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Abstract—Hand gesture is becoming an increasingly popular means of interacting with consumer electronic devices, such as mobile
phones, tablets and laptops. In this paper, we present AudioGest, a device-free gesture recognition system that can accurately sense
the hand in-air movement around user’s devices. Compared to the state-of-the-art techniques, AudioGest is superior in using only one
pair of built-in speaker and microphone, without any extra hardware or infrastructure support and with no training, to achieve muilti-
modal hand detection. Specifically, our system is not only able to accurately recognize various hand gestures, but also reliably estimate
the hand in-air duration, average moving speed and waving range. We achieve this by transforming the device into an active sonar
system that transmits inaudible audio signal and decodes the echoes of hand’s movement at its microphone. We address various
challenges including cleaning the noisy reflected sound signal, interpreting the echo spectrogram into hand gestures, decoding the
Doppler frequency shifts into the hand waving speed and range, as well as being robust to the environmental motion and signal drifting.
We extensively evaluate our system on three electronic devices under four real-world scenarios using overall 3,900 hand gestures
collected by five users for more than two weeks. Our results show that AudioGest detects six hand gestures with an accuracy up to

96 percent. By distinguishing the gesture attributions, it can provide more fine-grained control commands for various applications.

Index Terms—Hand gesture recognition, device-free, audio signal, sonar, segmentation, FFT normalization

1 INTRODUCTION

THE booming of consumer electronic devices has greatly
stimulated the research on novel human-computer
interactions. Hand gestures are a natural form of human
communication with devices that have aroused enormous
attentions from both industry and academia [1], [2].
Researchers and companies try to integrate the hand-ges-
ture recognition into our daily devices, including laptops [3],
tablets [4], and smartphones [5]. However, a crucial prereq-
uisite of these applications is that the device can accurately
and robustly detect gestures anytime (e.g., poor light condi-
tion at night), anywhere (e.g., in rural area without wireless
connection) in a device-free manner (e.g., no need to wear
extra devices/sensors) [4].

Over the last decade, many state-of-the-art hand gesture
recognition (HGR) systems have been developed using
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various hardware platforms, such as computer vision [6],
inertial sensors [7], ultrasonic sensors [3], infrared sensors
(e.g., Leap Motion), and depth sensors [8]. While promising,
most of these systems, however, can only partially meet
those requirements [1]. For example, vision-based techni-
ques are sensitive to the light conditions (i.e., performance
greatly decreases in poor lighting conditions), and are usu-
ally regarded as privacy-intrusive. Although some commer-
cialized HGR systems (such as Kinect, Leap Motion)
achieve enormous success, their applications are still lim-
ited in computers and also need relatively high installation
and instrumentation overhead (around 50~250 USD). The
wearable sensor based approaches (e.g., attaching 3-axis
accelerometers or gyroscopes on hand) unavoidably require
the user to wear additional devices. Although those systems
can achieve fine-grained and multi-level hand motion detec-
tion in high precision, they may not be practical in real-
world applications (e.g., user may feel uncomfortable or for-
get to wear the devices).

Many WiFi-based solutions have recently been proposed
to overcome the above limitations. For example, WiGest [1]
exploits the influence of in-air hand movement on the wire-
less signal strength of the device from an access point to rec-
ognize the performed gestures. Melgarejo et al. [9] leverage a
directional antenna and WARP board to access various wire-
less features such as Received Signal Strength (RSS), signal
phase differences and CSI (channel state information), then
through matching the features from users’ gestures with a
standard set of pre-trained templates to recognize user’s
hand gestures. WiSee [10] exploits the doppler shift in nar-
row bands extracted from wide-band OFDM (orthogonal
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frequency-division multiplexing) transmissions to recognize
nine different human gestures. Although WiFi-based sys-
tems can work under any lighting conditions and do not
require dedicated hardware modification, those systems,
however, require the mobile device to be always connected
to a wireless transmitter/receiver, which is impractical for
some circumstances such as on a train/bus or traveling in a
rural area.

