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Abstract

The widespread use of RDF-based information necessitates efficient information retrieval techniques in wide-area net-
works. In this paper, we present Dynamic Semantic Space, a schema-based peer-to-peer overlay network that facilitates
efficient lookup for RDF-based information in dynamic environments. Peers in this overlay are grouped based on the
semantics of their data which are extracted according to a set of schemas, and self-organized as a semantic overlay net-
work. To reduce overheads incurred by peer joining, leaving and content changes in a high-dimensional overlay network,
peers are constructed as a one-dimensional semantic space that facilitates efficient routing for both pull and push requests.
A search or a subscription request is only routed to the appropriate cluster that holds related data, thus reducing unnec-
essary search cost and increasing the efficiency of locating information. Through a comprehensive simulation study, we
demonstrate the effectiveness of our proposed techniques.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Resource Description Framework [1] has been
widely recognized as the standard for storing
and exchanging information on the World Wide
Web. RDF statements which describe resources
and their semantics are machine-understandable
and machine-processable, and can be created by dif-
ferent users and widely distributed on the Web. The
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comp.nus.edu.sg (H.K. Pung), daqing@i2r.a-star.edu.sg (D.
Zhang).

distribution of RDF statements provides great flexi-
bility for describing resources and building applica-
tions. With the increasing use of RDF statements,
there is a need to support efficient retrieval of RDF
data in wide-area networks. In recent years, dynamic
applications such as e-business and context-aware
pervasive systems are becoming more and more pop-
ular. Information to be shared in these applications
typically exhibits a variety of dynamic characteris-
tics, e.g., the location of a user may be changed fre-
quently. It is more challenging to provide efficient
information retrieval for such applications due to
the dynamic changes of their data.

One approach is to use centralized search engines
to index RDF data. These indices can be obtained by
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crawling Web pages such as in RDF Google.
Although this approach can provide fast response
to a query, it is difficult to keep these indices up to
date due to dynamism of data sources. In addition,
this approach has limitations such as scalability,
processing bottleneck and single point of failure.
Peer-to-Peer (P2P) approaches have been proposed
to overcome some of these obstacles, and provide
potential solutions for building non-centralized
information lookup systems. P2P systems such as
Gnutella [2] allow nodes to interconnect freely and
have low overlay maintenance overhead, making it
easy to handle the dynamic changes of peers and
their data. However, a query has to be flooded to
all nodes in the network including those nodes that
do not have relevant data. The blind flooding mech-
anism used without any restriction on the scope of
flooding can become very inefficient because of
excessive redundant messages. Other P2P systems
such as Chord [3], CAN [4], Pastry [5] and Tapestry
[6] typically implement distributed hash tables
(DHTs) and use hashed keys to direct a lookup
request to the specific nodes by leveraging on a struc-
tured overlay network among peers. However, data
placement in these systems is tightly controlled based
on distributed hash functions. In dynamic environ-
ments peers may join or leave the system frequently
and data may be changed rapidly; thus higher over-
lay maintenance overhead for updating the relevant
information in the DHT-based overlay networks is
inevitable. Moreover, for certain applications such
as those in context-aware systems [7], it is desirable
but may not be possible to place data in a particular
node (i.e., near the data source) using a hash value.

To facilitate the efficient retrieval of RDF data in
dynamic environments, we present Dynamic Seman-
tic Space (DSS), a schema-based P2P overlay net-
work in which RDF data are organized and
retrieved based on their semantics to support both
pull and push services. In this overlay, data can be
represented by a collection of RDF statements
based on a set of schemas (i.e., ontologies). RDF
statements which are semantically similar are “tied”
together so that they can be retrieved by a query
which has the same semantics. As a result, the sys-
tem is able to forward a query to nodes which are
likely to contain the relevant data.

While the basic idea appears simple, there are
several issues that have to be considered in order
to make the system work efficiently. Firstly, overlay
maintenance cost can be high due to the frequent
changes of peers and their data. Hence, minimizing

overlay maintenance cost is important in designing
the search mechanism in DSS. Secondly, the map-
ping from data and queries to semantic clusters
should not incur much overhead. Thirdly, the num-
ber of semantic clusters used in real-life applications
can be potentially large. To accommodate the heter-
ogeneity of data sources, the search mechanism in
DSS should operate efficiently in a high-dimensional
space without incurring high overhead. Finally, as
data may change rapidly in dynamic environments,
it is important to automatically notify consumers
when changes occur. Hence, DSS should be able
to adapt and scale to data change and growth.

To address these issues, we propose the following
techniques:

e Use ontology-based metadata to extract the
semantics of data and queries. This technique
can map data and queries to the appropriate
semantic cluster(s) with minimum computational
overhead in the presence of frequent peer joining/
leaving or content changes.

e Upon joining the system, peers are grouped and
arranged into a one-dimensional semantic space
where various semantic clusters are organized
and interconnected in a ring space. This structure
enables the mapping of the clusters in a k-dimen-
sional semantic space to a one-dimensional
semantic space, and hence reduces overlay main-
tenance overhead.

e A cluster encoding scheme enables the system
adapt to the number of peers by splitting or
merging clusters. This can result in a system
which has good scalability and load balancing
characteristics. This scheme also enables the use
of parallelism in our system when searching for
data within a semantic cluster.

¢ Deploy both pull and push services in DSS. Con-
sumers can either submit search requests or sub-
scription requests. The latter allows consumers to
be notified whenever data changes occur.

The rest of the paper is organized as follows. We
discuss related work in Section 2. We present the
details of DSS in Section 3, and the evaluation
results in Section 4. Finally, we conclude the paper
in Section 5.

2. Related work

Centralized RDF repositories and lookup sys-
tems such as RDFStore [8] and Jena [9] have been
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implemented to support the storing and querying of
RDF documents. These systems are simpler to
design and reasonably fast for low to moderate
number of triples. However, they have the tradi-
tional limitations of centralized approaches, such
as single processing bottleneck and single point of
failure.

Schema-based P2P networks such as Edutella
[10] are proposed to combine P2P computing and
the Semantic Web. These systems build upon peers
that use explicit schemas to describe their contents.
They use super-peer based topologies, in which
peers are organized in hypercubes for routing
queries. However, current schema-based P2P net-
works still have some shortcomings; queries have
to be flooded to every node in the network, making
the system difficult to scale. Chirita et al. [11] built a
publish/subscribe system on the Edutella P2P infra-
structure. This system uses content advertising,
subscribing and notifying. However, content adver-
tising may create additional overhead. In our sys-
tem, a subscription request is first directed to a set
of potential producer peers in a semantic cluster.
Following that, each producer peer will map the
request against its local RDF data. Crespo et al.
[12] proposed the concept of Semantic Overlay Net-
works (SONs) in which peers are grouped by seman-
tic relationships of documents they store. Each peer
stores additional information about content classifi-
cation and route queries to the appropriate SONs,
increasing the chances that matching objects will
be found quickly and reducing the search load.
However, the maintenance cost in SONs becomes
more expensive when the number of SONs
increases. We adopt the basic idea of semantic clus-
tering, and we impose certain link structures on
these semantic clusters to facilitate both intra-clus-
ter and inter-cluster routing and to reduce the over-
lay maintenance cost. Cai et al. [13] proposed a
distributed RDF repository that duplicates and
stores each triple at three places in a multi-attribute
addressable network which extends Chord by using
a globally known hash function. Queries can then be
efficiently routed to those nodes in the network
where the triples in question are known to be stored
if they exist. However, the overlay maintenance cost
is high in this system. In addition, storing each RDF
triple multiple times in the network increases the
data storage and maintenance costs.

