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Abstract Mobile phone localization plays a key role in the fast-growing location-based applications domain. Most of the

existing localization schemes rely on infrastructure support such as GSM, Wi-Fi or GPS. In this paper, we present FTrack,

a novel floor localization system to identify the floor level in a multi-floor building on which a mobile user is located. FTrack

uses the mobile phone’s sensors only without any infrastructure support. It does not require any prior knowledge of the

building such as floor height or floor levels. Through crowdsourcing, FTrack builds a mapping table which contains the

magnetic field signature of users taking the elevator/escalator or walking on the stairs between any two floors. The table

can then be used for mobile users to pinpoint their current floor levels. We conduct both simulation and field studies to

demonstrate the efficiency, scalability and robustness of FTrack. Our field trial shows that FTrack achieves an accuracy of

over 96% in three different buildings.

Keywords mobile phone localization, floor localization, crowdsourcing, mobile phone sensing

1 Introduction

With the increasing pervasiveness of mobile phones,

we have witnessed the rapid growth of location-based

applications (LBAs) in recent years. Such applications

can be micro-blogging, location-based advertising[1-2],

local traffic[3-4], etc. In a multi-floor building environ-

ment, knowing the floor level of a mobile user is par-

ticularly useful for a variety of LBAs. For example, in

location-based advertising, advertisements can be de-

livered to mobile users based on their floor levels in

a shopping mall. In emergency situations, locating the

floor level of a user fast and accurately can be very criti-

cal for emergency services such as medical assistance or

life saving. The recently launched Google Maps 8.0 for

Android offers a new feature named Go indoors. Go

indoors provides users with the detailed floor plan of a

building (shopping center, airport, etc.) according to

the floor level they are currently on. This problem is

known as the floor localization problem, determining

the floor level in a building on which a mobile user is

located.

Localization has attracted extensive research ef-

forts in recent years. A variety of indoor localization

methods[5-7] have been proposed. Techniques based on

radio signals from Wi-Fi access points or GSM base

stations have shown promising results. RADAR[6] ope-

rates on Wi-Fi fingerprints, and it is capable of achiev-

ing an accuracy of up to 5 m in indoor environments.

However, even such an idealized scheme may not be

adequate to identify the floor level accurately because

it can easily lead to confusion between two neighbor

floors. PlaceLab[5] uses Wi-Fi and GSM signals. The

idea is to war-drive an area to create a radio map of

existing Wi-Fi/GSM access points, and a mobile phone

localizes itself by comparing overheard Wi-Fi/GSM ac-
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cess points against the radio map. However, the limi-

tations of these methods have been well studied.

First, Wi-Fi/GSM-based localization relies on pre-

installed infrastructure under dense deployment. Such

infrastructures may not be available in many build-

ings. Especially, in developing countries, many build-

ings have no Wi-Fi or sparse Wi-Fi coverage which

is not dense enough for localization. Even in devel-

oped countries, a study 1○ shows Wi-Fi may not be fully

available in many buildings. An infrastructure-free so-

lution would be highly desirable for floor localization.

Second, existing methods typically require calibration

which is expensive and not scalable. RADAR needs to

carefully calibrate Wi-Fi signal strengths at many lo-

cations, and the calibration process is time-consuming

and may not scale over large areas. War-driving in

PlaceLab is also intolerably time-consuming in order to

cover a large portion of space. The recurring cost in

war-driving can be excessive and undesirable. Some re-

cent approaches such as LiFS[8] use crowdsourcing to

reduce the war-driving cost to some extent, but it in-

volves a complicated training process. An ideal solution

should be cheap and scalable.

A variety of sensors embedded in smartphones have

recently motivated the research on sensor-assisted lo-

calization methods[9-11]. The basic idea is to leverage

the mobile phone’s accelerometer and electronic com-

pass to measure the walking speed and orientation of

the mobile user. The user’s location can be easily

computed by double-integrating the acceleration read-

ings over time. However, electronic compasses and ac-

celerometers are highly noisy[12], causing the user lo-

cation to diverge from the actual location. Constan-

dache et al.[9-10] proposed a better approach by identi-

fying acceleration signatures in human walking patterns

(i.e., the nature up and down bounce), and then mul-

tiplying step count with the user’s step size to obtain

the location. However, Escort[9] leverages fixed bea-

cons for constant calibration, and CompAcc[10] makes

use of possible walking paths extracted from Google

Maps 2○. Crowdsourcing has also been used to reduce

the war-driving effort[13-14]. These studies rely on de-

tecting user activities using sensors such as accelero-

meter. However, to ensure reliable detection, they typ-

ically require user-specific training which is costly, and

high sampling frequency which may drain the battery

power quickly. In addition, the detection may be often

interrupted by users making or receiving phone calls.

A new fingerprinting approach based on magnetome-

ter on smartphones has been proposed[15-17] recently.

The abnormalities of the magnetic field can be used

as fingerprints for indoor localization. While these ap-

proaches share a similar idea to Wi-Fi fingerprinting,

they need even more war-driving cost.

Paper [18] shows the properties of mobile-embedded

barometers across a number of buildings. The authors

concluded that it is difficult to use the barometer to

determine the actual floor that a user is on. In another

typical solution proposed by Wang et al. in [19], they

tracked the user using barometer readings. First, they

assumed the user’s initial floor level is f0. When the

user changes floor levels, the barometer reading change

∆p can be detected, and the user’s new floor level is

computed as f0 +∆p/(0.12× h0). In reality, h0 varies

from buildings to buildings, and each floor may have

different heights, so the floor height of each floor of ev-

ery building is needed, limiting the scalability of this

approach. More importantly, the initial floor f0 is dif-

ficult to know, because users may not always enter into

a building from the ground floor and they may start

using the localization service at any floor level. Fur-

thermore, a miss or wrong detection of ∆p will cause

serious errors in the latter localization.

In this paper, we present FTrack, an infrastructure-

free floor localization scheme. When doing localization,

FTrack makes use of the mobile phone’s magnetome-

ter and barometer only, and does not require any in-

frastructure support (i.e., Wi-Fi/GSM). Using magne-

tometer data, our solution works based on the follow-

ing observation. When users walk on the stairs from

floor i to floor j in the same stairwell, the magnetome-

ter data traces scanned from their smartphones show

the same unique signature due to a variety of physi-

cal environments in different stairwells. Such signature

can be exploited as fingerprints to locate the user by

pattern matching. This also holds when people take

the same elevator/escalator between floors. Provided a

mapping table which maps the magnetic field signature

to floors, we can locate a user’s floor level by looking

up the table. In order to get the mapping table, war-

driving is a common approach. However, war-driving

to get the magnetic field signature is costly, especially

for tall buildings. In our approach, we propose a novel

solution in FTrack which can build the mapping table

automatically through crowdsourcing.
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Our idea works as follows. For every building, when

people change their floor, we can detect the floor change

activity based on barometer on smartphones, but which

floor they locate in is unknown. Using the start and

stop time of the floor change activity, we get the mag-

netometer data trace signature when the user is moving

between floors. After comparing it to the magnetic field

signature in the mapping table, we get the floor levels

where the user leaves and arrives. FTrack creates the

mapping table through crowdsourcing. In a building

environment, people often encounter each other on any

floor or in the elevators. User trails are logged when

they travel. By examining information such as user

encounters, going up/down, and users joining and leav-

ing in the trails, FTrack generates the mapping table,

which can be then used for mobile users to pinpoint

their current floor levels.