To tackle these challenges, we develop AudioGest, a
device-free system that can transform consumer device into
an active sonar system by utilizing the embedded micro-
phone and speaker of the mobile device. Compared to other
HGR systems, AudioGest exploits only one pair of built-in
speaker and microphone without adding any extra cost on
hardware. AudioGest does not require the model-training
to achieve multi-modal hand gesture detection. The system
not only can recognize hand gestures but also is able to
accurately estimate the hand in-air time, average waving
speed, and the hand moving range. We call such capability
as multi-modal hand motion detection.

Implementing such a practical system, however, requires
addressing a number of non-trivial challenges. First, the
ambient noise (e.g., human conversation, electronic noise)
dominates the recorded audio signals (see the experiments
in Section 4.1). It is hence difficult to perceive the weak
Doppler frequency shifts, let alone decoding the hand wav-
ing directions, speed, and range. Another challenge is the
signal drifting brought by the device diversity and time
elapse (see the experiments in Section 4.2). Since we emit a
high-frequency audio signal (> 18kHz, making it inaudible
to human), the Operational Amplifier (OA) in microphone
and speaker both experience attenuation, making the mag-
nitude of recorded echoes unstable. Moreover, different
microphones/speakers have various OA attenuations, also
resulting in signal drifting.

In AudioGest, we propose three main techniques to
tackle the aforementioned challenges. First, we introduce an
FFT-based normalization that substantially adjusts the mag-
nitude of FFT frequency bin in different timestamps to the
same level, removing the influence of OA attenuation in
high-frequency part (see details in Section 6.1). We then per-
form Squared Continuous Frame Subtraction, in which we first
subtract the spectrum of current audio frame by previous
frame and square the magnitudes of frequency bins, further
eliminating the nearby human motion influence (see details
in Section 6.2.1). Furthermore, we apply a Gaussian smooth-
ing filter [11] to transfer the discrete shifted frequency bins
into a contouring area. We decode it into the real-time hand
moving velocity curve based on the Doppler frequency shift
(see details in Section 6.4). Finally, according to the velocity
curve, we estimate hand gesture, moving speed, and wav-
ing range (see details in Section 6.5). In a nutshell, our main
contributions are summarized as follows:

e We introduce an approach that utilizes one pair of
COTS microphone and speaker to accurately detect
the hand movement and to estimate fine-grained
hand waving attributes. Our in-situ experiments
with five users over a period of two weeks demon-
strate the feasibility and accuracy of AudioGest in
various living environments.
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e We propose a denoising pipeline that not only
abstracts the Doppler frequency shifts from weak
echo signals, but also deals with the signal drifting
issue caused by hardware diversity and time elapse.

e AudioGest is a training-free system that accurately
recognizes 6 hand gestures with an accuracy of 95.1
percent on average, precisely distinguish the magni-
tude differences of various hand speed and moving
range, providing up to 54 control commands by ran-
domly choosing two attributes.

2 RELATED WORK

Existing HGR systems can be categorized into two groups:
wearable sensor/device based gesture recognition and device-
free gesture recognition.

Wearable Devices based Gesture Recognition: Wearable
sensor/device based systems utilize various sensors (i.e., 3-
axis accelerometer [12], inertial sensor [13], or other smart
devices [14]) to sense the movement of hands or arms. For
example, some researchers infer the hand movement by
wearing a shaped magnet [15]. Humantenna [13] requires
users to wear a small Wireless Data Acquisition Unit
(WDAU) enabling the human body as an antenna for sens-
ing whole-body gestures.

