomposition and propose that the Delta pattern is the most steady and
distinguishable pattern for user identification. Moreover, we design and conduct a set of experiments to
verify the proposed hypothesis.
• We design and conduct an experiment setting for collecting EEG data and use it to collect two two real-world
local datasets (EID-M and EID-S) which are under single and multi trial settings, respectively4.
• We evaluate the proposed approach on 3 datasets (2 local and 1 public). The results illustrate that our
model achieves an accuracy of 0.982 which significantly outperforms the state-of-the-art and baselines.
We demonstrate the robustness and adaptability by the comparison between 3 datasets.

Note that all the necessary reusable codes and datasets in this paper have been open-sourced for reproduction,
please refer to this link 5.
The remainder of this paper is organized as follows. Section 2 introduces the literature related to this paper.

Section 3 analyzes the characteristics of EEG patterns. Section 4 details the methodology of the MindID identifi-
cation system. Section 5 evaluates the proposed approach on the local and public dataset and provides analysis
of the experimental results. Section 6 discussed the limitation of our work and the future research potentials.
Finally, Section 7 summarizes this paper and gives the conclusion.

2 RELATED WORK
In this section, we separately present literature on three aspects: EEG-based person identification models, EEG
pattern decomposition, and applications of attention-based RNN.

2.1 EEG-based Person Identification
Since EEG can be gathered in a safe and non-intrusive way, researchers have paid great attention to exploring
this kind of brain signals. For person identification, EEG is promising for being confidential and attack-resilient
but on the other hand, complex and hard to be analyzed [37]. Jayarathne et al. [15] decompose the EEG data
and pay attentions on the Alpha and Beta wave. The Common Spatial Patterns (CSP) values were extracted as
main features to train the Linear discriminant analysis (LDA) classifier which achieves accuracy of 96.97% for a
12 participants dataset. Thomas and Vinod [37] take advantage of individual alpha frequency (IAF) and delta
band signals to compose specific feature vectors. They also prefer PSD features but only perform the extraction
merely on gamma band. However, all of the above approaches only work in one specific environment. Few studies
attempt to build a universal EEG-based identification model.

4Single trial refers to that the dataset is collected in one session (the period from one subject putting the EEG headset on until all the
experiment are finished then putting off). Multi-trials represents the EEG data is collected from different trials, which considered the effect
on EEG data quality caused by the headset position errors.
5https://drive.google.com/open?id=1t6tL434ZOESb06ZvA4Bw1p9chzxzbRbj
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Table 1. EEG patterns and corresponding characters. Awareness Degree denotes the awareness the degree of being aware of
an external world.

Patterns Frequency (Hz) Amplitude Brain State Awareness Degree Produced Location
Delta 0.5-4 Higher Deep sleep pattern Lower Frontally and posteriorly
Theta 4-8 High Light sleep pattern Low Entorhinal cortex, hippocampus
Alpha 8-12 Medium Closing the eyes, relax state Medium Posterior regions of head
Beta 12-30 Low Active thinking, focus, high alert, anxious High Most evident frontally
Gamma 30-100 Lower During cross-modal sensory processing Higher Somatosensory cortex

2.2 EEG Pattern Decomposition
Generally, the EEG data could be decomposed into several patterns (delta, theta, alpha, beta, and gamma)
corresponding to various brain states [24]. So far, the majority of user ID identification studies have focused
on features generated from the Alpha and Beta patterns.[21, 35]. Moreover, these works assume that the EEG
data is collected from the most favorable settings, i.e., when the subject is resting/relaxed for Alpha waves or
concentrating for Beta waves. The rest and relax states are represented by the Alpha wave, therefore, a number
of studies decompose EEG raw signals into the Alpha pattern for future analysis. Bashar et al. [4] use the filtered
signals with frequency ranges from 0.5 − 59Hz (including Delta, Theta, Alpha, Beta and part of Gamma patterns)
and calculate the statistics for user ID classification. Kumari and Vaish [21] employ wavelet analysis to decompose
original EEG signals into 5 patterns (Delta to Gamma) and extract statistical measures of each pattern. Thomas
and Vinod [37] take Alpha peak frequency and peak power and Delta band power as recognition features and
achieves the highest recognition rate as 0.9. To our best knowledge, this paper is the very first work which
specially focused on the decomposition and analysis of Delta pattern and studies the person identification based
on it (the justification is given in Section 3).

2.3 Attention-based RNN
Attention-based RNN [25] introduces an attention mechanism to the RNN framework. The attention mechanism
enables RNN to allocate different weights to different parts of the input, and consequently, improve the exploration
of the corresponding relationship between the input sequence and the output sequence. Generally, attention
module is added to the original RNN framework as an external module, but is trained instantaneously with the
RNN structure [40]. Attention-based RNN has achieved success in speech recognition [2], NLP (Natural Language
Processing) [1], and computer version [25]. Bahdanau et al. [2] attempt to build a Large Vocabulary Continuous
Speech Recognition (LVCSR) Systems using attention-based RNN and demonstrate that their approach, compared
with traditional methods, requires fewer training stages, less auxiliary data, and less domain expertise. Luong
et al. [1] explore the architecture of attention-based neural machine translation and examine the effects of two
attentional mechanisms (one that focuses on all source words and and the other which focuses on a subset of
words) on the WMT translation tasks between English and German in both directions. Ba et al. [25] present an
attention-based RNN for recognizing multiple objects in images, while only being provided with class labels
during training. The results show that the attention-based RNN is more accurate and less computation than the
state-of-the-art. To our best knowledge, we are the very first work employing attention-based RNN for EEG-based
user identification.

