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Abstract—Hand gesture is becoming an increasingly popular means of interacting with consumer electronic devices, such as mobile

phones, tablets and laptops. In this paper, we present AudioGest, a device-free gesture recognition system that can accurately sense

the hand in-air movement around user’s devices. Compared to the state-of-the-art techniques, AudioGest is superior in using only one

pair of built-in speaker and microphone, without any extra hardware or infrastructure support and with no training, to achieve multi-

modal hand detection. Specifically, our system is not only able to accurately recognize various hand gestures, but also reliably estimate

the hand in-air duration, average moving speed and waving range. We achieve this by transforming the device into an active sonar

system that transmits inaudible audio signal and decodes the echoes of hand’s movement at its microphone. We address various

challenges including cleaning the noisy reflected sound signal, interpreting the echo spectrogram into hand gestures, decoding the

Doppler frequency shifts into the hand waving speed and range, as well as being robust to the environmental motion and signal drifting.

We extensively evaluate our system on three electronic devices under four real-world scenarios using overall 3,900 hand gestures

collected by five users for more than two weeks. Our results show that AudioGest detects six hand gestures with an accuracy up to

96 percent. By distinguishing the gesture attributions, it can provide more fine-grained control commands for various applications.

Index Terms—Hand gesture recognition, device-free, audio signal, sonar, segmentation, FFT normalization

Ç

1 INTRODUCTION

THE booming of consumer electronic devices has greatly
stimulated the research on novel human-computer

interactions. Hand gestures are a natural form of human
communication with devices that have aroused enormous
attentions from both industry and academia [1], [2].
Researchers and companies try to integrate the hand-ges-
ture recognition into our daily devices, including laptops [3],
tablets [4], and smartphones [5]. However, a crucial prereq-
uisite of these applications is that the device can accurately
and robustly detect gestures anytime (e.g., poor light condi-
tion at night), anywhere (e.g., in rural area without wireless
connection) in a device-free manner (e.g., no need to wear
extra devices/sensors) [4].

Over the last decade, many state-of-the-art hand gesture
recognition (HGR) systems have been developed using

various hardware platforms, such as computer vision [6],
inertial sensors [7], ultrasonic sensors [3], infrared sensors
(e.g., Leap Motion), and depth sensors [8]. While promising,
most of these systems, however, can only partially meet
those requirements [1]. For example, vision-based techni-
ques are sensitive to the light conditions (i.e., performance
greatly decreases in poor lighting conditions), and are usu-
ally regarded as privacy-intrusive. Although some commer-
cialized HGR systems (such as Kinect, Leap Motion)
achieve enormous success, their applications are still lim-
ited in computers and also need relatively high installation
and instrumentation overhead (around 50�250 USD). The
wearable sensor based approaches (e.g., attaching 3-axis
accelerometers or gyroscopes on hand) unavoidably require
the user to wear additional devices. Although those systems
can achieve fine-grained and multi-level hand motion detec-
tion in high precision, they may not be practical in real-
world applications (e.g., user may feel uncomfortable or for-
get to wear the devices).

Many WiFi-based solutions have recently been proposed
to overcome the above limitations. For example, WiGest [1]
exploits the influence of in-air hand movement on the wire-
less signal strength of the device from an access point to rec-
ognize the performed gestures. Melgarejo et al. [9] leverage a
directional antenna andWARP board to access various wire-
less features such as Received Signal Strength (RSS), signal
phase differences and CSI (channel state information), then
through matching the features from users’ gestures with a
standard set of pre-trained templates to recognize user’s
hand gestures. WiSee [10] exploits the doppler shift in nar-
row bands extracted from wide-band OFDM (orthogonal
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frequency-division multiplexing) transmissions to recognize
nine different human gestures. Although WiFi-based sys-
tems can work under any lighting conditions and do not
require dedicated hardware modification, those systems,
however, require the mobile device to be always connected
to a wireless transmitter/receiver, which is impractical for
some circumstances such as on a train/bus or traveling in a
rural area.

To tackle these challenges, we develop AudioGest, a
device-free system that can transform consumer device into
an active sonar system by utilizing the embedded micro-
phone and speaker of the mobile device. Compared to other
HGR systems, AudioGest exploits only one pair of built-in
speaker and microphone without adding any extra cost on
hardware. AudioGest does not require the model-training
to achieve multi-modal hand gesture detection. The system
not only can recognize hand gestures but also is able to
accurately estimate the hand in-air time, average waving
speed, and the hand moving range. We call such capability
as multi-modal hand motion detection.

Implementing such a practical system, however, requires
addressing a number of non-trivial challenges. First, the
ambient noise (e.g., human conversation, electronic noise)
dominates the recorded audio signals (see the experiments
in Section 4.1). It is hence difficult to perceive the weak
Doppler frequency shifts, let alone decoding the hand wav-
ing directions, speed, and range. Another challenge is the
signal drifting brought by the device diversity and time
elapse (see the experiments in Section 4.2). Since we emit a
high-frequency audio signal (> 18kHz, making it inaudible
to human), the Operational Amplifier (OA) in microphone
and speaker both experience attenuation, making the mag-
nitude of recorded echoes unstable. Moreover, different
microphones/speakers have various OA attenuations, also
resulting in signal drifting.

In AudioGest, we propose three main techniques to
tackle the aforementioned challenges. First, we introduce an
FFT-based normalization that substantially adjusts the mag-
nitude of FFT frequency bin in different timestamps to the
same level, removing the influence of OA attenuation in
high-frequency part (see details in Section 6.1). We then per-
form Squared Continuous Frame Subtraction, in which we first
subtract the spectrum of current audio frame by previous
frame and square the magnitudes of frequency bins, further
eliminating the nearby human motion influence (see details
in Section 6.2.1). Furthermore, we apply a Gaussian smooth-
ing filter [11] to transfer the discrete shifted frequency bins
into a contouring area. We decode it into the real-time hand
moving velocity curve based on the Doppler frequency shift
(see details in Section 6.4). Finally, according to the velocity
curve, we estimate hand gesture, moving speed, and wav-
ing range (see details in Section 6.5). In a nutshell, our main
contributions are summarized as follows:

� We introduce an approach that utilizes one pair of
COTS microphone and speaker to accurately detect
the hand movement and to estimate fine-grained
hand waving attributes. Our in-situ experiments
with five users over a period of two weeks demon-
strate the feasibility and accuracy of AudioGest in
various living environments.

� We propose a denoising pipeline that not only
abstracts the Doppler frequency shifts from weak
echo signals, but also deals with the signal drifting
issue caused by hardware diversity and time elapse.

� AudioGest is a training-free system that accurately
recognizes 6 hand gestures with an accuracy of 95.1
percent on average, precisely distinguish the magni-
tude differences of various hand speed and moving
range, providing up to 54 control commands by ran-
domly choosing two attributes.

2 RELATED WORK

Existing HGR systems can be categorized into two groups:
wearable sensor/device based gesture recognition and device-
free gesture recognition.