Recently, Lu et al. [16] design a wearable device to acquire
acceleration and SEMG (Surface ElectroMyoGraphic) signals
and adopt a DTW-based Bayesian classifier to recognize 19
predefined gestures. More lately, some researchers adopt
micro-radars to realize a series of gesture recognition appli-
cations. For instance, Li et al. propose Tongue-n-Cheek [17],
a contact-less tongue gestures recognition system by design-
ing a head-wearable device containing three 24G Hz micro-
radars. All these gesture recognition systems either require
users to wear a device/sensor (e.g., magnet ring, smart
bracket and SEMG sensors) or need to install extra hardware
such as WDAU, micro-radar or capacitive plates, which
might add extra cost.

Beside those conventional gesture systems, some other
research efforts focus on stroke-gesture recognition which
enables smart-phones to accurately recognize the hand
strokes on the screen. For example, Wobbrock et al. [18]
develop a uni-stroke gestures recognition system, called $1
Recognizer, which can recognize 16 pen-gestures on the
screen of a smartphone. Li et al. design Protractor [19], a
fast and lightweight single-stroke gesture recognition sys-
tem, which introduces a novel closed-form solution for cal-
culating the similarity of hand strokes. However, these
recognition systems are mainly for recognizing stroke-based
gestures by touching the screen, which is different from our
HGR system that focuses on in-air multi-modal hand ges-
ture recognition without screen-touching.

Device-free Gesture Recognition: This category can be fur-
ther classified into vision-based, environmental sensor
based, RF-based, and sonar-based approaches. Video-based
hand-gesture recognition systems often do the hand-region
segmentation using color and/or depth information, and
use the sequences of features for dynamic gestures to train
classifiers, such as Hidden Markov Models (HMM) [20],
conditional random fields [21], SVM [22], DNN [23]. How-
ever, vision-based techniques are usually privacy-invasive.
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They also require users within the LOS (line of sight) of
cameras, fail to work in dimmed environments, and incur
high computational cost. Some environmental sensor-based
hand recognition systems have emerged, such as Leap
Motion that explores multiple channels of reflected infrared
signals to identify hand gestures, and Kinect [24] that uses
depth sensor to enable in-air 3D skeleton tracking.

Recently, RF-based gesture recognition systems are very
popular due to their low-cost and being less intrusive [1].
WiVi [25], [26] uses ISAR technique to track the RF beam,
enabling a through-wall gesture recognition. RF-Care [27]
recognizes human gestures in a device-free manner based
on a passive RFID (Radio-frequency identification) array.
WiSee [10] can exploit the Doppler shift in narrow bands in
wide-band OFDM (Orthogonal Frequency Division Multi-
plexing) transmissions to recognize 9 different human ges-
tures. WiGest [1] explores the effect of the in-air hand
motion on the RSSI in WiFi to infer the hand moving direc-
tions and speeds. Melgarejo et al. [9] leverage the directional
antenna and short-range wireless propagation properties to
recognize 25 standard American Sign Language gestures.
AllSee [4] designs a very power-efficient hardware that
extracts gesture information from existing wireless signals.

SonarGest [28] is one of the pioneering audio-based hand
recognition systems, which uses three ultrasonic receivers
and one transmitter to recognize 8 hand gestures. However,
it needs to collect training data (potentially labour-intensive
and time-consuming) and requires extra sonic hardware.
SoundWave [3] is another HGR system exploiting audio
Doppler effect. It only utilizes the built-in speakers and
microphones in computers and requires no training. Sound-
Wave designs a threshold-based dynamic peak tracking
technique to effectively capture the Doppler shifts, and can
distinguish five different hand gestures.

Most recently, researchers are trying to transform COTS
speakers and microphones into a sonar system to detect
human breath [29], to track a finger movement [30], and to
sense user’s presence [31]. Most of these systems adopt simi-
lar ideas from RF-based approaches, either decoding the echo
of FMCW sound-wave to measure the human body, or
utilizing the OFDM to achieve real-time finger tracking,
or exploring the Doppler effect when human approaching or
away from the microphone. However, such systems need two
microphones or require specialized design of sound-wave
that is power-intensive. Different to previous works, our
work only uses one speaker and one microphone by emitting
single-tone audio to achieve multi-modal gesture recognition.

