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ABSTRACT
Despite the active research into, and the development of,
human activity recognition over the decades, existing tech-
niques still have several limitations, in particular, poor per-
formance due to insufficient ground-truth data and little sup-
port of intra-class variability of activities (i.e., the same ac-
tivity may be performed in different ways by different indi-
viduals, or even by the same individuals with different time
frames). Aiming to tackle these two issues, in this paper,
we present a robust activity recognition approach by extract-
ing the intrinsic shared structures from activities to handle
intra-class variability, and the approach is embedded into a
semi-supervised learning framework by utilizing the learned
correlations from both labeled and easily-obtained unlabeled
data simultaneously. We use �2,1 minimization on both loss
function and regularizations to effectively resist outliers in
noisy sensor data and improve recognition accuracy by dis-
cerning underlying commonalities from activities. Exten-
sive experimental evaluations on four community-contributed
public datasets indicate that with little training samples, our
proposed approach outperforms a set of classical supervised
learning methods as well as those recently proposed semi-
supervised approaches.
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INTRODUCTION
Recent advances in sensor technologies and the growing in-
terest in many ubiquitous applications (e.g., sleep quality
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monitoring [19], rehabilitation [32], intelligent assisted living
[1, 31]) and abnormal behavior identification [30] have been
stimulating the demand for learning human activities and be-
haviors. For example, an assistant service can track how com-
pletely and consistently an elderly person’s daily routines are
performed, and determine when assistance is needed (e.g., a
fall occurs) [43].

Despite much efforts on different aspects of human activity
recognition [11] over the past few years, challenges still re-
main in the community. One challenge is how to effectively
deal with intra-class variability [10]. Such variability occurs
due to the fact that the same activity may be performed differ-
ently by different individuals. If an activity recognition model
is trained for a single person, so-called person-dependent
training, the robustness to the intra-person variability in per-
forming a specific activity can be increased by using a large
amount of training data that capture as much of activity vari-
ability as possible. Clearly, the design of such a system is
subject to a trade-off between the use of highly specific and
discriminative information, and the information that is more
generic and therefore potentially less discriminative but more
robust across different people (e.g., person-independent).

In many cases, even a same individual may perform the same
activity in different ways. Several factors can affect the per-
formance of an activity, such as stress, fatigue or emotional
or environmental state in which the activity is performed. For
example, the walking style of a person may be more dynamic
in the morning after a good sleep than in the evening after
a full day of hectic working schedule. To illustrate, Fig-
ure 1 shows two subjects performing different activities from
a public dataset named USC-HAD [44]. We draw the key
observations as follows:

• The difference of different people performing same activ-
ities are significant and discriminative (e.g., subject 2 and
subject 5 both are walking forward as shown in Figures 1
(a) and (b)).

• The difference of the same person performing different ac-
tivities is also obvious, (e.g., subject 2 is standing shown
in Figure 1 (d) and walking forward shown in Figure 1
(a)). We can discern the different patterns between these
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Figure 1. An illustrative example of intra-class variability: (a) Subject 2: Walking Forward, (b) Subject 5: Walking Forward, (c) Subject 5: Walking
Forward in another time frame, and (d) Subject 2: Standing

two types of activities, which can be easily distinguished
by any discriminative classifier.

• Same activities performed by a same person in different
time frames are inconsistent, e.g., subject 5 is walking for-
ward in trial 1 shown in Figure 1 (b) and walking forward
in trial 2 shown in Figure 1 (c), respectively. Even though
the data variations are slightly different (e.g., frequency or
amplitude), we still observe the common fluctuation pat-
terns, e.g., periodical pattern.

Intuitively, it is reasonable to assume that there are certain
underlying local commonalities under the intra-class variabil-
ities shared by all the activities. In other words, there exists
a shared subspace for the original data space. For example,
the same activities performed by different people share some
commonality (e.g., walking forward and standing both share
a torso perpendicular-like motion) or the same activities per-
formed by the same person but with different time frames
(e.g., in the morning or at night), while they hold differences
inherited from different people. These intrinsic relationships
have invariant properties and are less sensitive and variant
with different subjects, which can be used as a signature to
profile each activity, and to be leveraged further in recogni-
tion. However, very few work has been done to capture this
underlying correlations to differentiate different activities. To
discover such invariant commonalities, we design to uncover
a shared structure from original data space using subspace
learning to obtain a robust interpretation of intra-class vari-
ability, along with discriminative information of original fea-
ture space from inter-class variability together. In this way,
the activity label of a sequence of sensor data is predicted by
its vector representation in the original feature space and the
embedding in the shared subspace.

Another challenge is the need of properly labeled training
data as many activity recognition approaches rely on machine
learning techniques. The majority of the existing work is
based on supervised-learning (e.g., Bayesian derivative mod-
els) [4, 17, 22, 7, 38]. Such approach relies heavily on suffi-
cient annotated recordings of activity data in order to train a
machine learning algorithm. Obtaining such data, especially
with sufficiently annotations or the ground truth, is tedious,
time-consuming, error-prone, and may even be impossible in
some cases (e.g., older people with dementia or collecting
data from doing dangerous activities), thus posing a signifi-
cant barrier to progress in the field. In addition, this approach
can only recognize pre-selected activities and does not handle
behavior changes.

