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ABSTRACT
Irradiated Cross-linked Polyethylene Foam (IXPE) has been one of
the most commonly used materials in industry. During the produc-
tion process of IXPE sheets, their edges need keep aligned strictly,
otherwise, they could quickly get out of the border of the rolling
plate and cause the huge economic loss. In this paper, we propose
a camera-enabled approach, called Edge-Eye, to rectify the edge
deviation automatically for IXPE production with millimeter-level
accuracy. We deploy a commercial camera with mobile edge node
in front of the IXPE sheet to continuously detect and rectify the
edge deviation. Particularly, to handle the complex production en-
vironment when extracting the edge of IXPE sheet, we deploy a
pair of reference bars with high-contrast colors to efficiently differ-
entiate the sheet edge from the background. Then, we propose a
Bi-direction Edge Tracking method to perform the edge detection
from both vertical and horizontal aspects. To realize the rectifica-
tion using mobile edge nodes with limited computing resources, we
reduce the cost of computation by extracting the Minimized Region
of Interest, i.e., the edge area overlapped with the higher contrast
reference bar on both sides. We further design a negative feedback
control system with multi-stage feedback regulation mechanism,
keeping the edge deviationwithinmillimeter-level. We implemented
Edge-Eye on the ARM64 platform and performed evaluation in the
practical IXPE production process. The experimental results show
that Edge-Eye achieves the average accuracy of 5mm for the edge
deviation rectification, with the average latency of 200ms for edge
deviation detection. During the process of 20-month real deploy-
ment for 36 production lines, 66 manpower per day (90% of the
overall manpower) has been saved, and the utilization rate of IXPE
material increases from 87% to 94%.
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1 INTRODUCTION
1.1 Motivation
Irradiated Cross-linked Polyethylene Foam (IXPE) is one of the
fundamental industrial materials, widely used for the automotive
trim, upholstery, and industrial packaging. During the production
process, raw IXPE sheets will first go through a high temperature
furnace via the conveyor belt to be heated, softened and foamed.
When coming out from the furnace, they will be stretched and

widened by a pair of spreader rolls, and rolled up into a roll. The
roll will be finally trimmed from both sides to end the production.
In this process, it is crucial to align both edges of IXPE sheets on
the conveyor belt continuously. Since the conveyor belt moves at a
speed of over 1m/s, any misalignment could be quickly accumulated
in the rolling up stage, causingmore edges trimmed away and hence
more materials wasted. However, it is difficult to stretch and widen
IXPE sheets in a uniform manner due to the non-uniformity of
thickness in raw IXPE sheets. Thus, the real edge deviation in the
production line is ranged from 1cm to 3cm per second on average.

The existing edge deviation rectification relies on the human
supervision, i.e., an operator monitors the IXPE sheet in real time
and adjusts the edge when necessary. This requires a high level
of concentration from the operator, which is very labor-intensive.
For a long time, the rectification precision of IXPE production
cannot be guaranteed, resulting in a high level of material waste.
As the Industrial Internet of Things (IIoT) is increasingly deployed
in manufacturing, fully automatic edge deviation rectification can
be made possible for IXPE production, greatly reducing the labor
cost and effectively improving the long-term production efficiency.

1.2 Limitations of Prior Art
Several solutions have been proposed to detect the edge position,
including laser ranging, millimeter wave, and camera-based solu-
tions. The laser ranging solution can accurately detect the depth
difference between IXPE sheet and background, hence detect edges.
However, as the laser unit detects the distance of one position at a
time, it is inconvenient to deploy the laser ranging array for moni-
toring the whole furnace, or incurs delay if moving a single unit.
Millimeter wave (mmWave) radar can achieve high accuracy for
distance estimation, but not for angular estimation [1] [18]. Thus,
it is also unsuitable for detecting the material edge. Although the
moving scanning of mmWave radar can improve the angular ac-
curacy, the movement increases the detection delay [8] as well.
Compared with laser and mmWave, computer vision can detect
the contour edge, hence appropriate for edge detection. Especially,
3D cameras measure the depth for each pixel using Time-of-Flight
(ToF) or structured light. However, 3D cameras can be costly for
mass deployment, and the accuracy may degrade in the complex
production environment.