3 PRELIMINARIES

3.1 Doppler Effect
Most of current HGR systems utilize labeled sensor read-
ings (including images) to train a classification model, and
then distinguish hand gestures, which is lack of physical
interpretation. It is also hard for those systems to detect
some context information regarding the hand gestures, such
as hand’s moving speed and in-air waving duration. Audio-
Gest system in this paper, conversely, is inspired by a prev-
alent law in the physical world namely the Doppler Effect.
Doppler effect illustrates and quantifies the wavelength
changes when wave energy like sound or radio waves travel
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Fig. 1. lllustration of doppler frequency shift.

between two objects if one or both of them move. The
Doppler effect causes the received frequency of a source
to differ from the sent frequency if there is motion that is
increasing or decreasing the distance between the source
and the receiver. The general equation of measuring fre-
quency shift is as follows:

Af = ﬂ fsourcea (1)

’U?U(LUG

where Af = freceiver — fsource , called Doppler Frequency Shift;
AV = Ureceiver — Usource, 15 the velocity of the receiver relative
to the source: it is positive when the source and the receiver
are moving towards each other.

In our case, the wave source (i.e.,, speaker) and the
receiver (i.e., microphone) are both motionless but the
reflector (i.e., human hand) are moving. Hence, though
most of sound waves stay unchanged, a part of acoustic
waves that is reflected by a moving hand experiences a
Doppler frequency shift measured by Eqn. (2)

1 + Vrad / Vsound
1-— Umd/vsound

fsaund ) (2)

f received =

where v,,4 means the radial speed of hand to microphone.
Such Doppler effect caused by the motion of a reflector is
widely adopted in modern radar systems or underwater
sonar systems. Motivated by this intuition, AudioGest aims
to sense such doppler frequency shift of weak reflected
acoustic waves by a moving hand. As shown in Fig. 1, when
a hand moves in different directions or at different speeds,
it will cause different Doppler frequency shifts (e.g., differ-
ent shapes, different intensities and durations). Our Audio-
Gest targets to decode such Doppler frequency shifts, to
recognize the gestures, and to estimate the moving speed
and duration of a hand in air.

3.2 COTS Speakers & Microphones
In this paper, we aim to turn the COTS speakers and micro-
phones into an active sonar system to detect fine-grained
hand gestures without annoying normal human audition.
Normally, human audible signal lies between 20
Hz~18 kHz. Assuming that maximum hand waving speed
is less than 4 m/s, it requires 0.47 kHz extra bandwidth
(under a sampling rate of 44.1 kHz, see Section 6 for details
on how to calculate the frequency bandwidths). As a result,
the speakers and microphones needed should be at least
with a capability of up to 18.47 kHz frequency-response.
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Fig. 3. The Doppler frequency shifts caused by different hand gestures
and waving speeds.

According to the NyquistShannon sampling theorem, to
accurately recover a 20 kHz signal, the microphones at least
support a 40 kHz sampling rate. Fortunately, mobile devices
are increasingly supporting high-definition audio capabili-
ties targeted at audiophiles. In particular, such advancement
includes high-frequency response range, microphone arrays
for stereo recording and noise cancellation, and 4 x improve-
ment in audio sampling rates. Fig. 2 shows COTS micro-
phones and speakers of three typical mobile devices. They
all can support up to 22 kHz response frequency and typical
44.1 kHz or 48 kHz sampling rate, making it possible to
achieve fine-grained hand detection.

4 EMPIRICAL STUDIES AND CHALLENGES

4.1 Weak Echo Signal

As Fig. 1 shows, we transmit a 19 kHz sine acoustic wave
(for 3 s) from the right channel of the speaker in a laptop
(i.e., MacBook Air). Simultaneously, we record the ambient
sound signal using a microphone. At the same time, a par-
ticipant waves his hand in different directions and speeds.
Then we conduct an FFT to see the frequency shift of audio
signal caused by hand motion.