Wearable Devices based Gesture Recognition: Wearable
sensor/device based systems utilize various sensors (i.e., 3-
axis accelerometer [12], inertial sensor [13], or other smart
devices [14]) to sense the movement of hands or arms. For
example, some researchers infer the hand movement by
wearing a shaped magnet [15]. Humantenna [13] requires
users to wear a small Wireless Data Acquisition Unit
(WDAU) enabling the human body as an antenna for sens-
ing whole-body gestures.

Recently, Lu et al. [16] design awearable device to acquire
acceleration and SEMG (Surface ElectroMyoGraphic) signals
and adopt a DTW-based Bayesian classifier to recognize 19
predefined gestures. More lately, some researchers adopt
micro-radars to realize a series of gesture recognition appli-
cations. For instance, Li et al. propose Tongue-n-Cheek [17],
a contact-less tongue gestures recognition system by design-
ing a head-wearable device containing three 24G Hz micro-
radars. All these gesture recognition systems either require
users to wear a device/sensor (e.g., magnet ring, smart
bracket and SEMG sensors) or need to install extra hardware
such as WDAU, micro-radar or capacitive plates, which
might add extra cost.

Beside those conventional gesture systems, some other
research efforts focus on stroke-gesture recognition which
enables smart-phones to accurately recognize the hand
strokes on the screen. For example, Wobbrock et al. [18]
develop a uni-stroke gestures recognition system, called $1
Recognizer, which can recognize 16 pen-gestures on the
screen of a smartphone. Li et al. design Protractor [19], a
fast and lightweight single-stroke gesture recognition sys-
tem, which introduces a novel closed-form solution for cal-
culating the similarity of hand strokes. However, these
recognition systems are mainly for recognizing stroke-based
gestures by touching the screen, which is different from our
HGR system that focuses on in-air multi-modal hand ges-
ture recognition without screen-touching.

Device-free Gesture Recognition: This category can be fur-
ther classified into vision-based, environmental sensor
based, RF-based, and sonar-based approaches. Video-based
hand-gesture recognition systems often do the hand-region
segmentation using color and/or depth information, and
use the sequences of features for dynamic gestures to train
classifiers, such as Hidden Markov Models (HMM) [20],
conditional random fields [21], SVM [22], DNN [23]. How-
ever, vision-based techniques are usually privacy-invasive.
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They also require users within the LOS (line of sight) of
cameras, fail to work in dimmed environments, and incur
high computational cost. Some environmental sensor-based
hand recognition systems have emerged, such as Leap
Motion that explores multiple channels of reflected infrared
signals to identify hand gestures, and Kinect [24] that uses
depth sensor to enable in-air 3D skeleton tracking.

Recently, RF-based gesture recognition systems are very
popular due to their low-cost and being less intrusive [1].
WiVi [25], [26] uses ISAR technique to track the RF beam,
enabling a through-wall gesture recognition. RF-Care [27]
recognizes human gestures in a device-free manner based
on a passive RFID (Radio-frequency identification) array.
WiSee [10] can exploit the Doppler shift in narrow bands in
wide-band OFDM (Orthogonal Frequency Division Multi-
plexing) transmissions to recognize 9 different human ges-
tures. WiGest [1] explores the effect of the in-air hand
motion on the RSSI in WiFi to infer the hand moving direc-
tions and speeds. Melgarejo et al. [9] leverage the directional
antenna and short-range wireless propagation properties to
recognize 25 standard American Sign Language gestures.
AllSee [4] designs a very power-efficient hardware that
extracts gesture information from existing wireless signals.

SonarGest [28] is one of the pioneering audio-based hand
recognition systems, which uses three ultrasonic receivers
and one transmitter to recognize 8 hand gestures. However,
it needs to collect training data (potentially labour-intensive
and time-consuming) and requires extra sonic hardware.
SoundWave [3] is another HGR system exploiting audio
Doppler effect. It only utilizes the built-in speakers and
microphones in computers and requires no training. Sound-
Wave designs a threshold-based dynamic peak tracking
technique to effectively capture the Doppler shifts, and can
distinguish five different hand gestures.

Most recently, researchers are trying to transform COTS
speakers and microphones into a sonar system to detect
human breath [29], to track a finger movement [30], and to
sense user’s presence [31]. Most of these systems adopt simi-
lar ideas from RF-based approaches, either decoding the echo
of FMCW sound-wave to measure the human body, or
utilizing the OFDM to achieve real-time finger tracking,
or exploring the Doppler effect when human approaching or
away from themicrophone. However, such systems need two
microphones or require specialized design of sound-wave
that is power-intensive. Different to previous works, our
work only uses one speaker and one microphone by emitting
single-tone audio to achievemulti-modal gesture recognition.

3 PRELIMINARIES

3.1 Doppler Effect

Most of current HGR systems utilize labeled sensor read-
ings (including images) to train a classification model, and
then distinguish hand gestures, which is lack of physical
interpretation. It is also hard for those systems to detect
some context information regarding the hand gestures, such
as hand’s moving speed and in-air waving duration. Audio-
Gest system in this paper, conversely, is inspired by a prev-
alent law in the physical world namely the Doppler Effect.

Doppler effect illustrates and quantifies the wavelength
changes when wave energy like sound or radio waves travel

between two objects if one or both of them move. The
Doppler effect causes the received frequency of a source
to differ from the sent frequency if there is motion that is
increasing or decreasing the distance between the source
and the receiver. The general equation of measuring fre-
quency shift is as follows:

Df ¼ Dv

vwave
fsource; (1)

where Df ¼ freceiver � fsource , called Doppler Frequency Shift;
Dv ¼ vreceiver � vsource, is the velocity of the receiver relative
to the source: it is positive when the source and the receiver
are moving towards each other.

In our case, the wave source (i.e., speaker) and the
receiver (i.e., microphone) are both motionless but the
reflector (i.e., human hand) are moving. Hence, though
most of sound waves stay unchanged, a part of acoustic
waves that is reflected by a moving hand experiences a
Doppler frequency shift measured by Eqn. (2)

freceived ¼ 1þ vrad=vsound
1� vrad=vsound

fsound; (2)

where vrad means the radial speed of hand to microphone.
Such Doppler effect caused by the motion of a reflector is
widely adopted in modern radar systems or underwater
sonar systems. Motivated by this intuition, AudioGest aims
to sense such doppler frequency shift of weak reflected
acoustic waves by a moving hand. As shown in Fig. 1, when
a hand moves in different directions or at different speeds,
it will cause different Doppler frequency shifts (e.g., differ-
ent shapes, different intensities and durations). Our Audio-
Gest targets to decode such Doppler frequency shifts, to
recognize the gestures, and to estimate the moving speed
and duration of a hand in air.

3.2 COTS Speakers & Microphones

In this paper, we aim to turn the COTS speakers and micro-
phones into an active sonar system to detect fine-grained
hand gestures without annoying normal human audition.

