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Abstract—This paper presents LiteNap which improves the
energy efficiency of LoRa by enabling LoRa nodes to oper-
ate in a downclocked ‘light sleep’ mode for packet reception.
A fundamental limit that prevents radio downclocking is the
Nyquist sampling theorem which demands the clock-rate be-
ing at least twice the bandwidth of LoRa chirps. Our study
reveals under-sampled LoRa chirps suffer frequency aliasing
and cause ambiguity in symbol demodulation. LiteNap addresses
the problem by leveraging an empirical observation that the
hardware of LoRa radio can cause phase jitters on modulated
chirps, which result in frequency leakage in the time domain.
The timing information of phase jitters and frequency leakages
can serve as physical fingerprints to uniquely identify modulated
chirps. We propose a scheme to reliably extract the fingerprints
from under-sampled chirps and resolve ambiguities in symbol
demodulation. We implement LiteNap on a software defined
radio platform and conduct trace-driven evaluation. Experiment
results show that LiteNap can downclock LoRa nodes to sub-
Nyquist rates for energy savings (e.g., 1/8 of Nyquist rate),
without substantially affecting packet reception performance
(e.g., >95% packet reception rate).

I. INTRODUCTION

The recent advances of LP-WANs (i.e., Low Power Wide

Area Networks) enable wireless network access for long-term

operated IoT devices. Among many LP-WAN technologies

(e.g., SigFox [1], NB-IoT [2]), LoRaWAN has received wide

attention from industry and academia due to its capability in

terms of long range, low power, etc [3]. The PHY layer of

LoRaWAN adopts Chirp Spread Spectrum (CSS) modulation,

which is robust against noise, multi-path and Doppler effects.

Despite the excellent communication performance of LoRa,

energy efficiency remains a major concern since LoRa nodes

are typically battery-powered and expected to operate over a

long time (e.g., ≥ 10 years) without replacing the battery.

However, measurement study [4] reports that in practice the

lifetime of LoRa nodes can be much shorter in case of frequent

packet transmission and reception [5]. As the on-air time

of LoRa packet is much longer than that of other wireless

technologies (e.g., WiFi, ZigBee) [6] [7], LoRa nodes must

stay awake for a longer time to send and receive a packet

during packet transmission. As a result, the per-packet power

consumption of LoRa can be much higher than those of

conventional radios. The most power-hungry components of

LoRa radio are Analog-to-Digital Converter (i.e., ADC) and

the processing unit (i.e., MCU).

Orthogonal to the conventional energy saving schemes such

as duty-cycling, our work explores an alternative approach

to reduce the per-packet power consumption of LoRa using

downclocking. The power consumption of MCU and ADC

is generally proportional to the operating clock rates [8]. By

decreasing the clock rates, we expect to proportionally reduce

the power consumption of LoRa radio.

However, it is challenging to downclock LoRa radio to

reduce power consumption without affecting communication

performance. It is well known that the clock-rate of ADC

is fundamentally limited by the Nyquist’s theorem, which

requires the sampling rate to be at least twice the signal band-

width. If the clock-rate of a receiver falls below the Nyquist

rate (i.e., twice the maximum frequency of LoRa chirps), the

frequency aliasing may lead to incorrect demodulation. As

LoRa spreads the chirp frequency across the entire bandwidth,

it leaves little room for downclocking LoRa receiver without

causing frequency aliasing. Aiming at reducing the power

consumption of LoRa receiver, this paper asks a question: can
we decode LoRa packets sampled at sub-Nyquist rate?

We conduct extensive measurement study and theoretical

analysis on LoRa packet reception at sub-Nyquist rates. Our

study yields two observations: (1) The frequency aliasing may

fold two LoRa chirps separated by the sampling frequency

into the same aliased frequency. As a result, the two LoRa

chirps measured at a sub-Nyquist rate may resemble each

other and cause ambiguity in demodulation. Hence, the key
to demodulate under-sampled chirps lies in how to resolve
the ambiguity caused by frequency aliasing due to under-
sampling. (2) As a LoRa chirp continuously sweeps across

a pre-configured LoRa band, frequency leakage inevitably

occurs when the instantaneous frequency suddenly changes

from its maximum to minimum. Since LoRa varies the starting

frequency of chirp to encode different data and the increasing

rate of frequency remains constant, frequency leakage happens

at distinct time in different LoRa chirps. Such frequency

leakage in the time domain can thus be used as a physical
fingerprint to uniquely identify a LoRa chirp and help resolve

the ambiguity caused by frequency aliasing. More importantly,

as the frequency leakage spans across the full frequency band,

the timing information can still be reserved even sampled at

sub-Nyquist rates.

Based on the above observations, we propose a decoding

method named LiteNap for down-clocked LoRa reception.

We first exploit the prior knowledge of LoRa preamble to

detect chirp boundaries. Then, we demodulate under-sampled

chirps and measure the initial frequency of LoRa chirps with
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frequency aliasing. We finally disambiguate the aliasing with

the timing information of frequency leakages. Intuitively, we

use the timing information of frequency leakage to determine

the missing bits caused by under-sampling.

It entails tremendous challenges to extract timing informa-

tion of frequency leakage from under-sampled chirps. Firstly,

as frequency leakage occurs in a rather short time, a down-

clocked radio with low sampling rates may miss detecting

frequency leakage. Secondly, as the power strength of fre-

quency leakage is weak, which can be buried below noise, it is

non-trivial to reliably detect from the frequency domain. Our

study reveals that frequency leakages are essentially caused

by the phase jitters of chirp samples, which are introduced

by the hardware of LoRa modem. We find that the hardware

phase jitters will add constant phase shifts to all modulated

samples transmitted after the jitters. We leverage the finding

to extract symbol fingerprint in the phase domain. Specifically,

we check the phase of received chirp samples to detect phase

shift and extract the timing information as fingerprint. We

experimentally demonstrate that the phase-based approach

can correctly extract unique fingerprints from under-sampled

chirps in various SNR conditions.