Tang et al. [14] applied classical Information
Retrieval techniques to P2P systems and built a
decentralized P2P information retrieval system called

pSearch. The system makes use of a variant of Con-
tent-Addressable Networks (CAN) to build the
semantic overlay and uses Latent Semantic Indexing
(LST) [15] to map documents into term vectors in the
space. Li et al. [16] built a semantic small world net-
work in which peers are clustered based on term vec-
tors computed using LSI. They proposed an adaptive
space linearization technique, and constructed the
link structures based on small world network theory.
The small world network model was originally intro-
duced by Kleinberg [17]. He proposed a two-dimen-
sional grid where every node maintains four links to
each of its closest neighbors and one long distance
link to a node chosen from a probability function.
He has shown that a query can be routed to any node
in O(log?n) hops where n is the total number of nodes
in the network. Our work is inspired by the small
world model. DSS not only maps a k-dimensional
semantic space to a one-dimensional semantic space,
but also allow peers to be grouped into sub-clusters in
a semantic cluster (through the cluster encoding
scheme) to better accomplish scalability as well as
facilitate parallel search. To route queries across clus-
ters in DSS, we select two long distance links which
are located at certain positions of the ring space
instead of choosing one randomly as in the small
world network model. Through our simulation, we
show how these two shortcuts improve the search effi-
ciency with a variant setting of number of semantic
clusters. Furthermore, we propose the use of
schema-based metadata to extract data semantics
which has low overhead as compared to LSI. We
show how these ideas can be applied into a seman-
tic-based P2P lookup system.

3. Dynamic semantic space

In this section, we first present an overview of
DSS, followed by a description of technical details.
For ease of discussion, we use the terms node and
peer interchangeably for the rest of the paper.

3.1. Overview

In DSS, a large number of nodes are self-orga-
nized into a semantic overlay network, in accor-
dance with their semantics. A user or an
application can act as a producer, a consumer or
both. Producers provide various RDF data for shar-
ing; whereas consumers obtain data by submitting
their queries and receiving query results. Each peer
maintains a local data repository which supports
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RDF-based semantic query using RDQL [18]. Upon
its creation, each producer peer will join a semantic
cluster based on the semantics of its major data
and publish its data indices to peers in other seman-
tic clusters. Peers within a cluster are interconnected
using an overlay structure. There is no restriction on
the type of overlay used within a cluster. Upon
receiving a query, a peer first pre-processes the query
to obtain the information about the semantic cluster
associated with the query, and then routes it to an
appropriate semantic cluster. When the query
reaches the designated semantic cluster, it is for-
warded in parallel. Peers that receive the query will
do a local search, and return results if available.
There are two types of queries in DSS: search request
and subscription request. Search requests enable
consumers to pull data from the network at a one-

Upper Ontology
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time basis, while subscription requests enable con-
sumers to subscribe RDF data and be notified when
data changes occur over a period of time.

3.2. Ontology-based semantic clustering

In this section, we describe how to use ontology-
based metadata to extract the semantics of both
RDF data and queries. There are several advantages
as compared to other semantic extraction tech-
niques such as Vector Space Model (VSM) [19]
and LSI. The formal design of ontologies minimizes
the problems of synonyms and polysemy incurred
by VSM. Based on ontologies, data and queries
can be mapped to appropriate semantic clusters
directly without costly computation as in LSI, yet
the same precision is retained.

N
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Low-layerOntologies
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Fig. 1. An example of ontological structure in the context-aware computing domain.
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We adopt a two-tier hierarchy in ontology
design. The upper ontology defines common con-
cepts and is shared by all peers. Each peer can define
its own concepts in its domain-specific low-layer
ontology. Different peers may store different sets
of low-layer ontologies based on their application
needs. We illustrate the mapping process using an
example of ontology in the context-aware comput-
ing domain as shown in Fig. 1. The leaf concepts
in the upper ontology are used as semantic clusters,
and are denoted as a set E = {Service, Applica-
tion, Device, . . .}. Each of these pre-defined semantic
clusters will be assigned with a unique Semantic ID
(described in Section 3.3) upon their presence in
DSS.

The mapping computation is done locally at each
peer. For the mapping of RDF data, a peer needs to
define a set of low-layer ontologies and store them
locally. Upon joining DSS, a peer first obtains the
upper ontology and merges it with its local low-
layer ontologies. Then it creates instances (i.e.,
RDF data) and adds them into the merged ontology
to form its local knowledge base. A peer’s local data
may be mapped into one or more semantic clusters

a
The merged ontology for clustering peers:

.<AolwI:ObjectProperty rdf:ID="locatedIn">
<rdfs:range rdf:resource="# IndoorSpace "/>

by extracting the subject, predicate and object of an
RDF data triple. Let SCny, SCnpreq, SCnop; Where
n=1,2,... denote the semantic clusters extracted
from the subject, predicate and object of a data tri-
ple respectively. Unknown subjects/objects (which
are not defined in the merged ontology) or variables
are mapped to E. If the predicate of a data triple is
of type ObjectProperty, we obtain the semantic clus-
ters using (SCleqU SC2preqU - - - SChpreq) N
(SCl,p; U SC2,p,U ... SChyp). If the predicate of
a data triple is of type DatatypeProperty, we obtain
the semantic clusters using (SCl,,, U SC2,, U ...
SCnyp) N (SClppeq U SC2p0q U ... SChyypy). Exam-
ples 1 and 2 in Fig. 2a show RDF data triples about
location and light level in a bedroom provided by a
producer peer. In Example 2, we first obtain the
semantic clusters from both subject and predicate,
and then intersect their results to get the final
semantic cluster — IndoorSpace.

A query follows the same procedure to obtain its
semantic cluster(s), but it needs all the sets of low-
layer ontologies. In real applications, users may cre-
ate duplicate properties in their low-layer ontologies
which conflict with the ones in the upper ontology.