In summary, this paper makes the following contri-

butions.

• We propose a novel floor localization system,

named FTrack, which identifies the floor level on which

a mobile user is located. FTrack makes use of the mo-

bile phone’s magnetometer and barometer only, and it

does not rely on any infrastructure such as Wi-Fi/GSM.

• Through crowdsourcing, we design our algorithms

to build a magnetic field signature mapping table, with-

out any prior knowledge of the building (i.e., number

of floors and floor height). In addition, we propose an

algorithm to remove the inconsistency caused by differ-

ent fault cases, aiming for improving the robustness of

FTrack. We show theoretically that our algorithms are

both feasible and scalable.

• We conduct comprehensive simulations using a

realistic user mobility model to analyze FTrack. We

also conduct a field study in three different buildings,

and the results show that FTrack achieves an accuracy

of 96%.

The rest of this paper is organized as follows. Sec-

tion 2 presents an overview of FTrack, followed by the

detailed design in Section 3. Section 4 presents our

theoretical analysis, and Section 5 describes our evalua-

tion. Section 6 discusses the related work, and finally,

Section 7 concludes the paper.

2 System Overview

We give an overview of our system in this section,

as shown in Fig.1. The system operates in two phases.

In the first phase, FTrack builds the mapping table.

When users travel in the building, mobile clients collect

and transfer their trails to the cloud server. User trails

Bluetooth  

Encounter  

User Traces  

Cloud Server  

Stairs  

Floor 
Pairs 

Height
(m) 

Elevator  Stairs Escalator 

1~2  5 MF MF MF 

2~3  4 MF  MF MF 

3~4  4 MF  MF  MF 

Elevator  

Mapping Table  

Download the Table  

User Traces  

Look up the Table  

Escalators  
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contain the information about user encounters, going

up/down, the traveling distance between floors and the

magnetometer data trace when the user is moving be-

tween floors. The server runs our algorithms to build

the table which contains the magnetic field signature

between any two floors. With enough trails collected,

we can obtain the signature for any two floors. In the

second phase, mobile clients can extract the magnetic

field signature when the user is moving between floors,

and pinpoint the current floor by comparing the mag-

netic field signature with the signatures in the mapping

table.

In the first phase, FTrack recognizes user activities

of changing floors using barometer. Based on these de-

tected activities, we define two states of the mobile user,

a moving (M) state when a user moves up/down be-

tween floors, and a static (S) state when a user stays

on a floor, including the situation which the elevator

stops temporarily on a floor. The states of a user may

change over time. User trail is defined as a sequence of

state changes. For example, if user i enters the build-

ing from the ground floor, takes the elevator to the

5th floor, visits some shops in the same floor, and then

walks up to the 6th floor, the user trail will be recorded

as Ti = (S1,M1, S2,M2, S3).

Trails from different people are collected and trans-

ferred to the cloud server, including the user encounter

information detected by Bluetooth. We design an

algorithm to first group people from the same floor

where they encounter each other, and then sort all the

groups by examining the sequence of state changes in

the user trails. Finally, each group can be mapped

into a unique floor level, and a series of tuples, i.e.,

(FromFloor, T oF loor,Distance,MF
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light strength measurements between indoor and out-

door in different situations. Such a phenomenon can

still be observed when the light sensor is rotated to-

wards the ground.
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Fig.2. Light strength for indoor and outdoor.

The magnetic field readings also show different pat-

terns in indoor/outdoor scenarios. The value of mag-

netic fields shows a higher variance across different

places inside buildings than that in the open space.

Figs.3 and 4 plot the magnetic field intensity and its

variance in an example scenario respectively in which

a user walks outside the building. In Fig.3, we find

that the intensity of magnetic field in the indoor envi-

ronment varies dramatically. Fig.4 plots the variance

averaged over t seconds to filter out noises. We find

that the variance is very high in the first 60 seconds

when the user moves in the indoor environment. In

contrary, after the user is in the outdoor environment

from 61 to 140 seconds, the variance drops significantly.

Therefore, by choosing a suitable threshold, we could

distinguish indoor from outdoor.
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The GPS signal is another way we use for in-

door/outdoor detection. Fig.5 plots the number of visi-

ble satellites as well as the SNR (signal to noise ratio)

of the GPS signals in the indoor and the outdoor envi-

ronments, respectively. We can see that in the indoor

environment the smartphones normally find less than

two satellites, and sometimes can get slightly more GPS

signals near windows. In the outdoor environment, the

smartphones normally receive signals from more than

six GPS satellites. Fig.5(b) plots the SNR of the re-

ceived GPS signals. The SNR value in the indoor envi-

ronment varies from 0 to 10, much less than the outdoor

environment (i.e., 25 to 42).
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Fig.5. Number of visible satellites and SNR. (a) Number of
satellites. (b) Signal to noise ratio.

In our approach, we use a hybrid way which inte-

grates the signatures of GPS, light and magnetometer

sensors of the smartphone. In detail, for a timestamp

of every 10 seconds, the FTrack client will get a GPS

location and run an indoor/outdoor detection based on

GPS, light and magnetometer readings. The final in-

door/outdoor result will be the combination of the three

outputs. Once an indoor result is detected, the FTrack
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client will use the latest valid GPS location to find out

which building the user is in.

In the second phase, users use FTrack to locate

themselves. This process happens very often and re-

quires an energy efficient way for indoor/outdoor detec-

tion. It is based on the following observation that our

way of pattern matching approach based on the mag-

netic field signature can directly locate the user into

the right building. In this way, we can simultaneously

solve the problems of finding the building and finding

the floor.

3.2 User State Recognition

To detect user states (i.e., S or M) and their mov-

ing directions (i.e., up or down) at any time, we use the

mobile phone’s barometer.

3.2.1 Barometer on Smartphone

We now move to study the barometer sensor on

smartphones. The barometer sensor has become in-

creasingly popular on smartphones today. Most com-

monly used barometer sensors are BMP180/182 and

LPS331AP. Table 1 gives their technical specifications.

From the table, we observe that while the absolute

accuracy (the accuracy of a sensor reading compared

with the real barometric pressure) is about ± 20 me-

ters (which is low), the relative accuracy (the accuracy

of the change of a sensor reading compared with the

change of real barometric pressure) is high. This implies

that the barometer sensor has a high level of sensitivity,

and it is good enough to detect the change of the baro-

metric pressure when users go up or down in a building.

Motivated by this observation, we use barometer to de-

tect the activities when users change their floor levels.