3 EEG PATTERN ANALYSIS
In this section, we first introduce some background about EEG patterns followed by a topographical analysis of
real-world EEG data to discover which specific constituent patterns capture the most distinctive features that
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allow us to distinguish the subject’s identity. Next, we analyze why Delta pattern works best both qualitatively
and quantitatively.
The EEG signals collected from any typical EEG hardware can can be divided into several non-overlapping

frequency bands (Delta, Theta, Alpha, Beta, and Gamma) based on the strong intra-band correlation with a
distinct behavioral state [3, 24, 36]. Each decomposed EEG pattern contains signals associated with particular
brain information. The EEG frequency patterns and the corresponding characteristics are listed in Table 1.
The awareness degree in this paper denotes the perception of individuals while facing outside stimuli. Each
frequency band represents a specific active situation of brain state and a qualitative assessment of awareness.
More specifically,

• Delta pattern (0.5 − 4 Hz) is associated with deep sleep while the subject has lower awareness.
• Theta pattern (4 − 8 Hz) corresponds to light sleep in the realm of low awareness.
• Alpha pattern (8 − 12 Hz) mainly occurs during eyes closed and deeply relaxed state, and corresponds to
the medium awareness.
• Beta pattern (12 − 30 Hz) is the dominant rhythm while the subject’s eyes are open and is associated with
high awareness. Most of our daily activities (such as eating, walking, and talking) are captured by Beta
patterns.
• Gamma pattern (30− 100 Hz) represents the joint interaction of several brain areas to carry out a specific
motor and cognitive function. This pattern is associated with highest awareness.

In order to investigate which EEG pattern is most intrinsic and rich of distinctive information for user
identification, we study the EEG topography of different frequency patterns. Figure 1 shows the EEG topography
of various subjects on full bands, Delta, Theta, Alpha, Beta, and Gamma patterns, respectively. Moreover, we
calculated the cosine-similarity between EEG signals belonging to different subjects in a pairwise manner. The
averaged cosine-similarity are as follows: 0.1313 (full patterns), 0.0722 (Delta pattern), 0.1672 (Theta pattern),
0.2819 (Alpha pattern), 0.0888 (Beta pattern), and 0.082 (Gamma pattern). This illustrates that the delta pattern has
the lowest inter-subject similarity compared to other patterns and thus is likely to offer the most distinguishable
features for person identification. In the following, we present two arguments to explain why Delta patterns are
suited for user identification. Prior studies have shown that the functional significance of delta oscillations is not
yet fully understood[20]. Our arguments below are based on the current knowledge of Delta patterns.

On one hand, qualitatively, Delta pattern is universal and stable. A widely accepted view about Delta pattern is
that it only occurs in deep sleep state. This is a significant reason why most researchers neglect Delta frequency
in user identification. However, recent research in neurophysiology claims that the Delta rhythm is often evident
during ‘quiet’ wakefulness in rodents and nonhuman primates [31]. This suggests that the delta patterns can
dominate the background activity of some neocortical circuits in awake individuals. In addition, Delta pattern is
observed to be related to cognitive processing [14]. It’s easy to infer that Delta pattern exists while the subject
is awake (processing cognitive tasks). Compared with baseline (a state with no delta waves), delta waves are
associated with increase of activity in many brain regions, which suggests that Delta pattern is not associated with
a state of brain quiescence, but rather associated with an active state during which brain activity is consistently
synchronized to the slow oscillation in specific cerebral regions [8]. Moreover, there is evidence that suggests
that Delta patterns are primarily created in the hypothalamus [26] which is associated with a series of life-
support body functions such as autonomic regulation (e.g.,blood pressure, heart rate, thermoregulation) and
neuroendocrine control [41]. Considerable evidence on the association between delta waves and autonomic
and metabolic processes shows that integration of cerebral activity with homeostatic processes might be one of
the Delta wave‘s functions [20]. Since the life-support functions are operational all the time, we can argue that
regardless of the state of the individual, Delta oscillations will always be produced.
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Fig. 1. EEG topography of various subjects under different frequency patterns. The inter-subject EEG signal cosine-similarity
is calculated under each pattern and the results are reported as 0.1313 (full patterns), 0.0722 (Delta pattern), 0.1672 (Theta
pattern), 0.2819 (Alpha pattern), 0.0888 (Beta pattern), and 0.082 (Gamma pattern). This illustrates that the delta pattern has
the lowest inter-subject similarity compared to other patterns and thus is likely to offer the most distinguishable features for
person identification.

Table 2. The inter-subject correlation coefficients. Full denotes the un-decomposed full-frequency band data. The lower
coefficients indicate that the subject’s EEG data is easier to be distinguished. We used data from the EID-M dataset (detailed
in Section 5.1).

Subject Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 STD Average
Delta 0.137 0.428 0.246 0.179 0.221 0.119 0.187 0.239 0.089554 0.219
Theta 0.447 0.671 0.552 0.31 0.387 0.207 0.199 0.386 0.151929 0.395
Alpha 0.387 0.629 0.615 0.377 0.299 0.306 0.283 0.457 0.128653 0.419
Beta 0.249 0.487 0.329 0.308 0.281 0.307 0.238 0.441 0.083224 0.33
Gamma 0.528 0.692 0.538 0.362 0.521 0.667 0.428 0.537 0.102288 0.534

Patterns

Full 0.333 0.329 0.408 0.304 0.297 0.621 0.302 0.447 0.104231 0.38

Next, we present some qualitative arguments to demonstrate that Delta patterns contain the most distinguish-
able information. We analyze inter-subject correlations of the decomposed EEG patterns, which measure the
similarity of two samples belonging to different subjects. For example, the inter-subject correlation of subject 1 is
calculated by the following steps: 1) randomly select 10 samples from subject 1; 2) randomly select 10 samples
from each of other subjects (subject 2-8) to get 70 samples; 3) calculate the pair wise similarity between the
first 10 samples and the latter 70 samples to get 700 similarities; 4) average the 700 similarities to produce the
finally inter-subject correlation coefficient of subject 1. We measure the inter-subject correlations for all the
frequency patterns in order to discover the most effective pattern. We used data from the EID-M dataset (detailed
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Fig. 2. Flowchart of the proposed approach. At the beginning of identification, raw EEG data E is collected from the user and
then fed to the preprocessing stage. The preprocessed data E ′ is decomposed to Delta pattern δ which serves as the input to
the attention-based RNN. The encoder compresses the input sequence X 1 into an intermediate code C and produces the
weightsW ′att simultaneously. The attention-based module accepts bothC andW ′att from the LSTM layer X i′ , processesW ′att
through a softmax layer, and calculates the attention-based code Catt . Finally, a statistical boosting classifier is employed to
identify the user.

in Section 5.1). The correlation coefficient analysis results are shown in Table 2. We can observe that the Delta
pattern has the lowest inter-subject correlation coefficients compared with other patterns. This indicates that the
Delta patterns are most dissimilar to other samples, and thus most distinctive. Therefore, Delta patterns show
promise for user identification. The dedicated comparative experiment between different EEG patterns will be
reported in Section 5.7.