To reduce the labeling cost, researchers have been investigat-
ing different techniques such as weakly supervised learning
[33], transfer learning [37] and daily self-recall methods [39].
Semi-supervised based approach has been drawn much atten-
tion since it effectively leverages on unlabeled data during
the training phase to save tedious labeling task [34, 14, 35].
However, these approaches treat label propagation as a sep-
arate process, for example, labeling the unlabeled data using
graph label propagation [34] or a high precision classifier [35]
first, and then put the labeled data in the training dataset for
performing recognition. Therefore, correlations between la-
beled data and unlabeled data cannot be effectively exploited
and utilized during the recognition stage.

To address the aforementioned limitations, in this paper, we
propose a novel approach by integrating the shared struc-
ture analysis into a �2,1 based semi-supervised learning,
we present a new joint learning framework with embedded
shared knowledge discovery, wherein we discern commonal-
ity between activities by learning a low dimensional subspace
from sensor data, which is robust to intra-class variability and
yet still preserve the local discriminant information. In the
meanwhile, the manifold structure hidden in a large volume
of easily-obtained unlabeled or sparsely labeled data can be
effectively exploited as well. The proposed unified frame-
work is robust and can achieve good performance with little
training dataset. The main contributions are as follows:

• We propose to improve activity recognition by learning
shared knowledge of activities from heterogeneous low-
level features extracted from sensor data. The extracted
shared structure is robust to intra-class variability in the
activity recognition task.

• We aggregate the shared structure into a unified semi-
supervised learning framework, which incorporates both
labeled and unlabeled data simultaneously to improve the
performance of activity recognition and relax the demand
on data annotation. Specially, we impose �2,1 minimiza-
tion on both loss function and regularization term within
this framework to better handle noisy sensor data.

• We extensively evaluate our proposed method using four
public datasets. Our approach outperforms the state-of-the-
art techniques in terms of accuracy (e.g., over 70%) even
when only very few labeled training data are used (e.g., two
samples per activity class). The result is promising, and
may have practical implication for real-world applications.

14

UBICOMP '16, SEPTEMBER 12–16, 2016, HEIDELBERG, GERMANY



RELATED WORK
With the advancement in sensor and wireless communication
technologies over the past few years, much attentions have
been drawn to sensor-based activity recognition. Significant
efforts have been devoted on how to model and predict human
activity patterns from ubiquitous sensor data.

Researchers have developed several machine learning based
techniques to recognize low-level human activities (e.g., sit-
ting, or walking) from various types of sensory data, such as
Naive Bayes based model [36, 4], decision-tree based meth-
ods [20, 24], k nearest neighbors model [39], SVM based so-
lutions [16], and boosting [29]. The authors in [12] propose
an approach to decompose on-body sensor data into events
and scenes by using hierarchical HMM models. In [24], the
authors adopt LDA transformation to detect activity patterns.

While these methods typically achieve high recognition per-
formance, they require significant amounts of well labeled
activity data for training classifiers. It is well known in the
ubiquitous community that annotation is particularly time-
consuming and tedious. Semi-supervised learning (SSL) ap-
proach has become more appealing in recent years. Semi-
supervised learning allows to use both labeled and unlabeled
data to train a recognition system. They typically require only
a small part of labeled training data in addition to a large
amount of unlabeled data. With this approach, it is possible
to record long-term activity data without the need of detailed
continuous activity annotations. It is sufficient to ask users
to provide occasional labels about their current activities and
use labeled data together with the remaining unlabeled data
for learning activity models.

Several semi-supervised recognition systems have been pro-
posed recently. Bhattacharya et al. [6] propose a sparse cod-
ing framework that exploits unlabeled data to handle the an-
notation burden. The approach only requires small amount
of labeled data for bootstrapping very effective recognition
systems. The authors in [23] propose a semi-supervised ker-
nel logistic regression, by extending kernel logistic regres-
sion to semi-supervised learning approach, and the model is
solved by using EM algorithm. The work in [25] proposes a
Bayesian model to integrate the outputs of a very low num-
ber of sensors, and models human activities as a first order
Markov chain. Both supervised and semi-supervised learning
are developed. Longstaff et al. [21] explore the feasibility
of using various semi-supervised and active learning meth-
ods to improve activity classification on mobile phones after
application deployment. Nguyen-Dinh et al. [26] propose a
semi-supervised Gaussian Mixture model by leveraging both
labeled and unlabeled samples with multiple mixture compo-
nents per context class for activity recognition.