We implement and evaluate LiteNap on a software define

radio platform. We present a strategy to adaptively schedule

the downclocking of LoRa radio. Evaluation results show that

LiteNap can reduce half the energy consumption of LoRa

communication by downclocking a receiver to 1/8 the Nyquist-

rate with high packet decoding accuracy.

II. BACKGROUND AND MOTIVATION

A. LoRa Modulation

The PHY modulation of LoRa adopts Chirp Spread Spec-

trum (CSS), where the frequency of a LoRa chirp increases

linearly with time and sweeps through a predefined bandwidth.

A base chirp is represented as C(t) = ej2π(αt+f0)t, where f0
and (αt + f0) denote the initial frequency and instantaneous

frequency at time t, respectively. The frequency increasing

rate (α) and time duration (Tchirp) of a chirp is determined by

two parameters of CSS modulation: spreading factor (SF ) and

frequency bandwidth (BW ), i.e., Tchirp = 2SF

BW , α = BW
Tchirp

.

In modulation, LoRa varies the initial frequency of chirp

signal to represent different data. The modulation procedure

can be represented as follows.

S(t, fsym) = C(t) · ej2πfsymt (1)

where fsym is the starting frequency of chirp S(t, fsym) and

C(t) represents a base chirp. We see that the starting frequency

fsym carries the information of modulated data. To demodulate

a received symbol from a chirp S(t, fsym), we multiply the

received chirp with the conjugate of a base chirp (denoted as

C−1(t)) as below:

S(t, fsym) · C−1(t) = ej2πfsymt. (2)

Then, we perform FFT (i.e., Fast Fourier Transform) to derive

the starting frequency (i.e., fsym) and demodulate the chirp.

ADC MCU

PLLFrequency
Synthesizer

LNA

Crystal Oscillator

Digital signal
processing

Mixer
Baseband
signal

Samples LoRa frames

Fig. 1. Simplified receiver chain of LoRa node [9].

TABLE I
POWER PROFILES OF A LORA NODE IN VARIOUS OPERATION MODES.

Modes Enabled Components Current Draw

Active
Transmit MCU + TX Chains 20∼120 mA∗

Receive MCU + RX Chains 11.5 mA
Standby MCU (disabled RF & PLL) 1.6∼1.8 mA

Sleep Circuit 0.2∼1.5 μA
∗The current draw varies with respect to the transmission power of 7∼20 dBm.

B. Radio Power vs. Clock Rate

Fig.1 shows the receiver chain of a LoRa radio [9]. The RF

frontend first down-converts the received signal to intermediate

frequency using a mixer. Next, an Analog-to-Digital Converter

(ADC) samples the baseband signal, and passes the samples to

a MCU for further processing. The radio is typically driven by

a 32 MHz crystal oscillator, which feeds both the frequency

synthesizer and Phase-Locked-Loop (PLL). The output of PLL

controls the sampling rate of ADC and the clock-rate of MCU.

When a LoRa radio is awake in scheduled TX/RX windows,

it operates in one of the three modes, i.e., Transmit, Receive

or Standby. Table I compares the power profiles of various

operation modes for a LoRa node based on the Semtech

SX1276 datasheet. When a radio is in the Receive mode,

ADC continuously samples the channel to detect, receive and

decode incoming packets. As such, ADC and MCU are the

most power-hungry components in the Receive mode. When a

radio turns to Standby, most components on the receiver chain

(e.g., ADC) except MCU are powered off [4], [9]. The power

consumption of MCU and ADC generally follows P ∝ V 2f
[8], [10], where V is the supply voltage, f denotes the clock-

rate for MCU and the sampling rate for ADC, respectively.

We aim to reduce the active power consumption of LoRa

radio by downclocking the power-hungry components. This

can be realized by changing the PLL configuration of desired

output frequency, which is programmable in practice. As a

LoRa node typically stays in Standby for most of the time

[4], we expect significant reduction in power consumption if

the clock-rate of MCU can be decreased in the Standby mode.

However, a key problem arises: When a radio changes the

PLL frequency to downclock MCU, the sampling rate of ADC

also decreases, since the two components share the same clock

as illustrated in Fig.1. The sampling rate of ADC is restricted

fundamentally by the Nyquist theorem. If the sampling rate

falls below the Nyquist rate (i.e., twice the signal bandwidth),

a LoRa node may not be able to demodulate incoming LoRa

chirps because of frequency aliasing. Our work tackles the

problem by exploring feasible approaches to decode LoRa
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Fig. 2. The time-domain and frequency-domain presentations of a LoRa chirp
when sampling at Nyquist-rate (a,b) and sub-Nyquist rate (c,d).

packets at sub-Nyquist sampling-rates.

III. DOWNCLOCKED RECEPTION

In this section, we investigate the frequency aliasing effect

of LoRa chirps when sampling at sub-Nyquist rates. Consider

the transmitted chirp of a single symbol, i.e., S(t, fsym). We

denote the received signal as

R(t, fsym) = h(t)ej2πΔfcfot·S(t, fsym)+n(t), t ∈ [0, Tchirp)

where, n(t) is noise, h(t) denotes the changes of amplitude

and phase induced by wireless channel, and Δfcfo denotes

the carrier frequency offset between transmitter and receiver.