4 METHODOLOGY
In this section, we first give an overview of the proposed MindID system and then present the technical details
for each component, namely, Preprocessing, EEG pattern decomposition, Attention-based RNN, and Classification.

4.1 Overview
Figure 2 outlines the specific steps of the proposed MindID system. The brainwaves are collected by the portable
EEG acquisition equipment while the user is in a relaxed state with his/her eyes closed (our preliminary experiment
results illustrate that the Delta wave is more domination in relaxed state although still exists in all states). Each
EEG sample is a numerical feature vector with N dimensions which correspond to the number of channels of
the wearable EEG headset. The EEG samples are first preprocessed to remove the Direct Current (DC) offset
and followed by normalization (Section 4.2). Next, we employ EEG pattern decomposition to isolate the Delta
waves since they contain the most distinctive information which can be used to identify the subject (as outlined
in Section 3). The delta waves are fed to an attention-based Encoder-Decoder RNN, which identifies the most
distinctive channels and adjusts the weights accordingly. This model learns the deep correlations between the
delta patterns which are then fed to a statistical boosting classifier (Section 4.5) to identify individual users.
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4.2 Preprocessing
The raw EEG samples are pre-processed to remove the DC offset and normalize the signals. Eliminating DC offset
is necessary because EEG headsets invariably introduce a constant noise component in the recorded signals.
The specific headset used in our experiments (details in Section 5) introduces a DC offset of 4200 muV6. In the
preprocessing stage, this constant DC offset is first subtracted from the raw signal E.

Normalization also plays a crucial role in a knowledge discovery process for handling different units and scales
of features. For example, if two raw data sources, one ranging from 0 to 1 and another ranging from 0 to 100
are together used for analysis then the results will be dominated by the latter if normalization is not employed.
Generally, there are three widely used normalization methods: Min-Max Normalization, Unity Normalization,
and Z-score Scaling Normalization [43]. Our experiments (not shown for brevity) indicated that Z-score scaling
is the most suited for the EEG data. In summary, the preprocessed data E ′ can be calculated by

E ′ =
(E − DC) − µ

σ

where DC denotes the Direct Current which is 4200 muV, µ denotes the mean of E − DC and σ denotes the
standard deviation.

4.3 EEG Pattern Decomposition
In Section 3, we used empirical EEG data to show that the part of the EEG signals that belong to the Delta
frequency band (0.5 − 4Hz) is particularly well-suited for accurate and robust user identification. To isolate the
signals in the Delta band, we use a Butterworth band-pass filter of order 3 with the frequency range of 0.5Hz to
4Hz. The designed filter has the following specifications: the order is three, the low cut is 0.5Hz, and the high
cut is set as 4Hz. The preprocessed signal E ′ is fed as input to this filter which provides the decomposed Delta
pattern δ as output.

4.4 Attention-based RNN
Next, the Delta pattern δ is fed into an attention-based Encoder-Decoder RNN structure [40] which aims to learn
the most representable features for user identification. The general Encoder-Decoder RNN framework assumes
that all feature dimensions of the input sequence are equally important and assigns them equal weights. In the
context of EEG data, each dimension refers to a different electrode of the EEG equipment. For example, the first
dimension (first channel) collects the EEG data from the AF37 electrode which is located at the frontal lobe of the
scalp while the 7-th dimension is gathered from O1 electrode at the occipital lobe.

Since different EEG channels record different aspects of the brain signals, some of which are more representative
of the individual, an approach that assumes all dimensions to be equal may not be suitable. On the other words,
various EEG channels have different contribution to the person identification task and should be corresponding to
different weights. The effectiveness of attention-based RNN has been demonstrated in various domains including
wearable sensor based activity recognition [6, 42], natural language processing [1, 23, 39], computer version
[25] and speech recognition [2, 5]. Inspired by the wide success of this approach, we introduce the attention
mechanism to the Encoder-Decoder RNN model to assign varying weights to different dimensions of the EEG
data. The proposed attention-based Encoder-Decoder RNN consists of three components (as shown in Figure 2):
the encoder, the attention module, and the decoder. The encoder is designed to compress the input Delta δ wave
into a single intermediate code C; the attention module calculates a better intermediate code Catt by generating
a sequence of distinct weightsWatt for the different dimensions; the decoder accepts the attention-based code

6https://www.bci2000.org/mediawiki/index.php/Contributions:Emotiv
7Both AF 3 and O2 are EEG measurement positions in the International 10-20 Systems.
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Table 3. Notation

Parameters Explanation
E EEG raw data
E ′ Preprocessed EEG data
δ Delta pattern of E ′
X i Data in the i-th layer in attention-based RNN
I The number of layers in attention-based RNN
N i The number of dimensions of X i

Y The one-hot label of user ID
Y ′ The attention-based RNN predicts user ID
K The number of user ID categories
T(·) The linear function
C The intermediate code
L(·) The output calculation procedure of LSTM cell
L ′(·) The final hidden state calculation procedure of LSTM cell
fi , ff , fo , fm The input, forget, output, and input modulation gate
W ′

att The unnormalized attention weights
Watt The normalized attention weights
Catt The attention-based intermediate code
niter The iteration threshold of attention-based RNN
XD The learned deep feature from attention-based RNN
xd A single sample in XD
m Them-th tree
M The number of XGB trees
ID The final identified user ID of MindID approach

Catt and decodes it to the user ID. Note, this user ID is predicted by the attention-based RNN instead of MindID,
and the final identified ID of MindID approach will be introduced in Section 4.5.

