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ABSTRACT
With the booming of the Internet of Things, enormous number of
smart devices/sensors have been deployed in the physical world
to monitor our surroundings. Usually those devices generate high-
dimensional geo-tagged time-series data. However, these sensor
readings are easily missing due to the hardware malfunction, con-
nection errors or data corruption, which severely compromise the
back-end data analysis. To solve this problem, in this paper we ex-
ploit tensor-based Singular Value Decomposition method to recover
the missing sensor readings. The main novelty of this paper lies
in that, i) our tensor-based recovery method can well capture the
multi-dimensional spatial and temporal features by transforming
the irregularly deployed sensors into a sensor-array and folding the
periodic temporal patterns into multiple time dimensions, ii) it only
requires to tune one key parameter in an unsupervised manner, and
iii) Tensor Singular Value Decomposition structure is more efficient
on representation of high-dimension sensor data than other tensor
recovery methods based on tensor’s vectorization or flattening. The
experimental results in several real-world one-year air quality and
meteorology datasets demonstrate the effectiveness and accuracy of
our approach.
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1 INTRODUCTION
In the era of the Internet of Things (IoT), massive number of smart
devices and sensors have been installed in our surrounding environ-
ments. According to a report, there are more than 1.9 billion sensory
devices launched into the physical world each week and there will be
rapidly increased into 9 billion by 2018. Such tremendous number
of smart devices enable us to monitor, analyze and understand our
physical world, and ultimately support us to better manage various
facets in the society [9]. For example, with fine-particles (PM 2.5)
data across a city, we can understand the trend of environmental
pollution and then make a better plan to manage the factories and
transportation so that we can reduce the air pollution. Given large-
scale trajectory data from the GPS in taxicab and smart bicycles, we
can predict the crowd flows in a city so that we can prevent the dan-
gerous stampede by traffic control and warning people in advance.
One of the important prerequisites for enabling those promising ap-
plications is that we can accurately and continuously access sensory
data from the environments.

However, in practice, those sensory data usually suffer from
reading-missing or value-lost due to unexpected hardware failures,
communication conflicts or harsh environments etc.. This disturbing
phenomenon not only decreases the real-time monitoring capability
of the sensory devices but also further compromises the accuracy of
back-end data analysis. Therefore, how to accurately yet efficiently
recover the missing sensor data deserves our careful exploration.
However, recovering missing values for a high-dimensional geo-
tagged time-series data is a challenging task. Firstly, the sensor
readings are normally absent randomly which may be missing at
consecutive timestamps, or lost at a certain time-stamp for the whole
geographic area. This disturbing situation makes the traditional
regression-based methods or non-negative matrix decomposition
method useless due to, for example, one or many columns and
rows are missing at the same time. Secondly, in practice, those
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Figure 1: The idea of tensor formulation: Many tensors are irregularly deployed throughout the city (shown by the first figure), and they
generate huge amount of time series data that normally have two dimensions - time and spatial dimensions (shown by the second figure).
Those sensor readings are easily missing or lost (represented by the red dots), so this paper aims to recover those missing sensor readings.
The idea is to formulate the data as a 3-order tensor such as two spatial dimensions (i.e., longitude and latitude) plus one time dimension,
or 4-order tensor such as two spatial dimensions and two time dimensions (e.g., hours × days).

sensor data are generated by sensors deployed in different locations
(e.g.,with different latitudes and longitudes, even altitudes) so that
they normally exhibit significant non-nonlinearities which not only
strongly relate to the time dimension but also highly depend on their
spatial attributes (i.e., latitudes, longitudes or altitudes).

To deal with aforementioned challenges, many methods for re-
covering missing sensor readings are proposed. The most widely
adopted solutions are based on filtering algorithms such as Median
Filtering, Kriging, Kalman Filtering [12], or built upon regression
methods with various complexities including ARIMA (AutoRegres-
sive Integrated Moving Average), SVR (Support Vector Regres-
sion) [30], kNN (k-Nearest Neighbors) [38] etc.. Those methods,
however, can only learn spatial or temporal attribute, and are insuffi-
cient to capture data’s global dependencies due to the limitation of
their model structures (only quantifying the local or regional data
points in terms of time or spatial attributes). Another popular tech-
nique is to borrow the idea from recommendation that formulates the
multi-dimensional sensor readings as a matrix (e.g., column repre-
sents sampling times and row indicates different locations) and then
utilizes some matrix completion methods to interpolate the missing
values by minimizing the rank of matrix. This solution can quantify
both global temporal and spatial correlations among sensor readings
but is still limited to capture the one-dimensional spatial similarity
due to a fact that, in the matrix formulation, the sensors with two-
dimensional spatial coordinates are mapped into a one-dimensional
vector, unavoidably resulting in the spatial information loss [7].

Recently, a multi-view learning based method is introduced to
capture both local and global information in terms of spatial and tem-
poral perspective, achieving state-of-the-art performance [43]. It also
demonstrates that both local and global spatial/temporal correlations
play an important role in the data reconstruction. However, it intro-
duces four different models to capture the local and global spatial
and temporal information respectively and then a linear regression
model is adopted to estimate the final missing values, resulting in

a labor-intensive parameter tuning process. Moreover, it requires a
supervised model training using a large non-missing dataset, which
is impractical due to that the collected sensory data may already
suffer certain reading loss.

