
Managing Quality of Context in Pervasive Computing∗

Yingyi Bu1, Tao Gu2, Xianping Tao1, Jun Li1, Shaxun Chen1, Jian Lu1

1National Laboratory for Novel Software Technology, Nanjing University
Nanjing City, P.R.China, 210093

2Institute for Infocomm Research, Singapore, 119613
byy@ics.nju.edu.cn, tgu@i2r.a-star.edu.sg

Abstract

Context-awareness plays a key role in a paradigm shift
from traditional desktop styled computing to emerging per-
vasive computing. Many context-aware systems have been
built to achieve the vision of pervasive computing and al-
leviate the human attention bottleneck; however, these sys-
tems are far from real world applications. Quality of con-
text is critical in reducing the gap between existing systems
and real-life applications. Aiming to provide the support
of quality of context, in this paper, we propose a novel
quality model for context information and a context man-
agement mechanism for inconsistency resolution. We also
build a prototype system to validate our proposed model
and mechanism, and to assist the development of context-
aware applications. Through our evaluations and case
study, context-aware applications can be built with the sup-
port of quality of context.

Keywords: context-aware systems, context model, qual-
ity of context, pervasive computing.

Topics: emerging technology−pervasive computing, ap-
plications, software quality.

Paper type: research paper

1 Introduction
In the recent years, context-aware computing has ex-

tracted a lot of attention from academic researchers and in-
dustrial practitioners. Context-aware systems usually make
use of a large amount of sensed context information which
is obtained from various physical sensors. Over the past
decade, many context-aware applications have been built;
however, few of them has been deployed in real life. One
of the critical issue is quality of context; this issue is ei-
ther ignored or not well addressed in the existing context-

∗This work is funded by 973 of China (2002CB312002) and 863
Program of China(2005AA113030), NSFC (60233010, 60403014) ,
NSFJ(BK2006712).

aware systems. The issues on quality of context may vary
from type to type and from application to application; but it
has two main factors. First, inconsistent contexts may often
appear in context-aware systems because different sensors
may produce different sensed data values which will lead
to the inconsistency of sensor-based applications. Second,
most sensors usually send sensed data to sinks periodically
so that it is very difficult for computers to know what indeed
happens in the time interval between two sensor signals. As
a result, quality of context is always difficult to guarantee.

In this paper, we propose a management mechanism for
quality of context to resolve inconsistency among various
context information. This mechanism is based on an ER-
ontology based model with the extension of quality mea-
surements. To validate our model and mechanism, we
have built a prototype system to enable the development
of context-aware applications with the support of quality of
context. Through our experiments, we conclude that our
approach is feasible in practice, and context-aware applica-
tions can be built with the enhancement of quality of con-
text.

The rest of the paper is organized as follows. In sec-
tion 2, we discuss some related work. Section 3 discusses
context quality measurements. Section 4 describes the ER-
ontology based context model. Section 5 presents the man-
agement mechanism for quality of context. Section 6 in-
troduces our prototype implementation. We evaluate our
system in Section 7; and present a case study in Section 8.
Finally, we conclude in Section 9.

2 Related Work

In the past decade, many context-aware systems are de-
veloped in both research communities and industry compa-
nies.

Active Badge [18] is the earliest context-aware applica-
tions that redirects phone calls based on people’s location.
Salber developed Context-Toolkit [17] which is a well de-
signed object-oriented framework supporting context-aware
computing. Context Fabric [12] is an infrastructure for

Proceedings of the Sixth International Conference on Quality Software (QSIC'06)
0-7695-2718-3/06 $20.00 © 2006

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 17:07:00 UTC from IEEE Xplore. Restrictions apply.

building context-aware applications, which provides a con-
text specification language. ActiveCampus [9] builds a
context-aware computing infrastructure by using a central
server for all components except data acquisition and user
interaction, in order to ease administration and to minimize
requirements placed on mobile devices. Context Cube [11]
gave a context management mechanism based on the tech-
niques of data warehousing and data mining. The Mobi-
PADS system [5] is a reflective middleware designed to
support context-aware processing by providing an execu-
tion platform to enable active service deployment and re-
configuration of the service composition in response to en-
vironments of varying contexts. CARISMA [4] is also a
reflective middleware supporting for mobile context-aware
applications, and it can commendably resolve conflict be-
haviors among different applications. Siren [13] is a real-
time context-aware system used in fire fighting domain. The
CORTEX [1] project has built a context-aware middleware
based on the Sentient Object Model. CoBrA [7] is an agent-
based architecture employing ontology based context model
for smart room environments. SOCAM [10] builds an OSGi
based central service that retrieves context data from dis-
tributed context providers, processes them using ontology
reasoning and rule reasoning, and offers them to its clients.
Solar [6] is a middleware system gathering physical or vir-
tual context information, together with filters, transformers
and aggregators modifying context to offer the application
usable context information.