Suppose the data in i-th layer could be denoted byX i = (X i
j ; i ∈ [1, 2, · · · , I ], j ∈ [1, 2, · · · ,N i ])where j denotes

the j-th dimension of X i . I represents the number of neural network layers in the proposed attention based RNN
model while N i denotes the number of dimensions in X i . Take the first layer as an example, we have X 1 = δ
which indicates the input sequence is the Delta pattern. Let the output sequence be Y = (Yk ;k ∈ [1, 2, · · · ,K])
where K denotes the number of user ID categories. In this paper, the user ID is represented by the one-hot label
with length K . For simplicity, let’s define the operation T(·) as:

T(X i ) = X iW + b

Further more, we have

T(X i−1
j ,X

i
j−1) = X i−1

j ∗W ′ + X i
j−1 ∗W ′′ + b ′

whereW , b,W ′,W ′′, b ′ denote the corresponding weights and biases parameters.
The encoder component contains several non-recurrent fully-connected neural network layers and one

recurrent Long Short-Term Memory (LSTM) layer. The non-recurrent layers are employed to construct and fit a
non-linear function to purify the input Delta pattern. The necessity of which is demonstrated by our preliminary
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experiments8. The data flow in these non-recurrent layers are calculated as follows,

X i+1 = T(X i )
The LSTM layer is adopted to compress the output of non-recurrent layers to a length-fixed sequence which is
regarded as the intermediate code C . Suppose LSTM is the i ′-th layer, the code equals to the output of LSTM,
which is C = X i′

j . The X
i′
j can be measured by

X i′
j = L(ci

′
j−1,X

i−1
j ,X

i′
j−1) (1)

where ci′j−1 denotes the hidden state of the (j − 1)-th LSTM cell. The operation L(·) denotes the calculation process
of the LSTM structure, which can be inferred from the following equations

X i′
j = fo ⊙ tanh(ci

′
j )

ci
′
j = ff ⊙ ci

′
j−1 + fi ⊙ fm

fo = siдmoid(T (X i′−1
j ,X i′

j−1))
ff = siдmoid(T (X i′−1

j ,X i′
j−1))

fi = siдmoid(T (X i′−1
j ,X i′

j−1))
fm = tanh(T (X i′−1

j ,X i′
j−1))

where fo , ff , fi and fm represent the output gate, forget gate, input gate and input modulation gate9, separately,
and ⊙ denotes the element-wise multiplication.

The attention module accepts the final hidden states as the unnormalized attention weightsW ′
att which can be

measured by the mapping operation L ′(·) (similar with Equation 1)

W ′
att = L ′(ci

′
j−1,X

i−1
j ,X

i′
j−1)

and calculate the normalized attention weightsWatt

Watt = so f tmax(W ′
att )

The softmax function is employed to normalize the attention weights into the range of [0, 1]. Therefore, the
weights can be explained as the probability that how the code C is relevant to the output results. Under the
attention mechanism, the code C is weighted to Catt

Catt = C ⊙Watt

Note, C andWatt are trained instantaneously. The decoder receives the attention-based code Catt and decodes it
to predict the user ID Y ′10 . Since Y ′ is predicted at the output layer of the attention based RNN model (Y ′ = X I ),
we have

Y ′ = T(Catt )
At last, we employ the cross-entropy function to calculate the prediction cost between the predicted ID Y ′ and
the ground truth Y . ℓ2-norm (with parameter λ) is selected to prevent overfitting. The cost is optimized by the
AdamOptimizer algorithm [18]. The threshold for the number of iterations of the attention-based RNN is set
as niter . The weighted code Catt has a linear relationship with the output layer and the predicted results. If the
model is trained well then the weighted code Catt could be regarded as the weighted code as a high-quality
8Some optimal designs like the neural network layers are validated by the preliminary experiments but the validation procedure will not be
reported in this paper for space limitation
9http://colah.github.io/posts/2015-08-Understanding-LSTMs/
10Note, Y ′ is not the identification results of MindID model. The final identified user ID is ID calculated in Section 4.5
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ALGORITHM 1: The MindID User Identification Algorithm

Input: EEG raw data E
Output: Identification results ID
1: Initialization;
2: Preprocessing: E ′ ← E;
3: EEG pattern decomposition: δ ← E ′;
4: if iteration < niter then
5: for i = 1, 2, · · · , I do
6: X 1 = δ
7: C ← X 1,L(ci′j−1,X

i−1
j ,X

i′
j−1)

8: Watt ← C,L′(ci′j−1,X
i−1
j ,X

i′
j−1)

9: Catt = C ⊙Watt
10: XD = Catt
11: end for
12: else
13: Return XD
14: end if
15: for XD do
16: ID ← XD
17: end for
18: return ID

representation of the identity of the user. We set the learned deep feature XD equals to Catt , XD = Catt , and use
it to recognize the user in the identification stage.

4.5 Identification
In this section, we employ Extreme Gradient Boosting classifier (XGB) [7] to classify the learned deep feature XD
for user identification. The XGB classifier fuses a set of classification and regression trees (CART) and exploits as
detailed information as possible from the input features XD . It builds multiple trees and each tree has its leaves
and corresponding scores. Moreover, it proposes a regularized model formalization to prevent over-fitting and it
is widely used for its accurate prediction power.
The learned deep feature XD is used to train a number of the CART (there are M trees) and predict a set of

user’s IDs. Suppose xd ∈ XD is a single sample of the deep feature. The finally identification result of the input
xd is calculated as

ym = f (xd )

ID = F (
M∑
1
ym),m = 1, 2, · · · ,M

where f denotes the classification function of a single tree, ym denotes the predicted ID of them-th tree and F
denotes the mapping from single tree prediction space to the final prediction space. The ID is the final identified
user ID. The overall procedure is summarized in Algorithm 1. All the parameters mentioned in this section are
listed in Table 3.

5 EXPERIMENTS AND RESULTS
We first outline the experimental settings in Section 5.1. Next, we systematically investigate the following
questions:
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Fig. 3. EEG collection experiment and the collected raw data. The EEG raw data is gathered by the EEG headset and
transmitted to server storing the data through bluetooth. The EEG data is recorded while the user is relaxed and keeps his
eyes closed.

Table 4. Datasets details. In Trial column, M denotes multi-trials and S denotes single-trial. EID-M is used to compare the
proposed approach with the state-of-the-art and baselines; the comparison between EID-M and EID-S are used to verify
the robustness; the comparison between EID-S and EEG-S are used to verify the adaptability. EED-S-L is used to evaluate
the influence of the number of participants and EEG-S is a subset of EEG-S-L.