RDF data triples:

<6\n}|:0bjectProperty> Egt: l <?x socam:locatedlnsocam:Bedroom> l
'<.o'wI:DatatypeProperty rdf:ID="lightLevel">

<rdfs:domain rdf:resource="#Location"/> IndoorSpace ) IndoorSpace ~—m IndoorSpace
</owl:DatatypeProperty> Eg2: l <socam:Bedroom socam_lightLevel ?x> ‘

<socam:Room rdf:ID="Bedroom"
<socam:locatedIn rdf:resource="#Home"/>

</socam:Room>

b

The merged ontology for clustering queries:

<owl:ObjectProperty rdf:ID="locatedIn">
<rdfs:range rdf:resource="# Location "/>

IndoorSpace () (IndoorSpace U OutdoorSpace ) —#- IndoorSpace

RDF query triples:

<ow!:ObjectProperty>

Eg3: l <socam:John socam:locatedin ?2x> ]

<owl:D atatypeProperty rdf:ID="lightLevel">
<rdfs:domain rdf:resource="#Location"/>

<./(.)\;V| :DatatypeProperty>

<socam:Room rdf:ID="Bedroom"
<socam:locatedIn rdf:resource="#Home"/>

</socam:Room>

N

( IndoorSpace U OutdoorSpace ) | E —#IndoorSpace U OutdoorSpace

Fig. 2. An example of semantic cluster mapping.
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For example, the upper ontology defines the
rdfs:range of predicate locatedln as Location
whereas the low-layer ontology defines its rdfs.range
as IndoorSpace. To resolve this issue, we create two
merged ontologies, one for clustering peers and the
other for clustering queries. If such a conflict occurs,
we select the affected properties defined in the low-
layer ontology to generate the merged ontology
for clustering peers’ data and select the affected
properties defined in the upper ontology to generate
the merged ontology for clustering queries. With
this scheme, a peer can extract the semantics of its
data triples more precisely based on its low-layer
ontology without losing generality for queries. For
example, predicate locatedln may have the
rdfs:range of IndoorSpace (underlined in Fig. 2a)
in the merged ontology for clustering peers’ data
and have the rdfs:range of Location (underlined in
Fig. 2b) in the merged ontology for clustering que-
ries. Data triple ‘Someone is located in the bedroom’
will be mapped to IndoorSpace; and query ‘where is
John’ will be mapped to IndoorSpace and Outdoor-
Space rather than only IndoorSpace. This is most
likely the case in real-life applications.

3.3. One-dimensional semantic space

In DSS, peers are organized in such a way that
those with semantically similar data are grouped
together. To enable search across semantic clusters,
an intuitive solution is to construct k-dimensional
semantic clusters by connecting each peer to all
dimensions of the corresponding clusters such as
in [12,7]. However, overlay maintenance cost
becomes expensive when the number of semantic
clusters increases. To reduce overlay maintenance
cost, we present a new approach to facilitate effi-
cient search in a high-dimensional semantic space.
We build an overlay network using the one-dimen-
sional ring structure which enables the mapping
from a k-dimensional semantic space into a one-
dimensional semantic space.

3.3.1. Peer placement

To join a semantic cluster in the network, a peer
first obtains the semantics of its local data. This is
done by mapping each RDF triple in its repository
to one or more semantic clusters using the technique
described in Section 3.2. We then count the RDF
triples for each semantic cluster obtained. The
semantic cluster corresponding to the most triple
count (i.e., its major data) is called its major seman-

tic cluster; and the remaining semantic clusters are
called its minor semantic clusters.

A peer will then join its major semantic cluster.
In order for a query to reach all nodes that provide
the same semantics, we adopt index publishing. A
peer publishes the indices of its data to its minor
semantic clusters as follows: it selects a node in each
of its minor semantic clusters and publishes the
index (i.e., reference pointer) to these nodes. Each
index points to a node where the data is physically
stored. For example, as shown in Fig. 3, Peer I pub-
lishes its index to semantic cluster SC/ by putting its
index to Peer 3 which is selected in random within
SCI (for balancing the load of indices). As a result,
a semantic cluster can be viewed as a set of intercon-
nected nodes separated by clusters and a collection
of indices stored in these nodes.

The above scheme has several positive effects.
For example, if a peer has homogeneous data in
its local repository, most of its data will be catego-
rized into one corresponding semantic cluster, there-
fore reducing the cost to publish data indices. This is
likely to be the case in real applications. Further-
more, many applications are designed in such a
way that a peer is likely to query for data available
in its nearby peers. By placing a peer into one par-
ticular semantic cluster based on the majority of
its local data, a query can be resolved very effi-
ciently. It should be noted that while we have only
elaborated the joining of a single semantic cluster,
the same principle can be applied by any peer for
joining multiple semantic clusters.

A peer may periodically calculate the triple count
for each semantic cluster. The time interval to per-

Fig. 3. One-dimensional semantic space.



T. Gu et al. | Computer Networks 51 (2007) 4543-4560 4549

form such operation is application-specific and
depends on the dynamism of its data (i.e., how often
the data is changed or updated); hence it will not be
further studied in this paper. If its major semantic
cluster is changed, a peer will need to initiate a
new joining process. If its minor semantic clusters
are changed, a peer will need to remove the out-
dated indices or publish new indices.

3.3.2. Cluster naming scheme

In the design of DSS, one crucial issue is how to
design a naming space. We propose a cluster nam-
ing scheme which allows sub-clustering within a
semantic cluster. We distinguish the concepts of
cluster and semantic cluster. A cluster refers to a
partition which consists of a set of nodes bundled
together such as CO in Fig. 3. A semantic cluster
refers to a set of clusters corresponding to the same
semantics. For example, cluster CO, C1, C2, and C3
belongs to semantic cluster SCO. We propose our
cluster encoding scheme as follows. A Cluster ID
which is represented by a k-bit binary string (where
k =m + n) is a unique ID that identifies a cluster in
DSS. The first m-bit binary string (called Semantic
Cluster ID) is used to identify a semantic cluster.
Hence, a DSS can have a maximum of 2% clusters
and 2" semantic clusters. An example of a DSS
which assumes k=5 and m =3 is illustrated in
Fig. 3. The rationale behind this encoding scheme
is that, for a given query, we need to obtain the
appropriate Semantic Cluster ID to match the same
semantics of the query. Semantic clusters can be
viewed as an additional semantic layer on top of
actual clusters. Partitioning peers into a set of clus-
ters in a same semantic cluster also provides better
load balancing and enables parallel search within
the same semantic cluster.

3.3.3. Ring construction

In DSS, clusters are placed in the ring space
based on their cluster IDs. Each node maintains a
set of node entries in its routing table for the pur-
pose of both intra-cluster routing and inter-cluster
routing. A node, say x, first decides in which seman-
tic cluster to participate. It then picks a cluster ran-
domly within this semantic cluster to join by
connecting to a number of nodes in this cluster.
These node entries (called x’s neighbors in its own
cluster) will be maintained in x’s routing table as
intra-cluster routing information. Node x also cre-
ates and maintains two node entries in each of its
adjacent clusters. We call these two nodes x’s neigh-

bors in its adjacent clusters. Each node joins the net-
work by performing this operation, resulting in all
the clusters being linked linearly in a ring fashion.
With this ring structure, a k-dimensional semantic
space can be linearized.