Some recent work has been brought in towards issues
related to quality of context. Myllymaki proposed a good
solution for resolving conflicts in location information [15],
but the strategy is difficult to extend for inconsistency detec-
tion and resolution of various contexts. Ranganathan tried
to resolve semantic contradictiously context using fuzzy
logic in first predicate caculus [16]. Dey gave a novel solu-
tion for ambiguity resolution by user mediation [8]. Xu es-
tablished a context consistency management mechanism by
providing a sophisticated architecture for inconsistency de-
tection and resolution [19], and using an well-designed in-
cremental consistency checking approach [20]. Our incon-
sistency resolution is performed at raw context level with-
out human interference. In our previous work [2][3], time
constraints are attached to high-level contexts and a lifecy-
cle management strategy is brought in. Although quality of
context is improved to some extent, applications based on
our previous infrastructure still have some uncertainty and
often conduct perplexing behaviors because the time con-
straints of contexts are approximate values. Nevertheless,
we find that using ER-ontology based model can largely
reduce the inconsistency levels of context information and
improve quality of context because updating context repos-
itory is content-based.

3 Context Quality Measurements
To measure quality of context, we propose three impor-

tant parameters: Delay time, Context correctness probabil-
ity, and Context consistency probability.

Delay Time. Delay time is the time interval between
the time when the situation happens in real world and the
time when the situation is recognized in computers. It is
important to context-aware applications, because outdated
contexts will not be useful to applications.

Context Correctness Probability. Due to the limitation
of sensor technology, the accuracy of sensed data is difficult
to guarantee. However, if we measure contexts through ran-
dom sampling in a rather long period with recording the cor-
rect rate(the probability that contexts in computers match
situations in real world), we are able to provide quantity
measurement for quality of context in a context-aware sys-
tem.

Context Consistency Probability. Incorrect contexts
often lead to context inconsistency. Context Consistency
Probability measures the consistency rate of context infor-
mation(the probability that contexts in computers are con-
sistent), and it also could be obtained through long period
random sampling.

A well-designed context-aware system should have low
delay time, high context correctness probability and high
context consistency probability. The three measurements
have correlations with each other: outdated contexts with
large delay time are usually incorrect and conflicting with
current context information; and inconsistent contexts usu-
ally contain incorrect ones.

In the following sections, we intend to improve con-
text quality by dealing with the three measurements respec-
tively. We adopt an ER ontology model as our basis, and
propose the context inconsistency resolution algorithm, the
raw level refactoring, the particular callback mechanism to
promote context correctness probability and context consis-
tency probability; and replace high-level inconsistency res-
olution with raw-level inconsistency resolution to effectu-
ally shorten delay time.

4 ER-ontology Based Context Model
4.1 Conceptual Model−EROntCom

The EROntCom consists of ontology, entities, relation-
ships, and dependencies.

The ontology is a set of shared vocabularies of concepts
and the interrelationships among these concepts. With the
ontology, ontology-based reasoning and rule-based reason-
ing can be used to infer implicit contexts. Contexts can be
easily shared in different computational nodes, and incon-
sistency need not be defined explicitly by developers.

Every entity in the physical environment is modeled as
“entity” in computer’s view, such as person, desk, class-
room, meetingroom, and campus.

Proceedings of the Sixth International Conference on Quality Software (QSIC'06)
0-7695-2718-3/06 $20.00 © 2006

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 17:07:00 UTC from IEEE Xplore. Restrictions apply.