As a result, in this paper, we aim to explore - whether we can
accurately recover the missing sensor values by capturing the global
multi-dimensional spatial-temporal correlations using a model that
only needs to tune very few parameters and does not require any
supervised training. To solve this problem, different from previ-
ous works, we formate the spatial-temporal sensor data as tensor
- a multi-dimensional extension of a matrix and introduce a tensor
based recovery method. Nevertheless, applying this high-level idea
into practice requires addressing several challenges. First, how to
accurately map the sensors’ 2-D coordinates into a matrix is a non-
trivial problem, especially considering that the sensors deployed
in physical world is not naturally as a square or rectangle array
(e.g., some places have no sensor deployed, but other locations have
many sensors). Moreover, tensor completion can be formulated to
solve the problem of minimization on the tensor rank. This general
optimization problem is NP-hard and thus untraceable [23]. So how
to approximate the tensor rank and efficiently solve the optimization
problem while guaranteeing its convergence is also a challenging
issue [15], especially for a large-scale real-world sensor dataset.

To address above challenges, we first map the sensors’ geo-
locations into a matrix by finding each sensor’s k nearest neighbors
in terms of longitudes and latitudes by proposing a Nearest Neigh-
bor (NN) based heuristic searching method. Moreover, instead of
using one time-dimension to capture the temporal information, we
propose to model the temporal feature in a multi-dimensional view
by measuring the the periodic patterns in sensor data1. Figure 1
details the our general idea of using high-order tensor to formulate

1For example, the sensor values in same hours of a day or same day in a week are
similar, so we can also model the temporal feature as a matrix, being similar to the
spatial one.
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the sensor readings. Furthermore, by taking the recent advance of
tensor decomposition theory, we introduce a t-SVD (Tensor Singular
Value Decomposition) [17] based tensor recovery method, which
substantially transforms the optimization of tensor’s tubal-rank into
a tensor multi-rank minimization in the calculation-efficient Fourier
domain. Then we further relax the `1 norm minimization of tensor’s
multi-rank into its nuclear norm and finally recover the missing sen-
sor data (see Section 4). In a nutshell, our main contributions are as
follows:
• We propose a NN-based heuristic searching method to map the

sensors with irregular geo-locations into a matrix through itera-
tively searching the spatially nearest neighbor for each sensor.

• We introduce a tensor completion based method to recover the
missing values by capturing the spatial and temporal information
in a multi-dimensional way. It only requires to tune one key
parameter and without requiring non-missing training data.

• We introduce an efficient t-SVD based optimization scheme to
solve the tensor completion problem with a theoretical guarantee
of convergence to optimal solution. The experiments in several
real-world sensory data demonstrate that our recovery accuracy
outperforms other state-of-the-art approaches.

2 PRELIMINARY ANALYSIS
In this section, we will conduct a series of preliminary analysis
using one-year (364 days) PM2.5 dataset recorded by 36 PM2.5
sensor stations in Beijing, sampling interval is 1-hour [43]. Through
those experiments, we demonstrate that air quality dataset exhibits
Temporal Similarity, Spatial Similarity and Periodic Pattern, which
substantially reveals the intuitions behind our tensor-based recovery
method.

2.1 Temporal Similarity
To measure the temporal similarity, we calculate the relative differ-
ences of sensor readings in two adjacent sampling time for all the
36 sensors in a whole year. As Figure 2 (a) shows, about 90% of the
relative temporal differences are below 0.05 and 99% of the reading
changes are less than 0.16, which indicates that a strong correlation
exits in the time dimension.

2.2 Spatial Similarity
Shown by Figure 2 (b), we compare the readings of Sensor13 with
its 7 nearest neighbor sensors (based on the Euclidean distance) in
the same sampling time. We can see that, for its top-3 spatial nearest
sensors, more than 90% of the relative differences are less than 0.1
and 99% of the differences are below around 0.25, showing real
PM2.5 data have strong spatial correlations.

2.3 Periodic Pattern
As we know, sensory data usually exhibits similar environmental
behaviors at the same time of different days, or same day in different
weeks such as PM2.5 reading will be higher in the traffic busy time
(e.g., daily commuting travel time) and lower in the night time. In
our experiments, similar to the spatial and temporal case, we observe
significant periodic pattern (around 70% of the differences are below
0.142, and 90% of the differences are less than0.278), which is
shown by Figure 2 (c).

As a result, these three major characteristics - temporal similarity
and spatial similarity as well as periodic pattern, highly motivate
why we use a multi-dimensional tensor to unfold the spatial and
temporal information and why we minimize the tensor multi-rank in
the Fourier domain.

3 MAPPING THE IRREGULAR GEO-TAGGED
SENSORS INTO AN ARRAY

As we analyzed before, the first challenge of applying tensor-based
recovery method into practical geo-tagged time-series data is how to
map those irregularly deployed sensors into an array. To well pre-
serve the Spatial Similarity, the adjacent sensors in practice should
also be near to each other in the constructed sensor array. This
substantially meets the First Law of Geography, namely, Every-
thing is related to everything else, but near things are more related
than distant things, which also coincides with our spatial similarity
observation in Section 2.