Normally, human audible signal lies between 20
Hz�18 kHz. Assuming that maximum hand waving speed
is less than 4 m/s, it requires 0.47 kHz extra bandwidth
(under a sampling rate of 44.1 kHz, see Section 6 for details
on how to calculate the frequency bandwidths). As a result,
the speakers and microphones needed should be at least
with a capability of up to 18.47 kHz frequency-response.

Fig. 1. Illustration of doppler frequency shift.
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According to the NyquistShannon sampling theorem, to
accurately recover a 20 kHz signal, the microphones at least
support a 40 kHz sampling rate. Fortunately, mobile devices
are increasingly supporting high-definition audio capabili-
ties targeted at audiophiles. In particular, such advancement
includes high-frequency response range, microphone arrays
for stereo recording and noise cancellation, and 4� improve-
ment in audio sampling rates. Fig. 2 shows COTS micro-
phones and speakers of three typical mobile devices. They
all can support up to 22 kHz response frequency and typical
44.1 kHz or 48 kHz sampling rate, making it possible to
achieve fine-grained hand detection.

4 EMPIRICAL STUDIES AND CHALLENGES

4.1 Weak Echo Signal

As Fig. 1 shows, we transmit a 19 kHz sine acoustic wave
(for 3 s) from the right channel of the speaker in a laptop
(i.e., MacBook Air). Simultaneously, we record the ambient
sound signal using a microphone. At the same time, a par-
ticipant waves his hand in different directions and speeds.
Then we conduct an FFT to see the frequency shift of audio
signal caused by hand motion.

From Fig. 3, we can observe that the waving hand from
down to up results in an observable magnitude increase in
the lower frequency bins, but moving hand from left-to-
right/right-to-left is less obvious and the echo signal is weak
(i.e., the bins marked by the red circles, the left sides of 19 kHz
bin). Specifically, we find that the motion speed of the hand is
highly related with the location of such increased frequency
bins, i.e., moving hand in a slow speed causes a risen magni-
tude in 18,949.7 Hz bin, but with a fast speed, it leads to an
increase in 18,720.4 Hz bin. Also, moving hand from right to
left and left to right will arouse a frequency shift in both sides
but with opposite intensities (e.g., �53 dB and �62 dB for
right-to-left,�66 dB and�52 dB for left-to-right).

In summary, such observable frequency shifts highly
motivate our AudioGest system but also bring us a

challenging task—how to abstract suchweak, vulnerable fre-
quency-bin changes from wideband1 audio signals. More-
over, we intend to decode the fine-grained hand moving
speed, in-air duration and motion range beside the hand-
gesture recognition.With ambient noise (such as human con-
versation, electronic noise and environmental sound), it is
even harder for us to perceive these Doppler frequency
shifts.Wewill illustrate our solution in Section 6.2.

4.2 Audio Signal Drift

Another challenge is about the audio signal drifts, which
can be categorized into two types: i) temporal signal drift:
audio signals received in different time slots depict various
magnitudes for a same frequency bin; and ii) diverse-device
signal drift: audio signals record by different microphones
reveal various magnitudes for the same frequency bin.

Fig. 4 illustrates the experiment we conducted under a
static environment,2 where microphones from various types
of mobile devices record 1-hour reflected audio signals
while speakers of the same device continuously emit 19
kHz inaudible sinuous sound-waves. We divide the 1-hour
soundwave into 1,270 signal frames, and further apply
2,048-point FFT. We plot the strengths of frequency bin at
19 Hz over the time for three different mobile devices in
Fig. 4. We find that for different mobile devices, the fre-
quency magnitudes are diverse. Even for a same electronic
device, the signal strengths fluctuate over the time, and the
mobile phone exhibits a stronger signal drift. We also
observe that the recorded audio signals drop significantly
during first 10 minutes, which lies on two reasons. One rea-
son is that the OA is the main component of the speaker
and microphone, and emitting high-frequency sound-
waves (i.e., 19 kHZ audio signal) will let the OA work on
the upper-boundary of its capability, thus is unstable. The
other reason is that with the time evolving, continuous ring-
ing of the speaker generates a fair amount of heat that
increases the working temperature of the electronic compo-
nents, especially in the first 10 minutes when speakers just
start to work. It is well known that the electronic device is
very sensitive to temperature, which influences the perfor-
mance of the speaker. Such signal drifting will greatly hin-
der the system’s scalability, which means an HGR approach

Fig. 2. Speakers and microphones in COTS mobile devices.

Fig. 3. The Doppler frequency shifts caused by different hand gestures
and waving speeds.

Fig. 4. The sound signal drifts for different mobile devices at different
time slots.

1. Normally, a microphone can resolve 0�22.05 kHz sound signal
for a 44.1 kHz sampling rate.

2. Staticmeans no hand moving, same meaning applied in the rest of
the paper.
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that works well in one device may be incapable for other
devices or in different time-slots. We will deal with this
challenge in Section 6.1.

5 SYSTEM CONCEPTUAL OVERVIEW

This section will introduce the system architecture of
AudioGest, mainly including three conceptual layers—the
gesture detection layer, the gesture categorization layer, and the
application layer, as shown in Fig. 5.

The gesture detection layer is the key part of thewhole sys-
tem (the details shown in the right part of Fig. 5). This layer
outputs four kinds of gesture contexts—waving direction,
hand’s average speed and in-air duration, as well as waving range.
Specially, to detect such fine-grained gesture features, we first
eliminate the noise of received raw acoustic signal which con-
tains two steps - FFT normalization and background noise
subtraction (i.e., dealingwith theAudio Signal Drift challenge).
Then, we need to accurately identify the audio signal seg-
ments caused by hand’s motion, consisting of two parts—
Gaussian smoothing and segmenting the frequency shift area
(i.e., tackling the Weak Audio Signal challenge). In the next,
based on the magnitude changes and temporal locations of
segmented frequency bins, we interpret such Doppler fre-
quency shifts, thus estimate the hand waving directions.
Finally, we put things together, further quantify the hand in-
air durations, waving ranges and average speeds.

The gesture categorization layer categorizes different
basic gesture characteristics from previous layer into differ-
ent semantics. As Fig. 5 shows, we define overall six gesture
directions and three intensity levels for the moving speed,
in-air duration and waving range. Unlike previous systems
that only detect one or two hand gesture contexts [1], [4],
AudioGest provides three types of hand motion attributes
except the basic hand gestures. By randomly choosing two
motion attributes, AudioGest can theoretically provide up
to 6� 3� 3 ¼ 54 control commands, which we thus call
multi-modal hand gesture recognition. It is noted that Audio-
Gest can support a more fine-grained categorization (e.g.,
classify the in-air duration into four or five levels) which
leads to more control commands but degrade the detection
accuracy possibly. Vice-versa, we can use a course-grained
categorization to increase the estimation accuracy. For
example, for an e-book application (only needs 4

commands, next page, previous page, full screen, normal screen),
we can choose four types of hand waving directions
(regardless of waving speed, in-air duration and range) to
control these command buttons. This layer provides flexible
controlling choices to the application layer.