Therefore, the design of efficient edge detection and deviation
rectification for IXPE production requires: 1) Accurate: the average
error should be below 5mm, 2) Time-efficient: the average response



Figure 1: Illustration of Edge-Eye in practical production line

time should be below 200ms, and 3) Robust: being able to perform
the edge detection for different colors of IXPE sheets.

1.3 Proposed Approach
In this paper, we propose Edge-Eye, a camera-enabled IoT edge de-
vice to automatically rectify the edge deviation for IXPE production
with millimeter-level accuracy. Specifically, we use an ordinary
camera running on the ARM64 platform as the Mobile Edge Node
(MEN), as shown in Figure 1. To detect the edge deviation, we adap-
tively extract the Minimized Region of Interest (mROI) to reduce
the computing cost. Further, we propose a Super-Resolution-based
Upsampling method to construct a higher resolution image with
edge points in finer granularity. Then, we use a Bi-direction Edge
Tracking method to achieve the highly accurate and reliable edge
detection. To rectify the edge deviation, we propose a negative
feedback control scheme with multi-stage feedback regulation to
minimize the edge deviation to millimeter-level.

1.4 Challenges
There are two technical challenges in this paper. The first challenge
is to accurately extract the edges of IXPE sheets from the image
captured by the camera in a robust manner. Since the color of IXPE
sheets may vary over time, it could be very close to the background
color of furnace. The color similarity between the sheet and the
background would cause the significant accuracy degradation for
edge detection. To address this challenge, we deploy a pair of refer-
ence bars with high-contrast colors, i.e., white and black, under the
conveyor belt, as shown in Figure 1. In this way, the white bar and
black bar will be used as auxiliary references to reduce the complex
interference from background. Depending on the IXPE sheet color,
Edge-Eye selects either the white bar or black bar to produce the
best color contrast. Then, we propose a Bi-Direction-based Edge
Tracking method to perform the edge detection vertically and hori-
zontally. In the vertical direction, we detect the boundary between
the IXPE sheet and selected bar; in the horizontal direction, we
detect the leftmost or rightmost point for the uncovered part of se-
lected bar. We fuse the two orthogonal results into a complimentary
filter to figure out a more accurate edge position. In this way, we
can guarantee the high accuracy and robustness by performing the
bi-direction edge tracking with the high-contrast reference bars.

The second challenge is to monitor and rectify the edge devia-
tion by only using the mobile edge device with limited computing
resources in a time-efficient manner. The time delay includes the

sensing delay and the control delay. The sensing delay comes from
detecting and tracking the edge, while the control delay comes
from rectifying the edge deviation. To address this challenge, for
the sensing delay, we propose to extract the mROI, i.e., the edge
area overlapped with the higher contrast reference bar on both
sides. Moreover, the continuous edge detection usually consumes
more computing resources, so we use the cache-pool-based method
to reduce the repetitive computation. When the difference between
the current frame and the cache frame is below a threshold, we
directly reuse the previous results, otherwise, the current frame
is set as the new cache frame, and the edge detection results are
updated accordingly. In this way, the computing resources can be
greatly reduced by shrinking the ROI in the space domain and
reusing the edge detection results in the time domain. While for the
control delay, the edge deviation rectification is done by changing
the rolling speed of the left or right spreader rolls. However, it is
quite difficult to figure out the uncertain relationship between the
edge deviation and the rolling speed. Thus, we propose a negative
feedback control scheme, to formulate this relationship as a linear
model on a small scale. When an edge deviation is detected, we
use this model to calculate the speed change of spreader rolls and
rectify this deviation until the edge goes back to the standard posi-
tion. Moreover, the linear model is dynamically updated with the
multi-stage feedback regulation mechanism.