Maintaining two neighbors in the adjacent clus-
ters for every node in DSS also ensures that a query
generated at any node will be able to reach any
other cluster by navigating the ring space. However,
queries have to be passed around the ring space lin-
early either clockwise or anticlockwise until the des-
tination cluster is reached. To accelerate search
across clusters in DSS, node x maintains a set of
links to nodes in other semantic clusters except the
two adjacent clusters. These nodes provide shortcuts
(similar to long contacts in Kleinberg’s small world
model) for x to route a query to other semantic clus-
ters quickly. For example, in Fig. 3, x creates and
keeps track of two shortcuts: one points to the oppo-
site semantic cluster (i.e., shortcut to Peer 5) and the
other points to the semantic cluster located in a
quarter of the ring space (i.e., shortcut to Peer 6).
These shortcuts and neighboring nodes in adjacent
clusters are used by node x to perform inter-cluster
routing. In the process of cluster splitting and merg-
ing or when a new semantic cluster is inserted into
the ring space, a node needs to update its neighbor-
ing nodes in both its own cluster and its adjacent
clusters. However, a node only needs to update its
shortcuts upon the insertion or deletion of a seman-
tic cluster as a shortcut points to an appropriate
semantic cluster rather than a cluster.

3.3.4. Cluster splitting and merging

The operations of cluster splitting and merging
enable DSS to scale to a large number of peers.
Let M represent the maximum cluster size. If the
size of a cluster exceeds M, the splitting process is
invoked to split the cluster into two. A simple way
of cluster splitting is to partition a cluster into two
clusters of equal size without considering load dis-
tribution in the two clusters such as in CHORD.
To balance the load during splitting and merging,
each node maintains a CurrentLoad which measures
its current load in terms of the number of RDF tri-
ples and data indices it stores. When node x joins
the network, it sends a join request message to an
existing node, say y. If y falls into the same semantic
cluster that x wishes to join, x joins the cluster by
connecting to y if its cluster size is below M; other-
wise y will direct the request to a node, say z, in the
semantic cluster that x wishes to join, and x will
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connect to z if its cluster size does not exceed M. If
the cluster size exceeds M, node y or z (called an ini-
tial node) will initiate the splitting process. The ini-
tial node first obtains a list of all the nodes in this
cluster which is sorted according to their Current-
Loads. Then it assigns these nodes in the list to
the two sub-clusters alternatively. After splitting,
we obtain two clusters with relatively equal load.
The initial node is also responsible for generating
a new cluster ID for each of the two sub-clusters.
To obtain a new cluster ID, each node maintains
a bit split pointer which indicates the next bit to be
split in the n-bit binary string (where n =k — m).
For example, in Fig. 3, we assume m=3, n=2
and there exists a cluster C4 in the network. Ini-
tially, the bit split pointer points to the most signifi-
cant bit of the n-bit string. When cluster splitting
occurs, the bit pointed to by the bit split pointer is
split into 0 and 1, and therefore we obtain cluster
ID C4 and C6 corresponding to the same semantic
cluster SCI. The pointer is then moved forward to
the next bit in the n-bit string. Cluster C4 or C6
can be further split into C4 and C5 or C6 and C7,
and finally the bit split pointer is set to null indicat-
ing no cluster splitting is allowed. The same mecha-
nism follows for the insertion of a new semantic
cluster in DSS. A semantic cluster can be split into
a maximum number of 2" clusters. After splitting,
a node updates its cluster ID, the bit split pointer
as well as the neighbors list in both its own cluster
and its adjacent clusters.

When node x leaves the network, it first checks
whether its cluster size has fallen below a threshold
M in. If the current size is above My, x simply
leaves the network by transferring its indices to a
randomly selected node in its cluster. Otherwise, this
cluster needs to be merged into one of its neighbor-
ing clusters within the same semantic cluster. The
leaving node triggers cluster merging which is the
inverse process of cluster splitting. To obtain the
newly merged cluster ID, the bit split pointer moves
backwards by 1 bit in the n-bit string, and the bit
pointed to by the bit split pointer is set to 0. The
nodes in the merged cluster need to perform the
same updating as in the splitting process. For the
selection of M,;,, a simple method is to let
M pin =1 so that cluster merging is invoked when
the last node in a cluster leaves. However, if there
exists only one node in a cluster, this node may
become a hot spot as all the nodes in its two adja-
cent clusters have links to it. The actual value of
M in should be determined by the statistics of node

joining and leaving within this cluster. If the last
node in a semantic cluster leaves, it initiates two
messages to all the nodes in its two adjacent clusters
informing them to update their neighbor lists. Sub-
sequently, the semantic cluster will be removed from
DSS.

3.4. The routing algorithm

In this section, we describe the routing operation
in DSS. As described above, each node in DSS
maintains a routing table with a set of node entries
(in the form of a pair (NodelD, ClusterID)) in its
own cluster, two adjacent clusters and another two
semantic clusters. It also keeps state information
about its own cluster, consisting of a k-bit ClusterID
(where k=m +n) which indicates the cluster it
resides in and ClusterSize which specifies the current
size of its cluster. The query routing process
involves two steps: inter-cluster routing and intra-
cluster routing. Upon receiving a query, node x first
obtains the destination Semantic Cluster ID
(denoted as D). Then node x will check whether D
falls into its own semantic cluster by comparing D
against the most significant m-bits of its ClusterID.
If that is the case, x will flood the query to all the
nodes in its own cluster and also forward the query
to the nodes in its adjacent clusters corresponding to
D. The first node in a cluster receiving the query is
always responsible for flooding the query within
its cluster and forwarding the query to its adjacent
cluster. The forwarding processes are recursively
carried out until all the clusters corresponding to
D have been covered and all nodes in each of the
clusters are reached. Every node, upon receiving a
query, will check its local data repository and return
the matched data and indices.

For example, as illustrated in Fig. 4a, if a query is
initiated at Peer I with D = SC0, Peer 1 first for-
wards the query to its neighboring node in CI,
and then floods the query to all the nodes in CO.
The same process is repeated for cluster C1, C2
and C3. If D is not the semantic cluster that node
x belongs to, say its adjacent semantic cluster, the
query will be forwarded to D and flooded to all
the clusters corresponding to D. For example, in
Fig. 4a, a query generated at Peer 2 with D = SC3
will hop through C16 and will be flooded in C14
and C12. If D neither falls into node x’s own cluster
nor its adjacent semantic cluster, x will rely on its
shortcuts to route the query across clusters. A query
can be routed to a semantic cluster which is closer to
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Fig. 4. Query routing.

the destination semantic cluster quickly with the
help of these shortcuts.