We use a professional digital pressure gauge to mea-

sure the barometric pressure at a fixed location in an

office building over a period of half an hour. Fig.6(a)

plots the result. From the figure, we observe the baro-

metric pressure measurements changing with a varia-

tion of 1.2 hPa which is equivalent to about 10 meters in

altitude. This variation may result in a detection error

ranging up to three floor levels. Hence, directly apply-

ing the barometric formula to calculate the floor level is

not feasible. In another study, we sample the barome-

ter readings of two smartphones of the same type at

the same indoor location. Fig.6(b) shows that a con-

stant drift of sensor readings which may result in an

error ranging up to three floor levels. That confirms

the barometer readings have low absolute accuracy.

3.2.2 Floor Change Activity Detection

We first present a novel technique to recognize the

activities of changing floors using barometer. We rep-

resent a barometer sample P by B = (t, Baro), where

t is the time for sampling, and Baro is the barome-

ter reading at time t. The barometer samples arriving

in time order form a barometer trace, which is repre-

sented by BTrace = (ID,B1, B2, ...), where ID is the

identity of the user. Users typically change their floor

levels by taking elevators/escalators and walking up or

down the stairs. The barometer sensor is inherent noisy.

Fig.6(d) shows the raw barometer readings which ap-

parently contain spike noise. In B-Loc, we first filter

the noise, and then smooth the values with a reasona-

ble window size of 1 000 ms (i.e., the value at time t is

the average value from t − 500 ms to t + 500 ms), as

shown in Fig.6(e). In our previous study, we observe

that barometer readings on smartphones do not change

much in a short period of time unless users change their

floor levels. Hence, the change of barometer readings

can be used to recognize the floor change activities. To

do this, we extract the first derivative of the barometer

readings and the resulting curve is shown in Fig.6(f).

We can see from Fig.6(f) that the change of barometer

readings is transformed to the crest when going up and

the trough when going down. The crest and the trough

are sharp when taking elevators and smooth when tak-

ing escalators and stairs. The start time (st) and the

end time (et) of the activity are the time of the left and

the right edge of each crest or trough respectively.

To detect these activities, we calculate the area

size of each crest or trough. If it meets certain con-

ditions, a floor change activity is detected. In de-

tail, each area is defined as a continuous and closed

region formed by the x axis and the curve. The

region is located below or upon the x axis, which

Table 1. Barometer Sensor Parameters
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Fig.6. Properties of smartphone’s barometer and floor change activity detection by barometer readings. (a) Barometric pressure
changes by time. (b) Barometer reading drift between smartphones. (c) Floor change detection accuracy. (d) Raw barometer readings.
(e) Smoothed barometer readings. (f) First derivative value of the readings.

should meet the following conditions: 1) lasted time

between 3 and 120 seconds, and 2) area size bigger

than 1.0. Fig.6(f) shows the areas of different ways

of floor changing. We define a floor change activity as

A = (ST ime,ET ime, SBaro,EBaro), where ST ime is

the start time of an activity, ET ime is the stop time of

an activity, and SBaro and EBaro are the barometer

reading at ST ime and ET ime, respectively.

In B-Loc, we do not impose any constraint on the

ways users carry or use their smartphones. A smart-

phone can be held on hand, placed into a pocket or

bag, or used to make/receive a phone call, etc. This

certainly offers a great advantage over the accelerator-

based activity recognition[13]. We conduct experiments

with two users using three different smartphones under

real-life situations in three different buildings. Fig.6(c)

shows the accuracy of detecting floor changes. The

results show the average accuracy using barometer is

about 98.3%.

It is worth knowing that barometer readings at this

stage are used for real-time floor change activity detec-

tion on smartphones. After detecting a floor change
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activity, we can get the magnetometer data trace when

the user is moving between floors (from A.ST ime to

A.ET ime), but the specific floors are unknown. If we

know the floors, we can easily build the mapping ta-

ble by extracting the magnetic field signature from the

magnetometer data trace. We will show at a later stage

(Subsection 3.5) how to get the floor levels of the floor

change activity.

3.3 User Encounter Detection

In a multi-floor building, people often encounter

each other in the elevators, or on any floor level. FTrack

detects user encounters for any user who is in the S

state, i.e., when users are staying on any floor level. To

detect encounters, we take a simple approach by mea-

suring the received signal strength indicator (RSSI) of

the Bluetooth radio on the mobile phone. When the

RSSI level grows higher than a threshold, we can con-

clude that the two users are in close proximity (i.e.,

they encounter each other). The device-to-device com-

munication is not needed. We just need the Bluetooth

open. An open Bluetooth will periodically scan the de-

vices around, get the ID and receive the signal strength

of the devices available. The approach guarantees a

high true positive (TP) rate (i.e., the encounters de-

tected are true encounters). Although there may be

some missing detections due to signal variation in in-

door environments, it does not affect the operation of

FTrack. Another approach[9], detecting encounters by

playing and listening to a specific tone at inaudible fre-

quencies, can be used at the price of complexity and

computation cost.

Now more and more smartphones support Blue-

tooth 4.0, and the Bluetooth Low Energy (BLE) tech-

nology can provide considerably reduced power con-

sumption and cost while maintaining a similar com-

munication range as before, making our solution more

efficient. We test the performance of our encounter de-

tection approach by the following experiment. Three

users are walking randomly in two floors, and each user

carries two mobile phones: one in the pocket for en-

counter detection, and the other one held in hand for

the ground truth recording. For the result in Fig.7,

there are totally 108 real encounters, 80 detected, and

28 missed, which indicates an accuracy of 72%. This

result does not seem good, but is enough for FTrack.

We do not require to detect all encounters.
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Fig.7. Encounter detection accuracy.

3.4 User Trails

FTrack records user trail as a sequence of the states

of S and M, containing four types of information. They

are user encounters, going up/down, the traveling dis-

tance between floors and the magnetometer data trace

when the user is moving between floors. User trails

typically begin and stop with the S state (since a user

must be present on a floor when entering a building).

The structure of the S state is defined as

(UserID, StartT ime,EndT ime,Encounters), where

UserID is the ID of the user, StartT ime and EndT ime

are the start and the end time of the S state, and

Encounters is a structure which records user en-

counters if any. Encounters is defined as a set

of (ID, T ime), where ID is the encountered user’s

ID and T ime is the time when the encounter oc-

curs. When we detect a floor change activity A,

we get an M state. The structure of the M state

is defined as (UserID,Distance,Direction,NTrace),

where UserID is the ID of the user, and Distance is

the altitude change when the user changes the floors,

which can be computed by |A.SBaro−A.EBaro|/0.12.

Direction is the direction of the floor change activity

which can be Up (going up when A.SBaro > A.EBaro)

or Down (going down when A.SBaro < A.EBaro).

NTrace is the magnetometer data trace collected when

the user is moving between floors (from A.ST ime to

A.ET ime). We represent a magnetometer data sam-

ple N by N = (t,m), where t is the time for sampling,

and m is the norm of the magnetometer readings vector

in three directions at time t. The magnetometer sam-

ples arriving in time order form a magnetometer trace,

which is represented by NTrace = (ID,N1, N2, ...),

where ID is the identity of the user.