1.5 Contributions
This paper makes the following contributions. First, we propose
Edge-Eye, a millimeter-level edge deviation rectification system. To
the best of our knowledge, Edge-Eye is the first system which uses
computer vision and negative feedback control to rectify the edge
deviation for IXPE production. Second, we propose an efficient edge
deviation detectionmethod, by incorporating a pair of high-contrast
reference bars, mROI extraction and bi-direction edge tracking, to
achieve the high accuracy, real-time response and robustness in
the industrial production. Moreover, we design a negative feedback
control system, and propose the multi-stage feedback regulation
mechanism to rapidly and accurately make control decisions. Third,
we implemented Edge-Eye and evaluated its performance in real
IXPE production lines. Experimental results show that we achieve
an average accuracy of 5mm for edge deviation rectification, and
an average latency of 200ms for edge deviation detection. During
the process of 20-month real deployment for 36 production lines, 66
manpower per day (90% of the overall manpower) has been saved,
and the utilization rate of the IXPE material increases from 87% to
94%, indicating Edge-Eye can effectively reduce the material waste.

2 RELATEDWORK
2.1 Distance-based Edge Detection
Since the target and other objects are in different planes, calculating
the distance of all objects can accurately find the contour edge of
target. Laser ranging accurately calculates the object distance by
RTT method [20] but suffers the single point measurement and
accuracy decrease through glass. Millimeter wave radar measures
the FM continuous wave difference between TX and RX for dis-
tance calculation [19]. However, the angular resolution limitation
makes it not suitable for the material edge detection. Moreover, the
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(a) IXPE material production line: from raw material sheet to produc-
tion sheet

(b) Complicated background due to IXPE
sheets with different colors

(c) Manual rectification by human supervision (d) Sensing time of operators in MEN

Figure 2: IXPE production process and unsatisfied performance of traditional edge operators

(a) Captured image

(b) High value for double threshold

(c) Low value for double threshold
Figure 3: Example of Canny operator

complex environment with serious multipath effect leads to low ac-
curacy and high time latency [7] for the mmWave-based solutions.
State-of-the-art technology, e.g., the 3D camera, can detect the edge
position of an object by calculating the depth information for each
pixel. Time-of-Flight (ToF) camera calculates the object depth by
measuring the round trip time of an artificial light signal provided
by a laser [16], but it suffers the same problem with laser ranging,
e.g., accuracy decreases through glass and the edge blurs due to
large scan intervals. Structured light camera uses the deformation
principle to calculate the depth information, by analyzing the pro-
jection shift when the light hits the uneven surface of object [4].
This method suffers huge interference in strong light environment,
the projected structured light can be easily submerged by strong
light. Moreover, the accuracy decreases greatly when the object is
1m away from the camera. Stereo camera uses the disparity to cal-
culate object depth information by a pair of 2D cameras. However,
it requires high computing resource and produces large error when
environment is monotonous and lack of texture [11]. Therefore, in
addition to the high hardware cost, different kinds of 3D cameras
have their own limitation, making it unsuitable to use 3D cameras
for the sheet edge detection in IXPE production.

2.2 2D Camera-based Edge Detection
The edge is an inherent property of object, which usually has a
sharp change of color around in a digital image. There has been
a wide range of approaches to extract edges in images captured
by 2D cameras. Edge detection aims to find the discontinuities of
digital images, by finding the image points with great gradient [13].

Traditional Edge Detection Methods: Basic edge detection filters
such as Sobel, Prewitt and Roberts calculate edge points by directly
evaluating the pixel value difference of adjacent points in grayscale
images [6, 10, 17], but such methods have fatal limitations of noise
pollution and rough edges. Advanced edge detection operators,

e.g., Canny operator and Marr-Hildreth operator, achieve high per-
formance on edge points calculation. The former is a multi-stage
algorithm [3], which uses image smoothing, intensity gradients
calculation, double threshold and hysteresis to find the optimal
edges in image. The latter uses second derivative and zero crossing
to find edge points, but it is noise sensitive due to the second deriva-
tive process [13]. Both operators extract all possible edge points by
relying on the original contrast of edge itself, however, they suffer
from low material sheet edge extraction performance when similar
color appears between the sheet and background.