The received signal (i.e., R(t, fsym)) is sampled by ADC.

A normal receiver shall sample the chirp above Nyquist rate,

which is Fs = BW as chirp frequency varies within −BW
2 ∼

BW
2 . We denote the discrete signal samples with

R(k) = R(
k

BW
, fsym), k = 0, 1, · · · , 2SF − 1.

If the receiver reduces the sampling rate by a factor of D (i.e.,

with a sampling-rate Fs =
BW
D ), the signal samples become

R(Dk) = R(
Dk

BW
+Δt, fsym), k = 0, 1, · · · , �2

SF

D
� − 1.

(3)

where, Δt represents the time offset between the first sample

and the arrival time of the chirp (i.e., chirp boundary).

To illustrate how frequency aliasing affects LoRa demodu-

lation, we use a USRP to receive LoRa packets transmitted

by a Semtech SX1276 based LoRa node with SF = 8
and BW = 250 kHz. The sampling rate of USRP is 250

ksps (i.e., the Nyquist rate). We emulate a down-sampling

factor of D by drawing one sample from every D samples.

Fig.2 shows the time-domain and frequency-domain results

of the same LoRa chirp under different sampling-rates. In

Fig.2(a,c), we see that as the sampling-rate decreases below the

Nyquist rate, the obtained signal samples become sparse. As

0

Chunk #-2:

Chunk #-1:

Chunk #0: fc=0

Chunk #1:

Chunk #2:

falias

f1

f2

Fig. 3. Frequency aliasing model (down-clocking factor D = 4): f1, f2 are
folded to the same aliased frequency (falias), resulting in ambiguity.

expected, the frequency of the signal reconstructed from sub-

Nyquist samples are distorted from that of the original signal,

especially for the high-frequency components (see Fig.2(b,d)).

According to the Nyquist-Shannon sampling theorem, when

sampling at the rate of Fs, we can only reconstruct the signal

of frequency ranging from −Fs

2 to Fs

2 . If the receiver radio

samples LoRa chirps at a sub-Nyquist rate Fs = BW
D , the

original frequency of chirp signal which spreads across the

entire LoRa bandwidth (i.e., [−BW
2 , BW

2 ]) will be folded into

[−BW
2D , BW

2D ]. Specifically, we can characterize the frequency

aliasing of LoRa chirps as follows.

As illustrated in Fig.3, we divide the entire frequency band

into D+1 chunks. We represent each chunk as [fc− BW
2D , fc+

BW
2D ), where fc = nc

BW
D denotes the central frequency of

chunk nc, and nc denotes the chunk ID. Because of the

frequency aliasing effect, a frequency f = nc
BW
D + falias

of outer chunks (i.e., |nc| > 0) will be folded into falias of

chunk 0, where falias ∈ [−BW
2D , BW

2D ).
The frequency aliasing effect of downsampling can cause

symbol ambiguity problem in LoRa demodulation. As shown

in Fig.4, the chirps of symbol #0 (fsym0=-125kHz) and #127

(fsym127=0kHz), when sampled at half the Nyquist rate, will

be folded into the same chunk. More importantly, the starting

frequencies of both aliased symbols become the same (i.e.,

0kHz). As a result, we cannot distinguish the two aliased

symbols by examining their starting frequencies. Generally,

with a downsampling factor of D, such ambiguity would

happen between the two symbols f1 and f2, if |f1 − f2| =
nBW

D , n = 1, 2, · · · , D − 1.

Therefore, the key problem in downclocked LoRa reception

is how to resolve the ambiguity of under-sampled chirps and
correctly demodulate an aliased chirp. We observe from Fig.4

that although the starting frequencies of aliased symbols are

the same, comparing Fig.4 (c,d), we see that the two aliased

symbol exhibit different patterns. In particular, while there is

a vertical frequency leakage band appearing at PHY sample

64 in Fig.4 (d), there is no such a vertical band at the location

in Fig.4 (c). As a matter of fact, the vertical band appears

at PHY sample 128 in Fig.4 (c). That is because when a

chirp frequency suddenly jumps from BW
2 to −BW

2 , there is

frequency leakage spanning the entire bandwidth. Comparing

Fig.4 (b,d), we also observe that the timing information of

frequency leakage is reserved even in the aliased chirp. It

motivates us to exploit the timing information of frequency

leakage to resolve symbol ambiguity.
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(a) Original chirp of symbol #0 (b) Original chirp of symbol #127

(c) Aliased chirp of symbol #0 (d) Aliased chirp of symbol #127

Fig. 4. (a,b) The original chirps of symbol #0 and #127 (sampling above the
Nyquist-rate); (c,d) The reconstructed signals of symbol #0 and #127 when
sampling at half the Nyquist-rate.

IV. HARDWARE-ASSISTED DEMODULATION

A. Demodulating Aliased Symbol

We adapt the standard method of Eq.(2) to demodulate

an under-sampled LoRa chirp (i.e., Eq. (3)). Specifically, we

replace C−1(t) in Eq.(2) with a discrete under-sampled down-

chirp, denoted by C−1( Dk
BW ), k = 0, 1, · · · , � 2SF

D � − 1. The

operation is represented as follows.