Our framework is particularly building upon graph-based
semi-supervised learning, which focuses on exploit the re-
lationships between labeled and unlabeled data samples by
exploring the manifold structure over similarity graph dur-
ing the training stage, then a graph Laplacian is implemented
for semi-supervised learning problem [45]. Our approach is
closed to Stikic et al’s work [34], which proposes a graph-
based semi-supervised recognition framework to annotate un-

labeled samples with activity label, where multiple graphs
connecting labeled and unlabeled samples are constructed to
propagate the labels based on similarities in terms of time
and spatial between features. Our work is also built upon a
graph regularization based semi-supervised learning frame-
work, wherein we explore the low-dimensional graph mani-
fold between activities, which is robust to activity variations
under the assumption that the class label of input data can
be predicted by a linear classifier. The main differences of
our work lie in: 1) we adopt �2,1-norm other than �2 mini-
mization as the regularization and loss function, which makes
our method more robust to data noise; 2) we particularly
incorporate discriminative analysis into a joint graph-based
semi-supervised learning framework, other than only using
the graph to propagate the labels and classify them separately.

On the other hand, shared structure learning has been ex-
plored in areas of multi-tasking learning [2] and multi-media
processing [41]. Inspired by such success, we apply the
shared structure learning to uncover the underlying common-
ality across different activities to cope with intra-class vari-
ability. To the best of our knowledge, our work is the very
first to investigate the impact of shared structure learning in
sensor-based human activity recognition.

THE PROPOSED METHODOLOGY
Figure 2 illustrates the main workflow of our proposed frame-
work. First, we segment raw sensing data using a com-
mon sliding window technique, and extract a set of features
from each segment. We use a Canonical Correlation Anal-
ysis (CCA) [15] based forward searching algorithm to find
a subset of features. Our proposed model consists of three
main phases: 1) we first develop �2,1 based shared structured
learning [2] to decode the underlying commonality among
features ( 1© in Figure 2); 2) we then construct an adjacent
graph using selected features of data points based on cosine
similarity. We therefore can propagate the labels of unlabeled
data in training stage via learning the graph manifold [45]
( 2© in Figure 2); and 3) we combine both shared structure
learning and graph-based semi-supervised learning as a joint
framework ( 3© in Figure 2), which is boiled down to an op-
timization problem, and the model parameters are learned by
an iterative process during training stage. In the rest of this
section, we give the technical details.

In the following sections, we will describe our proposed
framework formulated by shared structure learning (Section
3.1) and �2,1 based semi-supervised learning integration (Sec-
tion 3.2), respectively, followed by an optimization algorithm
for solving the human activity recognition in Section 3.3.

Shared Structure Learning
Given a datum x ∈ X = {x1,x2, ...xn} ∈ Rd represented by
a feature vector as training dataset, we aim to learn a set
of discriminant functions f j(xi), where j ∈ [1,c] and c is
the number of classes, which can predict an output y ∈ Y =
{y1,y2, ...,yn} ∈ Rc for input xi. To achieve this goal, we first
collect a training dataset {(xi,yi)}n

i=1, and then use a learn-
ing algorithm to learn a prediction function that correlates x
with y. A common approach to obtain f j is to minimize the
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Figure 2. The workflow of our proposed human activity recognition model 3©, which is combined with 1© shared structure learning (Section 3.1) and
2© graph-based semi-supervised learning framework (Section 3.2)

.

following regularized empirical error [2]:

min
f j
[

n

∑
i

loss( f j(xi),yi)+μΩ( f j)] (1)

where loss(·) is the loss function, Ω(·) is the regularization,
and μ is a regularization parameter.

As discussed in the introduction, we intuitively assume that
there is a shared underlying structure among the activities,
where function f j(xi) can be formulated as: f j(xi) = v�j xi +

p�j Q�xi = w�
j xi, where w j = v j +Qp j, v j and p j are weight

vectors, and Q ∈ Rd×sd is the transformation matrix to map
the original feature space to the low-dimensional shared sub-
space by all the features. Thus, the label of activities can
be learned by its original feature space along with the shared
subspace. By incorporating the shared structure, Equation 1
can be reformulated as:

min
f

c

∑
j=1

( n

∑
i

loss((v�j + p�j Q�)xi,yi)+μΩ( f j)
)

s.t.Q�Q = I

(2)

where constraints Q�Q = I is imposed to make the problem
tractable.

Let X = [x1, ...,xn] denote the training sensor data matrix,

where xi ∈ Rd(1 ≤ i ≤ n) is the i-th datum and n is the to-
tal number of the training data.

Based on previous analysis, we assume that there is a low-
dimensional shared subspace between different activities,
V = [v1, ...,vc] ∈ Rd×c and P = [p1, ..., pc] ∈ Rsd×c where d
and sd are the dimensions of the feature space and the shared
subspace. The prediction function can be written as:

f (X) = (V +QP)�X (3)

The objective function in Equation 2 can be formulated as:

min
f (X),Q,Q�Q=I

loss((V +QP)�X ,Y )+μΩ( f (X))

⇒ min
V,P,Q,Q�Q=I

loss((V +QP)�X ,Y )+μ(α||V ||2Frob

+β ||V +QP||2,1)

(4)

where the first regularization term α||V || controls the infor-
mation of shared subspace, and second regularization β ||V +
QP|| controls the model complexity.