From Fig. 3, we can observe that the waving hand from
down to up results in an observable magnitude increase in
the lower frequency bins, but moving hand from left-to-
right/right-to-left is less obvious and the echo signal is weak
(i.e., the bins marked by the red circles, the left sides of 19 kHz
bin). Specifically, we find that the motion speed of the hand is
highly related with the location of such increased frequency
bins, i.e., moving hand in a slow speed causes a risen magni-
tude in 18,949.7 Hz bin, but with a fast speed, it leads to an
increase in 18,720.4 Hz bin. Also, moving hand from right to
left and left to right will arouse a frequency shift in both sides
but with opposite intensities (e.g., —53 dB and —62 dB for
right-to-left, —66 dB and —52 dB for left-to-right).

In summary, such observable frequency shifts highly
motivate our AudioGest system but also bring us a
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challenging task—how to abstract such weak, vulnerable fre-
quency-bin changes from wideband' audio signals. More-
over, we intend to decode the fine-grained hand moving
speed, in-air duration and motion range beside the hand-
gesture recognition. With ambient noise (such as human con-
versation, electronic noise and environmental sound), it is
even harder for us to perceive these Doppler frequency
shifts. We will illustrate our solution in Section 6.2.

4.2 Audio Signal Drift

Another challenge is about the audio signal drifts, which
can be categorized into two types: i) temporal signal drift:
audio signals received in different time slots depict various
magnitudes for a same frequency bin; and ii) diverse-device
signal drift: audio signals record by different microphones
reveal various magnitudes for the same frequency bin.

Fig. 4 illustrates the experiment we conducted under a
static environment,” where microphones from various types
of mobile devices record 1-hour reflected audio signals
while speakers of the same device continuously emit 19
kHz inaudible sinuous sound-waves. We divide the 1-hour
soundwave into 1,270 signal frames, and further apply
2,048-point FFT. We plot the strengths of frequency bin at
19 Hz over the time for three different mobile devices in
Fig. 4. We find that for different mobile devices, the fre-
quency magnitudes are diverse. Even for a same electronic
device, the signal strengths fluctuate over the time, and the
mobile phone exhibits a stronger signal drift. We also
observe that the recorded audio signals drop significantly
during first 10 minutes, which lies on two reasons. One rea-
son is that the OA is the main component of the speaker
and microphone, and emitting high-frequency sound-
waves (i.e., 19 kHZ audio signal) will let the OA work on
the upper-boundary of its capability, thus is unstable. The
other reason is that with the time evolving, continuous ring-
ing of the speaker generates a fair amount of heat that
increases the working temperature of the electronic compo-
nents, especially in the first 10 minutes when speakers just
start to work. It is well known that the electronic device is
very sensitive to temperature, which influences the perfor-
mance of the speaker. Such signal drifting will greatly hin-
der the system’s scalability, which means an HGR approach

1. Normally, a microphone can resolve 0~22.05 kHz sound signal
for a 44.1 kHz sampling rate.

2. Static means no hand moving, same meaning applied in the rest of
the paper.
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Fig. 5. Overview of the system for hand gesture detection.

that works well in one device may be incapable for other
devices or in different time-slots. We will deal with this
challenge in Section 6.1.

5 SYSTEM CONCEPTUAL OVERVIEW

This section will introduce the system architecture of
AudioGest, mainly including three conceptual layers—the
gesture detection layer, the gesture categorization layer, and the
application layer, as shown in Fig. 5.

The gesture detection layer is the key part of the whole sys-
tem (the details shown in the right part of Fig. 5). This layer
outputs four kinds of gesture contexts—waving direction,
hand’s average speed and in-air duration, as well as waving range.
Specially, to detect such fine-grained gesture features, we first
eliminate the noise of received raw acoustic signal which con-
tains two steps - FFT normalization and background noise
subtraction (i.e., dealing with the Audio Signal Drift challenge).
Then, we need to accurately identify the audio signal seg-
ments caused by hand’s motion, consisting of two parts—
Gaussian smoothing and segmenting the frequency shift area
(i.e., tackling the Weak Audio Signal challenge). In the next,
based on the magnitude changes and temporal locations of
segmented frequency bins, we interpret such Doppler fre-
quency shifts, thus estimate the hand waving directions.
Finally, we put things together, further quantify the hand in-
air durations, waving ranges and average speeds.