Relationships denote the situations or predicates about
entities. For example, “Tom locates in Room311” is a con-
text, in which Tom is an entity of type “Person”, Room311
is an entity of type “Room”, and “locateIn” is the rela-
tionship between Tom and Room311. There are two types
of relationships, “directRelationship” and “implictRelation-
ship”. A case in point, when Prof. Jimmy seats on the
chair in his office Room312, the system will sense a context
contexta “Jimmy locateIn Room312” directly from some
location sensors. We say “locateIn” in contexta is a “direc-
tRelationship”. The system then can infer an implicit con-
text contextb “Jimmy locateIn MMWBuilding” because
Room312 locates in MMWBuilding and the “locateIn” re-
lationship is transitive. We define “locateIn” in contextb as
“implicitRelationship”. Furthermore, each raw relationship
also has some description data, such as frequency which in-
dicates refresh times in a period, starttime which denotes
when the relationship is established, updatetime which de-
notes when it is updated most recently and ttl which de-
scribes the maximum updating interval. Then, we can de-
fine two categories of relationships in raw context layer:
single-value relationship and multi-value relationship. For
example, in context “Tom locates in Room311”, “locateIn”
is a single-value relationship because in raw context layer,
Tom can only be in one physical space. In another example,
the relationship “talkTo” in contexts “Tom talk to Jimmy”
and “Tom talk to Bob” is a multi-value relationship because
Tom can talk to more than one person at the same time.

In each high-level context, the “relationship” element is
“implicitRelationship” so that it depends on its derivation
contexts. “Dependency” is the relationship between “Re-
lationship”s. For example, “locateIn” in contextb depends
on the “locateIn” in contexta so there is a dependency be-
tween the two “Relationship”s, which starts from “locateIn”
in contexta, and points to “locateIn” in contextb. It is ob-
vious that “Dependency” has a transitivity property.

Fig. 1 and Fig. 2 show two examples of context graph. In
Fig. 1, the high-level contexts are inferred using ontology-
based reasoning while in Fig. 2, the high-level contexts are
inferred using rule-based reasoning.

 Byy

Jimmy

Room311

talkTo

locateIn

locateIn

directRelationship

implicitRelationship
Tom

locateIn

giveLecture

talkTo

anti-dependence

4.2 Formulated Context Model

Context representation and management can be formu-
lated using a graph model. We first describe the following
definitions.

Definition 1. Context Graph, A context graph consists
of the following elements:

−Node denotes entity in the EROntCom,
−EdgeAB denotes the relationship which connects two

nodes A and B from A to B.
−Raw-edge denotes the context predicate sensed di-

rectly from sensors. Each raw-edge contains four attributes:
“ttl” denotes the lifetime of a context; “starttime” is the
UNIX time when a context is created in the system while
“updatetime” denotes the UNIX time when the context is
lately updated; “frequency” indicates how many times a
context is updated from its first appearance.

−Implicit-edge denotes the relationship is generated by
inference.

−Single-value-edge denotes a single-value relationship.
−Multi-value-edge denotes a multi-value relationship.
−Meta-edgeCD is a direct edge between two edges C

and D, and the terminal edge D is dependent on the starting
edge C.

−Persistent-edge is an edge that always holds, such as
“Jimmy is a teacher”.

−Dynamic-edge is an edge that holds only for a short
period, such as “Jimmy is talking with John”.

Definition 2. Context
−Context is a subgraph of context graph, for example,

a triple of (nodeA, edgeAB , nodeB), in which nodeA is a
subject node, nodeB is a object node.

Definition 3. ER Graph
−ER graph is a graph which consists of nodes and edges,

it is also a subgraph of context graph.
Definition 4. Dependency Graph
−Dependency graph, is a subgraph of context graph

which only has edges and meta-edges.
Definition 5. Context Repository
−Context repository, consists of several context graphs.

Proceedings of the Sixth International Conference on Quality Software (QSIC'06)
0-7695-2718-3/06 $20.00 © 2006

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 17:07:00 UTC from IEEE Xplore. Restrictions apply.