We further define W = V +QP, where W ∈ Rd×c, and the
above function equivalently becomes with replacing the vari-
ables V +QP and V in Equation 4:

min
W,P,Q,Q�Q=I

||X�W −Y ||2,1 +μ(α||W ||2,1 +β ||W −QP||2Frob)

(5)

where || · ||Frob is the Frobenius norm,

||W ||2,1 = ∑d
i=1

√
∑c

j=1 W 2
i j, and ||X�W − Y || =

∑n
i=1

√
∑c

j=1(X�W −Y )2
i j. Other than the widely used

least square loss �2, which is easily deteriorated by noisy
data, we impose a �2,1 norm on both loss function and
regularization, which is robust to outliers and leads to discern
discriminant structure [27, 40].

By using the �2,1 loss function, we can keep the objective
function away from noisy sensor data, which often appear
in real data set collected with a high-sampling rate. We can
also obtain the sparsity of W to naturally retain the most dis-
criminative features associated with the non-zero elements in
W . Another contribution is that our approach imposes the
�2,1 regularization on the objective function for exploiting the
sparsity characteristics in the sensor data volume.
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Embedding into Semi-supervised Learning
Semi-supervised learning aims to leverage both labeled and
unlabeled data, with the motivations lying in that labeled
data are expensive while abundant unlabeled data are easy
to obtain and helpful to improve the performance of learn-
ing tasks. A major paradigm for semi-supervised learning is
to construct graph to utilize manifold structure for learning
[45, 46]. Graph-based semi-supervised models treat all the
data points including labeled and unlabeled ones on a graph,
which can be approximated to the density and manifold infor-
mation. Manifold regularization [5] is the most well-known
approach based on the graph Laplacian to extend many al-
gorithms to a semi-supervised manner. Specially, data points
which can be connected via a path through high density re-
gions on the data manifold are likely to have the same label.

Let Y = [Y�
l ,Y�

u ]� = [y1, ...,yn]
� be the label matrix for

n training samples X = {x1, ...,xn} from c classes where

xi|ni=1 ∈ Rd is the vector representation of the i-th instance.
If xi belongs to j-th class, yi j = 1, otherwise yi j = 0. Yl

is the label matrix with Yl = [y1, ...,ym]
� ∈ {0,1}m×c, and

Yu = [ym+1, ...,yn]
� ∈ R(n−m)×c with all elements equal to 0.

All the data points are assumed to form a graph based on two
assumptions: i) nearby data points are highly possible to be
assigned in a same class, and ii) nearby data points on the
same manifold are consistent with the ground truth labels of
the labeled training data. F = [F1, ...,Fn]

� ∈ Rn×c is the pre-

dicted matrix, where Fi ∈Rc×1 is the predicted label vector of
the i-th data xi by the classifier. The idea of manifold and la-
bel consistency can be integrated into the unified framework:

min
F

c

∑
l=1

[1

2

n

∑
i, j=1

(Fil −Fjl)
2Ai j +

n

∑
i=1

Uii(Fil − yil)
2
]

⇒ min
F

tr(F�LF)︸��������︷︷��������︸
1©

+ tr((F −Y )TU(F −Y ))︸��������������������������︷︷��������������������������︸
2©

(6)

where tr(·) is the trace of matrix, Ai j is an element of the ad-
jacent graph A constructed from labeled and unlabeled data,
L is the Laplacian of Graph A, U ∈ Rn×n is a diagonal matrix,
whose diagonal element Uii = η if xi is labeled, and Uii = 0
otherwise. η is a large constant [41]. The first term 1© is
the smoothness constraint. Minimizing this part means that
all data points should have similar ranking scores if they are
contained in many common manifolds. The second term 2©
measures the difference between the ground-truth labels ob-
tained ranking scores and the pre-given scores.

To utilize the information of unlabeled data, we apply the
semi-supervised manifold learning framework illustrated in
Equation 6. The basic idea of graph regularization based
semi-supervised framework is to define good functional
structures using unlabeled data. Since it does not bootstrap
labels, there is no label noise which can potentially corrupt
the learning procedure. An example of this approach is to
use unlabeled data to create a data-manifold (graph structure),
on which proper smooth function classes can be defined. If
such smooth functions can characterize the underlying classi-
fier well, the graph regularization based semi-supervised ap-
proach is able to improve the classification performance.

The local structure graph A ∈ Rn×n, whose element Ai j = 1 if
we use the cosine similarity to measure the affinity between
two data points represented by features. When building such
a graph, we only connect each feature vector to its k-nearest
neighbors (k = 3 in this work) by undirected edges expressing
symmetric neighborhoods.