The gesture categorization layer categorizes different
basic gesture characteristics from previous layer into differ-
ent semantics. As Fig. 5 shows, we define overall six gesture
directions and three intensity levels for the moving speed,
in-air duration and waving range. Unlike previous systems
that only detect one or two hand gesture contexts [1], [4],
AudioGest provides three types of hand motion attributes
except the basic hand gestures. By randomly choosing two
motion attributes, AudioGest can theoretically provide up
to 6 x 3 x 3 =54 control commands, which we thus call
multi-modal hand gesture recognition. It is noted that Audio-
Gest can support a more fine-grained categorization (e.g.,
classify the in-air duration into four or five levels) which
leads to more control commands but degrade the detection
accuracy possibly. Vice-versa, we can use a course-grained
categorization to increase the estimation accuracy. For
example, for an e-book application (only needs 4

commands, next page, previous page, full screen, normal screen),
we can choose four types of hand waving directions
(regardless of waving speed, in-air duration and range) to
control these command buttons. This layer provides flexible
controlling choices to the application layer.

The application layer maps different gestures to control
commands for various applications. Typically, one action is
mapped to one gesture type and the developer can pick one
or more hand gestures to represent an action. For example,
for a media player application, a play action can be per-
formed with a Up-Down hand gesture while a volume up
action can be mapped to moving the hand up. The volume
changing rate can be controlled by the speed or range of the
hand waving.

6 REALIZING THE AUDIOGEST SYSTEM

In this section, we will illustrate how to achieve gesture
detection and address the associated challenges. Before that,
we first introduce how to design the transmitted audio sig-
nal. Human normal audible scope is 20 Hz~18 kHz. To avoid
annoying human audibility, under no circumstance, should
AudioGest produce the sound signal below 18 kHz (to be
more safe, we make it 18.5 kHz). Assuming that the fastest
hand moving speed is 4 m/s [3], then the largest Doppler fre-
quency shift Afdoppler = (QU}Land/Usound)ftmnsmit = 470.6 Hz.
Hence, if the mobile device transmits a 19 kHz sound, then
the received audio signal is 18,529.4 Hz~19,470.6 Hz, satisfy-
ing the requirement.

6.1 FFT Normalization
Since our targeted sound frequency band is 18.5 kHz~19.5
kHz, intuitively, we may need a band-pass filter or high-
pass filter. However, the introduced FFT normalization is
based upon the frequency domain of the recorded audio
signal. We only perform analysis to the FFT bins within the
targeted narrow bandwidth. Such processing will naturally
filter out the influence of audible noise without adding an
extra signal filter.

In order to observe how the Doppler frequency shifts
along the time, we first adopt a 2,048-point hamming win-

dow to segment the filtered signal into audio frames,’ then

3. Each frame represents 2,048/44,100 = 0.0464 s audio signal.
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Fig. 6. Left: Raw audio spectrogram; Right: Audio spectrogram after FFT
normalization.
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Fig. 7. All spectrums of audio signal frames: Each line represents a
spectrum of each frame.

apply a 2,048-point FFT* to each frame to get the sound
spectrogram, shown as the left graph in Fig. 6. We can see
the signal drift severely interferes the audio spectrogram,
displaying an unstable magnitude (e.g., the part marked by
the red ellipses).