5 Context Management Mechanism
5.1 Context Processing Procedure

We use logic inference to process contexts in our sys-
tem. The detailed context processing procedure is shown in
Fig. 3. The first step is the raw context gathering, in which
raw contexts from various sensor sources are collected dur-
ing a fixed short period. The second step is the inconsis-
tency resolution. We resolve inconsistency among different
raw contexts in this step because inconsistent raw contexts
may lead to high-level inconsistent contexts that are more
difficult to handle. We process raw contexts in a batch by
batch manner instead of a piece by piece manner. Incon-
sistency in a batch of raw contexts should be cleaned prior
to context reasoning so that the inconsistency of high-level
contexts can be mitigated in certain degree. The third step
is the raw level refactoring, in which we update the context
repository with raw contexts, check the dependency graphs
and refactor the ER graphs. Outdated or incorrect high-level
contexts will be deleted in this step. If they are not removed,
they will result in serious inconsistency among contexts af-
ter reasoning. Then, we apply rule-based reasoning and
ontology-based reasoning based on the Jena API1 to gen-
erate high-level contexts. The user-defined rules are in the
form of Jena generic rules without negation and “or” oper-
ation. The two reasoners are configured as “traceable” in
order to facilitate updating dependency graphs in context
repository, though more memory is required. After that, we
use inferred high-level contexts to update the context repos-
itory and notify applications which register context triggers.

5.2 Inconsistency Resolution in Raw Context Level

The first step of inconsistency resolution is to detect con-
flicts. For example, if there are 2 raw contexts: d1(Tom,
walkIn, Room311, 15s,1116943120489, 1116943567511,
10) and d2(Tom, walkIn, Aisle3, 25s, 1116943111897,
1116943567599, 1), 2 persistent contexts: p1(Room311,
type, Room) and p2(Aisle3, type, Aisle), and 2 assertions

1Jena Semantic Web Toolkit: http://www.hpl.hp.com/semweb/jena2.htm

in ontology: o1(Room, disjointWith, Aisle) and o2(walkIn,
type, FunctionalProperty), a conflict will be detected in on-
tology model because there is an instance of both Room and
Aisle.

We first denote some definitions, and then introduce the
algorithm using these definitions.

Definition 6. Conflict Pair Set
−Conflict pair set, is a set consisting of pairs such as

(edgea,edgeb), in which corresponding contexta(contains
edgea) conflicts with contextb(contains edgeb). For conve-
nience, we can also say edgea conflicts with edgeb.

Definition 7. Conflict Set
−For a given edge set denoted as EdgeSet, if its mem-

bers conflict with each other, we call EdgeSet a conflict
set.

Definition 8. Relative Frequency−rf
−A formula that calculates the rf value of a raw-edge

edgei is shown as follow.

edgei.rf =

edgei.ttl · edgei.frequency

currenttime − edgei.starttime
(for dynamic-edges)

infinite
(for persistent-edges)

Our design principle is that more frequent raw contexts
have more priority than infrequent ones. However, it is dif-
ficult to compare the frequencies for different types of con-
texts. For example, noise contexts may be inherently var-
ied more frequently than temperature contexts, but we can’t
say that noise contexts have more priorities. For this rea-
son, we use the rf value to scale each raw context’s relative
frequency because the ttl value may often imply the con-
text is inherently frequent or infrequent. We believe that
those contexts with larger rf values are more frequently
recently, therefore, they are more likely to be correct con-
texts. Hence, when conflict occurs, we discard the ones with
smaller rf values. The RCIR(Raw Context Inconsistency
Resolution) algorithm is shown in Algorithm. 1. The func-
tion ConflictDetection utilizes Jena’s consistency check-
ing API. A greedy strategy is used in the algorithm, in
which we start from the first element in the conflict pair
sets, and form maximum conflict sets circularly to resolve
conflicts. The worst case time complexity of RCIR is poly-
nomial bounded with the number of total contexts, and in
our experiments we found that it is more efficient than our
previous approaches.

5.3 Raw Level Refactoring in Context Repository

Before context reasoning, the context repository should
be updated in order to ensure incorrect or outdated high-
level contexts are removed. We design an algorithm called

Proceedings of the Sixth International Conference on Quality Software (QSIC'06)
0-7695-2718-3/06 $20.00 © 2006

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 17:07:00 UTC from IEEE Xplore. Restrictions apply.

Input: Raw Context Set Src
Output: Consistent Set Scon
Conflict Pair Sets Cps = ConflictDetection(Src);1

for every ck in Cps do2
add ck.edge1, ck.edge2 to Scon;3

end4

while Cps not empty do5
Conflict Pair Set ci = first element of Cps;6

Edge edgek=ci.edge1;7

Conflict Set conflict = new Conflict Set;8

for every cj in Cps do9
if cj .edge1 == edgek or10

cj .edge2 == edgek then
add cj .edge1, cj .edge2 to conflict;11

delete cj ;12

end13

end14

select a edge edgemax with largest rf in15

conflict;
for every edgej in conflicts (j �= max) do16

delete edgej in Scon;17

end18

end19

Algorithm 1: Raw Context Inconsistency Resolu-
tion(RCIR)

RLR(Raw Level Refactoring, shown in Algorithm. 2) to
complete this task.