At this point, by combining shared structure in Equation 5 and
the semi-supervised framework in Equation 6 under a unified
framework, the proposed activity recognition problem is for-
mulated as:

arg min
F,W,P,Q,Q�Q=I

tr(F�LF)+ tr((F −Y )�U(F −Y ))+

μ(||X�W −F ||2,1 +α||W ||2,1 +β ||W −QP||2F)
(7)

The Activity Recognition Algorithm
We formulate the human activity recognition problem as ob-
jective function in Equation 7, which is not a convex problem
and can be solved by converting into an efficient iterative so-
lution [27, 28]. For each iteration, F is calculated with the
current W , which is updated based on P. The value of P is
calculated based on the value of current Q. The iteration pro-
cedure is repeated until the algorithm converges. Equation 7
can be rewritten as:

L =arg min
F,W,Q,P,Q�Q=I

trF�LF + tr(F −Y )�U(F −Y )

+μ(tr(X�W −F)D1(X�W −F)

+αtrW�D2W +β tr(W −QP)�(W −QP))

(8)

where D1 and D2 are the diagonal matrices with D1(ii) =
1

||zi
1||2

, Z1 = X�W − F and Z1 = [z1
1, ...,z

n
1]
� ∈ Rn×c, and

D2(ii) =
1

||zi
2||2

, Z2 = W�Q − P and Z2 = [z1
2, ...,z

n
2]
� ∈

R
d×sd .

The optimization process on objective function Equation 8
can be briefly obtained as follows.

Taking derivation w.r.t. P. By setting the derivative of Equa-
tion 8 w.r.t. P to zero, we have:

∂L

∂P
= β (2Q�QP−2Q�W ) = 0 ⇒ P = Q�W (9)

By substituting Equation 9 into Equation 8, the objective
function becomes:

L ′ = min
F,W,Q

tr(F�LF)+ tr(F −Y )�U(F −Y )

+μ(tr(X�W −F)�D1(X�W −F)+ trW�(αD2

+β I −βQQ�)W )
(10)

Taking derivation w.r.t. W. By setting the derivative w.r.t.
W to zero, we have:

∂L ′

∂W
= 2X(D1X�W −D2Y )+2(αD+β I −βQQ�)W = 0

⇒W = (M−βQQ�)−1XD1F
(11)
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where M = XD1X�+αD2+β I. Then, the objective function
becomes:

L ′′ = min
F,Q

tr(F�LF)+ tr(F −Y )�U(F −Y )

+μ(trF�D1F − trF�D1X�(M−βQQ�)−1XD1F)
(12)

Taking derivation w.r.t. F. By setting the derivative of Equa-
tion 12 w.r.t. F to zero, we have:

∂L ′′

∂F
= LF +UF −UY +μD1F

−μD1X�(M−βQQ�)−1XD1F = 0

⇒ F = (B−μ(D1X�A−1XD1)
−1UY )

(13)

where A = M−βQQ�, B = L+U +μD1. By substituting F,
and the objective function becomes:

L ′′′ = max
Q,Q�Q

Y�U�(B−μD1X�A−1XD1)
−1UY (14)

According to Woodbury matrix identity [13], the objective
function can be written as:

max
Q,Q�Q

YUB−1D1X� (A−μXD1B−1D1X�)−1

︸�����������������������������︷︷�����������������������������︸
1©

XD1B−1UY

(15)
where (B − μD1X�A−1XD1)

−1 = B−1 + μB−1D1X�(A −
μXD1B−1D1X�)−1XD1B−1. The component 1© can be fur-
ther inferred as follows:

(A−μXD1B−1D1X�)−1

⇒ (M−βQQ�−μXD1B−1D1X�)−1

⇒ (N −βQQ�)−1

⇒ N−1 +βN−1Q(I −βQ�N−1Q)−1Q�N−1

⇒ N−1 +βN−1Q(Q�(I −βN−1)Q)−1Q�N−1

(16)

where N =M−μXD1B−1D1X�. Then the objective function
of Equation 15 becomes:

max
Q,Q�Q=I

tr[Y�UB−1D1X�N−1Q

(Q�(I −βN−1)Q)−1Q�N−1XD1B−1UY ]

⇒ max
Q,Q�Q=I

tr(Q�(I −βN−1)Q)−1

Q�N−1XD1B−1UYY�UB−1D1XT N−1Q

⇒ max
Q,Q�Q=I

tr(Q�CQ)−1Q�HQ

(17)

where

C = I −βN−1 = I −β (M−μXD1B−1D1X�)−1

= I −β (XD1X�+αD2 +β I

−μXD1(L+U +μD1)
−1D1X�)−1

(18)

and

H = N−1XD1B−1UYY�UB−1D1X�N−1 (19)

Algorithm 1: Proposed Activity Recognition Algorithm

Input: Training sample matrix X ∈ Rd×n;
Training label matrix Y ∈ Rn×c;
Model parameters α , β and μ
Output: W ∈ Rd×c matrix

1 Compute the graph Laplacian matrix L ∈ Rn×n;
2 Compute the selection matrix U ∈ Rn×n;

3 Initialize W ∈ Rd×c randomly;
4 Initialize F ∈ Rn×c randomly;
5 while not convergence do
6 Compute the diagonal matrix D1 and D2;

7 Compute C = I −β (XD1X�+αD2 +β I −μXD1(L+U +μD1)
−1D1X�)−1

(Equation 18);

8 Compute H = N−1XD1B−1UYY�UB−1D1X�N−1 (Equation 19);
9 Compute optimal Q (Equation 17);

10 Compute F (Equation 13);

11 Compute W = (M−βQQ�)−1XF (Equation 20).

12 end
13 Output W.

where N = M−μXD1B−1D1X�, B = L+U +μD1, and M =
XD1XT +αD2 +β I.