To deal with this challenge, we collect 3,600 seconds 19
kHz sound signal using three different mobile devices and
then segment the signal into frames of 2,048-point length.
As Fig. 7 shows, we plot the spectrum of 78,260 audio
frames in the same graph. We can observe that, although
the magnitude of the frequency bins for different frames
show unpredictable signal excursions (e.g., the magnitude
in 19 kHz bin spans from —83 dB~ —24 dB), the relative
magnitudes for every single sound frame are stable and
robust to the time-elapse and device diversity (i.e., each
spectrum shows a similar shape). Because we intend to per-
ceive the Doppler frequency shifts to infer hand gestures,
we are more concerned about how the peak frequency bin
changes over the time instead of absolute magnitude of
each frequency bin. Based on this intuition, we normalize
the magnitudes of frequency bins for each audio frame.
Shown in the right graph of Fig. 6, after a simple FFT-based
normalization, the audio spectrograms produced by waving
hand from Down to Up show a stable and interpretable
Doppler frequency shift and the signal drift is removed.

6.2 Audio Signal Segmentation
6.2.1 Squared Continuous Frame Subtraction

To perceive the magnitude changes of frequency bins, we
further conduct a Squared Continuous Frame Subtraction, in

4. With a 44.1 kHz sampling rate, the velocity detection resolution
Vres = (fs/FFT;mints)(Usaund/fiaurr‘,s = 039 III/S.

IEEE TRANSACTIONS ON MOBILE COMPUTING,

VOL. 17, NO.9, SEPTEMBER 2018

1.94/

Weak the Noise but
Enhance the Interested 0.35
Frequency Bins

1.93 Interested Frequency 0.4
1902 Bins Area

191
1.9

1.89

Frequency Bin (Hz)

o
&

187 0.4

1.86)

05 1 15 2 25 3 35 4 . 15 2 25 3 35 4
Time Stamp (s) Time Stamp (s)

Fig. 8. Left: The spectrogram after continuous frame subtraction; Right:
The spectrogram after the square calculation.

which we first subtract the normalized spectrum of current
audio frame by previous frames and then square the magni-
tudes of frequency bins. The continuous subtraction
essentially eliminates the static frequency bins and save
the changed bins, shown as the left graph in Fig. 8 (i.e,,
remove the unchanged 19 kHz bin in Fig. 6 and highlight
the changed frequency bins). The square calculation will
further enhance the frequency-bin changes caused by
hand’s movement but weak the bins due to the noise (see
the right graph in Fig. 8, the noise marked by the red dot
oval is further eliminated). In the next, we need to accu-
rately segment the frequency shift area based on those
discrete frequency bins.

6.2.2 Gaussian Smoothing

Revisit the right graph of Fig. 8, the z-axis represents the
time-stamps in a 0.046 second resolution, the y-axis indi-
cates the frequency bins in Hz, the colors ranging from
blue to red quantify the changing magnitude of frequency
bins. Intuitively, we thereby can view such spectrogram
graph as an image, then what we are interested is to con-
nect those pixels and augment it into a zone. To do so,
we introduce a Gaussian Smoothing method to blur the
whole image. The Gaussian smoothing is a type of image-
blurring filter that uses a Gaussian function for calculat-
ing the transformation to apply to each pixel in an image.
Specifically, each pixel’s new value is set to a weighted
average of that pixel’s neighborhood. The original pixel’s
value receives the heaviest weight (having the highest
Gaussian value) and neighboring pixels receive smaller
weights as their distance to the original pixel increases.
For our two-dimensional image, the following function is
used for smoothing

1
G(z,y) = —Zexp<— 3

2 412
2o ’

202

where z is the distance from the origin in the horizontal
axis, y is the distance from the origin in the vertical axis,
and o is the standard deviation of the Gaussian distribu-
tion. Intuitively, this formula produces a surface whose
contours are concentric circles with a Gaussian distribution
from the center point, which preserves boundaries and
edges well. As the left graph in Fig. 9 shows, after Gauss-
ian smoothing, those peak pixels are well augmented into
a zone. Furthermore, we set a threshold o to conduct the
image binarization, i.e., set the pixel value to zero if its
value is less than w, set the pixel value to one otherwise.
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Fig. 9. Left: The spectrogram after Gaussian Smooth filter; right: The
segmented area where Doppler frequency shift happens.
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Fig. 10. The hand moving path with its generated audio spectrogram.
Left: Hand moving from Right to Left; Right: Hand moving along clock-
wise circle.