The application layer maps different gestures to control
commands for various applications. Typically, one action is
mapped to one gesture type and the developer can pick one
or more hand gestures to represent an action. For example,
for a media player application, a play action can be per-
formed with a Up-Down hand gesture while a volume up
action can be mapped to moving the hand up. The volume
changing rate can be controlled by the speed or range of the
hand waving.

6 REALIZING THE AUDIOGEST SYSTEM

In this section, we will illustrate how to achieve gesture
detection and address the associated challenges. Before that,
we first introduce how to design the transmitted audio sig-
nal. Human normal audible scope is 20Hz�18 kHz. To avoid
annoying human audibility, under no circumstance, should
AudioGest produce the sound signal below 18 kHz (to be
more safe, we make it 18.5 kHz). Assuming that the fastest
handmoving speed is 4 m=s [3], then the largest Doppler fre-
quency shift Dfdoppler ¼ ð2vhand=vsoundÞftransmit ¼ 470:6 Hz.
Hence, if the mobile device transmits a 19 kHz sound, then
the received audio signal is 18,529.4 Hz�19,470.6 Hz, satisfy-
ing the requirement.

6.1 FFT Normalization

Since our targeted sound frequency band is 18.5 kHz�19.5
kHz, intuitively, we may need a band-pass filter or high-
pass filter. However, the introduced FFT normalization is
based upon the frequency domain of the recorded audio
signal. We only perform analysis to the FFT bins within the
targeted narrow bandwidth. Such processing will naturally
filter out the influence of audible noise without adding an
extra signal filter.

In order to observe how the Doppler frequency shifts
along the time, we first adopt a 2,048-point hamming win-

dow to segment the filtered signal into audio frames,3 then

Fig. 5. Overview of the system for hand gesture detection.

3. Each frame represents 2;048=44;100 ¼ 0:0464 s audio signal.
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apply a 2,048-point FFT4 to each frame to get the sound
spectrogram, shown as the left graph in Fig. 6. We can see
the signal drift severely interferes the audio spectrogram,
displaying an unstable magnitude (e.g., the part marked by
the red ellipses).

To deal with this challenge, we collect 3,600 seconds 19
kHz sound signal using three different mobile devices and
then segment the signal into frames of 2,048-point length.
As Fig. 7 shows, we plot the spectrum of 78,260 audio
frames in the same graph. We can observe that, although
the magnitude of the frequency bins for different frames
show unpredictable signal excursions (e.g., the magnitude
in 19 kHz bin spans from �83 dB� �24 dB), the relative
magnitudes for every single sound frame are stable and
robust to the time-elapse and device diversity (i.e., each
spectrum shows a similar shape). Because we intend to per-
ceive the Doppler frequency shifts to infer hand gestures,
we are more concerned about how the peak frequency bin
changes over the time instead of absolute magnitude of
each frequency bin. Based on this intuition, we normalize
the magnitudes of frequency bins for each audio frame.
Shown in the right graph of Fig. 6, after a simple FFT-based
normalization, the audio spectrograms produced by waving
hand from Down to Up show a stable and interpretable
Doppler frequency shift and the signal drift is removed.

6.2 Audio Signal Segmentation

6.2.1 Squared Continuous Frame Subtraction

To perceive the magnitude changes of frequency bins, we
further conduct a Squared Continuous Frame Subtraction, in

which we first subtract the normalized spectrum of current
audio frame by previous frames and then square the magni-
tudes of frequency bins. The continuous subtraction
essentially eliminates the static frequency bins and save
the changed bins, shown as the left graph in Fig. 8 (i.e.,
remove the unchanged 19 kHz bin in Fig. 6 and highlight
the changed frequency bins). The square calculation will
further enhance the frequency-bin changes caused by
hand’s movement but weak the bins due to the noise (see
the right graph in Fig. 8, the noise marked by the red dot
oval is further eliminated). In the next, we need to accu-
rately segment the frequency shift area based on those
discrete frequency bins.

6.2.2 Gaussian Smoothing

Revisit the right graph of Fig. 8, the x-axis represents the
time-stamps in a 0.046 second resolution, the y-axis indi-
cates the frequency bins in Hz, the colors ranging from
blue to red quantify the changing magnitude of frequency
bins. Intuitively, we thereby can view such spectrogram
graph as an image, then what we are interested is to con-
nect those pixels and augment it into a zone. To do so,
we introduce a Gaussian Smoothing method to blur the
whole image. The Gaussian smoothing is a type of image-
blurring filter that uses a Gaussian function for calculat-
ing the transformation to apply to each pixel in an image.
Specifically, each pixel’s new value is set to a weighted
average of that pixel’s neighborhood. The original pixel’s
value receives the heaviest weight (having the highest
Gaussian value) and neighboring pixels receive smaller
weights as their distance to the original pixel increases.
For our two-dimensional image, the following function is
used for smoothing

Gðx; yÞ ¼ 1

2ps2
exp �x2 þ y2

2s2

� �
; (3)

where x is the distance from the origin in the horizontal
axis, y is the distance from the origin in the vertical axis,
and s is the standard deviation of the Gaussian distribu-
tion. Intuitively, this formula produces a surface whose
contours are concentric circles with a Gaussian distribution
from the center point, which preserves boundaries and
edges well. As the left graph in Fig. 9 shows, after Gauss-
ian smoothing, those peak pixels are well augmented into
a zone. Furthermore, we set a threshold v to conduct the
image binarization, i.e., set the pixel value to zero if its
value is less than v, set the pixel value to one otherwise.

Fig. 6. Left: Raw audio spectrogram; Right: Audio spectrogram after FFT
normalization.

Fig. 7. All spectrums of audio signal frames: Each line represents a
spectrum of each frame.

Fig. 8. Left: The spectrogram after continuous frame subtraction; Right:
The spectrogram after the square calculation.

4. With a 44.1 kHz sampling rate, the velocity detection resolution
vres ¼ ðfs=FFTpointsÞðvsound=fsource ¼ 0:39 m=s.
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As shown in the right graph of Fig. 9, we can successfully
segment the frequency zone that Doppler shift happens.
More de-noising and segmentation examples can be found
in Appendix A, which can be found on the Computer Soci-
ety Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TMC.2017.2762677.

6.3 Doppler Effect Interpretation

In this section, by using two typical hand-waving examples, we
will interpret howahandmovement generates the shifted audio
spectrogrambased on themotion law of the handmovement.