Up to this point, we can easily calculate Q from Equation 17,
then with the obtained Q, we can have:

W = (M−βQQ�)−1XD1F (20)

where F =(B−μD1X�A−1XD1)
−1UY , and A=M−βQQ�,

and B = L+U +μD1. As we have obtained W , given a test-
ing sensor sample, its predicted activity label can be com-
puted using Equation 3. Algorithm 1 gives a summary of this
iterative algorithm.

THEOREM 1. The global optimal Q∗ of Equation 8 can be
obtained by solving the following ratio trace maximization
problem:

max
Q,Q�Q=I

tr(Q�CQ)−1Q�HQ (21)

where

C = I −βN−1 = I −β (M−μXD1B−1D1X�)−1 (22)

and

H = N−1XD1B−1UYY�UB−1D1X�N−1 (23)

EXPERIMENTS
In this section, we first briefly describe our experimental set-
tings, and then report the evaluation results by comparing
with the state-of-the-art activity recognition approaches us-
ing four publicly available real-world datasets.

Experimental Setup
In this section, we introduce the four datasets, and also de-
scribe the feature extraction and the validation strategy used
in our evaluation.

Dataset Description
We validate our model using four public datasets, which
are collected from heterogeneous sensors including wireless
wearable sensors, embedded mobile phone sensors, RFID
passive tags, respectively:

18

UBICOMP '16, SEPTEMBER 12–16, 2016, HEIDELBERG, GERMANY



• USC-HAD [44]. The dataset is collected in an open envi-
ronment. There are 14 participants recruited for this study,
with diversity in gender (7 males, 7 females), age, height,
and weight. Each participant is asked to perform 12 activi-
ties (i.e., walking forward, walking left, walking right, go-
ing upstairs, going downstairs, jumping up, running, stand-
ing, and sitting, sleeping, elevator up, elevator down).

• Actitracker [18]. The dataset is collected with 29 subjects
performing six activities. All subjects carry Android smart-
phones in their front pant pockets, and they are asked to
walk, jog, ascend stairs, descend stairs, sit, and stand for a
period of time.

• UCI HAR [3]. A group of 30 volunteers with ages ranging
from 19 to 48 years old are selected. Each person is in-
structed to follow a protocol of activities while wearing a
waist-mounted Samsung Galaxy S II smartphone. The six
selected ADL are standing, sitting, lying down, walking,
walking downstairs and upstairs.

• Freedom RFID [42]. The data includes 12 activities per-
formed by 6 subjects. Each subject stands between RFID
signal receiver and transmitter and the corresponding sig-
nal streaming variations are recorded while performing dif-
ferent activities.

Low-Level Feature Extraction
It is noted that for simplicity and fair comparison, we extract
the same types of lightweight statistical features from these
four datasets. This set of feature types are selected because
they are lightweight and easy to compute. We first divide the
continuous sequence of signal strength data stream into fixed
length data windows. In our experiments, the sensor readings
are divided into data segments of length Δt = 10 seconds.
This time slice duration is long enough to be discriminative
yet is short enough to provide high accuracy labeling results.
The information is then transformed by designing 12 types
of lightweight statistical features, which are widely used in
the activity recognition community, from each segment. The
12 features are listed in Table 1. Because the scale factors
and units of the features described above are different, all the
datasets are normalized by standard deviation.

Validation Strategy
Specifically, we use the person-independent validation strat-
egy, wherein the first to the (n− 1)th subjects as training ex-

amples, and data from the left-out subject nth subject are used
for testing. This process iterates for every subject over each
dataset. The final result is the averaged value over all the sub-
jects. We measure the performance using a number of metrics
such as accuracy, precision, recall, F1 score. Due to space
constraints, we only show the accuracy performance.

Experimental Results
In this section, we report several empirical studies to compare
the performance of our proposed approach with other meth-
ods, along with a parameter tuning study and an analysis in
efficiency.

Parameter Study
There are several parameters to be tuned in the proposed ap-
proach, including the regularizations α , β , μ and k for con-
structing similarity graph where the graph Laplacian is com-
puted, and sd for the dimension of the shared subspace. For
simplicity, we only use one dataset for illustrative purpose.
We use the Actitracker dataset for studying the parameters of
our proposed approach. By fixing other parameters, we vary
the dimension of the shared subspace (i.e., sd) from 1 to 10
with a step size of 1, along with different number of labeled
training samples. Figure 3 (a) shows the results. From the fig-
ure we can observe that the recognition accuracy consistently
decreases with larger shared subspace on different size of la-
beled training samples. Bigger shared subspace may capture
more discriminant information, but also can possibly cause
the over-fitting problem and lead to the deterioration of the
approach. In our work, we set sd = 5 as the default value.

Next, we study the parameters α and β by tuning them on
sets {10i|i = −3,−2,−1,0,1,2,3}. Figure 3 (b) illustrates
the performance variations with different combinations of α
and β by fixing other parameters. We observe that the per-
formance is not quite sensitive to β variations, but is easily
affected by α . The best combination is α = 10 and β = 0.01
for the Actitracker dataset. We also explore the effect of dif-
ferent μ and k, and the results show that both of them are not
quite sensitive. It is worth noting that how to determine the
optimal parameter setting is a non-trivial task and dependent
on different datasets.