In the design of these shortcuts, we have several
design options. We need to decide which semantic
cluster a shortcut should point to and how many
shortcuts each node should maintain. An intuitive
strategy is for a semantic cluster to select a set of
other semantic clusters randomly and assign a short-
cut to a node in each of these semantic clusters.
Each node can have s shortcuts (s > 1) with the
tradeoff that the cost of creating and maintaining
these shortcuts is proportional to s. Upon receiving
a query, if the distance between D and the semantic
clusters that its shortcuts point to falls below a
threshold — a preset minimum distance in terms of
number of hops, the query will be forwarded to
the closest semantic cluster and hop towards the
destination semantic cluster. If not, x selects a short-
cut randomly, and forwards the query to this short-
cut. The same process is invoked until the distance
to D is below the threshold. This approach is similar
to Kleinberg’s Small World network model in which
a query can be routed to any node in O(log>z) hops.

Our approach is based on the observation that
the ring space can be equally divided into several
partitions. Each node maintains two shortcuts
(s =2) that are used to partition the ring space.
For example, we can partition a 2" semantic space
where m =3 into four by creating two shortcuts:
one pointing to the opposite semantic cluster and
another pointing to the semantic cluster located in
a quarter of the ring space. Given the maximum
cluster size M, the system can have a total of

M- 271 nodes when My, = 1. Let Cx denote
the cluster where x resides in and SCx denote the
semantic cluster that Cx corresponds to. SCx can
be obtained by truncating Cx to m bits from the
most significant bit. The two semantic clusters
SCharr and SCqyuarier that x’s shortcuts point to are
denoted as (SCx +2)mod2™, where i=m — 1,
m — 2. To initiate a search, x obtains D based on
a query and checks which cluster range (partitioned
by x’s shortcuts) D falls into. Then node x forwards
the query to the closer semantic cluster through its
shortcut. If D is closer to SCx, node x will forward
the query across its adjacent cluster towards D. A
query takes a maximum of 2 + 2"~ hops to reach
the destination semantic cluster.

The above search algorithm is shown in Fig. 5. To
illustrate, consider Fig. 4b, Peer I generates a query
and computes the destination semantic cluster as
SC5. Peer 1 first realizes that SC5 falls into the inter-
val [SC4,SC0] and SC4 is close to SC5. Then Peer 1
forwards the query to Peer 5 at C17. As SC5 falls into
[SC4,SC6] and C24 is closer to SC5 as compared to
C17, Peer 5 forwards the query to SC6 through its
quarter shortcuts. Finally, the query reaches SC3
and is then flooded in both C22 and C20.

The more shortcuts we create to partition the ring
space, the finer the granularity we gain to locate the
destination semantic cluster. As a result, we achieve
better search performance in terms of lower routing
hops. However, more shortcuts imply higher cost of
creating, updating and maintaining these shortcuts.
In DSS, we set the number of shortcuts to two for
the reason of minimizing maintenance cost. To
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Assuming the longest shortcut point to 1/p (p=2%,i=0,1,..)of the ring;

Obtain the destination semantic cluster D based on the query qg;

if dist(sc,, D) < %then

forward g to x's adjacent cluster towards D;

else if D falls into [SCx, SCquarter]

then

or [chuarterr Schalf] or [Schalf: SCX]

forward g to the semantic cluster that is

closer to D

end if

Fig. 5. Pseudocode of the search algorithm.

partition the ring space in a finer granularity when
the number of semantic clusters m increases, we
can place the longest shortcut into different points
in DSS. The other shortcut always points to the mid-
dle semantic cluster between SCx and the semantic
cluster that the longest shortcut points to. For exam-
ple, if we place the longest shortcut to one-quarter of
the ring, the ring space is divided by eight, and so
on. More generally, the following theorem obtains
the search path length for DSS.

Theorem 1. Given a m-dimensional DSS of N nodes,
with maximum cluster size M, number of bits to
identify sub-cluster n and number of shortcuts s, the
average path length for routing across semantic

clusters is O(%logz(N/M ) 2'1*2)1/"1)_

Proof. We follow a process similar to that in [17] to
prove the theorem. In [17], Kleinberg proved that
the optimal setting for shortcuts is f = 1/x”, where
m is the dimensionality. Thus, in DSS, a peer
chooses another peer at distance x as one of its
shortcuts using the pdf: f.=1/x" for x-€[r1]
where r, the minimum distance of a shortcut, is the
average diameter of a semantic cluster. The average
size of a semantic cluster is %2”*1, there are alto-
gether N/M - 2"~2 semantic clusters in the system,
and each semantic cluster takes charge of a
M -2"%/N portion of the whole semantic space on
average. Therefore, the diameter of each partition
r is approximately (M - 2" 2/ N)!/™.

We extend the small world network model from
two-dimensional space to m-dimensional space. We
use unit data space in DSS. Since each subspace has
side length r on average, there are 1/r subspaces
along each side. The distance between two clusters
along a dimension is the range of [1,2,...,1/r].
Thus, we separate the search process into phases

1,2,...,log(1/r). Let d be the distance from a query
message’s current node to the destination, and
d; = 1/2,. Search is at phase i if d;;; < d < d;. Phase
i ends when the message is forwarded to a peer less
than d;;, distance away from the destination. The
set of peers less than d;y; distance away from the
destination is denoted as D;1, whose volume is d7} ;.
The largest distance from a peer at phase i to a peer
in set D;yq is d; + di1. Since a peer has s shortcuts,
the probability that a peer at phase i has contacts to
set D;yy is at least s-d} | - f4,4q,., =5/c-log(1/r)
where ¢ is a constant that depends on m. Therefore,
a query message requires c - log(1/r)/s steps to reach
the next phase on average. Since there are in total
log(1/r) phases, the total search path length is
O(tlog*(N/M -2"=)™). O

3.5. Subscription

In addition to search requests which pull data
from the network, DSS enables consumers to issue
subscription requests to the network and be notified
when data changes occur over a period of time.
When a subscription request is generated, it will
be first mapped to a semantic cluster (say D) and
then forwarded to all nodes in D. The mapping
and routing processes of a subscription request are
identical to those of a search request. When a node
in D receives a subscription request, it will check its
local RDF data and decide whether it should accept
the request. For example, an application may sub-
scribe the event “John is in the bedroom” in the
RDF triple form of (socam' :John socam:locatedIn
socam: Bedroom) to the network. As this RDF triple
may not exist in the network (i.e., John may be in

! socam is a namespace. Please refer to the SOCAM project
Web site at http://wwwl.i2r.a-star.edu.sg/~tgu for more details.
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some other place) at the time of receiving a request,
the subscription request may end up with no pro-
ducers. To avoid losing potential producers or end-
ing up with many irrelevant producers, we employ
the following subscription acceptance policy, as
shown in Fig. 6, and illustrate how it works in con-
text-aware computing and sensor network domains.