R(Dk) · C−1( Dk
BW ) = R( Dk

BW +Δt, fsym) · C−1( Dk
BW )

≈ h( Dk
BW +Δt)ej2πΔfcfo(

Dk
BW +Δt)·

S( Dk
BW +Δt, fsym) · C−1( Dk

BW )

We omit noise n(t) due to the fact that the signal strength,

while being added up across the whole chirp, is usually much

higher than noise. Note that the time offset of under-sampling

(Δt) can transform to a frequency offset of Δfsample = Δt
2SF

in LoRa chirp. We have S( Dk
BW +Δt, fsym) = S( Dk

BW , fsym+
Δfsample). Substituting into the above equations, we get

R(Dk) · C−1( Dk
BW )

≈ h( Dk
BW +Δt)ej2πΔfcfo(

Dk
BW +Δt)·

ej2π(fsym+Δfsample)· Dk
BW

≈ ej2π(fsym+Δfsample+Δfcfo)· Dk
BW

(4)

We exclude h(t) from the equations because h(t) can be

measured and cancelled by leveraging the prior knowledge

of chirps in preamble. Next, we expect to perform FFT on

R(Dk) ·C−1( Dk
BW ) to derive the encoded symbol (i.e., fsym).

However, two issues still need to be handled:

Frequency offset cancellation. To obtain the correct symbol

(i.e., fsym), we must remove (Δfsample + Δfcfo) from Eq.

(4). As the frequency offsets of radio hardware (Δfcfo) and

sample timing (Δfsample) remain relatively stable across all

chirps in the same packet, we can detect (Δfsample+Δfcfo)
from the preamble of LoRa packet (by leveraging the fact that

fsym = 0 in preamble) and subtract (Δfsample+Δfcfo) from

the FFT results of symbols in the payload.

Ambiguity mitigation. As the chirp signal is received below

the Nyquist sampling-rate, by performing FFT on R(Dk) ·
C−1( Dk

BW ), we can only obtain an aliased frequency falias.

According to the aliasing model, the real symbol can be any of

falias+nBW
D , n = 0, 1, · · · , D−1. We resolve the ambiguity

by exploiting additional information in the following.

B. Frequency-based Ambiguity Mitigation

In this subsection, we propose a frequency-based approach

to detect frequency leakage and mitigate the symbol ambigu-

ities caused by frequency aliasing.

Symbol fingerprint. Fig.5 presents the spectrogram of a

portion of a LoRa packet sent by a COTS LoRa node. We see

from Fig.5 that there are frequency leakages from the main

frequency of chirp signal (which indicates the instability of

chirp frequency) as LoRa chirps experience sudden changes

of frequency (e.g., when a chirp shifts from the maximum fre-

quency to the minimum or at chirp boundaries). The frequency

leakage spans across the whole bandwidth, as displayed in

Fig.5. We observe the same phenomenon in various types of

COTS LoRa nodes (e.g., Adafruit Feather 32u4, Dragino LoRa

shield, etc.).

Fig. 5. Illustration of frequency leakage in the received LoRa chirps.

Generally, the manufacture imperfection of radio electronics

(e.g., oscillator) can add random phase jitters to the modulated

signal [11]. Based on the study of hardware implementations

of CSS [12] [13] and Semtech datasheet [9] [14], we know that

LoRa radio employs angle modulation (i.e., phase-based mod-

ulation) to generate CSS samples. We present the hardware

architecture of CSS modem in Fig.6. To handle the frequency

shifts when a new symbol starts and when a chirp reaches the

maximum frequency, the modem requires switching to a new

modulation parameter or enabling additional blocks to amend

the modulated phases. During such changes, LoRa radio will

experience hardware instabilities that lead to phase jitters. The

phase jitters of modulated signal would consequently exhibit

as frequency leakage as shown in Fig.5.

Initial freq.

Delta angle +

+

sel
0 1

0

1 se
l

-π >π?

new symbol?

Chirp
config.

SF, BW
config.

Angle Increment

+
+

se
l1

0

>2π?-2π

Phase-to-
Value
Mapper

Phase Increment

I-Q
Samples DACphase

Fig. 6. Hardware implementation of CSS based on angle modulation.
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Fig. 7. Frequency-based fingerprint detection: (a) Dechirping the received
chirp signal of Fig.4(b); (b,c) FFT results of the signal in window A and B;
and (d) Frequency leakages detected from the under-sampled chirps of symbol
#0 and #127, ambiguity symbols have different fingerprints.

The frequency leakage appearing around the time when a

chirp shifts from the maximum frequency to the minimum

can serve as a PHY fingerprint to uniquely identify an aliased

symbol. As illustrated in Fig.5, let t0 denote the starting time

of the chirp, tm the time of chirp frequency shifting from
BW
2 to −BW

2 . Since chirp frequency increases linearly with

time, we can infer the starting frequency of chirp as fsym =
BW
2 −α·(tm−t0). Therefore, we can detect frequency leakage

within a chirp and extract the timing information to resolve

the ambiguity caused by frequency aliasing.

Fingerprint extraction. We detect the frequency leakage

as follows. As in the standard demodulation process, we first

perform a dechirp operation by multiplying the received chirp

with C−1(t) (see Eq. (2)), which accumulates power into

a main frequency (i.e., fsym). Next, we perform FFT on

the results to detect if there is frequency leakage spanning

across the whole bandwidth. Fig.7(a) presents the dechirped

results of the chirp shown in Fig.4(b). We take two different

segments (with/without frequency leakage) of the dechirped

signal with the same segment length. We compare the FFT

of two segments in Fig.7(b) and (c). As displayed in Fig.7(c),

the irregular tiny spikes apart from the main peak indicate

frequency leakage, yet the spikes in Fig.7(b) correspond to the

sinc side lobes of the main frequency, which are introduced by

FFT. To remove the influence of main frequency, we subtract

the FFT result of Fig.7(b) from that of Fig.7(c), then sum

up the residual power in all FFT bins to get the power of

frequency leakage.