CNN-based Edge Detection Methods: With the popularity of Con-
volution Neural Networks (CNN), edge detection has been revisited
and new solutions are proposed with neural networks [2, 12, 21].
Deepedge [2] designs a multi-scale deep network to achieve con-
tour detection by using the object-related features as high-level
cues. Maire et al. [12] use the generic deep sparse code to recognize
specific targets, thus achieving target edge detection. Holistically-
nested edge detection (HED) [21] uses the image-to-image training
method to construct the representation network of original images
and predicts edges. Casenet [22] uses ResNet and skip-layer archi-
tecture to realize category-aware semantic edge detection. Poma et
al. [15] propose thin edge-maps extraction by adding an upsample
block in Dense Extreme Inception Network. Although CNN-based
solutions can be more accurate than traditional methods, they con-
sume more computing resources and additional expenditure on
neural network training and storage. In addition, when the color of
the material sheet is similar to the background, their edge extraction
performance is still not high.

3 PRELIMINARY
The foaming technology has been used in modern manufacturing
to heat raw materials and form the required shape or size for end
products. As shown in Figure 2(a), the raw material sheet is first
sent into the horizontal furnace (with a temperature of 70-85℃)
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Figure 4: System deployment

for preheating, then goes into in the vertical furnace (with a tem-
perature of 200-300℃) for softening, widening and stretching into
the required size. Finally, the sheet is rolled up and packed as the
finished sheet ready for shipment. The color of sheet can be various
(in Figure 2(b)), leading to a more complicated background for edge
detection. Moreover, due to the uneven thickness of the raw ma-
terial sheet, the width of finished sheet may be different from the
required size, i.e., edge deviation. Without the proper rectification,
such deviation may accumulate rapidly, resulting that more edges
have to be trimmed away and hence more materials will be wasted.
Traditional solutions rely on the human supervision, as shown in
Figure 2(c). An operator monitors sheet edges and adjusts the rota-
tion speed of spreader rolls to align the edge. This solution typically
has low accuracy in edge detection (5cm) and large response time
(1000ms). Besides, it is difficult to train operators and assure quality
for long-term production. Therefore, the challenge of automatic
rectification is how to detect edge position accurately and timely
with limited computing resources in a complicated background.

As one of the best operators for edge detection, Canny opera-
tor extracts optimal edge points by double threshold (𝐻ℎ𝑖𝑔ℎ, 𝐻𝑙𝑜𝑤 )
method [3]. Specifically, after calculating the gradient value of each
edge pixel, the value higher than 𝐻ℎ𝑖𝑔ℎ is marked as a strong edge
pixel, and the value lower than𝐻𝑙𝑜𝑤 gets suppressed. If the value is
between𝐻𝑙𝑜𝑤 and𝐻ℎ𝑖𝑔ℎ , it is marked as a weak edge pixel and turns
to a strong edge pixel if connected with an original strong edge
pixel, otherwise the weak edge pixel gets suppressed. Finally, all the
strong edge pixels get output as edge points. However, Canny oper-
ator with fine-tuned parameters does not achieve the satisfactory
performance on sheet edge extraction in following aspects.

1) Accuracy and Robustness: It is unable to achieve the accurate
and robust edge detection performance just by adjusting parameters
in Canny operator, not to say other less accurate edge detection
methods. Specifically, Figure 3(a) shows the ground truth of sheet
edge position with a similar color in the background. With a high
value for double threshold, Canny operator suppresses target edge
points (the black dashed lines), resulting in the inaccurate edge
position calculation in Figure 3(b). While with a low value for
double threshold, the result in Figure 3(c) gives more interfered
edges, e.g., interfered edges around target edge lines and black
dashed lines have similar property with target edge lines,leading
to poor accuracy and failure.

2) Time-efficiency: The edge deviation rectification for material
sheet production requires real-time response, i.e., less than 200ms.
Traditional edge detection methods fail to meet this requirement
as shown in Figure 2(d). For Canny operator with Houghlines (HL)

Figure 5: System overview

detection, when the frame size reduces from 1920×1080 to 640×480,
the time delay reduces from 1400ms to 360ms. Other edge operators
even require larger processing time. Moreover, the low resolution
image is not conducive to manual re-examination.

The above observations motivate several ideas in designing an
accurate and time-efficient edge detection, which are summarized
as follows: 1) To enhance accuracy, we should fuse the results from
multiple views; 2) To improve robustness, we should enhance the
contrast between the sheet and background; 3) To achieve time-
efficiency, we should focus on the mROI instead of the full frame.