From Eqn. (2), since vsound � vrad, we have

Df ¼ 2fsoundvrad
vsound

; (4)

where Df ¼ freceived � fsound. As Fig. 10 shows, assuming
that hand moving path has uhand with the microphone and
the hand moving speed is vhand, we have

vrad ¼ vhand cos uhand: (5)

Furthermore, we can derive the relation based on Eqns. (4)
and (5) as follows:

Df ¼ 2fsoundvhand cos uhand
vsound

/ vhand cos uhand: (6)

We take two examples to interpret Eqn. (6), showing how
we link real-time hand moving gesture with the audio
spectrogram. As Fig. 10 depicts, when the hand moves
from Right to Left, uhand gradually increases (e.g., from p=6
to p=2 then to 2p=3), hence the cos uhand decreases5 to 0,

then to a negative value (e.g., from
ffiffiffi
3

p
=2 to 0, then to �1/

2). As a result, the frequency shifts from high-frequency
(i.e., higher than 19 kHz) to zero, then to low-frequency
(i.e., lower than 19 kHz). For the most complicated case
clockwise circle, the uhand first decreases from a certain
angle to zero, then gradually increases from zero to p,
and then decreases from p to the previous angle (e.g.,
uhand experiences p=3 ! 0 ! p=2 ! p ! p=3 the right
graph of Fig. 10). Thus, the audio frequency shifts
towards high-frequency at first, then goes back to 19 kHz,
further moves to the low-frequency, then it goes back to
zero, continuously moves to high-frequency.

6.4 Transforming Frequency Shift Area into Hand
Velocity

This section will introduce how to estimate the real-time
hand radial velocity based on the segmented frequency
shift area. It should be noted that the peak bin locates in
19 kHz under a no hand-waving environment (using
v0 ¼ 0 represents such case). Based on Eqn. (6), we can
model the frequency shift with real-time hand radial
velocity as

freceivedðtÞ � fsound ¼ 2fsound
vsound

vhandðtÞ cos uhandðtÞ

¼ 2

�sound
vradðtÞ:

(7)

Furthermore, we can derive hand radial velocity
vradðtÞ ¼ 0:5�soundðfshiftðtÞ � fsoundÞ. As the left graph of
Fig. 11 shows, at each time-stamp, the length of frequency
interval marked by red color represents ðfshift � fsoundÞ.
Therefore, we can estimate the real-time radial velocity of
hand as shown in the right top graph in Fig. 11. Essentially,
the sign of hand radial velocity indicates the hand moving
direction (i.e., hand gesture type), and the time interval of
non-zero velocity represents the hand in-air duration. Also,
we can measure the hand waving range based on the area
covered by the velocity curve.

6.5 Gesture Recognition

6.5.1 Recognizing the Waving Direction

Similarly, based on the direction changes of radial velocity
(i.e., whether its value is negative or positive, determined
by cos uhand), we hence can estimate the angle ranges of the
hand movement (i.e., in angle categories: ½0;p=2� or
½p=2;p�), as well as its corresponding time duration in each

Fig. 10. The hand moving path with its generated audio spectrogram.
Left: Hand moving from Right to Left; Right: Hand moving along clock-
wise circle.

Fig. 9. Left: The spectrogram after Gaussian Smooth filter; right: The
segmented area where Doppler frequency shift happens. Fig. 11. The illustration of transforming frequency shifts into hand veloc-

ity, in-air duration and waving range.

5. cos u is a monotony decrease function in ½0;p�.
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angle category. Based on a sequence of angle categories
and its durations, we can further detect different gesture
types. AudioGest adopts a rule-based method to infer the
types of hand gestures. These rules are originated from
the interpretation of Doppler Effect, which first exploit the
frequency shifting direction to decode cosuhand, then to fur-
ther estimate uhand, i.e., the hand waving direction towards
the microphone. Finally, based on the hand waving direc-
tion sequence uhandðtÞ, we estimate the hand waving direc-
tions. We summarize the gesture recognition rules as
shown in Table 1. The examples can be found in Appen-
dix-B, available in the online supplemental material. It is
noted that many hand-gestures recognition systems highly
depend on semi-supervised/supervised machine learning
methods [4]. Our AudioGest system does not need to
collect labeled training data to train a classifier.

6.5.2 Estimating Waving Duration and Speed

For estimating the hand in-air duration, we can directlymea-
sure the time interval that hand radial velocity is not equal to
zero (e.g., the time length marked by dot-line in Fig. 11).
Then the remaining problem is howwemeasure the average
hand moving speed. Please note that the velocity curve we
estimate is the hand radial speed (towards the microphone).
In this paper, we aim to first recognize different hand ges-
tures, then to be able to distinguish different hand speed, in-
air duration andmoving range to provide more control com-
mands for serving various applications. Hence, for a same
gesture type, we want to evaluate if the hand is in slow,
medium or fast speed (see Fig. 5).

Specifically, we first transfer the hand velocity (with
moving direction) into a speed (ignore the direction), the
transformation shows as the right-top graph to the right-
bottom graph in Fig. 11. We observe that, for the same ges-
ture with different speeds, uhand actually experiences a same
angle range (e.g., p=6 ! . . . ! p=2 ! . . . ! 2p=3: moving
from right to left as in the left graph of Fig. 10) but in differ-
ent timestamps. As a result, according to Eqn. (5), we can
infer that EðV 1

handÞ > EðV 2
handÞ , EðV 1

radÞ > EðV 2
radÞ, where

V 1
rad ¼ fv1radðt1Þ; v1radðt2Þ; . . .g represents the first sequence of

hand radial speed we estimated, V 2
rad indicates the second

sequence of hand radial speed.6 Hence we define a speed-
ratio to evaluate the relative magnitude for different hand
speeds. Assuming that the time interval between two adja-
cent timestamps is T (e.g., 0.0464 s using a 2,048-point

frame), the hand waving duration is twaving ¼ nT , then we
calculate the speed-ratio as

Sratio ¼ EðvradðtÞÞ
Eðv0radðtÞÞ

¼
1
n

Pn
i¼1 vradðiT Þ

Eðv0radðtÞÞ
; (8)

where Eð�Þ means expectation or mean value; v0radðtÞ rep-
resents a baseline of the hand moving speed set as
Eðv0radðtÞÞ ¼ 1 for simplicity. Hence, we have Sratio ¼
1
n

Pn
i¼1 vradðiT Þ, namely the mean value of our estimated

radial-speed. Intuitively, a bigger Sratio represents a faster

handmovement.

6.5.3 Estimating Waving Range

By inheriting the idea in evaluating the waving speed, we
also define range-ratio to measure the relative magnitude of
hand waving range

Rratio ¼ Rrad

R0
rad

¼
Pn

i¼1 TvradðiT Þ
R0

rad

¼ nTSratio

R0
rad

; (9)

where R0
rad represents the baseline of hand waving range

that we assume equals to 1. Hence we can compare the
hand waving ranges using Rratio ¼ nTSratio (i.e., the area of
the zone covered by red color in Fig. 11), where n and Sratio

is the estimated hand in-air duration and speed-ratio.

7 EVALUATION

We start with micro-benchmark experiments in a lab envi-
ronment and then conduct the in-situ tests in four real-
world places�Living Room, Bus, Cafe, and HDR Office. We
conduct the testing on three typical mobile devices: laptop
(MacBook Air laptop), tablet (GALAXY Tab-2 tablet), and
mobile phone (GALAXY S4 smartphone) without any hard-
ware modification. We name the three devices as D1, D2
and D3 for simplicity.