User trails are collected by mobile clients and trans-

ferred to the server periodically.
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3.5 Grouping and Merging

The historical information contained in user trails

is used to infer the number of the floors. We illustrate

this process using an example, as shown in Fig.8. As-

sume that we have five users in a 5-floor building, at

the starting point, users 1, 3 and 5 are on the ground

floor, user 2 is on the 3rd level, and user 4 is on the 2nd

level. User 1 takes the elevator from the ground floor

to the 5th floor level, while the elevator stops on the

3rd and the 4th levels, respectively. User 1 encounters

user 3 on the ground floor, users 2 and 3 in the elevator

on the 3rd level, user 2 in the elevator on the 4th level,

and finally user 5 in the elevator on the 5th level. If any

two users who are in the S state encounter each other,

it is obvious that they are on the same floor. Based on

this rule, we generate many groups, indicated by dot-

ted lines in Fig.8. By knowing the sequence of mem-

bers joining and leaving a group, we can infer whether

a group is at a higher level than another. We can then

sort all the groups from the lowest to the highest level.

Finally, each group can be mapped to a corresponding

floor.

User 1 User 2 User 3 User 4 User 5 

Group 1 

Group 2 

Group 3 

Group 4 

Group 5 

d=d d d 

d=d d d 

By the Grouping
Algorithm

: S  State 

: M State 

By the Merging
Algorithm

di  
      :  Distance of Mi 

Ti  .   Trail of User i

T T T T T

Fig.8. Grouping and merging.

Finding the total number of floors depends on the

number of trails. The more the segments we collect,

the faster the result we obtain. In a multi-floor build-

ing, if there are users on each level and at least one

group on each level (we name the trails collected com-

plete trails), we can ensure the completeness and cor-

rectness of the result with a high probability (we will

show our analysis in Subsection 4.3). However, collect-

ing the complete trails takes time which may be longer

in a building with less crowds. To accelerate the group-

ing process, we propose the merging algorithm, which

is capable of inferring additional knowledge based on

the information contained in the trails. The algorithm

is designed according to the following rules.

Rule 1. For people on the same floor initially, af-

ter they travel towards the same direction (i.e., up or

down, maybe at different time) for the same distance,

they must end up on the same floor.

To formulate the rule, we define the following propo-

sitions.

A1 : ∃{Sm,Mm, Sm+1} ⊆ TSi,

A2 : ∃{Sn,Mn, Sn+1} ⊆ TSj,

A3 : Mm.distance = Mn.distance,

A4 : Mm.direction = Mn.direction,

A5 : {Sm, Sn} ⊆ G,

A6 : {Sm+1, Sn+1} ⊆ G′,

where TSi is a trail of user i, S and M represent the

S and the M states, respectively, and G and G′ are

groups. Rule 1 is then formulated as follows:

R1 : A1 ∧ A2 ∧ A3 ∧A4 ∧ A5 → A6.

For example, users A and B first encounter each

other on the ground floor (user A is in state Sm and

user B is in state Sn, Sm and Sn are in the same group

based on the grouping algorithm). Later, each of them

takes the elevator up at different time points. If they

travel with the same distance, and end up in state Sm+1

for user A and Sn+1 for user B, we can infer that Sm+1

and Sn+1 are in the same group although they do not

encounter on the new floor.

Following the same principle but performing a back-

ward derivation, we have the second rule.

Rule 2. Suppose people travel the same distance

and in the same direction (i.e., up or down). If they

end up on a floor and encounter each other, they must

come from the same floor.

Rule 2 is formulated as follows. R2 : A1 ∧A2 ∧A3 ∧

A4 ∧ A6 → A5.

By applying both Rule 1 and Rule 2, the groups

generated by the grouping algorithm can be merged

into larger groups. We do this by the merging algo-

rithm.

After obtaining a number of groups, we sort all the

groups by examining the state changes from one group

to another. As a result, we obtain one or more directed

graphs, in which each vertex represents a group and

each directed edge represents the floor level informa-

tion, pointing from a lower level to a higher level or a

higher level to a lower level. If we only pick one type

edge, pointing from a lower level to a higher level for ex-

ample, the directed graph is basically a directed acyclic
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graph (DAG). Finally, we select the longest path in the

DAG, and the vertices in this path have a one-to-one

correspondence to the floor levels. Thus the floor level

of the groups and the S states in them are known, which

means we know which floors the M.NTrace is collected

from.

Note that if there are more than one longest path,

we can merge them based on the following rule. Since

the groups in the longest paths have a one-to-one cor-

respondence to the floor levels, the groups which corre-

spond to the same floor level from different paths can be

merged. As a result, we obtain a unique, longest path

for the mapping table generation described in Subsec-

tion 3.6.

3.6 Mapping Table Generation

We are now ready to generate a table which

maps the magnetic field signature to the floors. For

each floor pair (i, j) in the final path we obtain, we

first find the corresponding groups Gi and Gj for

floors i and j, respectively. We then search for all

segments, {Si,M, Sj}, from the entire trails, where

Si is in Gi and Sj is in Gj , and get Distance

and NTrace from M . Finally, we obtain a tu-

ple (FromFloor, T oF loor,Distance,MF
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absolute value as the feature and calculate the mean

squared error (MSE) of the two waveforms. Since the

users’ phones have not been calibrated (i.e., the read-

ings of the two phones are different at the same place),

there exists an unknown constant drift. This will cause

errors when calculating the MSE value. In our ap-

proach, we use the variance as a feature to capture the

fluctuation change instead of raw fingerprint values to

avoid calibrating different magnetometers. For magne-

tometer traces, we obtain the variance as follows.

V arM(t) = M(t+∆t).m−M(t).m.

For example, Fig.12 shows the variance of the two

magnetometer data traces of Fig.11.
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3.7.2 Comparing Two Traces with DTW

Since the sampling rate of different smartphones

may have little difference, a pair of variation traces

we collect between the same floors will have different

lengths of data, which cannot be handled by MSE. In

our approach, we apply the dynamic time warping dis-

tance measure (DTW)[20] which is less sensitive to the

data length shift. To calculate the DTW, we first align

the two variation traces. For example, for two time

series of magnetometer variance V arMs and V arMl,

where

V arMs = s1, s2, s3, s4, ... , sn,

V arMl = l1, l2, l3, l4, ... , lm,

sequences V arMs and V arMl can be arranged to form

an n-by-m plane or grid, as shown in Fig.13, where

each grid point(i, j) corresponds to an alignment be-

tween elements si and lj. A warping path, W , maps or

aligns the elements of V arMs and V arMl.

W = w1, w2, w3, w4, ... , wk.

Time Series 1
Time Series 2

Fig.13. Dynamic time warping[20].

The dynamic time warping distance between two

time series V arMs and V arMl is then:

DTW (V arMs, V arMl)

= ∂(First(V arMs), F irst(V arMl)) +

min{DTW (V arMs, Rest(V arMl)),

DTW (V arMl, Rest(V arMs)),

DTW (Rest(V arMs), Rest(V arMl))}, (1)

where First(x) is the first element of x, Rest(x) is the

remainder of the time series after First(x) has been re-

moved, and ∂(i, j) = (si − lj)
2. From the DTW value

in (1), we get the numeric measure of the similarity

between two user variation traces.

In Subsection 3.6, we generate the mapping table.