Based on this policy, a producer peer attempts to
match a subscription request against its local RDF
data. This policy works for a subscription request
in the form of any RDF triple pattern whose
subject, predicate or object may take variables.
Although predicates can be specified as variables,
this situation seldom occurs since users or applica-
tions are always in favor of more specific events in
real-life applications. We now consider the case that
a predicate is specified in a subscription request. If a
subscription request’s predicate is of type Datatype-
Property, a producer peer determines if its local
RDF data contains triple(s) with the same sub-
ject—predicate pair as the request. For example, for
a given subscription request (socam:Bedroom
socam:lightLevel ‘LOW’), a producer peer will
accept the request if there exists an RDF triple with
subject socam:Bedroom and predicate socam:light-
Level in its local data. If a subscription request’s
predicate is of type ObjectProperty, a producer peer
determines if its local RDF data contains triple(s)
with the same predicate—object pair as the request.

For example, for a given subscription request
(socam:John socam:locatedIn socam:Bedroom), a
producer peer will accept the request if there exists
an RDF triple with subject socam:locatedIn and
predicate socam: Bedroom in its local data.

To understand the rationale behind this tech-
nique, consider a subscription request in the form
of the RDF triple (Sub,, Pred,, Obj,). Such a triple
may be obtained from raw data generated by a
sensor which could be physical or virtual. In the
domain of sensor networks, a predicate always
corresponds to a sensor type. For example,
socam:locatedIn corresponds to a physical location
sensor and socam:participateln corresponds to a vir-
tual activity sensor. If Pred is of DatatypeProperty,
Sub; should correspond to the target this sensor is
monitoring, while Obj, corresponds to the sensor
output. For example, the RDF triple of (socam: Bed-
room socam:light Level ‘LOW’) can be interpreted as
the output of a light level sensor monitoring the
bedroom’s light level. If a producer peer’s local
RDF data contains at least one triple with this
Sub-Pred, pair, it can be inferred that this producer
peer has the type of sensor specified by this pair.
Hence, we can conclude that this producer peer
can provide triples of this same subject—predicate
pair. On the other hand, if Pred; is of ObjectProp-
erty, Obj, should correspond to the target this sen-
sor is monitoring, while Sub; corresponds to the

Given a subscription request in the form of an RDF triple pattern <Subg,
Predy,, Objs>, a variable in the RDF triple represents any arbitrary constant;

Let <Sub;, Pred;, Obj;> represents any RDF triple in a peer's local data set

called L.

accept = false; //initialization

for each RDF triple in L

if Pred,; is of DatatypeProperty && ((Sub, == Sub;)N (Preds == Pred;))== true
then
accept = true; break;
else if Pred, is of ObjectProperty && ((Preds == Pred;) N (0Objg == 0Obj;)) ==
true then
accept = true; break;
end if
end for
if accept == true then accept the subscription request;

else reject the subscription request;

end if

Fig. 6. Subscription acceptance policy.
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sensor output. In this case, the producer can provide
triples with the same Sub-Pred, pair as in the sub-
scription request.

Once a producer peer accepts a subscription
request, it keeps monitoring the request. Whenever
a change (i.e., an RDF triple is added or removed)
occurs, the producer peer will notify the subscribers
if the RDF triple matches the subscription request.
An RDF triple (Sub.Pred.Obj.) is said to match
the subscription request if (Sub.= Suby) N
(Pred, = Pred;) N (Obj. = Obj,) = 1. The routing of
notification traces the exact path of the subscription
request in the reverse direction. A subscriber can
unsubscribe an event by sending an unsubscription
request directly to its producers.

3.6. Peer dynamics and failure

In dynamic environments, a node may join and
leave the system freely. To keep track of its neigh-
boring nodes in DSS, a node maintains a number
of additional backup links for every link a node
has. The approach is used in many other P2P sys-
tems such as Pastry and CAN. However, in a highly
dynamic environment, detecting link failure during
the query routing process can introduce additional
overhead. Moreover, in the event of failure of all
its backup links, a node has to re-establish its neigh-
boring links during the search operation, and hence
it may affect search performance. With this
approach, a node will need to inform its neighbor-
ing nodes about its leaving and transfer its indices
to a randomly selected node in its cluster before
leaving. Another approach is that each node period-
ically sends a keep-alive message to each neighbor-
ing node such as the ping message in Gnutella-like
overlay networks. If no response is received, the
neighboring node is assumed to be dead and a
new link needs to be established. The failure detec-
tion is done in an off-line manner to avoid affecting
search performance, but it may increase the overall
traffic. In this approach, a node is not required to
inform its neighboring nodes before its leaving. A
node leaves the system by simply transferring its
indices. In the above two approaches, when a node
is involved in subscription, it has to transfer its back
route information to a node in its cluster or inform
the subscriber about its leaving. Both the above two
approaches have their pros and cons, and require a
good study on the justification when they are
applied to a real-life application. In the following
evaluations, we rely only on the backup states to

study how well DSS performs in the presence of
failure.

4. Evaluation

We use simulation to evaluate the effectiveness of
DSS and compare DSS with SONs [12]. We show
the performance results by setting various variables
such as m, n, M and shortcut positions, and justify
our choices. We first describe our simulation model
and the performance metrics. Then we report the
results obtained from a range of experiments.

4.1. Simulation model and metrics

To simulate the performance of DSS in a more
realistic environment, we create two types of net-
work topologies in our model: physical topology
and P2P overlay topology. All peer nodes are a sub-
set of nodes in the physical topology. We use the AS
model to generate these topologies as previous stud-
ies have shown that P2P overlay topologies [20] fol-
low the small world and power law properties.

The simulation is started by having a pre-existing
node in the network and then performing a series of
join operations invoked by new arriving nodes. A
node joins a semantic cluster based on its local data
and publishes its data indices. Various RDF data
are mapped into different semantic clusters and each
semantic cluster is associated with a unique ID rang-
ing from 0 to 2. RDF data stored in each peer may
be heterogeneous or homogeneous. To evaluate the
capability of handling heterogeneous data in DSS,
we introduce a parameter 5, which is the ratio of
the number of semantic clusters corresponding to
all the local data stored in a peer to the maximum
number (2") of semantic clusters. f falls into the
range of 1/2” to 1. When f = 1/2", it implies that a
peer has homogeneous RDF data in its local reposi-
tory which maps to one particular semantic cluster in
DSS. When = 1, it implies that a peer has heteroge-
neous RDF data which maps to all the semantic clus-
ters; however, this case is unlikely to occur in real-life
applications. In our experiments, we set f to 1/2",
0.25 and 0.5 respectively. The semantic cluster(s)
are selected in random by each peer according to f.

A peer also selects a random node in each of the
semantic clusters to publish its indices, if necessary.
When the size of a semantic cluster exceeds the max-
imum size M (in nodes), it will be split into two.
This operation may be performed recursively until
the number of sub-clusters reaches 2”. After the net-
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work reaches a certain size, a mixture of node join-
ing and leaving are invoked to simulate the dynamic
characteristic of the overlay network. Each node is
assigned a query generation rate, which is the num-
ber of queries that it generates per unit time. In our
experiments, each node generates queries at a con-
stant rate. If a node receives queries at a rate that
exceeds its capacity to process them, the excess que-
ries are queued in its buffer until the node is ready to
read the queries from the buffer. Data are randomly
replicated on nodes at a fraction o. Thus, querying
for data with fraction o implies that a query hit
can be found at a fraction o of all the nodes in the
system. A query is selected randomly among differ-
ent semantic dimensions.