As shown in the right graph of Fig. 9, we can successfully
segment the frequency zone that Doppler shift happens.
More de-noising and segmentation examples can be found
in Appendix A, which can be found on the Computer Soci-
ety Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TMC.2017.2762677.

6.3 Doppler Effect Interpretation

In this section, by using two typical hand-waving examples, we

will interpret how a hand movement generates the shifted audio

spectrogram based on the motion law of the hand movement.
From Eqn. (2), since vsound > vraq, we have

_ 2 fsuund Urad

Af =——, 4)

Usound

where Af = frcceived — foouna- As Fig. 10 shows, assuming
that hand moving path has 6},,q with the microphone and
the hand moving speed is vj,4,4, we have

Urad = Uhand COS ehan,d- (5)

Furthermore, we can derive the relation based on Eqns. (4)
and (5) as follows:

_ 2fsmmd7)hand €08 Opand

Af

X Uhand COS glzand~ (6)
VUsound

We take two examples to interpret Eqn. (6), showing how

we link real-time hand moving gesture with the audio

spectrogram. As Fig. 10 depicts, when the hand moves

from Right to Left, O4nq gradually increases (e.g., from 7/6

to /2 then to 27/3), hence the cos6fj.,q decreases’ to 0,

5. cosf is a monotony decrease function in [0, 7r].
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Fig. 11. The illustration of transforming frequency shifts into hand veloc-
ity, in-air duration and waving range.

then to a negative value (e.g., from \/3/2 to 0, then to —1/
2). As a result, the frequency shifts from high-frequency
(i.e., higher than 19 kHz) to zero, then to low-frequency
(i.e., lower than 19 kHz). For the most complicated case
clockwise circle, the 64,q first decreases from a certain
angle to zero, then gradually increases from zero to =,
and then decreases from 7 to the previous angle (e.g.,
Ohana experiences /3 — 0 — 7/2 — 7w — /3 the right
graph of Fig. 10). Thus, the audio frequency shifts
towards high-frequency at first, then goes back to 19 kHz,
further moves to the low-frequency, then it goes back to
zero, continuously moves to high-frequency.

6.4 Transforming Frequency Shift Area into Hand
Velocity

This section will introduce how to estimate the real-time
hand radial velocity based on the segmented frequency
shift area. It should be noted that the peak bin locates in
19 kHz under a no hand-waving environment (using
vg = 0 represents such case). Based on Eqn. (6), we can
model the frequency shift with real-time hand radial
velocity as

2 fsound
soun Uh,and(t) €08 Opand (f)
Vsound (7)

2
Vrad(t).
)\smmd " ( )

fre(:eiw%d(t) - fsmmd =

Furthermore, we can derive hand radial velocity
Ura,d(t) = O~5>\smmd(f:€hif7‘,(t) - fsmmd)- As the left graph of
Fig. 11 shows, at each time-stamp, the length of frequency
interval marked by red color represents (fsuifr — fsound)-
Therefore, we can estimate the real-time radial velocity of
hand as shown in the right top graph in Fig. 11. Essentially,
the sign of hand radial velocity indicates the hand moving
direction (i.e., hand gesture type), and the time interval of
non-zero velocity represents the hand in-air duration. Also,
we can measure the hand waving range based on the area
covered by the velocity curve.

6.5 Gesture Recognition
6.5.1 Recognizing the Waving Direction

Similarly, based on the direction changes of radial velocity
(i.e., whether its value is negative or positive, determined
by cos6jqna), Wwe hence can estimate the angle ranges of the
hand movement (i.e.,, in angle categories: [0,7/2] or
[7/2,7]), as well as its corresponding time duration in each
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