Hardware. For the MacBook Air laptop, we run AudioGest
on the computer using Audio System Toolbox.7 For the GAL-
AXY tablet and smartphone,we design theAudioGest system
in the Simulink8.6 that provides a library of Simulink blocks
for accessing the devices speaker andmicrophone.8

Testing Participants. Five participants join the experi-
ments. AudioGest decodes the hand gesture via analyzing
the reflected audio signal from hands. Intuitively, a bigger
hand generates a stronger echo signal. Thus we measure the
handsize of each participant (see Appendix D, available in
the online supplemental material). The five users are
marked as U1, U2, U3, U4 and U5.

Evaluation Metrics. We adopt four typical evaluation met-
rics to evaluate our methods: i)Detection Rate (or True Detec-
tion Rate): the ratio of correctly detected hand gesture to
overall testing hand gestures, measuring whether our system
can efficiently detect a hand gesture when a hand waving
happens; ii) False Detection Rate: the ratio of wrongly
detected hand gestures to overall detected hand gestures,
evaluating whether our system is too “sensitive” by

TABLE 1
Rules of Recognizing Hand Waving Directions

HandWaving
Direction

Rules of Hand
Motion Angle uhandðtÞ

Rules of Motion
Duration

Up to Down ½0;p=2� N/A
Down to Up ½p=2;p� N/A
Right to Left ½0;p=2� ! ½p=2;p� t½0;p=2� > t½p=2;p�
Left to Right ½0;p=2� ! ½p=2;p� t½0;p=2� < t½p=2;p�
Anticlockwise Circle ½p=2;p� ! ½0;p=2� ! ½p=2;p� N/A
Clockwise Circle ½0;p=2� ! ½p=2;p� ! ½0;p=2� N/A

6. Essentially, V 1
rad and V 2

rad represent two different moving speeds
for a same certain hand-gesture type.

7. mathworks.com/hardware-support/audio-ast.html
8. mathworks.com/hardware-support/android-programming-

simulink.html
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recognizing a non-handgesture as a hand gesture; iii)Gesture
Classification Accuracy: the rate that system can correctly
classify the gesture type among all the detectedhand gestures;
iv)Detection Accuracy: the rate that system can correctly clas-
sify the gesture types as well as the categories of the in-air
duration, average speed and waving range. We collect the
ground truth by using a smart-watch with a 3-axis MEMS
accelerometer (the details can be found in Appendix E, avail-
able in the online supplemental material).

7.1 Micro-Test Benchmark

We conduct some micro-benchmarks in a lab environment.
We ask the five participants to perform each hand gesture
30 times for each device, hence we test 2,700 hand gestures
by collecting around 4.5 hours audio data.

Gesture Recognition. Fig. 12 shows the gesture classifica-
tion accuracies of five users for three devices. AudioGest
achieves 94.15 percent gesture type recognition accuracy. In
particular, subject U5 can get average 95 percent accuracy,
but U1 achieves 90.15 percent mean accuracy using the tab-
let. From its confusion matrix (shown in Fig. 12), we can
observe that most errors happen in distinguishing Right-
Left/Front-Behind and Left-Right/Behind-Front. Detecting the
hand gestures is done by decoding the hand-microphone
angle sequence and its corresponding duration. For device
D1 (i.e., MacBook Air laptop), its microphone locates in the
left side, which results in different duration time of two
angle categories for Right-Left and Left-Right waving. But
we cannot distinguish hand waving from Front-Behind or
Behind-Front due to the block of the computer screen. How-
ever, for D2 and D3 (i.e., Galaxy tablet and smartphone),
their microphones locate in the bottom of the device, which
substantially enable Right-Left and Left-Right hand move-
ment generating the same angle category sequence (i.e.,
½0;p=2� ! ½p=2;p�) and roughly same durations. Hence we

cannot distinguish such two directions, but we can recog-
nize the Front-Behind or Behind-Front. Due to the same rea-
son, for recognizing Right-Left/Front-Behind and Left-Right/
Behind-Front, we can only depend on the difference of angle
durations, making it less reliable as other directions. More-
over, to better illustrate the idea of multi-modal hand detec-
tion, we depict several real-world examples in Appendix C,
available in the online supplemental material.

Waving Attributes Estimation. Figs. 13 and 14 show the
results of estimation errors of the hand in-air duration, mov-
ing speed-ratio and range-ratio respectively. The bar charts
indicate both average error and its standard derivation.
Specifically, AudioGest can estimate the three gesture con-
text information with average 0.255 s in-air duration, 0.242
speed-ratio and 0.2138 range-ratio error respectively. It is
worth to mention that, among 5 subjects, U5 achieves a bet-
ter result in both gesture classification and context estima-
tion, which mainly lie in the fact that U5 has a slightly
bigger hand, which enhances the audio signal reflection.

Parameters Chosen. Figs. 14 and 15 illustrate how three key
parameters influence the performance of our system. The
parameter H-size specifies the number of rows and columns
used in the gaussian filter (i.e., Hsize ¼ ½x; y� in Eqn. (3)). We
test overall 11 different H-size when ½x ¼ 3; y ¼ 2� performs
better. Parameter s indicates the standard deviation in
Gaussian function, which achieves the best accuracy at
s ¼ 1:5. The last parameter Gesture-Signal Threshold deter-
mines whether a shift happens in a frequency bin, which
plays an important role in AudioGest. We can see that the
higher the value is, the more true detection and false detec-
tion rates decrease. Hence we choose Threshold = 0.16 to bal-
ance such two detection rates.

As Table 2 shows, we also measure the FFT resolution,
calculation time, speed, and in-air time detection resolu-
tions by using different signal frame sizes. We find that for
a smaller frame size, we need to calculate more FFTs within
a second and get a smaller frequency bin, which in turn

Fig. 12. (a) The average gesture classification accuracy for different
mobile devices and users. (b) The confusion matrix for the gesture
classification.

Fig. 13. (a) The hand in-air duration estimation error for different mobile
devices and users. (b) The average speed-ratio estimation error of hand
moving for mobile devices and users.

Fig. 14. (a) Theaverage range-ratio estimation error of handmoving for dif-
ferent users. (b) The gesture detection accuracy with parameter H-size.

Fig. 15. (a) The gesture detection accuracy with parameter s. (b) The
gesture detection accuracy with gesture signal threshold.
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produces a finer speed resolution but a coarser time resolu-
tion. To balance the speed and time resolution as well as to
maintain a reasonable calculation time, we choose 2,048 as
the frame size and as the FFT points. Note that the speed
resolution is also equivalent to the lower-boundary of hand
speed that we can detect (e.g., if the hand speed is extremely
slow such as less than 0:389 m=s, our HGR system cannot
detect it). However, our system focuses on multi-modal
hand gesture recognition, in which we categorize the hand
speed into three levels: slow, medium, and fast (see Fig. 5).
A speed resolution of 0.389 m/s is accurate enough to serve
the purpose of this system because this resolution has a
good trade-off among the calculation time, speed resolution
and time resolution, especially it can filter out some false
alarms caused by finger movements (those movements usu-
ally produce gentle frequency shifts which can be captured
by a sensitive speed resolution).