For a floor pair (i, j), we get a group of NTraces in

MF
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3.7.3 Comparison with Mapping Table

When the user travels in the building, the floor

change activity can be detected and the magnetic field

signature can be extracted using the mobile phone’s

barometer. From the floor change activity detection

result, we get the height change of the user ∆h. Then

we pick up the possible traces from the mapping table

based on ∆h. For example, in the mapping table of

Fig.10, if a user went from floor 5 to floor 3, the floor

change activity detection result shows the user went

down with a distance of 8 m. From the mapping ta-

ble, we can get two possible pairs of floors and eight

possible traces based on 8 m. The floor pairs are (5, 3)

and (4, 2), and there are eight traces because there exist

four different ways for a user to change the floors (by

elevators 1 and 2, stairs or escalator). Note that the

magnetometer traces of floor pairs (5, 3) are the reverse

of floor pairs (3, 5). If the signature of (3, 5) is not di-

rectly contained in the mapping table, it is gotten by

the merger of (3, 4) and (4, 5).

Here we get the user magnetometer trace and the

possible traces (8 in this example) from the mapping

table. We calculate the DTW distance between the

user trace and the selected possible traces to find the

one with the minimum distance. We conclude the floor

pair of the selected trace is the floor pair of the user

traveled. Thus the user’s floor level is known.

3.8 Design for Robustness

3.8.1 Indoor/Outdoor Detection

For indoor/outdoor detection, we hope that every

time we can locate the user into the right building.

However, our recognition approach is not perfect, re-

sulting in some false detections. For example, in the

center of the city where there are buildings with high

density, our hybrid indoor/outdoor detection approach

may locate the user into the wrong building (i.e., a

nearby building). In this case, we discuss the effec-

tiveness in each phase of FTrack separately.

In the first phase of FTrack, if a user is wrongly lo-

cated into another building, as showed in Fig.14, user

e in building B is wrongly located to building A by

FTrack. When FTrack generates the mapping table of

building A using the encounter information, since user

e is actually in building B, he/she will never encounter

with any user in building A, and this fault case will not

affect the generation of the mapping table. In building

B, when FTrack finds user g encountered with user e

in another building, FTrack will discard this encounter

information. As a conclusion, when a user is wrongly

located to another building, it will not affect the map-

ping table generation in any of the two buildings.

a  
e 

c 

b  

d  

g  

f  

: User  : Encounter  a 

Building A Building B  

i 

User e Is in Building B But Is Wrongly Located to
Building A by FTrack

  

 

 

Fig.14. Indoor/outdoor detection fault analysis.

In the second phase, the building is used as an addi-

tional information when FTrack uses the mapping table

to locate a user. When FTrack locates the user to the

wrong building, we can infer that the floor informa-

tion must be invalid. The conclusion is that whether

FTrack locates the user into the right building is mainly

determined by whether FTrack can locate the user to

the correct floor. It does not affect the accuracy but is

determined by the accuracy of FTrack.

3.8.2 Fault Analysis

As described above, FTrack relies on the detection

of user activity and user encounter to operate cor-

rectly. However, the existing sensing and recognition

techniques are not perfect, resulting in miss or false de-

tections. In this subsection, we introduce the design for

robustness, considering various fault cases.

For user activity detection, there are three cases of

false detections:

F1: an activity occurs, but it is not recognized by

FTrack;

F2: an activity is recognized by FTrack, but it ac-

tually does not occur;

F3: an activity occurs, but it is recognized as a false

activity or with wrong duration.

F1 and F3 are false positives, and F2 is false nega-

tive.

For user encounter detection, there are two fault

cases:
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F4: FTrack detects an encounter between two users,

but they are located at different floors, e.g., typically

adjacent floors;

F5: an encounter occurs, but it is not detected.

F4 is false negative and F5 is false positive.

We use Fig.15 to illustrate the above fault cases.

Fig.15(e) shows an example graph, resulting from a

fault case, which all the S states on floors 2 and 3

are put into the same group (note that users in the

same group who are in the S states should come from

the same floor). This inconsistency could be caused by

one of the four aforementioned false cases (i.e., F1∼F4).

Fig.15(a) shows the correct graph where user 3 goes up

from floor 2 to floor 3 where he/she encounters with

user 1. However, in the case of F1 where state G is not

recognized, states C and F will be grouped together, re-

sulting in the fault graph shown in Fig.15(e). Fig.15(b)

shows the correct graph when user 1 encounters with

user 3 on floor 2. If case F2 occurs (i.e., state C is reco-

gnized, but it actually does not occur), states C and F

will be grouped together, resulting in the same graph

shown in Fig.15(e). Fig.15(c) also shows the correct

graph when user 3 goes up from floor 1 to floor 3 and

encounters with user 1. If F3 occurs (i.e., state F is

not correctly recognized or the duration from state G

to state F is wrong), states F and E will be grouped

into the same group. Fig.15(d) shows the correct graph

when no encounter occurs between user 1 in state C

and user 3 in state F . However, in the case of F4 where

an encounter between them is falsely detected, states C

and F will be grouped together, resulting in the same

graph shown in Fig.15(e).
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Fig.15. Cases illustration. (a) Fault case F1. (b) Fault case F2.
(c) Fault case F3. (d) Fault case F4. (e) Resulting graph from
inconsistency.

Fault cases F1∼F4 may cause inconsistency leading

malfunction in FTrack. Detecting such inconsistency

is important to the robustness design of FTrack. Note

that we do not handle F5 here as it has been taken

care of in both grouping and merging algorithms, as

explained in Subsection 3.3.

3.8.3 Inconsistency Detection

Detecting inconsistency is done every time when

a new group is formed by the grouping or merging

algorithm. FTrack detects inconsistency by checking

whether all S states in the same trail segment are in

different groups. If there exist two S states in the

same group (e.g., states C and D of user 1 shown

in Fig.15(e)), a fault case must occur because the S

states in the same trail segment must be on different

floors, and the S states on different floors should not be

grouped into the same group. Hence, we have the rule

as follows.

Rule 3. For the S states in a trail segment, if two

or more of them are put into the same group, an incon-

sistency is found.

To formulate the rule, we define the following propo-

sitions.

A6 : ∃{Sm,Mm, ... , Sn} ⊆ TS,

A7 : {Sm, Sn} ⊆ G,

A8 : there exists inconsistency in G,

where TS is a trail segment, S and M represent the S

and the M states, respectively, and G is a group. Rule

3 is then formulated as follows: R3 : A6 ∧ A7 → A8.

3.8.4 Removing Inconsistency

Removing inconsistency is also done during the pro-

cesses of grouping and merging. We use a more com-

plicated example shown in Fig.16 to illustrate the steps

of removing inconsistency. We first find all inconsis-

tent pairs of S states (e.g., (A,B) and (C,D)). We

then find the shortest path between the two S states

in each pair, and they are Path
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the trail segment will be divided into two trial segments.