The algorithm first finds the node in an ER graph which
equals to the subject node of a raw context using a DFS2

search strategy, and then updates the edges and correspond-
ing nodes. For example, if Tom walks from Room311 into
Room312, the sensors in Room312 detect Tom within its
range, the algorithm will update the edge of Tom’s “lo-
cateIn” from “Room311” to “Room312” because “locateIn”
is a single-value edge in the raw layer. If the edge is multi-
valued, the original relation edge will be reserved.

If a raw-edge is changed, the implicit-edges should also
be changed. The algorithm will remove edges dependent
to the inexistent raw-edges. After dependency checking, if
the depending edges is removed, the corresponding depen-
dency will also be deleted. The benefit of our graph model
is that when we want to find a node in the context reposi-
tory, the dependencies are not considered and the algorithm
just searches the ER graph; and when we check the depen-
dencies, the algorithm will only operate on the dependency
graph, and treat edges as nodes and dependencies as edges
without considering entities. The algorithm can be easily
extended to handle the input of a raw context array by a
simple circulation.

2DFS:Depth-first search.

Input: Raw Context rc, Context Repository
repository

Output: Context Repository repository
Node subject =1

DFSSearch(repsitory.ERGraphs, rc.subject);
for every edgei out from subject do2

if edgei.type == singlevalue and3

edgei.name == rc.edge.name then
Tree tree = DFSTree(edgei,4

edgei.DependencyGraph);
for every Meta-edge medge in tree do5

delete meta − edge;6

end7

for every Edge edge in tree do8
delete edge’s all in-meta-edges and9

edge;
end10

delete edgei;11

end12

end13

establish rc.edge from rc.subject to rc.object in14

the ERGraph;
Algorithm 2: Raw Level Refactoring(RLR)

5.4 Context Reasoning and Context Repository Updat-
ing

We use Jena semantic web API to perform reasoning on
the refactored context repository. We translate the ER graph
list to RDF3 triples as inputs to the reasoners and record the
reasoning traces when high-level contexts are inferred. Af-
ter reasoning, the new generated RDF triples are translated
back to the ER contexts, and added to ER graphs in the
context repository. Finally, the reasoning traces are used to
add dependencies to context graphs. Besides, a time tick
thread is running periodically to discard outdated raw con-
texts and refactor context repository using an algorithm sim-
ilar to RLR.

6 The Software Infrastructure
6.1 System Overview

We have implemented the context management mecha-
nism. We built a centralized OSGi4 based context service
to accept raw contexts from raw context providers, produce
high-level contexts, and deliver contexts to applications. In
our prototype system, sensors gather data from the physical
world, such as location, temperature, pressure, picture, and
noise; context providers interact with sensors, and trans-
form sensor data into raw semantic contexts; and applica-
tions (context consumers) consume contexts by either sub-
scribing or querying with adaptation to context changes. To
assure application’s efficiency and robustness, we also de-
sign a friendly context query interface and specialized call-

3RDF reference: http://www.w3.org/TR/rdf-ref
4OSGi, Open Service Gateway Initiative: http://www.osgi.org

Proceedings of the Sixth International Conference on Quality Software (QSIC'06)
0-7695-2718-3/06 $20.00 © 2006

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 17:07:00 UTC from IEEE Xplore. Restrictions apply.

back device.

6.2 Context Query

In our prototype system, we use RDQL5 as context query
language. Applications can query contexts by specifying a
RDQL sentence. For instance, we can use “select ?x where
(?x giveLecture Room311)(?x Type Teacher)” to search if
there is a teacher giving a lecture in Room311. Also, we
can look up historical contexts by attaching time ranges to
a RDQL sentence. The query mechanism is efficiently im-
plemented on the formulated context model.