Basically, we can transform this sensor mapping problem into an
Euclidean Distance minimization problem. We assume that N geo-
tagged sensors (labeled as s1, s2, ..., sN ) are mapped into a n1 × n2
array (obviously n1 × n2 = N ) that is represented by matrix S . Each
element si, j (i = 1, 2, ...,n1; j = 1, 2, ...,n2) in the matrix indicates
a sensor. Assuming that all the adjcent sensors of sensor si, j is
contained in the sensor-set N(si, j ) and the number of sensors in
this set is represented as |N(si, j )|, then we can formulate the sensor
mapping problem as the following minimization problem:

S∗ = arg min
S ∈S(N )

n1∑
i=1

n2∑
j=1

|N(si, j ) |∑
sk ∈N(si, j )

Dis(si, j , sk ) (1)

where S∗ indicates the optimal matrix we constructed, sk represent
a sensor in sensor set N(si, j ), and Dis(∗, ∗) means the Euclidean
distance of two sensors. S(N ) is a matrix set that captures all the
possible matrices that each element is randomly picked up from
sensors {s1, s2, ..., sN }.

Actually, the above optimization problem is untraceable since the
|S(N )| = N !, the permutation of N . So the complexity of solving
this optimization problem using an exhausted searching isO(N !). To
simplify this problem, in this paper we propose a nearest neighbor
based heuristic search method. The intuition behind is that although
it is difficult for us to find the optimal solution for Eqn. 1 we can
easily know the sensors in the very first left should be mapped into
the first column of the matrix. Then given the sensors in the first
column, we can heuristically search a sensor from the remaining
sensors that has a minimum overall distance with its known adjacent
sensors and put it in the next empty location in the matrix. By
iteratively doing so, we can gradually narrow down the candidate
sensors for the remaining locations in the matrix and make sure
each sensor in the matrix has picked up the nearest neighbor into its
adjacent locations. Since this is a heuristic approach based on the
nearest neighbor searching, we cannot prove it yields the optimal
solution theoretically. It actually gives us a sub-optimal result but
with a relatively low computation overhead. The pseudo-code is
shown in Algorithm 1.

Taking the 36 sensor stations in the air-quality dataset as an
example, we first find the 4 nearest neighboring sensors (for Sensor-
34) along the longitude (put those sensors into the column of a
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Figure 2: (a) CDF of relative temporal differences of adjacent hours; (b) CDF of relative spatial differences of Sensor13 and its
nearest neighbors; (c) CDF of relative differences in periodic pattern for same hours on different days
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Figure 3: (a) The spatial locations of PM2.5 sensor stations throughout the city; (b) The searching result by using NN-based heuristic
searching method; (c) The mapped matrix of sensor array

matrix) and then we consider the next nearest sensor along the
latitude and formulate it as the second column of a matrix. By
iteratively doing so, we finally can fill in a 4 × 9 matrix using all
those sensors, which eventually model the spatial similarity via a
2-dimensional matrix. Figure 3 (a)∼(c) show an example of how our
NN-based Heuristic Searching method maps irregularly deployed
36 PM2.5 sensors into a sensor array.

Apart form the spatial similarity, we also need to model the
temporal similarity and periodic patterns (as analyzed in Section 2).
The most straightforward way is to formulate as one-dimensional
array (plus the spatial dimensions, forming a 4×9×8759 data tensor),
or we can formulate as two dimensions to capture the similarity of
same hours in a day (overall we can form a 4 × 9 × 24 × 364 4-order
tensor), or as three dimensions to model the similarities of same
hours during different days and same days during different weeks
(overall forming a 4×9×24×7×52). The general idea is also shown
via Figure 1.

In the next, given the formulated data tensor, we will elaborate
how to use a tensor-SVD based recovery method to estimate those
missing values.

4 TENSOR SVD BASED SENSOR DATA
RECOVERY

In this section, we will briefly introduce the notations and definitions
that are used in our method. For simplicity, all the formulation,
mathematical theorems and definitions are based on a 3-order tensor,
which can be naturally extended into high-order tensor cases.

We represent matrices by upper letters (A) and a d-order tensor is
written by calligraphic letters (A). A(i, j,k) denotes the (i, j,k)-th
element of third-order tensor A ∈ Rn1×n2×n3 and A(i, j, :) denotes
the (i, j)-th tubal scalar. A(i, :, :), A(:, j, :), A(:, :,k) (or equivalently
A(k )) denote the i-th horizontal slice, j-th lateral slice and k-th
frontal slice. The X̂ = fft(X, [ ], i) denotes the FFT on the i-th
dimension of a multi-way array [47].

We then introduce following related definitions.