We discover the shortest path because it contains the

minimum number of the S states. Since there must

exist a fault in this path, removing their encounter re-

lationship will remove the inconsistency. If fault case

F1 or F2 occurs, the wrongly detected S states often

cause more than one inconsistency, because every en-

counter after the wrong detection is a fault encounter

of F4. Therefore, if an S state or two adjacent S states

appear more than once in the paths to be removed, we

remove them.

B
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4.3 Proofs of Completeness and Correctness

It is shown in [21] that the random graph mentioned

in Subsection 4.1 is almost surely connected if

p′ >
1
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5.1.1 Vertical Mobility Model

In the vertical mobility model, we simulate the pro-

cesses of taking the elevator/escalator and walking on

stairs. The simulation process of taking the elevator is

divided into cycles, and each cycle simulates the pro-

cess that the elevator goes up from, or down to the

ground floor, with people entering and leaving the ele-

vator from or to any levels. We model the process of

people entering the elevator from the ground floor as

the Poisson distribution. The expected number of the

Poisson distribution is set to half of the maximum load

of a typical elevator (i.e., eight persons). People on the

ground floor may go up to any floor with a probabi-

lity of 1/(f − 1), where f is the number of floors of

the building. From any other floor, a person may enter

the elevator with a probability of pe, and go to other

(f − 2) floors with an equal probability 1/(f − 2 + k),

where k is a constant, except to the ground floor which

is k times bigger (i.e., k/(f − 2 + k)). When people

enter or exit the elevator from a floor, the number of

people on that floor gets updated. By multiplying pe,

we obtain the number of persons entering the elevator.

Each cycle starts from the ground floor. We first com-

pute the number of people entering the elevator and

which floor they want to go, and the elevator goes up

from the ground floor, stops when people exit or enter

the elevator, and comes back the ground floor when the

cycle ends. We assume five minutes for each cycle on

average, i.e., about 100 users per hour. User trails are

collected continuously over the time. User encounters

in the elevator are also recorded. Simulating the pro-

cess of taking escalators or walking on stairs is rather

simple: each user is given a random destination floor,

and then he/she will go there by taking the escalator

or walking on stairs.

5.1.2 Horizontal Mobility Model

To provide encounter information, we use two ap-

proaches. The first one is based on a probability which

indicates how often users encounter each other in the

building. We set the probability to 0.01, although the

value in a real scenario may be much larger, and we set

a fixed probability for all the users for simplicity. In the

second approach, inspired by [22], we propose a hori-

zontal mobility model to simulate user movement on

the same floor. This model is more realistic and com-

plex. We describe the detail for both an office building

and a shopping mall environment as follows. The hor-

izontal mobility model relies on a floor plan which

typically consists of rooms or shops (they are the des-

tinations) and corridors. For example, Fig.19(b) shows

a floor plan of a local office building. We first divide
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the entire corridor area into blocks whose size is limited

by the range of our encounter detection (i.e., typically

2∼3 meters). If two users appear in the same block,

the model defines that they encounter with each other.

These blocks are then interconnected to form a graph

which is shown in Fig.19(c). A node in the graph repre-

sents a block, corresponding to some user destinations

(e.g., rooms or shops). Each user is assigned with an

initial block which is near to the entrance of the eleva-

tor/escalator, and the staircases. User walking speed

and the time duration staying in the blocks follow the

Poisson distribution. To generate the movement trace

of a user in the simulation, we set the parameters as

shown in Table 2.

Fig.19(a) shows one of the floor plans in the shop-

ping mall. There are 15 shops and one corridor, and

the corridor is divided into 23 blocks. Users arrive or

leave this floor by escalators or elevators through blocks

4, 7, 8 and 17. For each user, we first randomly choose

the shops to visit based on the popularity of each shop.

The number of shops a user visits follows the Poisson

distribution. The expected number of the Poisson dis-

tribution is set to half of the number of shops. We

randomly assign the popularity for each shop while in

reality it can be computed based on the number of visi-

tors. We then generate the moving trace of the user

which is shown in Fig.19(a).

To simulate the process of user walking on this floor,

we set the walking speed to 0.8 m/s[23], which is slower

than the average human walking speed (i.e., 1.4 m/s).

The time duration staying in each shop is modeled

based on the Poisson distribution with the expected

number of 1 minute and 10 minutes for window and

non-window shoppers, respectively. For users in the

same shop, we simulate their encounters with a proba-

bility p, where p can be different from one shop to an-

other. All the encounters of users in a block or a shop

will be recorded. Similar settings are applied to the

office building as shown in Fig.19(b).

FTrack computes the mapping table using the

user trails generated and the encounter information

recorded, which include 5% of noise. The process runs

recursively, and we report our results in the next sub-

section.

5.2 Simulation Results

Figs.20(a) and 20(d) show the CDF when the cor-

rect number of floors is found by both the grouping

and merging algorithms, and the grouping algorithm

only, respectively. While the results show that it re-

quires less time with fewer floors for both cases, with

the same number of floors, the combination of group-

ing and merging algorithms computes the correct re-

sults much faster. One observation is that for a tall

building (i.e., 20-floor in the figures), the CDF for the

combination of grouping and merging algorithms grows

steeply, demonstrating the effect of the merging algo-

rithm. Fig.20(a) also shows that our algorithms find

the correct number of floors in less than four hours in

a 10-floor building, and less than 10 hours in a 20-floor

building. Note that Figs.20(a) and 20(d) are the results

with a fixed probability of user encounters, and the mo-

bility model is not used. In Fig.21(a), we show the CDF

for both the shopping mall and the office building with

the horizontal mobility model. Fig.21(a) shows that

the correct number of floors is found in less than 1.5

hours in a 10-floor building, and less than 5 hours in

a 20-floor office building. The time taken to find the

correct number of floors with the horizontal mobility

model is much less than that without this model, and

it clearly demonstrates the potential and efficiency of

FTrack when applied in a real scenario. One observa-

tion is that the time taken to find the correct number

of floors in the shopping mall is less than that in the

office building with the same floor levels.

Fig.20(b) shows the number of groups computed

over time for different building cases. We observe a

similar trend for all the cases. In the beginning, the

number of groups grows since more people travel be-

tween different levels (i.e., more encounters). When

more groups are merged, the number of groups de-

creases and converges to a value which is equal to the

maximum number of floors for each case.

Table 2. Simulation Parameter Settings
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Fig.20. Simulation results with a fixed probability of user encounters. (a) CDF when the correct number of floors is found by both the
grouping and the merging algorithms. (b) Number of groups. (c) Number of floor pairs. (d) CDF when the correct number of floors is
found by the grouping algorithm. (e) Accuracy of FTrack. (f) CDF when the correct number of floors is found (f = 20, p = 0.01).

Figs.20(c) and 21(b) show the time spent by our al-

gorithms on creating the complete mapping table with

a fixed user encounter probability and the horizontal

mobility model, respectively. The maximum number

of tuples (i.e., floor pairs) for a building with f floors

can be calculated by f(f − 1)/2. For example, we have

10, 45 and 180 tuples for 5-, 10-, and 20-floor build-

ings, respectively. With enough time, we can obtain

all the tuples. Higher buildings require much longer

time because 1) more tuples will be computed, and 2)

some tuples may be rare (e.g., the elevator rarely goes

up from the ground floor to the 20th floor without a

stop in the middle). Fig.20(c) also shows that our al-

gorithms are capable of computing most of the tuples

quickly.