The timing of frequency leakage can be detected with a

sliding-window method: We move an FFT window across

all samples of the chirp, and extract the power of frequency

leakage in each window by subtracting the FFT of adjacent

windows. Fig.7(d) presents the detected power of frequency

leakage at different offsets of the chirp in Fig.7(a). We can

adopt a threshold to detect the time of frequency leakage (i.e.,

PHY sample #
1  64 128 192 256

0

100

200

300

(a) Detected freq. leakage (D=1)

PHY sample #
1 32 64 96 128

0

100

200

300

(b) Detected freq. leakage (D=2)

Fig. 8. Impacts of noise on the detection of frequency leakage: Detecting
results of (a) fully-sampled and (b) under-sampled chirps. Frequency leakage
is buried within noise in the case of down-sampling (e.g., D=2).

tm). For the example shown in Fig.4, we can detect different

tm from the chirps of symbol #0 and #127, as displayed in

Fig.7(d). We exploit the detected fingerprint information to

resolve ambiguity of the two symbols.

Remarks. The frequency-based approach relies on detect-

ing the power of frequency leakage. However, as frequency

leakage appears in short time, it can be missed under lower

sampling-rates. In addition, the method of power detecting is

vulnerable to noise. Fig.8 presents the detecting results on

a noisy chirp of symbol #127. We see that the noise power

can cause distortions to the frequency leakage detection. The

power of frequency leakage is buried within noise in the case

of down-sampling (see Fig.8(b)), from which we may not be

able to reliably extract the fingerprint and determine the timing

of frequency leakage. Therefore, a natural question arises: how
can we reliably extract the fingerprint of symbol under lower
sampling-rates? We answer the question in the following.

C. Phase-based Ambiguity Mitigation

In this subsection, we explore the opportunity to enhance

the robustness of fingerprint extraction under lower sampling-

rates. We propose a phase-based approach and demonstrate the

advantages in comparison with the frequency-based approach.

Opportunity. We explore opportunity for fingerprint extrac-

tion by investigating the phase characteristic of LoRa chirps.

Recall that LoRa modem employs angle modulation, as shown

in Fig.6, the modem controls the phase of each sample to

modulate a chirp signal. Denote the phase of the k’th sample

by φk. The value of φk is determined by the phase of the

former sample (i.e., φk−1) and the instantaneous frequency to

be modulated (denoted by ωk). Specifically, φk = φk−1 +ωk.

Taking phase noise into accounts, we have

φk − φk−1 = ωk + J(k), k = 0, 1, · · · , 2SF − 1 (5)

where J(k) denotes the phase jitters added by LoRa modem.

Fig.9(a) presents the raw phase data of symbol #127 when

sampling at full clock-rate. According to Eq. (5), the phase

difference of adjacent samples represents the instantaneous

angular frequency (i.e., ωn) of chirp modulation (see simi-

larities between Fig.9(b) and Fig.4(b)). The phase difference

(i.e., instantaneous frequency) would also suffer from aliasing

in the case of under-sampling, as displayed in Fig.9(c).
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Based on Eq.(5), we can get the phase of any sample in the

chirp as follows.

φk = φ0 +

k∑

n=0

ωn +

k∑

n=0

J(n). (6)

Eq.(6) indicates that the phase jitters of former samples will

be accumulated in the phases of later samples. Suppose that

the hardware of LoRa modem only causes phase jitters at a

specific time (i.e., denoted by tjit), all samples after tjit then

will carry phase jitters yet the samples before tjit will not. As

a result, we can anticipate a phase shift of Δφjit =
∑

n J(n)
around the time of tjit (see Fig.9(d)). It enables us to extract

fingerprint (i.e., timing of phase jitters) by comparing the

phases of all samples in a received chirp, rather than detecting

the samples of frequency leakage in short time duration.

Solution. To formally define the problem, we amend the

signal model in Eq. (1) to incorporate the phase jitters of LoRa

modem. We denote the modulated chirp of symbol fsym as

Sjit(t, fsym) = S(t, fsym) · ejϕ(t), t ∈ [0, Tchirp) (7)

where ϕ(t) denotes the sum of phase jitters accumulated from

time 0 to t (i.e., ϕ(t) =
∑t

n=0 J(n)). Specifically, ϕ(t) =
0 if t < tjit, otherwise ϕ(t) = Δφjit. The received signal

(i.e., R(t, fsym)) can be modified correspondingly to include

phase jitters (i.e., denoted by Rjit(t, fsym)). Similar to Eq. (3),

Rjit(Dk) represents the samples of a chirp signal received at

the down-clocking factor of D. Our goal is to detect time tjit
from Rjit(Dk), using the phase of received samples.

To extract phase jitters (i.e., ejϕ(t)) from a received chirp

(i.e., Rjit(t, fsym)), we can ideally multiply the conjugate of

S(t, fsym) with the chirp signal based on Eq. (7). However,

it requires S(t, fsym) which is not available since fsym is

still unknown. Recall that falias, i.e., the aliased frequency of

fsym, has been derived using the method in Section IV-A. We

can locally generate the chirp signal of S(t, falias) with Eq.

(1). Since fsym = falias + nBW
D , n = 0,±1, · · · ,±D

2 , we

multiply the conjugate of S(t, falias) with the received chirp

signal, which produces the following.

Rjit(t, fsym) · S−1(t, falias)
≈ h(t)ej2πΔfcfotS(t, fsym)ejϕ(t) · S−1(t, falias)

= h(t)ej2πΔfcfot · ej2π(nBW
D )t · ejϕ(t)

(8)

In practice, we select downclocking factor D to ensure nBW
D

is an integer. Consequently, Eq. (8) is composed of only phase

jitters (i.e., ejϕ(t)) and the item of carrier frequency offsets

(i.e., ej2πΔfcfot). Fig.9(d) shows the results of applying Eq.