Overall Comparison
To evaluate the performance of the proposed approach (de-
noted as RSAR, Robust Semi-supervised Activity Recogni-
tion), we conduct extensive experiments to compare its per-
formance with the state-of-the-art methods.

The detailed setting of comparison follows the one in con-
ventional semi-supervised learning approaches. Specially,
the training dataset contains both labeled and unlabeled data,
and the testing dataset is not available during the training
phase. We use c to denote the number of activities per sub-
ject in each dataset, i.e., c = 12 and 6, for the USC-HAD
dataset and the Actitracker dataset, respectively. We ran-
domly select m labeled samples (m = 1,2,3,4,5,8,10,12,15)
per activity in the training dataset, thus resulting in m × c
randomly labeled sensor samples. The remaining training
samples are unlabeled. We conduct the experiments using
a person-independent strategy, wherein we select the training
samples from a certain number of persons to train our model,
which is then tested by the left-out persons.

We compare our proposed method using settings α = 0.1, β
= 1, k = 5, sd = 5 and μ = 0.001, with the following state-of-
the-art supervised and semi-supervised methods:

• k-Nearest Neighbor (kNN) is a common classifier for a va-
riety of classification problems. It predicts the class of a
sample by a majority voting of the class labels of the k
nearest training instances. We set k = 3 in this work.

• Linear Support Vector Machine (LSVM) aims at finding
the best separation of binary-labeled instances by deter-
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Figure 3. Performance variations with (a) different dimension (sd) of shared subspace and different number of labeled training samples (m); (b) different
α and β ; (c) comparison on different minimization of shared structure analysis over Actitracker dataset.

Table 1. Lightweight Statistical Features
No. Feature Description
1 Min Minimum of signal over the segment

2 Max Maximum of signal over the segment

3 Mean Average value of signal over the segment

4 Root Mean
Square

Quadratic mean value of signal over the segment

5 Variance Square of standard deviation

6 Standard Devi-
ation

Mean deviation of the signal compared to the average

7 Kurtosis Degree of peakedness of the sensor signal distribution

8 Skewness Degree of asymmetry of the sensor signal distribution

9 Entropy Measure of the distribution of frequency components

10 Median Median signal value

11 Zero Crossing
Rate

Total number of times the signal changes from positive
to negative or back, normalized by the segment length

12 Mean Cross
Rate

Total number of times the signal changes from below
average to above average, normalized by the segment
length

mining a hyperplane which maximizes the margin between
support vectors of different classes. In this work, the key
setting is C = 1 with linear kernel.

• Random Forest (RF) builds a forest of decision trees that
have the same distribution but independent output classes.
It is based on a random selection of features for each tree
and construction of a combination of the individual tree
outputs. The number of of trees is 500 in this work.

• Naive Bayes (NB) classifier finds the most posterior prob-
ability Pr(yk|x∗) for a given testing sample x∗ as its pre-
dicted label yk(x∗).

yk = argmax
yk

Pr(yk)∏D
j Pr(x∗j |yk)

∑k
j Pr(yk)∏D

j Pr(x∗j |yk)

= argmax
yk

Pr(yk)
D

∏
j

Pr(x∗j |yk)

(24)

In this work, we model the conditional probability
Pr(x∗j |lk) which follows the Gaussian mixture distribution.

The number of Gaussian clusters is adaptively determined
for each training dataset via adopting the Dirichlet Process
Gaussian Mixture Model (DPGMM) [8].

• Co-training: This method [9] is developed for boost-
ing the performance of learning algorithms given insuffi-
cient training data. It has been adopted in [35] for semi-
supervised activity recognition. We adopt the two classi-
fier strategies (using logistic regression and naive Bayes for
two groups of features, e.g., features 1 - 6, features 7 - 12)
in this work, which are initially trained with a small set of
labeled data. Each classifier is trained on a different subset
of the training data. At the beginning, only a small number
of labeled training samples are available. When a classifier
is trained, it is used to predict the labels of the unlabeled
data and assign confidences to the predictions. The top sev-
eral samples, which are predicted to be positive or negative
with high-confidences, are then selected and removed from
the unlabeled data set. These samples are then merged into
the labeled training data set and used for training the other
classifier. Recursively, the smaller set of labeled training
samples is augmented by a larger and unlabeled samples.

• GLSVM. This method [34] is built on graph-based la-
bel propagation with SVM classifier, denoted in this paper
as GLSVM. It is a graph-based semi-supervised learning
framework and works in the following way. Firstly, a graph
is constructed and used to estimate the underlying structure
of data using both labeled and unlabeled data. The pre-
dicted labels of unlabeled data are then propagated on this
graph by learning the manifold. In contrast to our method,
wherein the graph manifold is unified into a robust joint
framework with shared subspace learning, GLSVM uses
both the initial labeled training dataset and the propagated
labels to train the SVM classifier.