Figs.20(e) and 21(c) show the accuracy of FTrack

with a fixed user encounter probability and the hori-

zontal mobility model, respectively. Both figures show

that the accuracy increases with more tuples computed.

For example, FTrack achieves an accuracy of over 90%
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after 2.2 hours in our simulation. When the complete

set of tuples is obtained, the accuracy achieves near

100%. While the merging algorithm is effective, its ef-

ficiency is significantly influenced by user encounters.

We run the merging algorithm with different encounter

probabilities and the result is shown in Fig.20(f), where

t is the time when the correct number of floors is found

in a 20-floor building. The figure shows that the re-

sult is obtained faster with a higher probability of user

encounters.
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Fig.21. Simulation results with horizontal mobility model. (a)
CDF when the correct number of floors is found. (b) Number of
floor pairs. (c) Accuracy of FTrack.

5.3 Field Study

Our simulation results show that the performance of

FTrack is influenced by the probability of user encoun-

ters. We are interested in how FTrack behaves under

a real-world encounter probability. We conduct a field

study which involves 15 mobile users in three different

buildings as shown in Fig.22, including 10 university

students, three professors, one cleaner, and one secu-

rity guard. Among them, three are females and 12 are

males, and all aged between 20 and 40. The information

of the buildings is shown in Table 3. As an example,

the floor layout of the office building is shown in Fig.23.

We use different Android smartphones (e.g., Samsung,

MOTO and HTC). Each smartphone is equipped with

an embedded barometer and a mobile network data

connection (i.e., GPRS or 3G). The field study is con-

ducted as follows. We implement a prototype system

and publish it on the website 3○. The users all install

it on their smartphones. In every building, users are

told to walk and change floors randomly, and each user

can choose either taking the elevator/escalator or walk-

ing on the stairs as he/she wish. For example, in the

office building, following their daily routines, student

volunteers usually go to their offices for work in the

morning and leave in the evening. They may go out

for lunch/dinner, or attend classes in other buildings

in the morning or afternoon. They may go to other

floors, for example, playing table tennis at floor 7, col-

lecting postal mails/articles at floor 2, attending meet-

ings and meeting with their supervisors at floors 3∼10.

The cleaner performs cleaning tasks at certain floors

each day. The safety guard stays mostly at the ground

floor, but he/she may occasionally patrol some random

floors at any time of a day.

   (a) (b) (c)

Fig.22. Buildings in the field study. (a) Shopping mall. (b)
Office building. (c) Hotel building.
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Table 3. Buildings Information in Field Study
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also shows that by the merging algorithm, FTrack

obtains the complete trails more effectively than the

grouping algorithm.

Fig.24(b) shows the number of groups generated

over time. While we observe a similar trend to that

seen in our simulation, the number of groups in the field

study takes longer time to converge compared with that

in our simulation. One explanation is that we observe

that users in our field study do not stay on a floor for a

long time, and they do not encounter each other more

often in this special situation, resulting in many indi-

vidual, discrete groups which require a longer time to

merge.

Fig.24(c) shows the accuracy of FTrack. At the

point of correctness, the accuracy increases steeply and

faster in lower buildings. The other observation is that

in the office building, the accuracy approaches 92% in

two hours, and reaches 97% in three hours. All build-

ings can get an accuracy of 96% in about three hours.

5.5 Energy Consumption

In the first phase, FTrack uses crowdsourcing-based

approach to generate the mapping table of every build-

ing. In this phase, FTrack client in the smartphone

keeps GPS, light sensor and magnetometer sensor on

until the user goes into the building. The sampling

rate is one sample every 10 seconds for GPS, one sample

per second for light sensor and five samples per second

for magnetometer sensor. When the user is moving in

the building, the barometer, magnetometer and Blue-

tooth should be kept on all the time. The sampling

rate is 2/5 samples per second for barometer and mag-

netometer sensor, one sample every five seconds for the

Bluetooth. Besides the energy consumption of sensor

sampling and data computing, FTrack client will con-

sume some energy when uploading the user trace to

the cloud server every 10 minutes. This is all the en-

ergy consumption source of FTrack in the first phase.

It is important to notice that the first phase to build

the mapping table is once for all and can be finished

in a short time (five hours in our field study), and thus

this energy consumption is acceptable.

To verify the real energy consumption, we evalu-

ate the energy consumption of the first phase using a

Samsung Galaxy Nexus smartphone running Android

4.1 OS. The power consumption is computed based on

PowerTutor, a diagnostic tool for analyzing system and

application power usage from the Android market. The

result shows that the mobile phone’s battery level drops

from 100% to 30% after running this experiment for six

hours. The power consumption of our data collection

application is about 225 mW (i.e., 51.6% of the total

consumption in the standby mode).

In the second phase, FTrack is working in the nor-

mal mode, and it keeps on getting 2/5 samples per sec-

ond for barometer and magnetometer sensor. When

a floor change activity is detected, FTrack locates the

user’s floor level by looking up the previously down-

loaded mapping table. In this process, the energy is

mainly consumed by the sampling of barometer and

magnetometer sensor, which is minimal.

We sum up the energy consumption in different

phases of FTrack in Table 4. Similar to other localiza-

tion techniques, the first crowdsourcing phase (training

phase) of FTrack consumes more energy, but we be-

lieve that this is acceptable because this phase is once

for all and can be finished in a short time. In the sec-

ond phase, FTrack is very energy efficient and makes

the system practically useful.

5.6 Energy Consumption Optimization

In order to get even better energy consumption

performance, we take advantage of some efficient ap-

proaches in FTrack. In the first phase, GPS and Blue-

Table 4. Energy Consumption Source of FTrack
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tooth cost most of the energy. An obvious way to reduce

the energy consumption of GPS is to reduce the sam-

pling rate, resulting in the low accuracy of in-building

detection, which is unacceptable. In our approach, we

try to save energy by turning on and off the GPS at the

appropriate time, instead of keeping the GPS on. We

only turn the GPS on when the light intensity is higher

and the magnetic field variance is smaller than a thresh-

old. Once a user is detected to be inside a building, the

GPS will be turned off immediately. This approach re-

duces the GPS energy consumption dramatically. For

the Bluetooth, we successfully reduce the power con-

sumption by making use of the Bluetooth Low Energy

(BLE) technology, which is designed to provide signifi-

cantly lower power consumption compared with the tra-

ditional approach.

In the second phase, the highest energy consump-

tion source is the sampling of barometer and magne-

tometer readings. The barometer sampling cannot stop

because users may change floors at any time. For mag-

netometer readings, since we only need magnetic field

data when the user is changing the floors, we change

the sampling strategy to only start sampling when the

user is changing floors.