DEFINITION 1. t-product: given two third-order tensor A ∈
Rn1×n2×n3 and B ∈ Rn2×n4×n3 , the t-product C = A ∗ B is a
tensor of size n1 × n4 × n3 given by C = A ∗ B = Fold(bcirc(A) ·
Unfold(B)). The bcirc(A) is block circulant matrix and its first
column is [A(1)

T
,A(2)

T
, · · · ,A(n3)T ]. The Unfold(·) and Fold(·)
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Algorithm 1: NN-based Heuristic Searching for Sensor-Array
Mapping

Input: Sensor Set: SN = {s1, s2, ..., sN }
Mapping Marix: S ∈ Rn1×n2

1 Manually pick up n1 sensors filling in S∗,1
2 SN ← SN − {S∗,1}

3 for i = 1 : n1 do
4 for j = 2 : n2 do
5 if i == 1 then
6 Si, j = {sk |minsk

∑
Dis(sk , {Si, j−1, Si+1, j−1})}

7 end
8 else if i > 1 && i < n1 then
9 Si, j =

{sk |minsk
∑
Dis(sk , {Si−1, j , Si−1, j−1, Si, j−1, Si+1, j−1})}

10 end
11 else
12 Si, j =

{sk |minsk
∑
Dis(sk , {Si−1, j , Si−1, j−1, Si, j−1})}

13 end
14 SN ← SN − Si, j
15 end
16 end

Output: Mapping Matrix S , indicating the sensor locations

operators mean that Unfold(B) = [B(1)
T
,B(2)

T
, · · · ,B(n3)T ] and

Fold(Unfold(B)) = B.

It is consistent with the multiplication of matrices if n3 = 1.

DEFINITION 2. Identity tensor: the identity tensorI ∈ Rn1×n1×n3

is a tensor whose first frontal slice is the n1 × n1 identity matrix and
all other frontal slices are zero.

DEFINITION 3. Orthogonal tensor: a tensor Q ∈ Rn1×n1×n3 is
orthogonal if Q ∗ Q∗ = Q∗ ∗ Q = I.

DEFINITION 4. f-diagonal tensor: a tensor is called f-diagonal
if each frontal slice of the tensor is a diagonal matrix.

4.1 Tensor Singular Value Decomposition
Given the definition of t-product, we introduce the tensor Singular
Value Decomposition (t-SVD) [16].

THEOREM 1. For a tensor X ∈ Rn1×n2×n3 , it can be factored
as X = U ∗ S ∗ VT , where U and V are orthogonal tensors of
size n1 × n1 × n3 and n2 × n2 × n3 respectively. S is a rectangular
f-diagonal tensor of size n1 × n2 × n3.

DEFINITION 5. The diagonal of Fncirc(v)F ∗n = fft(v), where
fft(v) is the result of applying the Fast Fourier Transform to v, i.e.
diag(Fncirc(v)F ∗n ) = fft(v).

In Definition 1, the t-product is defined by circulant convolution,
the computation of t-SVD can be efficiently calculated using the fast
Fourier transform (FFT) [17]. For a 3-order tensor, we first apply
the FFT along the third dimension to attain the Fourier transformed
tensor X̂, and then compute the standard matrix SVD of each frontal
slice of X̂. Finally, we apply an inverse FFT to the third dimension

of the component tensors to compute the final t-SVD decomposition.
For the higher order tensors, this concept of the t-SVD can be recur-
sively extended by the t-product [28]. For details about this process,
see the t-SVD in Algorithm 2.

Algorithm 2: t-SVD

Input: X ∈ Rn1×n2×···×nN , γ = n3n4 · · ·nN
1 for i = 3 : N do
2 X̂ ← fft(X, [ ], i);
3 end
4 for i = 1 : γ do
5 [Û , Ŝ, V̂ ] = SVD(X̂(:, :, i));
6 Û(:, :, i) = Û ; Ŝ(:, :, i) = Ŝ; V̂(:, :, i) = V̂ ;
7 end
8 for i = 3 : N do
9 U ← ifft(Û, [ ], i); S ← ifft(Ŝ, [ ], i);V ← ifft(V̂, [ ], i);

10 end
Output: (U,S, andV )

The t-SVD of the 3-order tensor are shown in Figure 4. The
construction of the t-SVD is similar to the matrix SVD X = USVT

except that the t-product and tensor transpose substitute by the
equivalent matrix operations [10]. Similar to the matrix SVD, the
t-SVD can also be written as the sum of outer t-products.

Based on the t-SVD, we can define the notion of the tensor rank
as follows:

DEFINITION 6. Tensor multi-rank: the multi-rank ofA ∈ Rn1×n2×n3

is a vector r ∈ Rn3 with the i-th element equal to the rank of the i-th
frontal slice of Â obtained by taking the Fourier transform along
the third dimension of the tensor, i.e. ri = rankÂ(:, :, i).

DEFINITION 7. Tensor tubal-rank: the tensor tubal rank of a
3-D tensor is defined to be the number of non-zero tubes of S in the
t-SVD factorization.

THEOREM 2. For a tensor A ∈ Rn1×n2×n3 , the tensor nuclear
norm (TNN) is defined as the sum of the singular values of all the
frontal slices of Â, denoted by ‖A‖T NN , which is the tightest con-
vex relaxation to `1 norm of the tensor multi-rank, i.e. ‖A‖T NN =

rank(blkdiag(Â)).

Here, the blkdiag(Â) is a block diagonal matrix defined as fol-
lows:

blkdiag(Â) =


Â(1)

Â(2)

. . .