Name Source Channels Trial Frequency Subjects Comparison Robustness Adaptability
EID-M Local 14 M 128 Hz 8 ✓ ✓ -
EID-S Local 14 S 128 Hz 8 - ✓ ✓
EEG-S-L Public 64 S 160 Hz 20 - - -
EEG-S Public 64 S 160 Hz 8 - - ✓

• How does MindID compare with state-of-the-art methods and other baselines (Section 5.2)?
• How efficient is MindID (Section 5.3)?
• Is MindID robust under a multi-trial setting (Section 5.4)?
• Does MindID exhibit consistence results when tested with different datasets (Section 5.5)?
• Do the number of subjects impact the results (Section 5.6)?
• How do other decomposed EEG signals compare with the Delta signals (Section 5.7)?

5.1 Experimental Settings
5.1.1 Datasets. The proposed MindID system is evaluated by three datasets: a multi-trial local dataset (EID-M),

a single-trial dataset (EID-S), and a public dataset (eegmmidb). The details of datasets are introduced in Table 4.
All the datasets measure the EEG raw data from the subject’s scalp while the subject is relaxed.

EID-M denotes EEG based ID recognition with the training set coming from the different trials in the same
day. Since a multi-trial scenario is more representative of a practical setting, EID-M dataset is used to compare
MindID with the state-of-the-art methods and baselines. The EID-M dataset is collected locally in our lab from
8 subjects (5 males and 3 females) aged from 24 to 28. We use the Emotiv Epoc+11 headset and the experiment
setting is depicted in Figure 3.

11https://www.emotiv.com/product/emotiv-epoc-14-channel-mobile-eeg/
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Table 5. Evaluation report of EID-M dataset. The overall accuracy achieves 0.982 of 21000 testing samples. The support is the
number of samples of each class.

0 1 2 3 4 5 6 7 Average/Total
Precision 0.9723 0.9789 0.9777 0.9894 0.989 0.9814 0.9898 0.9774 0.982
Recall 0.9822 0.9885 0.9945 0.9711 0.9808 0.9821 0.9742 0.9834 0.9821
F1-score 0.9772 0.9837 0.9860 0.9802 0.9849 0.9818 0.9820 0.9804 0.982
Support 2674 2554 2601 2650 2639 2634 2636 2612 21000

The Emotiv Epoc+ contains 14 channels and the sampling rate is set as 128 Hz. In the experiment, each subject
undertakes three trials and each trial produces 7,000 EEG samples. Summarily, each subject has 21,000 samples
and the whole EID-M dataset contains 168,000 samples.
EID-S is collected under the same situation with EID-M (5 males, 3 females, 14 channels, and 128 Hz). The

main difference between them is the former dataset is collected in the single trial. EID-S in total contains 56,000
samples belonging to 8 subjects (7,000 samples per subject).
EEG-S-L is a subset of the widely used online public dataset eegmmidb (EEG motor movement/imagery data-

base)12. It is collected with the BCI2000 (Brain Computer Interface) instrumentation system 13 [34] (64 channels
and 160 Hz sampling rate). EEG-S contains 20 subjects with 7000 samples collected from each subject in a single
trial setting.
EEG-S is a subset of EEG-S-L, which only contains 8 subjects. To compare the adaptability of the proposed

approach (Section 5.5), we randomly select 8 participants from EEG-S-L to compare with EID-S. This allows us to
undertake a like-by-like comparison with the only variable being the type of EEG headset used.

To assess the performance of the proposed MindID model, we employ several widely-used evaluation metrics
such as accuracy, precision, recall, F1 score, ROC (Receiver Operating Characteristic) curve, support, and AUC
(Area Under the Curve).

Fig. 4. Confusion matrix of EID-M Fig. 5. Confusion matrix of EID-S Fig. 6. Confusion matrix of EEG-S

12https://www.physionet.org/pn4/eegmmidb/
13http://www.schalklab.org/research/bci2000
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Fig. 7. ROC and AUC of EID-M Fig. 8. ROC and AUC of EID-S Fig. 9. ROC and AUC of EEG-S

Table 6. The accuracy comparison with baselines and the state-of-the-art methods over EID-M dataset. The result shows
that our approach achieves the highest accuracy of 0.982.

Index Method Acc Recall F1-Sore AUC
1 Jayarathne[15] 0.919 0.914 0.9165 0.946
2 Bashar et al. [4] 0.873 0.898 0.8853 0.907
3 Keshishzadeh et al. [17] 0.815 0.843 0.8288 0.859
4 Gui et al.[12] 0.833 0.811 0.8219 0.842
5 Thomas and Vinod [37] 0.859 0.869 0.8640 0.888
6 Kumari and Vaish [21] 0.875 0.872 0.8735 0.901
7 RF 0.795 0.813 0.8039 0.827
8 KNN 0.849 0.836 0.8424 0.847
9 RNN 0.815 0.803 0.8090 0.821
10 RNN+XGB 0.808 0.789 0.7984 0.803
11 PD+RNN 0.853 0.821 0.8367 0.844
12 AR+RNN 0.811 0.798 0.8044 0.831
13 XGB 0.815 0.811 0.8130 0.853
14 PD+XGB 0.965 0.959 0.9620 0.977
15 Ours (EID-M) 0.982 0.9821 0.9820 0.999

5.2 Overall Comparison
In this section, we firstly report the performance of MindID using the EID-M dataset and then compare the
proposed approach with the state-of-the-art approaches and baselines. We randomly select 147,000 samples from
EID-M to train the model and the residual 21,000 samples are used to test the performance. Through tuning,
the hyper-parameters used in our approach are listed following. In EEG pattern decomposition, we employ a 3
order butter-worth band-pass filter and the passband is [0.5Hz, 4Hz]. In the attention-based RNN structure, the
encoder consists of 1 input layer (14 nodes), 3 non-recurrent fully-connected hidden layers (164 nodes) and 1
recurrent LSTM layer (164 cells); the decoder includes 1 fully-connected hidden layer (164 nodes) and 1 output
layer (8 nodes). The learning rate is 0.001; the parameter of ℓ − 2 norm is set as 0.001; the encoder and decoder
separately have 6 and 2 layers; training dataset is divided into 7 batches with the batch size of 21,000; the number
of training iterations is 2000. In the classifier: the learning rate is 0.7; the sub-sampling rate is 0.9; the max depth
is set as 6; the training iterations is 500. The ground truth (from 0 to 7) is represented as a one-hot label which
corresponding to the ID of subjects.
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The proposed approach achieves the highest identification accuracy of 0.982. The detailed confusion matrix,
evaluation report, and ROC curves (with AUC scores) are illustrated in Figure 4, Table 5, and Figure 7, respectively.
Observe that our approach obtains higher than 0.97 precision for each class.
In addition, we compare the accuracy of our method and other state-of-the-art and baselines in Table 6.