Please note that we can also use a 4,096-point frame size
that can reach 0:194 m=s speed resolution for a more fine-
grained hand gesture detection (e.g., we can categorize the
hand-speed into 4 or more ranges so that HGR system can
provide more control commands). The choice of frame size
mainly depends on the real-world applications (e.g.,
whether it requires a smaller delay, more fine-grained speed
and in-air time detection) and the calculation capacities. The
decision also relates to the sampling rate that a mobile
device can support. For example, if the hardware supports
a higher sampling rate (e.g., 192 kHz in SUMSUANG Gal-
axy S6 smart-phone), we can choose 1,024-point or even
512-point frame size to achieve a better or comparable speed
resolution as 2,048-point size in 44.1 kHz sampling rate but
with a better time resolution. In AudioGest, for generality,
we set its sampling rate as 44.1 kHz. With this sampling
rate, we choose 2,048-point frame size, which is acceptable
for multi-module hand-gesture detection.

System Robustness. We evaluate the robustness of Audio-
Gest in four ways:

� Orientation Angle: as Fig. 16 shows, AudioGest per-
forms well when the orientation angle is less than

p=4. Under a p=2 circumstance, its accuracy greatly
decreases to around 60 percent, which we will leave
for further work.

� Hand-Device Distance: we test the system when the
hand waves in different categories of hand-device dis-
tance as shown in Fig. 21. AudioGest achieves satisfied
accuracy when the distance is below 10 cm (which is
the typical using scenario for most users). We also
observe its performance decreases when the hand
waves in a far distance from the device (the COTS
microphone cannot capture the echo-sound due to its
capability limitation).

� Environmental Motion: as Fig. 17 shows, we test our
system under five environmental motion circum-
stances—Quiet (no audible noise and human
motion), Noisy (playing music loudly), Dynamic1
(with human walking back and forth in around 4
meters away the device), Dynamic2 (with human
walking back and forth in around 2 meters away)
and Dynamic3 (with human walking back and forth
nearby, around 0.5 meter). We can see AudioGest
works well under first three cases (especially, it is
nearly unaffected by human noise).

� Time Elapse: we also test its performance under differ-
ent elapsed time periods—6 hours, 1 day, 3 days, 1
week, and 10 days, without tuning parameters. We
conduct a comparison experiment to study the perfor-
mance of the system adopting and not adopting the
proposed signal denoising method (i.e., FFT normali-
zation). As the results shown in Fig. 18, by applying
FFT normalization, AudioGest achieves about 35 to 70
percent performance increase when dealing with the
signal drifting challenge, which demonstrates the
effectiveness of our denoising approach.

7.2 In-Situ Experiments

Figs. 19 and 20 show the system performance in some typi-
cal daily-living environments. Two subjects (U1 and U2)
participate in the test. We ask the subjects to use three

TABLE 2
Calculation Time and Resolution versus Frame Sizes

Frame Size Resolution
of FFT (Hz)

Calculation
Time (s)

Resolution of
Speed (m/s)

In-Air Time
Resolution (s)

256 172.27 2.767 3.110 0.0058
1,024 43.07 0.733 0.777 0.0232
2,048 21.53 0.396 0.389 0.0464
4,096 10.77 0.226 0.194 0.0929
8,192 5.38 0.134 0.097 0.1858

Fig. 16. The device orientation angle with its detection accuracy.

Fig. 17. The device-hand distance with its detection accuracy.

Fig. 18. (a) The average detection accuracy for different scenarios.
(b) The detection accracy with and without denoising.

2096 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 17, NO. 9, SEPTEMBER 2018

Authorized licensed use limited to: RMIT University Library. Downloaded on January 09,2021 at 15:20:52 UTC from IEEE Xplore.  Restrictions apply. 



mobile devices in a living room (5 m� 3:5 m), on a bus, in a
Cafe, and in an HDR (Higher Degree by Research) space
(around 15 m� 10 m, contains > 20 students). We collect
1,200 hand gestures (Living Room: 360, Bus: 240, Cafe: 240,
HRD Space: 360). The in-situ testing spans around two
weeks upon participants’ time availability. Under the living
room and HDR office, AudioGest performs similarly to our
micro-benchmark since such testing scenarios are usually
with less environmental motion inferences. When coming
to the bus (the most dynamic environment but also where
people usually use the mobile devices), the performance is
degraded to an average 89.67 percent accuracy, and the seg-
mentation (i.e., hand in-air duration) and speed-ratio accu-
racy also decrease, which is mainly caused by the narrow
space and unpredictable motion influences on the bus.

7.3 Comparing with the State-of-the-Art

This section compares our AudioGest with seven state-of-the-
art HGR systems in terms of detectionmechanism, hardware,
testing environment, system training requirement and detec-
tion capacity/resolution as well as the accuracy, shown in
Table 3. Briefly, except for SoundWave [3], other HGR sys-
tems mainly exploit Radio Frequency (RF) signals to recognize
handmotions. Those RF signals are either fromCOTS ormod-
ified WiFi and GSM infrastructures (e.g., WiGest [1],
WiSee [10] andSideSwipe [32]), or radars (e.g., FineGesture [9]
and RadarGesture [33]), or generated by specialized hard-
wares (e.g., AllSee [4]). While bearing many advantages, they
are either built upon extra hardwares or available WIFI sig-
nals, which may be impractical under some circumstances
(see discussions in Section 1).

Unlike above HGR systems, SoundWave is one pioneer-
ing work to exploit the Doppler effect of sound wave
reflected by hands, sharing the same hand gesture

recognition mechanism as AudioGest. It mainly adopts a
percentage-threshold based dynamic peak tracking method
to capture the frequency shifts. Different from SoundWave,
our system aims to quantitatively measure the hand waving
speed, rang and in-air time (see Fig. 5). More importantly,
we provide a mathematical model for interpreting Doppler
Effect into hand motion (see Sections 3.1 and 6.4) by linking
the equation of Doppler Frequency shift and Newton’s law
of motion of hand gestures.

We compare our work with SoundWave and other HGR
systems in a high-level of view, shown in Table 3. Accu-
rately detecting the frequency shifts is the foundation of
HGR systems based on Doppler Effect. Without a good per-
formance in capturing frequency shifts, both our system
and Soundwave cannot achieve an accurate hand gesture
recognition. To this end, we compare AudioGest with
SoundWave by two experimental cases in terms of the per-
formance of detecting frequency shifts. Fig. 21 depicts how
SoundWave detects the bandwidth of shifted frequency.
When four or more FFT frames (i.e., 2,048-point segmenta-
tion) in succession are detected with frequency shifts,
SoundWave will consider a hand motion is happened.