Â(n3)


(2)

Where Â(i) is the i-th frontal slice of Â, i = 1, 2, ...,n3.

4.2 Problem Formulation
First, we mathematically define our target problem. Assuming that
we have n1×n2 sensors deployed in different spatial areas and collect
sensor readings for T timestamps (see the example in Figure 1), we
then can formulate it as a 3-order tensorM ∈ Rn1×n2×T . We define a
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projection operator PΩ(M) : Rn1×n2×T → RK ,Ω ∈ {0, 1}n1×n2×T

that indicates the K observed sensor readings. Hence our goal is
to accurately recover the true sensor readings X from a partially
observed data tensorMΩ .

Being similar to matrix completion, this problem can be formu-
lated as solving a low-rank minimization problem:

min rankt (X) s.t. PΩ(X) = PΩ(M) (3)

where rankt (X) is the tubal rank. However, tensor tubal-rank is
NP-hard [46]. Thus, to make it tractable, we replace tubal-rank by a
relaxation convex surrogate tensor nuclear norm (TNN) as follows

min ‖X‖T NN s.t. PΩ(X) = PΩ(M) (4)

From Theorem 2, by leveraging the definition of ‖X‖T NN =

‖blkdiag(X̂)‖∗ (where ‖ · ‖∗ denotes the nuclear norm of matrix,
i.e., the sum of its singular values), Eqn. (4) is equivalent with the
following equivalent form:

min ‖blkdiag(X̂)‖∗ s.t. PΩ(X) = PΩ(M) (5)

To resolve the dependence between the frontal slices of the X̂, we
introduce ADMM [2] to split these interdependent terms. Specif-
ically, by introducing an additional tensor Z, we reformulate (5)
equivalently as follows:

min ‖blkdiag(Ẑ)‖∗ s.t. X̂ − Ẑ = 0, PΩ(X) = PΩ(M) (6)

4.3 ADMM for Solving Tensor Completion
To solve the optimization problem Eqn. (6), we first introduce the
partial augmented Lagrangian function of Eqn. (6) as below.

Lµ (Ẑ, X̂,Ŵ) = ‖blkdiag(Ẑ)‖∗+〈Ŵ, X̂−Ẑ〉+µ/2‖X̂−Ẑ‖2F (7)

whereW is the Lagrange multipliers and µ is a penalty parameter.
We present an alternating direction method of multipliers (ADMM)
iterative optimization scheme to successively minimize Lµ over
(Z,X) and then updateW as follows.

UpdateZk+1: Firstly, we fix X to optimizeZ by solving:

Ẑk+1 = arg min
Ẑ

‖blkdiag(Ẑ)‖∗+ µ/2‖Ẑ − (X̂k +1/µŴk )‖2F (8)

According to the definition of TNN, we can solve each frontal slice
Ẑk+1,(i), i = 1, ...,n3 by splitting problem (8) into n3 independent
minimization problems. Then the resulting each subproblem with
respect to Y = Ẑk+1,(i) ∈ Rn1×n2 is formulated as follows:

Ẑk+1,(i) = arg min
Y
‖Y ‖∗ +

µ

2
‖Y − (X̂k,(i) + 1/µŴk,(i))‖2F (9)

Leveraging the singular value thresholding (SVT) operator for a
matrix [3], we can calculate each Ẑk+1,(i) by

Ẑk+1,(i) = Û D1/µ (Ŝ)V̂
T = Û diag(Ŝ(i, i, :) − 1/µ)V̂T (10)

where SVD(X̂k,(i)+1/µŴk,(i)) = Û ŜV̂T , (Xk +1/µWk ) = U∗

S ∗VT and D1/µ (Ŝ) = diag(Ŝ(i, i, :) − 1/µ)+, where t+ =max(0, t),
i.e. the positive part of t .

If we define t-SVD of Zk+1 as Zk+1 =U ∗ D ∗VT , then the
solution for Eqn.(8) is given by D̂(:, :, i) = diag(Ŝ(i, i, :) − 1/µ+) in

Fourier domain, and we can use the inverse FFT to recover Z in
original domain [22].

Update Xk+1: To update Xk+1, we have the following subprob-
lem:

Xk+1 = arg min
X

µ

2
‖X − Zk+1 + 1/µWk ‖2F

s.t. PΩ(X) = PΩ(M)
(11)

According Karush-Kuhn-Tucker (KKT) conditions, the solution of
this function (11) is Xk+1 := PΩ(M)+PΩ̄(Z

k+1 − 1/µWk ), where
Ω̄ represents the supplementary set of Ω.

Update Wk+1: Last, the Lagrange multipliers is updated by
Wk+1 =Wk + µ(Xk+1 −Zk+1). Based on the above analysis, we
develop an ADMM algorithm for the tensor-SVD and completion
problem (4), as outlined in Algorithm 3.