RF denotes Random Forest, AdaBoost denotes Adaptive Boosting, LDA denotes Linear Discriminant Analysis,
PD denotes for Pattern Decomposition, AR denotes AutoRegressive method, and XGB denotes for X-Gradient
Boosting classifier (the classifier used in our approach). In addition, the key parameters of the baselines are listed
here: Linear SVM (C = 1), RF (n = 200), KNN (k=3), and AR (13 order autoregressive from 40 samples). The setting
up of PD, RNN and XGB classifier are same as the hyper-parameters mentioned above. The methods used in the
state-of-the-art are introduced as follows:

• Jayarathne et al. [15] focus on the 8 to 30 Hz Alpha and Beta combined frequency band across all EEG
channels and extract the Common Spatial Patterns (CSP) values as classification features. LDA is employed
as the classifier.
• Bashar et al. [4] first remove noise and artifacts using Bandpass FIR filter. Then learn the features through
multi-scale shape description (MSD), multi-scale wavelet packet statistics (WPS) and multi-scale wavelet
packet energy statistics (WPES). These features are finally used to train a support vector machine (SVM)
classifier.
• Keshishzadeh et al. [17] investigates the Autoregressive (AR) coefficients as the feature set which is identified
by an SVM classifier.
• Gui et al.[12] propose to reduce the noise level through a low-pass filter, extract frequency features using
wavelet packet decomposition, and perform classification based on a deep neural network.
• Thomas and Vinod [37] combine subject-specific Alpha peak frequency, peak power, and Delta band power
values to form discriminative feature vectors and templates.
• Kumari and Vaish [21] apply discrete wavelet analysis to decompose the raw EEG signals corresponding to
sub-band frequency (0-59Hz). The extracted statistical measures and energy calculation of each decomposed
wave are classified by a neural network structure.

As noted earlier, we use the EID-M dataset for the comparison. As observed from Table 6, our method significantly
outperforms all other methods in all metrics.

5.3 Efficiency Evaluation
In this section, the efficiency refers to the latency incurred to perform the identification.High latency may limit
the suitability for practical deployment. We compare MindID with the same baselines and classification methods
as in Section 5.2. In this paper, we run the experiments on a GPU-accelerated machine with Nvidia Titan X Pascal
GPU, 768G memory, and 145 TB PCIe based SSD.

The time required to train the identification model is illustrated in Figure 10(the X-axis label denotes the index
of algorithms shown in Table 6). Observe that our approach (PD+RNN+XGB) and RNN+XGB require longer to
train the model that other methods. There are two reasons behind this. First, these algorithms iterate over a
large number of rounds. RNN and XGB executes 2000 and 500 iterations, respectively. Second, the deep learning
structure and the boosting trees have an inherent complex structure and require many more parameters than
other classification models. Compared to the training time, however, for practical considerations, the execution
time of an algorithm during testing is more important than training which is a one-time operation. Figure 11
shows that the testing time of our model is less than 1 second, which is shorter than most of the state-of-the-art
methods and baselines. Summarily, while MindID requires longer to train, the actual execution is near real-time
(< 1 sec), thus making it attractive for real-world deployment.
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Fig. 12. The accuracy change trend
with training data size

Table 7. Evaluation report of EID-S dataset. The overall accuracy achieves 0.9882 of 7000 testing samples.

0 1 2 3 4 5 6 7 Average/Total
Precision 0.9897 0.9881 0.9944 0.9837 0.9895 0.9844 0.9866 0.9897 0.9882
Recall 0.992 0.9924 0.9944 0.9712 0.986 0.9939 0.9789 0.9977 0.9883
F1-score 0.9908 0.9903 0.9944 0.9774 0.9878 0.9891 0.9827 0.9937 0.9883
Support 872 927 892 857 857 831 893 871 7000

In practice, the amount of data needed to train the model is also an important consideration as gathering
training data is not so easy. We conduct a set of experiments to investigate the influence of training data size on
the accuracy. We run the experiments for 5 times and report the error-bar of results in Figure 12. Our approach
achieves an accuracy of 0.9% even when only 12.5% of the available data set is used for the training. This is rather
promising and suggests that our model has a low dependency on the size of the training data.

5.4 Robustness Evaluation
When an EEG-based system is deployed in the real world, the typical usage would always be in a multi-trail
setting. That is the data used to train the system is collected in one trial (ie. one set of circumstances) which
would be different form the conditions in which the system is employed for user identification. Note that the
placement of the EEG headset on the user’s skull may vary slightly for each usage. For example, the user wears
the EEG headset and collects the first trial data; then collects the second trial data after he/she removes the
headset and puts it back again. There may be some difference between two trials data, which is caused by the
different placement position or other internal equipment reasons. Therefore, The divergence of the training data
and testing data should be considered when the identification system is designed.
In this section, we evaluate the robustness of the proposed approach by analyzing whether the trial setting

(single vs multi-trial) affects the identification accuracy. Two datasets, which respectively contain single-trial
identification data (EID-S) and multi-trial identification data (EID-M), are employed.

The evaluation of EID-S is shown in Table 7, we can observe that our approach achieves the overall accuracy
of 0.9882% and the precision for all classes is greater 0.98. To gain further insight, the confusion matrix (Table 5)
and ROC curves (Figure 8) are provided. The performance of MindID with EID-M was reported in Section 5.2
(Figure 4, Table 5, and Figure 7). The multi-trial setting results in a very slight decrease (0.9882 to 0.982) in the
accuracy. However, the impact of inter-trial divergence is rather minimal (0.062). This suggests that MindID has
the potential to be deployed in the real-world and achieve repeatable and accurate results in diverse conditions.

5.5 Adaptability Evaluation
To examine the adaptability and consistency, our model is evaluated using another dataset (EEG-S) which is
collected from a more precise EEG equipment, BCI 2000 which has 64 channels and collects signals at 160Hz.
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Table 8. Evaluation report of EEG-S dataset. The overall accuracy achieves 0.9989 of 7000 testing samples.