6.3 Context Callback

Applications can exploit contexts not only by querying
but also by registering callbacks. However, context callback
mechanism should be different from conventional event-
callback mechanisms. Contexts are varied with time and
callbacks must exactly match to real world’s requirements.
For example, if a context-aware application intends to open
slides for lecturers automatically, with a badly designed
callback mechanism, the application may open the slides
more than once resulting in confusing users. To address
this issue, we invokes callbacks after every inferences and
time tick, and use a replica pool to store consumed contexts
for each applications. When the callback is being invoked,
the system checks each replica pool and does not trigger
those stored consumed contexts’ callback functions. Un-
less those consumed contexts have some changes, they will
not be cleared from the replica pool. This device embraces
the particularity of contexts and leads to robust applications
in practice. The view of callback architecture is shown in
Fig. 4.

app5app4app3app2

7 Evaluations
We conduct several experiments over our prototype sys-

tem to evaluate its performance. In our evaluation, the rules
are in the form of Jena Generic Rules, and the ontology
reasoner is entailed by OWL-Lite. The ontology contains
1257 RDF triples. We use three computers in our experi-
ments, one Linux workstation with 4G RAM and 2 Xeon

5RDQL tutorial: http://jena.sourceforge.net/tutorial/RDQL/index.html

CPUs and two PC clients, connecting through LAN. In our
testbed, the meeting room and aisle are equipped with mica
sensors6 to detect noise and cricket sensors7 to find people’s
location. One of the clients plays the role of a raw context
provider while the other acts as a context consumer.

The raw context gathering period mentioned in 4.1 is im-
portant to both performance and effectiveness. If the fixed
interval is too short, the processing mechanism will ret-
rograde to piece by piece processing which will leads to
context conflicts. However, if the interval is too long, the
RCIR algorithm will have low performance because it has
to to deal with to much inconsistency, and the accuracy will
decline because some raw contexts may be outdated.

7.1 Performance Study

In this experiment, we test the performance of the RCIR
algorithm on a Linux Workstation with 4G RAM and 2
Xeon CPUs. In the experiment setup, eight persons carry-
ing a cricket sensor and a mica sensor each walk along the
aisle and to the meeting room. We investigate the perfor-
mance with different raw context numbers(edge number),
by tuning the raw context gathering period. The results are
shown in Fig 5.

7.2 Effectiveness Study

To evaluate the effectiveness of RCIR, in this experi-
ment, a person carrying a cricket beacon stands in a meet-
ing room to give a lecture. During this period, he/she goes
out to the aisle with immediately coming back to the meet-
ing room at a frequency of 10 seconds once. This activity
can cause context conflicts among high-level contexts in the
system because of two raw context triples: (personx, lo-
cateIn, MeetingRoomx) and (personx, locateIn, Aislex).
We test the effectiveness of RCIR with different raw context
gathering interval(horizontal axis in Fig. 6). Meanwhile, for

6The Mica Sensor: http://www.xbow.com
7The Cricket indoor location system: http://cricket.csail.mit.edu/

Proceedings of the Sixth International Conference on Quality Software (QSIC'06)
0-7695-2718-3/06 $20.00 © 2006

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 17:07:00 UTC from IEEE Xplore. Restrictions apply.

each raw context gathering interval, the context consumer
continues querying contexts for 10 minutes at a frequency
of 10 times per minute to see the probability of context cor-
rectness(vertical axis in Fig. 6). In this way, for every raw
context gathering interval, 100 samples about context qual-
ity can be gained. The results are shown in Fig. 6. We can
conclude that 2.5s is an optimal interval.

7.3 Remarks From Experiments

From the experiments, we conclude that RCIR is a very
efficient. It improves our previous work [2][3] significantly
so that we can run it in normal context processing proce-
dure rather than periodically. However, since there is a fixed
number(1257) of RDF triples transformed from the ontol-
ogy, the consistency checking without raw contexts needs
700ms. This is the limitation of using ontology based con-
sistency checking. The context management mechanism
can guarantee high accuracy of contexts if the raw context
gathering period is appropriate.

8 Application Case Study

8.1 Scenario

In an academic environment, seminars are often held.
When someone gives a lecture, he/she should copy the
slides to his/her flash disk, carry it to a meeting room, copy
the slides to the computer in the meeting room, and then
open them. The work is dull and trivial, and much of peo-
ple’s attention could be distracted. In our context-aware
computing environment, the lecturer does not require to all
of these. When he/she enters the meeting room, his/her
slides will be opened automatically. During the seminar, if
some strangers come in, a warning sign will pop up on the
screen. At the end of the seminar, the slides will be closed
automatically.