4 SYSTEM DESIGN
System Deployment: Figure 4 illustrates the deployment of Edge-Eye.
We deploy a camera in front of the vertical heating furnace at a
distance of 1.2m from the target material sheet. Without loss of
generality, the camera has a wide-angle lens of 120◦ with video
quality of 1080p/30fps, thus each pixel of the image frame repre-
sents a width of 1.87mm on the sheet plane. The images obtained
from the camera contain much noise due to the color similarity
between the sheet and the background. To minimize background
noise, we use a pair of reference bars to generate high edge contrast
between the material sheet and the background, while narrowing
the observation range to a relatively clean and controllable area.
Since the edge calculation relies on the difference of colors in the
image, which can be transformed to the distance of gray-scale im-
age. Here, we use the max/min gray value (0 and 255), which are
exactly the white and black color. As a result, either of the two
bars (W Bar and B Bar) can always have a color difference no less
than 255/2. To reduce the interference of light reflection in the
recognition area, we set a shading plate in front of the camera to
maintain a stable ambient light. We combine the camera with the
ARM64 computing platform as our mobile edge node to detect sheet
edge with fast response and low transmission delay.

Software Framework: Figure 5 shows the modules of Edge-Eye.
Specifically, 1) Availability Detection module checks whether any
sheet is in production. This is done by comparing the difference
between the current frame and the empty frame. 2) Perspective
Transformationmodule corrects image distortion of captured frame
and obtains the straight sheet edge. If the system is first running,
i.e., no mROI is extracted, we run the preprocessing module to finish
the initialization. 3) Preprocessing module selects the reference bar
and extracts the mROI. It selects the highest contrast reference bar
from W Bar and B Bar according to sheet color, and extracts the
area near the edge of material sheet as mROI to reduce the com-
putational overhead. Besides, it sets cached mROI to further speed
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Figure 6: Material availability detection around reference bars. Left:
Frames in detection area (frame 3 = frame 1 - frame 2), Right: RGB dis-
tribution of: 1○ frame 3, 2○ difference frame between empty frames

up the detection of sheet edge. 4) Edge Detection module generates
the super-resolution image for mROI, and provides the accurate
sheet edge position by the bi-direction edge tracking method with
abnormal detection. First, it uses the Fast Efficient Sub-Pixel Convo-
lutional Neural Network (Fast-ESPCN) to build the super-resolution
image from the original low-resolution image on this specific ROI
area, thereby generating more edge points and finer grit descrip-
tion for material sheet. Second, it calculates the edge points and
divides those points into background edge points and material
sheet related edge points. Third, it tracks the sheet edge in ver-
tical direction and uncovered part of reference bar in horizontal
direction separately, and fuses two recognition results through the
complimentary filter. Then, it detects and repairs abnormal results
to realize high-precision edge position recognition. 5) Deviation
Rectification module rectifies the edge deviation and adjusts sheet
edge to the standard position. It uses the negative feedback control
method to make a rapid and appropriate decision. We apply a linear
model to depict the relationship between the sheet position and
the speed of spreader rolls, thus we can keep sheet edge deviation
within the standard range by adjusting the roll speed efficiently.
We then use the multi-stage feedback regulation mechanism to
dynamically adjust the parameters of the linear model, achieving a
smaller deviation jitter range and shorter rectification time.

4.1 Availability Detection
The system should be triggered only when the IXPE production is
in progress. To perform the material availability detection, we use
the frame difference method to verify whether there exists material
sheet on the conveyor. Specifically, we set up a detection area in
the center of reference bars. As shown in Figure 6(a), we record
an empty background frame as the empty frame, and calculate the
difference between the current frame and the empty frame. We thus
perform analysis on the RGB distribution of the difference frame. As
shown in Figure 6(b), we can find that, in regard to RGB distribution,
the difference between the empty frames is small, whereas the
difference between the empty frame and the production frame
is quite large. Therefore, we use the entropy of difference frame
to determine whether there exists material sheet in production.
Specifically, we calculate the entropy of R, G, and B channels in the
difference frame 𝐹 , respectively. Taking channel R as an example,
we use ℎ𝑖 to denote the total number of pixels with value 𝑖 in
channel R, and use 𝑛 to denote the number of different values of
𝑖 in this channel. We use 𝑝𝑖 to represent the ratio of pixels with
value 𝑖 to all pixels in channel R, thus 𝑝𝑖 = ℎ𝑖/(