0 1 2 3 4 5 6 7 Average/Total
Precision 1 0.9988 0.9988 0.9957 1 1 0.9988 0.9989 0.9989
Recall 1 0.9988 0.9988 0.9989 1 0.9988 0.9964 0.9989 0.9988
F1-score 1 0.9988 0.9988 0.9973 1 0.9994 0.9976 0.9989 0.9989
Support 872 869 848 939 880 864 842 886 7000

However, this headset is rather inconvenient to the subject. We selected a subset of this publicly available headset
such that it matches the sample size of user population of our local dataset (EID-S), i.e., 56,000 samples from 8
subjects.
The results presented in Table 8 illustrate that our model achieves an accuracy of 0.9989 while all other

metrics (precision, recall, and F1-score) are greater than 0.995. The confusion matrix and ROC curves are given
in Figure 6 and Figure 9, respectively. The accurate classification of EEG-S demonstrates that our approach has
good adaptability and able to handle different situations (such as different types of EEG equipments).

Comparing with the results for EID-S (Figure 5, Table 7, and Figure 8), we observe a slight improvement with
EEG-S of about 0.01. We attribute this to the improved precision of the EEG headset in the number of channels
(64 vs 14) and a higher sampling rate (160Hz vs 128Hz).

Section 5.4 and 5.5 illustrate that our approach is robust and adaptable and thus has the potential for practical
deployment in many different environments.

5.6 Effect of User Population Size
The user population size is an important factor that can influence the performance of the identification system.
Intuitively, as the target user population size increases, there is less distinction between the EEG signals of the
individual subjects, which is thus likely to impact the identification accuracy. In this section, we design extensive
experiments in order to explore the influence of the user population size. The dataset EEG-S-L contains EEG
data collected from 20 subjects. We vary the total number of users in the target population group from 8 to 20
(in increments of 2) and plot the accuracy results in Figure 13. It is evident that there is a slight decrease in the
accuracy from 0.9989 for 8 subjects to 0.9937 for 20 subjects. However, the accuracy is still over 99% and thus
rather competitive. Furthermore, from Figure 13, we can observe that the derivative of the relationship curve is
negative, which suggests that the proposed approach is likely to be effective for even larger population sizes. To
provide further insight, the confusion matrix for the experiment with 20 subjects is reported in Figure 14.

5.7 Comparison of Different EEG Frequency Patterns
This section presents experiments to validate the hypothesis proposed in Section 3, which claims that the Delta
pattern signals contain most distinguishable information for identification. In this experiment, we use the 3
dataset (EID-M, EID-S, and EEG-S) and decompose EEG signals into 6 frequency patterns, namely: Delta, Theta,
Alpha, Beta, Gamma, and Full-frequency. The last set contains the entire frequency band of the EEG signals from
0 to 128Hz. Since the sampling rate of the EEG signals is 128Hz, the Butterworth filter employs a frequency
range of 0 - 64 Hz.

We compare MindID with a subset of state-of-the-art methods and baselines as in Section 5.2. In particular, we
select [4, 15, 17] as these methods do not rely on signals belonging to specific frequency bands but can rather
use all 6 patterns under consideration. The results are shown in Table 9. The primary conclusions are listed as
follows:
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Fig. 13. The relationship between training subject number and identify accuracy

• Our approaches achieves the highest accuracy on all of the three datasets (with different trials, collec-
tion equipment, and sampling precision), which shows that our model has outstanding robustness and
adaptability.
• The 11 methods including MindID achieve their best results with the Delta patterns. This result pro-
vides strong evidence to suggest that Delta pattern contain the most distinctive information for human
identification and thus proves the hypothesis proposed in Section 3.
• Several statistical classification models (such as RF, KNN, and XGB) work well on the low-frequency
patterns (Delta and Theta) but do not achieve good results with high-frequency band signals (Alpha, Beta,
and Gamma).
• Deep learning methods are particularly good at extracting deep relationships between the samples which
are inherently noisy and fluctuating. This conclusion can be inferred from the observations that RNN has
lower accuracy than RF/KNN/XGB with Delta and Theta patterns but performs better with other patterns.
These observations inspire the combination of the attention-based RNN structure and the tree-boosting
classifier.
• The baselines and the state-of-the-art methods can achieve acceptable identification accuracy with high-
quality EEG dataset (EEG-S) but performs poorly with the low-quality datasets (EID-M and EID-S). Consider
the Full-frequency pattern as an example, RF/XGB/RNN achieves an accuracy of more than 0.95 on EEG-S
but lower than 0.82 on EID-M. However, our approach consistently achieves high accuracy no matter the
data quality. This suggests that MindID has the potential to deal with various real-world effects and thus a
prime candidate for practical deployment.

6 DISCUSSION AND FUTURE WORK
In this paper, we propose an EEG-based identification approach and evaluate the robustness and adaptability
over three datasets. In this section, we discuss the challenges and potential directions for future research.
• First, EEG-based identification system is less vulnerable to attacks compared to existing biometric identifica-
tion systems. In order to evaluate the attack-resilience of MindID, We test our approach to dealing with the
threat from unauthorized subjects among a number of attack categories [29]. We randomly select 10 subjects
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Fig. 14. Confusion matrix of EEG-S-L dataset

from EEG-S-L dataset as authorized users while the rest of users are as unauthorized subjects. During the
testing, given the unauthorized users’ EEG signals, MindID predicts the probability indicating how likely
the samples belong to an authorized subject or not. The specific user will be regarded as unauthorized if
the predict probability is under a threshold. Our experimental results demonstrate that MindID is able to
precisely detect the authorized users with around 99% accuracy under an appropriate threshold setting.
This suggests that our approach has the potential to distinguish the attack from unauthorized subject.
• Second, the impact of variations in the EEG signals over longitudinal scales on the performance of such
identification systems needs to be studied. For a thorough investigation, it would be necessary to collect
EEG data over multiple trials spread across several days. We have taken some preliminary steps in this
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Table 9. EEG Pattern Decomposition Analysis