5.7 Comparison

We compare FTrack with two typical solutions, 1)

RADAR[6] which uses Wi-Fi fingerprints to locate the

user, and 2) SkyLoc[24] which uses GSM fingerprints

to address the floor localization problem. We compare

them in the following aspects, 1) accuracy and preci-

sion, 2) energy efficiency, 3) scalability and cost, and

4) security and privacy. The accuracy and energy effi-

ciency result is obtained by our application called “Bit

movement at school”, which is a campus service ap-

plication which provides sport and study information

to students based on their locations, and 28 students

use this application. We implement three location ser-

vices using the three approaches respectively and test

their accuracy and energy performance. The results are

summarized in Table 5.

Accuracy and Precision. We only measure the ac-

curacy of locating the user to the right floor. Under the

same conditions, the results are 96% by FTrack, 89%

by RADAR, and 68% by SkyLoc, and the accuracy is

slightly different from the results reported in the origi-

nal papers, but they have no significant difference. Our

experiment shows that FTrack outperforms Wi-Fi and

GSM fingerprint based approach.

Energy Efficiency. Under the same situations, the

results are FTrack 32 mW, RADAR 58 mW, and Sky-

Loc 62 mW. The sampling of barometer and mag-

netometer sensors consumes similar energy compared

with sampling the Wi-Fi and GSM. RADAR and Sky-

Loc need to connect to the server for location calcu-

lation, while FTrack does this locally. In the training

phase, which is once for all, the energy consumption

performance is acceptable. RADAR and SkyLoc need

the developer to war-drive every position of the build-

ing, and the energy consumption is concentrated in the

developer’s smartphone. FTrack uses crowdsourcing

to generate the mapping table, and the energy con-

sumption appears in every user who participates in the

crowdsourcing process.

Scalability and Cost. RADAR and SkyLoc can only

work in the buildings with full Wi-Fi or GSM infras-

tructure, which may not be available everywhere. In

developing countries, many buildings have no or sparse

Wi-Fi which is not dense enough for localization. Even

in developed countries, studies show Wi-Fi may not be

fully available in many buildings. FTrack has a better

scalability because it does not rely on any infrastruc-

ture of the building. RADAR and SkyLoc need de-

velopers to war-drive every position of the building to

collect the Wi-Fi and GSM fingerprints. This is both

time-consuming and labor-intensive. On the contrary,

FTrack is based on crowdsourcing, which means the

process can be finished in a natural way. Nobody needs

to do anything specifically.

Security and Privacy. RADAR and SkyLoc need

a location server to calculate the location of the user,

the security and privacy cannot be guaranteed if the

server is attacked. In FTrack, the mapping table of a

building is small and can be easily downloaded to the

user’s smartphone. The location process can be done

locally on the smartphone, which has better security

and privacy performance.

Table 5. Summary and Comparison of FTrack with Similar Work
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6 Related Work

Existing techniques for localization rely on deployed

radios (e.g., Wi-Fi access points, GSM base stations)

and make different assumptions about infrastructure

and calibration. RADAR[6] operates on Wi-Fi fin-

gerprints, and is capable of achieving high accuracy

in indoor deployments. However, RADAR needs to

calibrate Wi-Fi signal strengths at many physical lo-

cations in a building. The calibration process is

time-consuming and may not scale over larger areas.

PlaceLab[5] uses Wi-Fi and GSM signals. A radio map

is created by war-driving car-accessible roads and map-

ping the Wi-Fi access points or GSM-based stations

to GPS coordinates. The radio map is distributed to

mobile devices which localize themselves by comparing

overheard access points or GSM-based stations with

those recorded in the map. Some recent approaches

such as LiFS[8] use crowdsourcing to reduce the war-

driving cost to some extent, but this paper involves a

complicated training process. Different from these sys-

tems, FTrack does not require any pre-installed infras-

tructure.

Sensor-assisted localization methods have been pro-

posed with the popularity of smartphones. These sys-

tems typically make use of accelerometer and electronic

compass on the smartphone. The basic idea is to use

acceleration data to measure the walking speed, and

electronic compass to compute the orientation of a user.

To overcome inherent noise in sensor readings, Constan-

dache et al.[9-10] proposed a better approach by identi-

fying acceleration signatures in human walking patterns

(i.e., the nature up and down bounce), and then mul-

tiplying step count with the user’s step size to obtain

the location. However, Escort[9] leverages fixed beacons

for calibration, and CompAcc[10] makes use of possible

walking paths extracted from Google Maps.

SkyLoc[24] uses a GSM fingerprinting-based ap-

proach to address the floor localization problem using

mobile phones. It identifies the floor correctly in up to

73% of the cases and is within two floors in 95% of the

cases. It leverages on GSM signals which may vary sig-

nificantly in indoor environments. The training process

in SkyLoc is time-consuming. In addition, the solution

may not be scalable since training is required for each

building.

Several recent approaches[8,13-14] use crowdsourcing

to construct the floor map for localization; however,

they rely on Wi-Fi infrastructure and require compli-

cate training to achieve good accuracy. Paper [18] stud-

ies on the properties of mobile-embedded barometers

across a number of buildings, but fails to solve the

problem of using the barometer to determine the floor

of a user. There was another solution proposed by

Wang et al.[19] before the mobile-embedded barome-

ters appeared. Wang et al. used a barometer sensor

to track users’ floor level. As we discussed in the in-

troduction, this approach needs the detail information

of the building and needs to know the initial floor of

every user, which is hard to get. Furthermore, a miss

or wrong detection will cause serious errors in the later

localization. FTrack does not require any calibration

and any prior knowledge of the building, and yet we

achieve high accuracy. It is not a tracking system and

it does not rely on the previous location information.

FTrack detects user activities of changing floor by a

novel barometer-based technique, and it has no assump-

tion of users’ walking pattern or the ways to carry/use

mobile phones.

Our work is similar to a field in AI and robotics in

some ways. The field is called simultaneous localization

and mapping (SLAM). Authors of FastSLAM[25] pro-

posed an algorithm that recursively estimates the full

posterior distribution over robot pose and landmark lo-

cations, and scales logarithmically with the number of

landmarks in the map. The way of building the map by

the moving robot is similar to our approach of build-

ing the map of the building. However, there are still

some differences. 1) Our approach of building the map-

ping table is based on crowdsourcing, which is done by

the combination of information collected from different

users. 2) Our mapping table is a magnetic field signa-

ture map. 3) Our approach does not need to deploy

the infrastructure, and does not need any landmarks.

Particle filter is a very important tool in this area. We

have considered the use of particle filters to improve the

performance of the system.

7 Conclusions

In conclusion, this paper presents a novel, scala-

ble floor localization scheme. FTrack uses the mo-

bile phone’s sensors only, and it requires neither any

infrastructure nor any prior knowledge of the build-

ing. Through crowdsourcing, FTrack is able to find

the magnetic field signature between floors, which can

be then used by mobile users to pinpoint their cur-

rent floor levels. We analyzed different fault cases and

designed an algorithm to improve the robustness of

FTrack. Through our simulation and field studies, we

demonstrated the efficiency, scalability and robustness
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of FTrack, and the results showed FTrack is promising

for real-world deployment.

While FTrack works individually, it can be used to

complement any existing indoor localization system to

achieve better performance. For our future work, we

plan to improve the reliability of user state recognition

by introducing more sensor modalities such as gyro and

audio.
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