Experimental Case 1. Figs. 22b, 22c, and 22d compare the
detection results of SoundWave and AudioGest for a Slow-
Speed clockwise circling case. In Fig. 22a, we observe that
the hand is currently moving away from the microphone at
t ¼ 2:38 s, and towards the microphone at t ¼ 3:3133 s.
However, SoundWave cannot accurately detect frequency
shifts in such two FFT frames (see Figs. 22b and 22c) since
both the second peaks are less than a threshold 30 percent
and the lower point is below 10 percent, thus leading the
recognition of “no motion”. Fig. 22d shows the result of our
method, in which we first utilize Squared Continuous Frame
Subtraction and Gaussian Smoothing to get the shifted fre-
quency area and then transfer it into a hand radial speed

Fig. 19. (a) The average gesture classification accuracy for in-situ test.
(b) The average estimation error of hand in-air duration for in-situ test.

Fig. 20. The average speed-ratio estimation error of hand movement for
in-situ test.

TABLE 3
Comparison of Typical Device-Free Localization Systems

Comparison Items WiGest [1] FineGesture [9] AllSee [4] SoundWave [3] SideSwipe [32] RadarGesture [33] WiSee [10] AudioGest

Measured Signal RSSI RSS, Phase, CSI RF signal Audio GSM signal FMCW Radar OFDM radio Audio

Need extra hardware? No Yes Yes No Yes Yes Yes No

Test in dynamic

environment? (e.g., bus)

No Yes No No No No No Yes

Need training? No Yes (kNN) No No Yes (SVM) No No No

Sense gesture contexts?

(e.g., speed, range)

Yes

(speed)

No No No No Yes

(speed, range)

No Yes (relative

speed & range)

Accuracy 96% 92% 97% 94.5% 87.2% N/A

(hand tracking)

94% 95.1%

Gesture Resolution 36 25 8 5 14 N/A

(hand tracking)

9 54 (randomly choose

two attributes)
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curve. Both frequency shifts as well as hand speed in these
two frames are successfully detected and estimated.

Experimental Case 2. Figs. 23b, 23c, and 23d illustrate another
detection results for a Fast-Speed clockwise circling case. Simi-
larly, although SoundWave can successfully detect the hap-
pening of hand motion, it still fails to accurately estimate
shifted bandwidth (missing the third peak), which results in
incorrect hand speed estimation. Actually, those two FFT
frames represent two peak speeds during the hand waving.
Fig. 23d shows our result, which correctly quantifies the band-
width of the shifted frequency and captures the peak speeds.

To summarize, from the perspective of technique and
methodology, percentage threshold-based dynamic peak
tracking in SoundWave is a promising and efficient method

that can deal with the hardware diversities and signal drifts.
The FFT Normalization in our paper actually serves the
same purpose. However the rest techniques introduced by
our system including Squared Continuous Subtraction, Gauss-
ian Smoothing and Hand Radial Speed Transformation make
AudioGest free of percentage threshold chosen and more
accurate in quantifying shift frequency bandwidth.

8 DISCUSSION

This section will discuss the limitations of our work that are
left for the future work.

Separation of the Speaker and Microphone: In AudioGest, we
focus on multi-modal hand gesture recognition with only
one pair of microphone and speaker. Our system requires
that the microphone and speaker are placed in different pla-
ces. The rationale of speaker-microphone separation lies on
i) reducing the self-inference from the speaker; ii) increasing
the performance of microphone; and iii) limited deployment
space in a mobile device.

Gesture Trajectory: By making sensing of Doppler Effect,
AudioGest can recognize six types of pre-defined basic ges-
tures regardless of other hand motion attributes. The start-
ing and stopping points of those gestures are quite flexible.
However, it is possible that two different gestures generate
a same spectrogram, in which we cannot distinguish these
two gestures. This is the reason that AudioGest needs to
pre-define the hand moving trajectories.

Noise Disturbance to Human: Considering normal human
hearing scope of 55�18 kHz, AudioGest emits a 19 kHz sin-
gle tone sound-wave. At the same time, to largely reduce

Fig. 21. SoundWave detects the frequency shift based on a percentage-
threshold method.

Fig. 22. Experimental case 1: A slow-speed clockwise hand circling. (a) The echo signal’s spectrogram after FFT normalization. (b) The detected
bandwidth of frequency shift at t ¼ 2:38 s (i.e., FFT Frame 51) by SoundWave. (c) The detected bandwidth at t ¼ 3:3133 s (i.e., FFT Frame 71) by
SoundWave. (d) The real-time hand radial velocity detected by AudioGest.

Fig. 23. Experimental case 2: A fast-speed clockwise hand circling. (a) The echo signal’s spectrogram after FFT normalization. (b) The detected
bandwidth of frequency shift at frame t ¼ 1:5867 s by SoundWave. (c) The detected bandwidth at frame t ¼ 1:96 s by SoundWave. (d) The real-time
hand radial velocity calculated by AudioGest.
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the possible disturbance brought by the sound, we adjust
the sound volume into a very low intensity since our system
aims to detect hand movements around the vicinity of a
mobile device. A 13-year-old young female participates in
our experiments and she does not feel any uncomfortable
while using our HGR system.

Limited Hand Gesture Numbers: AudioGest can provide up
to 54 control commands for upper-layer applications by co-
recognizing four types of hand motion attributes. It, how-
ever, can only distinguish overall 6 hand gestures accu-
rately. In the future, we will investigate this from two ways:
i) mining other features from the spectrogram of reflected
signals to facilitate our physical model in order to recognize
more hand gestures; and ii) adopting two or more micro-
phones to enable a real-time hand motion tracking.

Dealing with Environment Motion: As the system robust-
ness evaluation shows, AudioGest’s performance decreases
for some challenging scenarios such as the device orientation
greatly changes (> p=4) and human motions at the vicinity
of device (< 0:5 m). However, such issues can be addressed
by two possible ways: i) exploring the built-in 3-axis acceler-
ometer to detect the orientation of the device, then real-time
updating parameters and hand-gesture recognition rules
accordingly; ii) borrowing the idea from radar to transmit
MFSK (multiple frequency shift keying) audio signal,
enablingmultiple-target range sensing, hence distinguishing
the nearby environmental motion and handmovement.

9 CONCLUSION

To summarize, this paper has shown how one single pair
of microphone and speaker can achieve multi-modal
hand motion detection. AudioGest thoroughly exploits
the Doppler frequency shift from hand movement and
accurately interprets the spectrogram of echo signals into
the multi-modal hand motion attributes. Our system only
uses a single pair of COTS speaker & microphone without
any extra hardware, and it is capable of accurately recov-
ering hand’s real-time radial velocity, thus decodes the
hand moving direction, waving speed, and in-air range.
The real-world experiments demonstrate the feasibility
and effectiveness of our system, which marks an impor-
tant step towards enabling accurate and ubiquitous ges-
ture recognition.
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