8.2 Implementations

We implement three versions of the above scenario: the
first one is based on our earlier work which employs a sim-
plistic inconsistency resolution strategy that later updated
and persistent contexts are prior(with SIR) [2], the second
is based on our previous work in which inconsistency is
resolved at high-level by a heuristic algorithm(with CIR)
[3], and the third one is based on our context management
mechanism(with RCIR).

The application called Seminar Assistant has two parts.
One called User Assistant runs at all users’ computers while
the other called Meeting Assistant runs at the computer in
the meeting room. When the User Assistant detects the con-
text that the user will give a lecture in the next few days, it
will upload the slides he edited, the name of which matches
the lecture to an http server. When the lecturer starts to give
the lecture in the meeting room, the Meeting Assistant will
obtain the right context, and then download and open the
previous uploaded slides. Then the Meeting Assistant starts
to monitor if strangers come in(a warning sign will pop up if
there are). When the Meeting Assistant detects the context
that the lecturer leaves the room, it will close the slides.

8.3 Application Error Rate Comparison

We compare the three versions of “Seminar Assistant”
by investigating their average error rates. For the com-
parison, we run the three applications respectively for 600
times(20 times each day, 30 days in total), and record the
error rates for each day. In the experiments, all the errors
recorded are application’s incongruous behaviors such as
opening the slides before the reporter entering the meeting
room, and system failures such as out of memory error are
not included. Fig. 7 shows the results, in which the horizon-
tal axis denotes the day while the vertical axis denotes the
error rate. It can be concluded from the experiment results
that our context consistency management mechanism(with
RCIR) has significantly improved context-aware applica-
tions’ robustness since many incongruous behaviors are re-
duced(13 errors of 600 tests, compared to 43 of 600 and 24
errors of 600).

9 Conclusions and Future Work
From our experiences on designing and implementing

context-aware applications, we find that quality of context
is a critical problem which can threaten the robustness of
context-aware applications. This paper proposes several
context quality measurements for evaluating context-aware
systems. We design an inconsistency resolution algorithm,
establish a context management mechanism, and build a
software infrastructure to support context-aware applica-
tions. Through the evaluations and case study, we prove the
feasibility and effectiveness of our mechanism. The work in
this paper is part of our ongoing research project−Artemis-
FollowMe [14] which is designed towards a workflow-

Proceedings of the Sixth International Conference on Quality Software (QSIC'06)
0-7695-2718-3/06 $20.00 © 2006

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 17:07:00 UTC from IEEE Xplore. Restrictions apply.

driven, service-oriented, pluggable and programmable soft-
ware infrastructure for context-awareness.

In our future work, we will work towards a better in-
consistency resolution approach which will further improve
quality of context. Further more, we plan to establish a the-
oretical context quality model which will show to gain a
certain context quality, what is the lower bound of sensor
energy and computational resource consumptions.

References
[1] G. Biegel and V. Cahill. A framework for developing mo-

bile, context-aware applications. In Proceedings of the
Second IEEE International Conference on Pervasive Com-
puting and Communications (PerCom 2004), 14-17 March
2004, Orlando, FL, USA, pages 361–365. IEEE Computer
Society, 2004.

[2] Y. Bu, J. Li, S. Chen, X. Tao, and J. Lu. An enhanced
ontology based context model and fusion mechanism. In
Proceedings of IFIP 2005 International Conference on Em-
bedded and Ubiquitous Computing (EUC2005). Nagasaki,
Japan., volume 3824 of LNCS, pages 920–929. Springer,
2005.

[3] Y. Bu, J. Li, S. Chen, X. Tao, and J. Lu. Context consistency
management using ontology based model. In Proceedings
of the 2nd International Workshop on Pervasive Information
Management (PIM2006), in conjunction with the 2006 In-
ternational Conference on Extending Database Technology
(EDBT2006). Munich, Germany, pages 21–32, March 2006.

[4] L. Capra, W. Emmerich, and C. Mascolo. Carisma: Context-
aware reflective middleware system for mobile applications.
IEEE Transactions on Software Engineering, 29(10):929–
945, 2003.

[5] A. T. Chan and S.-N. Chuang. Mobipads: A reflective mid-
dleware for context-aware mobile computing. IEEE Trans-
actions on Software Engineering, 29:1072–1085, December
2003.