Algorithm 3: ADMM for sensor data completion based on
t-SVD

Input:M, Ω
Initialization:
X0 = Z0 =W0 = 0, µ = 0.001, ϵ1 = 10−6, ϵ2 = 10−4

1 while not converged do
2 Update the each slice of Ẑk+1 by Eqn. (10):
3 Update Xk+1 by Eqn. (11);

4 UpdateWk+1 byWk+1 =Wk + µ(Xk+1 −Zk+1);
5 Check the convergence condition,
6 ‖Zk+1 −Zk ‖F } < ϵ1, ‖Zk+1 − Xk ‖F } < ϵ2
7 end

Output: ( X )

This algorithm can also be accelerated by adaptively changing
for the Lagrangian parameter µ, increasing µk iteratively by µk+1 =
ρµk , where ρ ∈ (1.0, 1.1] in general and µ0 is a very small constant.

5 EXPERIMENTAL RESULTS
In this section, we will show the experimental results by comparing
with other state-of-the-art missing data recovery methods, includ-
ing filter and regression based approaches and tensor/matrix based
recovery methods.

5.1 Datasets and Evaluation Metrics
Datasets and Evaluation Metrics: In the paper, we test our
method using several real-world datasets: air quality and meteo-
rological data in Beijing. The air quality dataset has 8,759 PM2.5
readings collected from 2014-05-01 to 2015-04-30 by 36 monitoring
stations, the sampling interval is 1 hour. The overall missing ratio
of PM2.5 readings is 13.25% in the air quality dataset, which con-
tains 8.15% general missing and 2.15% spatial block missing2. The
meteorological dataset contain six different types of data recorded
by 16 sensors throughout the Beijing City including in CO, NO2,
Humidity and Wind-Speed as well Wind-Direction. To form the
ground truth dataset, we choose the missing sensor readings using a
same scheme as described in [43].
2Spatial block missing means at certain sampling times, the readings from all sensors
are missing.
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Figure 4: (a) Recovery accuracies for different tensor formulations; (b) Comparison of recovery accuracies for different tensor-based
methods; (c) Comparison of state-of-the-art sensor reading recovery methods

We adopt the standard Mean Absolute Error (MAE) and Mean
Relative Error (MRE) as the evaluation metrics [43].

MAE =
∑m
i |vi − v̂i |

m
; MRE =

∑m
i |vi − v̂i |∑m

i vi
(12)

where v̂i is the predicted value and vi is the ground truth and m is
the overall number of the missing readings.

5.2 Baseline Methods
We compare our method with other typical sensor data recovery
methods:

i) ARMA (AutoRegressive Moving-Average): it is one of the
most popular models for predicting time series data. ARMA has two
polynomial terms, one is for modeling auto-regression process and
another one is performing moving average.

ii) stKNN (spatial and temporal K-Nearest Neighbors): it adopts
the k nearest spatial and temporal neighbors as a prediction.

iii) ST-MVL [43]: it is the newest work that achieves the state-of-
the-art performance on missing sensor reading recovery. It is built
upon a multi-view learning framework.

iv) CP-WOPT [1]: it solves a weighted least squares problem
based on the CANDECOMP/PARAFAC (CP) decomposition.

v) SiLRTC [24]: it uses a low-n-rank tensor nuclear norm to
approximate the tensor rank.

The first three approaches are typical works concentrating on
missing sensor data recovery, and the latter two methods are ten-
sor completion methods. However, since those tensor-based tech-
niques are primarily designed for recovering noisy images or videos
(naturally can be seen as a tensor) and cannot directly applied to
our PM2.5 and meteorological datasets, we first use our NN-based
heuristic searching method to transform the irregularly deployed sen-
sors into an array and then feed into those methods. The parameter
in above baseline methods are tuned based on the tuning description
or parameter settings in corresponding papers.

5.3 Experimental Settings
As analyzed before, to capture the spatial and temporal correlations,
we formulate the sensor data as four tensors with different sizes: t-
SVD 1: 36×24×364, t-SVD 2: 4×9×8736, t-SVD 3: 4×9×24×364
and t-SVD 4: 4×9×168×52. The t-SVD 1 only formulates the spatial
locations of sensors as a vector, and the other three formulations
otherwise model the spatial feature as a matrix as per Section 3.

For the time dimension, we formulate it as Hour × Day (24× 364)
or Hour × Week (168 × 52) or a 1-D vector. We set the related
parameters as: µ = 0.001, ϵ1 = 10−6, ϵ2 = 10−4 and maximum
iteration number as 500. In our model, the only parameter we need
to tune is the penalty parameter µ (ϵ1, ϵ2 are stop conditions and
being manually set without tuning in this paper).

5.4 Results in Air Quality Dataset
In the section, we report the experimental results via Figure 4 (a)∼(c).
In Figure 4 (a), we compare the recovery performance in terms of
different tensor formulation sizes. We can see that formulating the
data as a 4 × 9 × 8736 tensor or 4 × 9 × 168 × 52 tensor achieves a
better result. Then we compare our results with other tensor based
techniques in terms of two tensor formulations (i.e., 36 × 24 × 364
and 4 × 9 × 8736). We find that, comparing to other popular tensor
completion methods (normally adopted in recovering the visual data),
t-SVD also exhibits a better result. This is due to that CP-WOPT
highly relies on the CP rank which is difficult to accurately estimate
especially for a real-world sensor dataset. For SiLRTC, it is based
upon an assumption that the strong low tensor-rank characteristic
exits in every mode of the recovered tensor which is also hard to
satisfy for a practical sensor dataset.