(8) to the under-sampled chirps of two ambiguity symbols

#127 and #0. We observe that phase shifts (which indicates

the phase jitters of LoRa modem) happen at different time

for the two symbols. We can detect the continuity of obtained

phase results to extract the timing of phase jitters (i.e., tjit),
which forms the fingerprint of symbol encoded on the chirp.

Remarks. The phase-based approach has two advantages

over the frequency-based approach: (1) The phase-based ap-

proach makes use of all samples in a received chirp, rather
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Fig. 9. (a) Raw phase data of a chirp; (b,c) The difference of phases between
adjacent samples in fully-sampled and under-sampled chirps; (d) Phase jitters
extracted from under-sampled chirps: ambiguity symbols experience phase
shifts at different timing.

Algorithm 1 Downclocked LoRa Reception
Input: SF , BW , and downclocking factor D.
Output: The payload data of a LoRa packet.
1: Detect and receive packet at the sampling-rate of BW

D .
2: Synchronize the symbol timing of LoRa packet by searching for chirp boundary in

the preamble.
3: for the chirp of each symbol in the payloads do
4: Demodulate falias from the chirp signal using Eq. (4).
5: Detect tjit from the phase of received signal.

6: Determine the chunk # of fsym as nc = �
BW
2

−α·tjit
BW
D

�.

7: Demodulate the symbol as fsym = falias + nc
BW
D .

8: end for
9: Decode payload data from {fsym}.

than only the samples of short frequency leakage. It improves

fingerprint extraction from ‘point’ detection to ‘line’ detection,

which is more robust in the case of under-sampling. (2) The

frequency-based approach performs FFT at different offsets

to detect frequency leakage. The computational overhead is

O(Ns ·n log n), where n denotes the size of FFT window and

Ns the number of samples in a received chirp. In contrast, the

phase-based approach is more lightweight (i.e., O(Ns)) as it

performs no FFTs.

D. Decoding Below the Nyquist

A under-sampled chirp can get decoded as follows. First, we

employ Eq. (4) to demodulate the under-sampled chirp, which

produces an aliased frequency (i.e., falias). We next check the

phase of received samples to extract the embedded fingerprint

of symbol (i.e., tjit, timing of phase jitters). We exploit tjit
to estimate the chunk ID (i.e., nc) of symbol fsym (see the

aliasing model in Fig.3). Lastly, by combining falias and nc,

we recover the encoded symbol as fsym = nc
BW
D + falias.

We iteratively apply the above operations to every chirp

of a received packet. The demodulated symbols will be fed

into a conventional LoRa decoder, which interprets the data

transmitted in the packet. We present the detailed scheme of

downclocked LoRa reception in Algorithm 1.
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Fig. 10. Experiment devices.

The computation overheads of symbol demodulation mainly

come from FFT operations. Let Ns denote the number of

samples in a normally received LoRa symbol (i.e., at full

clock-rate). The overhead of demodulating a fully-sampled

symbol would be O(Ns log(Ns)). In contrast, when the radio

down-clocks by a factor of D, the sample number of a

symbol decreases to Ns

D . The overhead of FFT thus becomes

O(Ns

D log(Ns

D )). Although demodulating an under-sampled

symbol requires additional computations for fingerprint extrac-

tion, they can be completed within O(Ns

D ) time. The overall

computational complexity of Algorithm 1 is O(Ns

D log(Ns

D )).
The algorithm is lightweight and suitable for MCU operated in

downclocking mode that has weaker computation capability.

V. EVALUATION

We implement LiteNap on GNURadio based on gr-lora
projects [15] and build a testbed using COTS LoRa nodes and

software radio base station to evaluate the proposed schemes,

as displayed in Fig.10. The LoRa nodes are composed of

HopeRF’s RFM96W transceiver with Semtech SX1276 radio

chip. As the clock rate of SX1276 is fixed at 32 MHz, we

use a low-cost software defined radio (i.e., RTL-SDR dongle)

to receive the packets transmitted by COTS LoRa nodes.

The low-cost SDR is used to only receive but not transmit

LoRa packets. We re-sample the received signal to emulate the

downclocked reception at specific clock-rates. We implement

our LoRa decoding scheme based on the GNURadio library

and develop MATLAB program to process the PHY samples.

We operate SDRs and LoRa nodes at the 915MHz frequency.

The measured noise level is around -90dBm throughout the

experiments. Unless otherwise specified, we configure LoRa

nodes with SF=8, BW=250 kHz and coding rate CR=4/5.

A. Fingerprint Extraction

In this experiment, we study the characteristics of fingerprint

and evaluate the performance of the proposed approaches for

fingerprint extraction. We use a USRP to receive the packets

transmitted by COTS LoRa nodes. We configure LoRa nodes

to send packets with a duty-cycle of 2%. The packet payload

consists of 37 PHY symbols. We randomly choose the payload

contents and collect more than 10,000 packets to obtain sample

data for all 256 symbols.

We use the phase-based approach to extract fingerprints (i.e.,

locations of hardware phase jitters) from received chirps and

(a) (b)

Fig. 11. The fingerprints of all 256 symbols extracted from (a) fully-sampled
chirps and (b) under-sampled chirps (downclocking factor D=8), respectively.
The color indicates the probability of phase jitters detected at different sample
locations within the chirps of different symbols.
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Fig. 12. Histogram of offsets (in # of PHY samples) between the extracted
fingerprints and the ideal locations under the downclocking factor of D=8.

associate them with corresponding symbol IDs. Fig.11 shows

the distribution of the jitter locations of all 256 symbols. As

expected, the jitter locations change linearly with symbol IDs.