When a node initiates a query, it is first mapped to
a particular semantic cluster, and then routed to the
destination semantic cluster and flooded to all the
sub-clusters in parallel. In our simulation study, we
use a Gnutella overlay network to organize nodes
within a cluster. The average outgoing degree of a
node in its cluster is set to 4 by default, and shortcuts
are set to the half and quarter of the ring space unless
specified. For the simplicity of generating RDF data
in our simulation model, we use a set of keywords to
represent RDF data triples; different sets of key-
words correspond to different semantic clusters. In
our simulation, we use the following performance
metrics to measure the effectiveness of DSS:

Fraction of nodes contacted per query is the aver-
age fraction of nodes contacted for a query. It cap-
tures the efficiency of a lookup system. A smaller
fraction of nodes implies less overhead in the
network.

Search path length is the average number of hops
traversed by a query to the destination.

Search cost is the average number of query mes-
sages incurred during a search operation in the
network.

Maintenance cost is the average number of mes-
sages incurred when a node joins or leaves the net-
work. It consists of the costs of node joining and
leaving, cluster splitting and merging and index
publishing. We measured these costs in terms of
number of messages.

Routing load is the average number of query mes-
sages a node processes.

4.2. Semantic cluster mapping

For the evaluation of the semantic clustering
mapping, we have implemented a working proto-

type based on the Jena 2 toolkit [9]. We created a
set of RDF-based data which corresponds to each
of the domain-specified ontologies and various
query patterns. The system performs the mapping
process by iterating each data triple or query. We
ran the prototype on a 2.0 GHz Pentium machine
with 1 GB of memory. We used 1000 different data
triples and 1000 different queries in this experiment.
On average, the mapping process takes about 3.38 s
for the mapping initialization and 0.234 ms for the
mapping of each data triple and each query. The
mapping initialization reads the ontology files
stored locally and generates internal data structures
for mapping. It is done only once when a peer starts
and is only repeated if there is a change in the ontol-
ogies. The computation cost of our mapping process
is much lower as compared to the computation cost
of LSI (results can be found in [13]).

4.3. Search efficiency

The efficiency of executing a search request is
captured in the fraction of nodes contacted and
search path length during the search. For a given
query, DSS only needs to contact N/2” nodes in
the system plus those nodes pointed to by a set of
indices. Fig. 7 plots the fraction of nodes contacted
per query by setting n to 0 (i.e., parallel search in a
semantic cluster is disabled) and varying the number
of semantic clusters from 2° to 2%, The values are
obtained by taking the average over various net-
work sizes N from 2% to 2'3. As expected, the frac-
tion of nodes contacted per query decreases in
proportion to 1/2”". When f=0.25 or 0.5, DSS
has to contact about a quarter or a half of nodes.
This is because that, besides contacting all the nodes
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Fig. 7. Fraction of nodes contacted per query.
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in the destination semantic cluster, DSS has to con-
tact the nodes in other semantic clusters pointed to
by their indices. Due to randomness of selecting
semantic clusters and nodes to publish its indices
by a peer, the fraction of nodes contacted is almost
identical to f5. Note that for a search request, Gnu-
tella has to contact every node in the network. In
the case of SONGs, this fraction is equal to C/Ciay,
where C is the average number of SONs each node
participates in and Cy,,, is the maximum number of
SONSs in the system. With less nodes contacted by
DSS and SONs, the network traffic load incurred
by a query will also be reduced. The result confirms
that DSS has the same efficiency as SONs in terms
of number of nodes contacted per query.

Fig. 8 shows the search path length comparing
DSS, SONs and Gnutella when the network size N
is varied from 2% to 2'3. We disabled the clustering
effect by setting M to 1 for DSS since Gnutella does
not have a clustering feature. We also disabled par-
allel search in DSS by setting n to 0. Hence, the net-
work size N is 27!, Since M =1 and n = 0, there
will be no flooding within a semantic cluster. As
shown in Fig. 8, the search path lengths for both
DSS and SONSs increase slowly with the network
size as compared to Gnutella, confirming that the
search path is bound (note that the x-axis uses a
log scale). The search path length for DSS is almost
identical to the one for SONs, showing that DSS
has the same search effectiveness as SONs. In the
case that a peer has heterogeneous local data (i.e.,
p=0.25 or 0.5), the search path length is almost
identical to the case that a peer has homogeneous
local data (i.e., p = 1/2""). It shows that it does not
have any negative effect on DSS in terms of search
path length when a peer has heterogeneous local

4000 . . . .
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Fig. 8. Search path length.

data. This is because a peer can directly contact
the node(s) in other semantic clusters using a set
of indices that point to them.

In DSS, we explore the parallel search mechanism
within a semantic cluster. We evaluated the parallel
search effect by comparing DSS and SONs. We set
up a network with m = 4 and varied the network size
from 2'° to 2'°. We set n to 2 and 3 respectively for
DSS; as a result, a semantic cluster will be split into
two when the size exceeds N/2° and N/2°. Hence, a
search can be performed in parallel among these
sub-clusters. Fig. 9 shows that the parallelism in
DSS has effectively reduced search path length as
compared to SONs. The result also shows that the
parallel search effect increases (i.e., search path
length decreases) with respect to n. The results in
both Figs. 8 and 9 show that the search path length
in DSS is sensitive to 2" and n, but not sensitive to f.

4.4. Overhead

In this experiment, we evaluated search overhead
by comparing search costs among DSS, SONs and
Gnutella. We set m to 5 (i.e., the number of seman-
tic clusters is 32), n to 0 (parallel search is disabled),
and varied the network size from 2% to 2'°. As
shown in Fig. 10, the search cost of Gnutella
increases rapidly when the network size grows. In
contrast, DSS and SONSs significantly reduce the
search cost with the setting of 32 semantic clusters.
We repeated the experiment by turning on the par-
allel search mechanism (i.e., n =2 and 3) while
keeping other settings. We obtained similar results
as in the case where n =0. This confirms that the
parallel search mechanism in DSS does not incur
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Fig. 9. The effect of parallel search in DSS.
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any extra search overhead. When = 0.25 or 0.5,
search cost increases because search requests have
to reach many nodes in other semantic clusters
(other than D) as well, which are pointed to by a
set of indices.