Dataset Methods EEG Patterns Best Result
Delta Theta Alpha Beta Gamma Full

Jayarathne [15] 0.919 0.701 0.725 0.598 0.602 0.785
Bashar et al. [4] 0.873 0.716 0.425 0.393 0.412 0.571
Keshishzadeh et al. [17] 0.815 0.672 0.536 0.273 0.409 0.511
SVM 0.143 0.157 0.137 0.135 0.138 0.2745
RF 0.936 0.707 0.677 0.489 0.435 0.7935
KNN 0.941 0.804 0.618 0.35 0.313 0.819
AdaBoost 0.251 0.13 0.15 0.15 0.171 0.24
LDA 0.148 0.154 0.135 0.135 0.129 0.28
XGB 0.965 0.665 0.69 0.495 0.414 0.815
RNN 0.917 0.709 0.708 0.518 0.411 0.813

EID-M

Ours 0.982 0.713 0.73 0.513 0.423 0.822

0.982
(Delta)

Jayarathne [15] 0.938 0.799 0.764 0.602 0.663 0.828
Bashar et al. [4] 0.884 0.760 0.437 0.413 0.452 0.597
Keshishzadeh et al. [17] 0.846 0.699 0.672 0.413 0.498 0.628
SVM 0.135 0.162 0.181 0.152 0.132 0.408
RF 0.947 0.771 0.719 0.587 0.377 0.863
KNN 0.953 0.824 0.714 0.472 0.495 0.853
AdaBoost 0.278 0.29 0.162 0.2 0.16 0.3
LDA 0.14 0.16 0.183 0.152 0.122 0.41
XGB 0.981 0.785 0.791 0.599 0.489 0.893
RNN 0.9425 0.7568 0.8175 0.6331 0.5141 0.9045

EID-S

Ours 0.9882 0.821 0.8259 0.612 0.517 0.913

0.9882
(Delta)

Jayarathne [15] 0.967 0.891 0.855 0.678 0.693 0.898
Bashar et al. [4] 0.903 0.836 0.537 0.559 0.612 0.775
Keshishzadeh et al. [17] 0.928 0.832 0.732 0.611 0.589 0.801
SVM 0.216 0.167 0.148 0.169 0.186 0.652
RF 0.972 0.885 0.819 0.823 0.87 0.957
KNN 0.974 0.865 0.781 0.559 0.743 0.936
AdaBoost 0.32 0.32 0.27 0.23 0.22 0.34
LDA 0.186 0.17 0.28 0.168 0.162 0.6618
XGB 0.9972 0.982 0.967 0.959 0.953 0.989
RNN 0.9981 0.9667 0.964 0.947 0.952 0.9886

EEG-S

Ours 0.9989 0.972 0.968 0.961 0.955 0.99

0.9989
(Delta)

regards by collecting EEG data from 8 subjects across 3 separate trials. However, there is scope to undertake
more extensive evaluations in this regard.
• EEG signals are known to be sensitive to various factors such as the mood of the subject, intake of foods,
drugs and alcohol. Knyazev [20] infers that EEG signals are affected by inherent factors such as panic,
sustained pain, sexual arousal, etc. Dubbelink et al. [9] conduct experiments in obese and lean female
adolescents and record the magnetoencephalographic (MEG) signal of participants’ brain. The obese
adolescents had increased synchronization in delta and beta frequency bands compared to lean controls.
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Reid et al. [30] claim that the increase of delta power during the first 5 min following cocaine was correlated
with increased ratings of cocaine craving. Reward-related decrease of delta activity has been observed after
administration of legal psycho-active drugs, such as alcohol [33], tobacco [19], and caffeine [13]. One future
scope of our future work is to study how the identification system is influenced by the aforementioned
factors and enhance the current approach to be more adaptive.
• The impact of population size on the performance needs further investigation. In this paper, explore this
effect to some extent but considering a corpus of 20 subjects. However, further investigations with larger
groups, for example, 100 subjects, are necessary. That said, our results already demonstrate that MindID
can be used in settings such as small offices which are accessed by a small group of people.
• The EEG data of an individual is known to change gradually with environmental factors such as age,
mental state and lifestyle. For example, Delta patterns are known to decrease with age in older individuals
[10]. This suggests that the pre-trained model used in MindID should be updated when such changes are
detected. In our future work, we aim to develop an online learning system which can automatically retrain
the model using the data collected during the operational phase.
• While we provide some explanations in Section 3 for why Delta patterns may be most informative for user
identification, the underlying mechanism is still not well known. Further investigation is necessary.
• The privacy of pervasive EEG technology is not concerned in this paper. The collected EEG data may
not only contain subject ID related information but also infers other privacy of the subject (e.g., emotion
and fatigue state). In our future work, we attempt to propose an algorithm to eliminate other private
information in the collected EEG data.

7 CONCLUSION
We proposed a biometric EEG-based identification approach called MindID and argue that its inherent resilience
against attacks makes it an attractive approach compared to traditional biometric identification methods. We
decomposed EEG signal into various constituent frequency bands and demonstrate that the Delta patterns capture
the most distinguishable features for user identification. MindID incorporates four key steps. Following pre-
processing, the EEG data is decomposed into Delta patterns, which are fed to an attention-based RNN structure
for extracting deeper representations of the identifiable features. Finally, a statistical boosting classifier is used to
identify the individual. The proposed approach is evaluated over 3 datasets (two local and one public dataset).
The experiments results illustrate that our model achieves accuracy of 0.982, 0.9882, and 0.9989, respectively.
The results also infer the robustness and adaptability of our model. We also outline several directions for future
research.
Taking the advantages of EEG-based techniques for attack-resilient, we propose a biometric EEG-based

identification approach to overcome the limitations of traditional biometric identification methods. We analyzed
the EEG data pattern characteristics and capture the Delta pattern which takes the most distinguishable features
for user identification. Based on the pattern decomposition analysis, we report the structure of the proposed
approach. In the first step of identification, the preprocessed EEG data is decomposed into Delta pattern. Then
an attention-based RNN structure is employed to extract deep representations of Delta wave. At last, the deep
representations are used to directly identify the user’ ID. The proposed approach is evaluated over 3 datasets
(two local and one public dataset). The experiments results illustrate that our model achieves the accuracy of
0.982, 0.9882, and 0.9989 over three datasets, separately. The results also infer the robustness and adaptability of
our model. We also outline several directions for future research.
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