[6] G. Chen and D. Kotz. Policy-driven data dissemination for
context-aware applications. In Proceedings of 3rd IEEE In-
ternational Conference on Pervasive Computing and Com-
munications(PerCom2005), Kauai Island, HI, USA, pages
283–289, 2005.

[7] H. Chen, T. W. Finin, A. Joshi, and L. K. F. Intelligent agents
meet the semantic web in smart spaces. IEEE Internet Com-
puting, pages 69–79, November 2004.

[8] A. K. Dey and J. Mankoff. Designing mediation for context-
aware applications. ACM Transactions on Computer-Human
Interaction(TOCHI), 12(1):53–80, 2005.

[9] W. G. Griswold, R. S. Boyer, S. W. Brown, and T. M.
Truong. A component architecture for an extensible, highly
integrated context-aware computing infrastructure. In Pro-
ceedings of the 25th International Conference on Software
Engineering (ICSE2003), Portland, Oregon, USA, pages
363–373. IEEE Computer Society, 2003.

[10] T. Gu, H. K. Pung, and D. Q. Zhang. Towards an osgi-
based infrastructure for context-aware applications in smart
homes. IEEE Pervasive Computing, pages 66–74, December
2004.

[11] L. D. Harvel, L. Liu, G. D. Abowd, Y.-X. Lim, C. Scheibe,
and C. Chatham. Context cube: Flexible and effective
manipulation of sensed context data. In Proceedings of
the Second International Conference on Pervasive Comput-
ing(PERVASIVE 2004), Vienna, Austria, volume 3001 of
LNCS, pages 51–68. Springer, 2004.

[12] J. I. Hong and J. Landa. An infrastructure approach to
context-aware computing. Human-Computer Interaction
(HCI) Journal, 16, 2001.

[13] X. Jiang, N. Y. Chen, J. I. Hong, K. Wang, L. Takayama, and
J. A. Landay. Siren: Context-aware computing for firefight-
ing. In Proceedings of The Second International Conference
on Pervasive Computing(PERVASIVE2004), Vienna, Aus-
tria, pages 87–105, 2004.

[14] J. Li, Y. Bu, S. Chen, X. Tao, and J. Lu. Fol-
lowme: On research of pluggable infrastructure for context-
awareness. In Proceedings of the 20th International Confer-
ence on Advanced Information Networking and Applications
(AINA2006), volume 1, pages 199–204. IEEE Computer So-
ciety, 2006.

[15] J. Myllymaki and S. Edlund. Location aggregation from
multiple sources. In Proceedings of the Third International
Conference on Mobile Data Management (MDM 2002), Sin-
gapore, January 8-11, 2002, pages 131–138. IEEE Com-
puter Society, 2002.

[16] A. Ranganathan, J. Al-Muhtadi, and R. H. Campbell. Rea-
soning about uncertain contexts in pervasive computing en-
vironments. IEEE Pervasive Computing, 03(2):62–70, 2004.

[17] D. Salber, A. K. Dey, and G. D. Abowd. The context toolkit:
Aiding the development of context-enabled applications. In
Proceeding of the CHI 99 Conference on Human Factors in
Computing Systems: The CHI is the Limit (CHI99), Pitts-
burgh, PA, USA. ACM, 1999, pages 434–441, 1999.

[18] R. Want, A. Hopper, V. Falcao, and J. Gibbons. The active
badge location system. ACM Transactions on Information
Systems, 10(1):91–102, 1992.

[19] C. Xu and S.-C. Cheung. Inconsistency detection and res-
olution for context-aware middleware support. In Proceed-
ings of the Joint 10th European Software Engineering Con-
ference and 13th ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering (ESEC/FSE 2005), Lisbon,
Portugal, pages 336–345, September 5-9 2005.

[20] C. Xu, S.-C. Cheung, and W. K. Chan. Incremental consis-
tency checking for pervasive context. In 28th International
Conference on Software Engineering(ICSE 2006), Shang-
hai, China, May 20-28, 2006, pages 292–301, 2006.

Proceedings of the Sixth International Conference on Quality Software (QSIC'06)
0-7695-2718-3/06 $20.00 © 2006

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 17:07:00 UTC from IEEE Xplore. Restrictions apply.