In Figure 4 (c) we compare our solution with all the baseline
methods (by picking corresponding best tensor formulation for the
tensor based recovery solutions) overall our performance is the best
in terms of MAE and MRE, especially much better than the ARMA
and stKNN. The experimental results reveal that by formating the
spatial information as a matrix our method can substantially pre-
serves a 2-D relative geometry relations among different sensors
and is more advance on capturing the latent global spatial correla-
tion. It’s worth mentioning that ST-MVL also achieve a comparable
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Figure 5: (a) Impact of parameter µ to the recovery accuracy; (b) Convergence of our model in terms of sNorm ; (c) Convergence of
our model in terms of rNorm ;

performance as our method since it also intensively considers the
local/global temporal and spatial dependency of the sensors. But
the superiority of t-SVD lies on that it only needs to tune very few
parameters and does not require the non-missing training data.

5.5 Impact of Parameters and Convergence
This section explores the impact of parameters to the performance
of the proposed recovery method. Figure 5(a) depicts the influence
of parameter µ to the recovery accuracy in terms of MAE. Actually,
parameter µ is the only key parameter that needs to be fine-tuned
in the t-SVD methods. Through the experiments, we observe that
the performance on missing data recovery is relatively robust to the
changes of µ, which are different from the baseline methods that are
normally sensitive to the parameters (especially the regression based
methods). Figure 5 (b)∼(c) show the convergence of our model in
terms of sNorm = ‖Z

k+1 − Xk ‖F and rNorm = ‖Z
k+1 −Zk ‖F ,

illustrating that t-SVD can fast converge to an optimal solution by
about 40 ∼ 70 iterations.

M
R

E

CO               NO2               Humidity   WindSpeed WindDirection

Figure 6: Comparing our method with ST-MVL on five meteo-
rological datasets in terms of MRE

5.6 Results on Meteorological Datasets
This section reports the experimental evaluations on five meteoro-
logical datasets including CO, NO2, Humidity, Wind-Speed and
Wind-Direction. As Figure 6 shows, we compare the results of
t-SVD 2 and t-SVD 4 with ST-MVL in terms of MRE errors. By
formulating the data as a 3-D tensor, our t-SVD method outperforms
ST-MVL, the newest and most competitive work in sensor data
recovery, in all five datasets. Although the improvement is not sig-
nificant (from 1% to 6.3% improvement), our tensor based recovery
method involves less parameter tuning process, in which the only re-
quired fine-tuning parameter is µ and it is robust to different types of
sensor data, as shown in Figure 5 (a). Most importantly, t-SVD also
does not require a large-scale non-missing training data to perform a
supervised learning. Because in our optimization objective function,
our primary goal is to minimize the overall tensor rank in instead of
minimizing the loss function with true sensor readings. In practical,
the true sensor readings are hard to collect (i.e., they are missing in
the first place before you train a model).

Overall, we believe the proposed tensor-based method provides
an alternative data-driven and less-laborious approach for accurately
recovering the missing spatial-temporal sensor data.

6 RELATED WORK
Recovering miss sensor readings given the data observed is a non-
trivial research problem. Many promising methods are proposed
by researchers from different communities such as meteorology [8],
data mining [37], sensor network as well as computer vision [14].
In this paper, we review the related works from two aspects. We
will first discuss recent research advances on sensor data recovery
from different communities. Then we will intensively discuss latest
matrix and tensor completion methods which are more close to the
approaches used in this paper.

6.1 Missing Sensor Data Recovery
The intuitive solutions to solve the sensor reading missing is to
model the quantitative relations between the observed elements and
the missing values based on some regression or filtering methods
such as linear regression, Kriging, ARMA and Inverse Distance
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Weighting (IDW) etc.. Those methods usually are computationally
efficient and interpretable so they are widely adopted in different
application domains. For example, in [29], the authors integrate
IDW with Geographical Information System (GIS) to estimate the
incomplete rainfall records. Wu et al. [41] feed different spatial
attributes such as latitudes, longitudes and latitudes into a residual
Kriging method to interpolate the missing monthly temperature data.
Literature [45] intensively compares different missing value recovery
methods in a Turkish meteorological dataset.

Apart from those methods that focus on modeling the spatial or
temporal dependencies, some more sophistical approaches intend
to capture both temporal and spatial correlations of sensor readings.
For instance, DEMS, proposed by Gruenwald et al. [13], aims to han-
dle missing values in the domain of Mobile Sensor Network (MSN),
in which the authors first convert mobile sensor readings into virtual
static sensor readings and then mine the spatial-temporal relation-
ships among sensors to estimate the missing readings. In [31], Pan
et al. propose a k-Nearest Neighbors based missing data estimation
method, which first adopts linear regression model to capture the
spatial correlation among different sensor nodes and then utilizes
the data information of multiple neighbor nodes to estimate the
missing data jointly, considering both temporal and spatial corre-
lations of sensors. Moreover, in the domain of recommendation,
many collaborative filtering based methods are proposed to fill in the
missing values in the user or item matrix [26, 27, 40]. Some surveys
intensively discuss the related literatures [25, 42].