Figure 4 shows the recognition results using the four datasets
w.r.t. different number of labeled training data. We can draw
the following key observation: our method gains better per-
formance comparing to the comparison methods when we
only include a very small number of labeled data in training,
although that difference is not statistically significant when
more training samples are included. For example, when only
one labeled training sample from each activity of subjects
is used, our method achieves 71.34% accuracy for the Acti-
tracker dataset, which is significantly better than other meth-
ods (see Figure 4 (b)). In the meanwhile, we can observe that
our method consistently attains the best recognition perfor-
mance on the four datasets, only slightly inferior to SVM over
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Figure 4. Overall recognition performance comparison using (a) the USC-HAD dataset, (b) the Actitracker dataset, (c) the UCI HAR dataset, and (d)
the RFID dataset

RFID dataset with more labeled samples are included. In ad-
dition, the recognition accuracy of most methods is improved
when the amount of labeled training samples increases. The
results have indicated that our algorithm has robust perfor-
mance by learning the analysis of the correlations between
different features in a shared structure.

To examine the effectiveness of �2,1 regularization on shared
structure, we also compare �2,1 minimization with �2 and
�1 over the Actitracker dataset. From Figure 3(c), we can
observe that �21 minimization consistently outperforms the
other methods. The experimental results on other datasets
have the similar results.

We also take a closer look at the recognition accuracy on each
specific activity. Figure 5 illustrates the confusion matrices of
all datasets in terms of average accuracy per activity, with de-
fault settings of our proposed method, and m= 2 (only two la-
beled training samples from each activity). Taking the USC-
HAD dataset as an example, we can see that for most ac-
tivities, our approach works well (e.g., Sleeping, Sitting and
Jumping). Only for similar activities such as Walking For-
ward, Walking Left and Walking Downstairs, there are some
misclassification (Figure 5 (a)). The similar results can also
be observed on other three datasets (Figure 5 (b) - (d)).

We present some brief analysis on the reasons why our pro-
posed model performs better. Firstly, our approach takes the
advantage of both labeled and unlabeled data during the train-
ing stage, which makes it outperform the supervised learn-
ing based methods when only a small number of labeled
data are available. Secondly, our unified model can simul-
taneously learn from feature correlations. Specifically, com-
pared with the traditional graph-based semi-supervised meth-
ods, we adopt the �2,1 minimization on both loss function and
regularization. The �2,1 norm based loss function is robust to
outliers of data points, and the �2,1 norm regularization can
select features across all data points with joint sparsity.

Discussion
In this section, we draw some discussions on efficiency con-
cerns and implications of the proposed model. Since the
method needs to calculate a few inverse matrices during the
training stage, it may cause the concerns of efficiency as in-
verse matrix computation lead to more computational cost.
We briefly analyze the computation complexity of the pro-
posed approach in both the training stage (model learning)
and the testing stage (activity recognition).

There are two main sources that contribute to the complex-
ity of the training stage: i) computing Laplacian matrix L
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Figure 5. The confusion matrix of our proposed approach for activity recognition on (a) the USC-HAD dataset, (b) the Actitracker dataset, (c) UCI
HAR dataset (d) RFID dataset

takes the complexity of O(d × n2), and ii) during the opti-
mization process, we need to compute the inverse of several
matrices and perform eigen-decomposition, and its complex-
ity is O{max(d3,n3)}, where d is the feature dimension and
n is the number of features. It is noted that n is usually big-
ger than d. Therefore, for the training stage, the approxi-
mate complexity is dominant by O(n3). For the recognition
stage, we need to perform c× d times multiplications to as-
sign the predicted label for an input testing sample, where c is
the number of activity class. Our experiments study the com-
putation time of activity recognition with different number of
labeled training samples. The results show that efficiency in-
creases with larger size of training samples, but the overall
recognition running time is generally feasible and tolerable
for an activity recognition system.

CONCLUSION AND FUTURE WORK
In this paper, we propose an approach to recognize human
activities via discerning commonalities between multi-type
features. First, our approach can simultaneously uncover
the intrinsic and invariant low-dimensional subspace to im-
prove overall activity recognition performance against intra-

class variability. Second, we adopt the �2,1 minimization to
make our approach more robust to sensor reading outliers.
Third, we unify both solutions into a semi-supervised learn-
ing framework for reducing the tedious efforts on manual la-
beling. We conduct extensive experiments to compare our ap-
proach with the state-of-the-art methods including supervised
and semi-supervised methods. The experimental results on
four public datasets show the promising performance of our
proposed approach. Our approach outperforms all of these
methods, especially when the size of labeled data is small.

In the future, we would like to further explore our approach in
a larger dataset, which will be collected from a real living en-
vironment and contain more types of common activities. We
also plan to extend our model for detecting complex activi-
ties (e.g., human daily routines) by elaborating a set of rea-
soning strategies embedded into our current model. As our
model can capture the activity patterns across different per-
sons by learning the shared commonality, another interesting
direction for us is to investigate the possibility of identifying
a specific user via her/his unique activity patterns after elimi-
nating the learned commonality.
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