It verifies that the location of phase jitters can be used as

fingerprints to uniquely identify the symbols.

Fig.11 also compares the extracted fingerprints of symbols

with their expected locations as marked by the white dashed

line. We observe a tiny offset between the obtained results and

ideal locations. This offset varies with different LoRa nodes.

But it remains constant across symbols of the same device. In

practice, we can detect the offset from the preamble of LoRa

packets and subtract it from the extracted jitter locations of

payload symbols to obtain the correct fingerprints.

Fig.12 presents the histogram of offsets between the ex-

tracted fingerprints after being corrected with the preambles

and the ideal locations. We compare the phase-based and

frequency-based approaches across ten LoRa nodes with the

downclocking factor of 8. As the frequency-based approach is

vulnerable to noise, lots of detected fingerprints deviate away

from ideal locations. In contrast, the phase-based approach is

more robust. All detected fingerprints are within one sample

of the ideal locations and can be used to resolve ambiguity,

since aliased symbols are separated by more than one sample.

B. Packet Reception Performance

This experiment examines the communication performance

of LiteNap. We setup a COTS LoRa node as the transmitter

and a RTL-SDR dongle as the receiver. We configure LoRa

node to transmits 1,000 packets (payload: 22 Bytes). RTL

dongle receives at the physical sampling-rate of 1 Msps. We re-

sample the received signal to emulate downclocked reception.

We vary the re-sampling rate across 1, 1/2, 1/4, 1/8 and 1/16
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Fig. 13. Impacts of downclocking on Packet Reception Ratio (PRR).
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Fig. 14. Impacts of downclocking on throughput.

of the Nyquist-rate. In particular, we repeat the experiments

across five LoRa nodes and two RTL-SDR dongles. We change

the locations of transmitter within a 8-floor building, where the

maximum transmission range can be about 150m in Non-Line-

Of-Sight (NLOS), and classify received packets into two SNR

regimes, i.e., Poor (<5dB) and Good (≥5dB) SNRs.

We first evaluate the Packet Reception Ratio (PRR), i.e.,

ratio of packets being successfully decoded. Fig.13 presents

the PRR of LiteNap in different SNRs. We see that the

frequency based approach produces lower PRRs. The per-

formance of frequency based approach degrades fast when

receiver downclocks to lower rates. As the SNRs become poor,

the frequency-based approach cannot decode any packet when

clock-rate falls below 1/4 the Nyquist’s, as shown in Fig.13(b).

In comparison, the phase-based approach outperforms the

frequency-based approach in both good and poor SNRs. The

phase-based approach can correctly decode all packets as the

receiver downclocks to 1/4 the Nyquist-rate. The PRR remains

above 95% when the clock-rate is 1/8 the Nyquist-rate.

The throughput of LiteNap exhibits a similar trend with that

of PRR. As shown in Fig.14, the throughput of the phase-based

approach does not change as the receiver downclocks from 1 to

1/4 the Nyquist-rate. It still achieves about 85% the throughput

of full clock-rate when the clock-rate is 1/8 the Nyquist-rate.

The throughput of the frequency-based approach decreases fast

as clock-rate reduces to sub-Nyquist rates or when the SNRs

become poor (e.g., <5dB).

Fig.15 examines the link-layer symbol demodulation errors

of LiteNap in good SNRs (we omit the results of poor SNRs

due to page limit). We see that the Symbol Error Rates

(SERs) of both approaches become higher as the downclocking

factor (i.e., D) increases. It is because demodulation errors

stem mainly from the detection error of symbol fingerprint,

which can cause LiteNap to incorrectly demodulate aliased
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Fig. 15. Performance of downclocked symbol demodulation in good SNRs.

symbols. As the downclocking factor increases, the number

of ambiguity symbols would increase, which in turn increases

the SERs of LiteNap. Nevertheless, LiteNap can use the phase-

based approach to recover 99% symbols with less than 0.1

Symbol Error Rates (SERs) when downclocking factor D=2.

The ratio of SER≤0.1 decreases to 80% and 60% when D=4

and 8. Despite that, most demodulation errors can be corrected

by the error correction scheme of LoRa (i.e., Hamming coding

[16]). This explains why the PRRs of phase-based approach

are constantly above 95% when the receiver downclocks to

1/2, 1/4 and 1/8 of the Nyquist-rate (see Fig.13(a)).

Discussion: Our evaluations show that downclocking may

abate the sensitivity of packet reception, which can affect long-

range communications of LoRa. We note that IoT networks do

not always prefer long-range communications in practice, as

it may cause issues of interference and reduced capacity [17]

[18]. LiteNap can adaptively schedule the downclocking factor

to strike a balance between low-power and long-range.

C. Energy Saving

We evaluate the energy efficiency of downclocked reception

through trace-driven simulations. We characterize the power

consumption of LoRa radio based on the model proposed

in [4]. The basic energy profiles are obtained from the data

sheet of Semtech SX1276 [9]. We use the power of SX1276

as an estimate for the power consumption of fully-clocked

radio. The downclocked power consumption can be estimated

by proportionally scaling the power of full-clocking with

respect to the downclocking factor (i.e., D). We summarize

the adopted configurations in Table II.