Recently, Yi and Zheng et al. introduce ST-MVL, a spatial-
temporal multi-view learning based learning method that first model
the global spatial and temporal correlations via regression based
methods and further incorporates IDW and collaborative filtering to
capture the local spatial-temporal dependencies. ST-MVL achieve a
state-of-the-art performance in terms of filling missing geo-tagged
sensor readings. However, it ensembles five different models and
each model requires to fine-tune several parameters, which is la-
bor intensive. Moreover, ST-MVL is still limited to capture one-
dimensional spatio and temporal information and fail to model high-
dimension spatial features (e.g.,sensors with longitude, latitude and
altitude) and periodic pattern in the time dimension. In this pa-
per, we propose a Tensor-SVD based method that can overcome the
above shortcomings and still achieve a comparable or better recovery
accuracy.

6.2 Matrix and Tensor Completion Approaches
To capture the global information of targeted dataset, the “rank” of
the matrix is a powerful tool and many matrix completion based
method are proposed [39]. In [4] authors show that under some
mild condition, most low-rank matrices can be perfectly recovered
from an incomplete dataset by solving a simple convex optimiza-
tion program. Chen et al. [6] investigate the problem of low-rank
matrix completion where a large number of columns are arbitrarily
corrupted. They showed that only a small fraction of the entries are
needed in order to recover the low-rank matrix with high probability.
Klopp et al. [18] study the optimal reconstruction error in the case
that the observations are noisy and column-wise or element-wise
corrupted. Although low-rank matrix completion methods have
shown some promising characteristics and played an important role

in missing data recovery, however, such methods cannot work well
on recovering spatial-temporal sensor data with multi-dimensional
spatial correlations [5].

As a result, many tensor-based recovery methods are recently pro-
posed. Actually, in many practical applications, the recovered dataset
can be naturally treated as tensor, a multi-dimensional extension of
matrix [23, 32]. Generally, there are two state-of-the-art techniques
used for tensor completion. One is the nuclear norm minimization,
many pioneering similar works are emerged [11, 20, 33, 35] since
Liu et al. [23, 24] first extended the nuclear norm of matrix (i.e., the
sum of all the singular values) to tensor. Later on, Gandy et al. [11]
and Signoretto et al. [34] consider a tractable and unconstrained
optimization problem of low-n-rank tensor recovery and adopt the
Douglas-Rachford splitting method and ADMM method. Another
popular technique is to utilize the tensor decomposition [21, 36, 44],
i.e., decomposing the N th-order tensor into another smaller N th-
order tensor (i.e., core tensor) and N factor matrices. Generally,
Tucker and CANDECOMP/PARAFAC Decomposition are the two
most popular tensor decomposition frameworks [19], which thus
results in two different definitions of tensor rank, i.e., multi-linear
rank that is defined straightforwardly as a weighted sum of nuclear
norm of mode-n matricizations, and CP rank which is defined by
the minimum number of the rank-one term in CP decomposition.
In [1], Acar et al. develop an algorithm called CP-WOPT (CP
Weighted OPTimization) used a first-order optimization approach
for dealing with missing value and has been testified to provide a
good imputation performance. However, those tensor completion
methods are normally applied in visual data and cannot directly deal
with a case that the sensors are deployed irregularly in a 2-D or
3-D spaces. In this paper, we first propose a NN-based heuristic
searching method for transforming the sensors into an matrix by
finding each sensor’s k nearest neighbors in terms of longitudes and
latitudes. Then we introduce a Tensor Singular Value Decomposition
based tensor recovery method, which substantially transforms the
optimization of tensor’s tubal-rank into a Fourier domain. By doing
so, we can achieve a state-of-the-art recovering accuracy but with
less parameter-tuning and computation overhead.

7 DISCUSSION & CONCLUSION
In this section, we briefly discuss the pros and cons of our approach
and point out some unsolved issues that are left for our future work.

First of all, our approach is built upon the assumption that every
mode of the tensor is low tubal-rank. This assumption might be too
strong in practice. To deal with this issue, a straight-forward solution
is to add a priori factor/weight to penalize different modes with some
priori knowledge. A method that can adaptively find the low tubal-
rank modes and only minimize the modes where low tubal-rank exits
also worths an investigation in the future. Moreover, in our model,
we assume the observed data are free of noise, but in practice those
data (that we can observe) may also be polluted by some unknown
noise. Therefore, in the future, it is necessary to consider a robust
model to tackle those cases with noisy observations.

In summary, this paper proposes a missing data recovery method
by formulating the spatial-temporal sensor data as a multi-dimensional
tensor. The main novelty of this paper stands on two sides. On the
one side, we propose a nearest neighbor based heuristic search
method that can formulate the high-dimensional spatial information
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as a matrix/tensor. On the other side, the introduced t-SVD method
only requires to tune one key parameters in a unsupervised man-
ner and is computationally efficient. The intensive experiments on
several real-world sensor datasets demonstrate that the proposed
method can accurately model spatial and temporal dependencies
among sensors to enable a high performance on missing sensor data
recovery.
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