In this experiment, we evaluated the average
maintenance cost by comparing DSS and SONSs.
The maintenance cost of SONs only contains the
cost of node joining and leaving. As shown in
Fig. 11, the maintenance cost of SONs increases
rapidly when the number of semantic clusters
(dimensions) grows. This is because the required
number of outgoing degrees of a node in SONs
increases in proportional to the dimension. In the
case of DSS with M =32 and n =2, the average
maintenance cost of a node consists of the costs of
node joining and leaving, cluster splitting and merg-
ing and index publishing. The maintenance cost in
DSS also increases with respect to the dimension,
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Fig. 11. Average maintenance cost.

but in a much lower gradient. In the case of hetero-
geneous data stored in peers (i.e., f = 0.25 or 0.5),
the maintenance cost increases due to the increased
cost of index publishing; however, it is still much
lower than SONs as shown in Fig. 11. This confirms
our design goal of reducing maintenance overheads
incurred by high-dimensional semantic overlay net-
works such as in SONS.

4.5. Clustering effects

In this section, we evaluate the effect of clustering
in DSS by varying the cluster size M from 2° to 2'°.
We first evaluate the effect of cluster size on search
path length by constructing a network of size
N = 2'°. We turn off parallel search within a seman-
tic cluster by setting n to 0, and ensure no data
duplication in DSS. Hence all clusters are semantic
clusters. We also set 8 to 1/2"" as we focus on cluster
operations in this section. Fig. 12 plots the search
path length in DSS when M increases from 2° to
2'% The search path length across clusters decreases
while the search path length within clusters
increases with larger cluster sizes (note that there
are 2'° clusters in the network when M = 1 and only
one cluster when M = 2'%). This is because with a
fixed network size, the total number of clusters in
DSS decreases with larger cluster sizes. Fig. 12 sug-
gests that the search path length achieves its mini-
mum when the number of semantic cluster equals
to 32, 16 and 8 corresponding to M =32, 64 and
128 respectively.

With the same settings as in the previous experi-
ment, we evaluated the search cost and its break-
down within clusters and across clusters with
various cluster sizes. From Fig. 13, we observe that
the search cost in DSS increases rapidly from a
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Fig. 12. Search path length vs. cluster size M.
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point where M = 16. This is due to the effect of
blind flooding within a cluster.

We plot the cost of node joining/leaving and clus-
ter splitting/merging over different cluster sizes in
Fig. 14. As there are fewer clusters in DSS with lar-
ger cluster sizes, a new node requires a smaller num-
ber of hops to join the network. Therefore the cost
of joining/leaving decreases with respect to M. With
a larger cluster size, cluster splitting and merging
occur less frequently, resulting in a lower cluster
splitting/merging cost.

From the results in this section, we observe that
the setting of 16 and 32 semantic clusters provides
a good tradeoff between search efficiency and over-
head. With larger cluster sizes, the search path
length and the cost of node joining/leaving and clus-
ter splitting/merging are not so sensitive to M as
compared to the search cost. One should notice that
we set # to 0 in the experiments in this section. If the
parallel search mechanism is turned on (n > 0), the

cost of node joining/leaving,cluster splitting/merging
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Fig. 14. The cost of node joining/leaving and cluster splitting/
merging vs. cluster size.

search path length can be further reduced as a query
can be flooded in parallel in a semantic cluster. To
further reduce the search cost incurred by blind
flooding within a cluster, the Cost-Aware Selective
Flooding technique proposed in [7] can be deployed.

4.6. Selection of shortcuts

In this experiment, we evaluated the effect of dif-
ferent shortcuts in DSS and compared them to the
random shortcut which is originally used in a small
world network model. We started a network with
the size of 2'° nodes. Each semantic cluster has only
one node by setting the cluster size M to 1 and n to
0. Hence, the search path length for intra-cluster
routing equals to 0. We selected two shortcuts either
fix-points or random-points in the network and var-
ied the location of the longest shortcut. The other
shortcut always points to the middle semantic clus-
ter between the semantic cluster where a node
resides and the semantic cluster that the longest
shortcut points to. We plot the search path length
for inter-cluster routing with various numbers of
semantic clusters in Fig. 15. As compared to fix-
point shortcuts, random shortcuts work well in lower
dimensional semantic spaces, but perform worse in
higher dimensional semantic spaces. The location
of fix-point shortcuts depends on the number of
semantic spaces. Among these shortcuts, the 1/8
shortcut seems to provide a balance for the size of
semantic spaces below 512.

We evaluated the effect of clustering in DSS by
varying the cluster size M. The results suggest that
the setting of 16 and 32 semantic clusters provides
a good tradeoff between search efficiency and over-
head. With larger cluster sizes, the search path
length and the cost of node joining/leaving and clus-

45 8 sermantic sub-spaces —H&—
32 semantic sub-spaces O
40 128 semantic sub-spaces - q

512 semnarttic sub-spaces &

search path length for inter-cluster routing

0 . . A . .
12 14 1”8 116 1/32 1164 random
longest short cuts

Fig. 15. Selection of shortcuts.
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Fig. 16. Routing load.

ter splitting/merging are not as sensitive to M as
compared to the search cost.

4.7. Load balancing

We study the load balance in DSS from the
aspects of data load, index load and routing load.
Since the data load in terms of number of data tri-
ples and the index load in terms of number of indi-
ces are balanced under the uniform distribution of
data, we present only the result of routing load in
this section. We evaluate the routing load processed
per node in a network setting m =3, n=2 and
M = 64. The average outgoing degree per node is
set to 4 within a semantic cluster. A query is drawn
randomly from all the semantic clusters. Each node
initializes a lookup uniformly at random. Fig. 16
shows that the routing load distribution across var-
ious nodes is relatively well balanced.

5. Conclusion and future work

In this paper, we present a schema-based P2P
system for information retrieval in dynamic envi-
ronments. We propose several techniques such as
ontology-based semantic clustering, a cluster nam-
ing scheme and routing techniques and show how
to retrieve RDF data in both pull and push modes.
These techniques can be well applied to any P2P
searching systems where schemas are explicitly
defined. The promising results from a range of
experiments show that DSS works effectively and
has a good tradeoff between search efficiency and
search cost. The overlay maintenance cost is low,
and the system adapts to peer dynamics quickly
and can scale to a large number of peers.

This paper uses a standardized definition of the
upper ontology and the low-layer ontologies for over-
lay construction. This assumption may restrict the use
of DSS in real-life applications since users can only
create RDF data according to pre-defined ontologies.
However, since there are many on-going efforts to cre-
ate standard ontologies for various application
domains, e.g., in e-commerce applications [21], and
ubiquitous and pervasive applications [22], we believe
DSS will be widely applied in many real-life dynamic
applications. If ontology interoperability mecha-
nisms are put in place, that will offer a greater flexibil-
ity for our scheme. While this paper assumes the use of
Gnutella-like overlay networks to organize peers
within a sub-cluster, a DHT-based overlay network
can be used to provide more efficient routing with
the tradeoff of higher maintenance overhead. We
are studying how to apply DHT-based routing tech-
niques such as Chord or CAN to a sub-cluster in
DSS while keeping maintenance overhead low.
Finally, we believe that DSS can have a significant
practical impact on building large-scale, schema-
based P2P lookup systems in dynamic environments.
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