We collect traffic traces from a realistic LoRaWAN link

composed of one transmitter (i.e., COTS LoRa node) and one

receiver (i.e., RTL-SDR base station). Both transmitter and

receiver run the LoRaWAN MAC protocol with Class A. We

configure the LoRa node to periodically send packets (payload:

22 Bytes) with a duty-cycle of 2%. The RTL-SDR dongle

employs LiteNap to decode received packets. If a packet is

successfully decoded, the receiver will reply with an ACK.

A packet would be re-transmitted if no ACK is received.

We vary downclocking factor D across 1, 2, 4, 8, 16, and

receive 1,000 packets under each downclocking setting. We

replay the collected traffic to simulate the energy drains of

both transmitter and receiver. We compute the total energy
consumption of transmitter and receiver, then average it out to

the number of received packets. We use this per-packet energy
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Fig. 16. Per-packet energy consumption under different downclocking factors.
For the frequency-based approach, since no packets are correctly received in
the cases of D=16 in good SNRs and D=4, 8, 16 in poor SNRs (see Fig.13),
the corresponding results are absent.

TABLE II
POWER CHARACTERISTICS OF DOWNCLOCKED LORA RECEPTION.

Downclocking factors D=1 D=2 D=4 D=8 D=16
Transmit power (mW) 66.00 66.00 66.00 66.00 66.00
Receive power (mW) 37.95 24.67 17.08 13.28 11.39
Standby power (mW) 5.94 3.86 2.67 2.08 1.78

Packet on-air time 35.84 ∼ 46.08 (ms)
LoRaWAN on-duty time∗ 3 (s)
∗on-duty time = TX Win + 2×RX Win + RX Delays(idle waiting).

consumption as a metric to evaluate the energy-efficiency of

downclocked LoRa reception.

Fig.16 presents the energy performance of LiteNap. The

phase-based approach exhibits similar performance regardless

of the SNR conditions. The best performance is achieved when

D=8. In the case of good SNRs (see Fig.16(a)), as receiver

downclocks from the Nyquist-rate to 1/8 Nyquist, the per-

packet energy consumption decreases from 22.1 to 9.6 mJ

(i.e., reduced by 56.6%). However, the energy increases when

the clock-rate decreases to 1/16 the Nyquist-rate, due to an

increasing number of packet re-transmissions. On the other

hand, the frequency based approach produces the optimal per-

formance when D=4 in good SNRs, with an energy reduction

of 36.5% as compared to that of D=1. However, the frequency

based approach cannot reduce power consumption in poor

SNRs due to re-transmissions caused by packet errors, while

the phase based approach can still reduce power in poor SNRs.

Discussion: LiteNap can be used on both LoRaWAN base

stations and regular nodes. Although LoRaWAN nodes per-

form more packet sending than receiving in certain IoT scenar-

ios, LiteNap still benefits such LoRa nodes by downclocking

radio during the states of idly-standby and channel detecting.

VI. RELATED WORK

Energy efficiency for LoRa. Many prior efforts [4], [19]–

[22] had been devoted to characterize LoRa power consump-

tion. They empirically measure the power consumption of

COTS LoRa radio in various operation modes and LoRaWAN

classes. Based on the measurements, researchers propose en-

ergy models for LoRa and analytically study the relation-

ships between energy consumption and various impacting

factors, such as network topology [19], duty-cycle ratio [4],

configuration of communication parameters [22], etc. These

works conclude that the energy performance of current LoRa

platforms are far from optimal [4], [20], [23].

Existing works study resource scheduling [24]–[27] and pa-

rameter allocations to reduce power consumption [28]. Liando

et al. [4] employ prediction models to allocate spreading factor

and transmission power for LoRa. Bor et al. [29] propose a

link probing scheme to select the optimal LoRa parameters.

uLoRa [30] presents an ultra low-power hardware and soft-

ware design. [31]–[34] employ backscatter communications

to reduce the power consumption of LoRa hardware to μW

level. Orthogonal to these works, this paper aims to reduce

the power consumption by downclocking LoRa radio.

Downclocked communication. E-MiLi [8] downclocks

WiFi radio during idle listening to reduce power consumption.

SASD [35] extends E-MiLi by conveying data on preamble

that can be decoded by a down-clock radio. SloMo [36] applies

compressed sensing to DSSS to enable downclocked sending

and receiving. Enfold [37] exploits the aliasing structure of

OFDM to decode under-sampled packets. Sampless WiFi [38]

combats the aliasing of OFDM by combining multiple re-

transmissions to recover packet data. Recently, LongBee [39]

employs downclocking to concentrate signal power at narrower

bandwidth for long-range communications across WiFi and

ZigBee. PLoRa [33] detects LoRa packets at sub-Nyquist

sampling-rates, but it does not support the decoding of under-

sampled packets. To the best of our knowledge, this paper is

the first study on downclocked LoRa packet reception.

VII. CONCLUSION

This paper aims to improve the energy efficiency of LoRa by

enabling sub-Nyquist sampling and packet decoding. To this

end, we study the frequency aliasing of under-sampled LoRa

packets, which reveals that the frequency aliasing can cause

ambiguity in demodulation. Fortunately, our empirical study

also discovers that the timing of frequency leakage within a

chirp can serve as a fingerprint to uniquely identify a symbol.

More importantly, the timing information can be well re-

served even when under-sampled below the Nyquist sampling

rate. Based on this observation, we propose two fingerprint

extraction methods to reliably detect the timing information

and resolve the ambiguity caused by frequency aliasing. We

evaluate the proposed methods through testbed experiments

and trace-driven simulations. Results show that a down-clock

receiver can reduce power consumption by up to 50%, while

achieving comparable packet reception performance of a full-

clock receiver in good channel conditions.
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