∑𝑛−1
𝑗=0 ℎ 𝑗 ). Then, the

(a) Distorted frame (b) Calibrated frame

(c) Chessboard (d) Captured chessboards

Figure 7: Perspective transformation for captured frame

entropy value 𝐻 (𝐹 ), which describes the information of channel R
in the difference frame 𝐹 , can be calculated as follows:

𝐻 (𝐹 ) = −
𝑛−1∑
𝑖=0

𝑝𝑖 log𝑝𝑖 (1)

To reduce the complexity in the calculation, we convert the
RGB difference frame into a gray-scale image and reduce the value
range from (0,255) to (0,16) by dividing point value by 16. Then
we calculate the entropy of this simplified gray-scale image. To
enhance environmental adaptability, we set two thresholds,𝐻𝑢𝑝𝑑𝑎𝑡𝑒

and 𝐻𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 . For each periodic interval, e.g., 1 minute, when the
𝐻 (𝐺) of current frame is less than 𝐻𝑢𝑝𝑑𝑎𝑡𝑒 , we update the empty
frame with the current frame. When 𝐻 (𝐺) of the current frame is
greater than 𝐻𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 , it can be determined that the material sheet
is in production and the edge detection should be started.

4.2 Perspective Transformation
A camera usually suffers the lens distortion when capturing images
in real complex environment. Since the camera is deployed close to
the sheet, this distortion will make the edge in captured frame bend
seriously, which brings great interference to detection accuracy.
Fortunately, the distortion is an inherent property of camera and
all frames captured by one camera can be calibrated with the same
calibration parameters. Therefore, before the camera is deployed,
we use the chessboard-based calibration method to calculate pa-
rameters and correct distortion [9]. Specifically, the transformation
relationship between distortion coordinate (𝑥𝑐 , 𝑦𝑐 ) and correction
coordinate (𝑥𝑝 , 𝑦𝑝 ) is shown in Eq. (2), where 𝑟2 = 𝑥2𝑝 + 𝑦2𝑝 .[

𝑥𝑐
𝑦𝑐

]
= (1+𝑘1𝑟2+𝑘2𝑟4+𝑘3𝑟6)

[
𝑥𝑝
𝑦𝑝

]
+
[
2𝑝1𝑥𝑝𝑦𝑝 + 𝑝2 (𝑟2 + 2𝑥2𝑝 )
2𝑝2𝑥𝑝𝑦𝑝 + 𝑝1 (𝑟2 + 2𝑥2𝑝 )

]
(2)

The parameters 𝑘1, 𝑘2, 𝑘3 and 𝑝1, 𝑝2 represent the distortion factor,
which can be calculated by the following steps: 1) use the camera
to take photos of the chessboard from various angles, 2) search
the corners of black and white boxes on those chessboard photos,
3) calculate the correspondence between the corners in the image
and the real world, and generate spatial points in world coordi-
nates, 4) calculate the corresponding camera parameters (𝑘1, 𝑘2, 𝑘3
and 𝑝1, 𝑝2) for camera calibration. Figure 7 shows an example of
perspective transformation on the captured distorted frame.
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4.3 Preprocessing
4.3.1 Reference Bar Selection. To obtain the highest image gra-

dient at the edge of material sheet, we select the bar with higher
contrast from W Bar or B Bar. Specifically, we use the following
steps to calculate the score of each reference bar and select the one
with higher score. First, we convert the RGB frame into a gray-scale
image using Eq. (3), where 𝐵,𝐺, 𝑅 are the values of Blue, Green, and
Red for each pixel in this RGB frame.

𝐺𝑟 = 0.114 × 𝐵 + 0.587 ×𝐺 + 0.2989 × 𝑅 (3)

Second, we make convolution with image 𝑓 using Sobel Filter in
Eq. (4) and derive the gradient along 𝑥-axis (horizontal direction).

𝑆𝑥 =


1 0 −1
2 0 −2
1 0 −1

 (4)

Third, we use a sliding window of size𝑚 × 𝑛 to scan the gradient
image with the step of 𝜂 pixels, and calculate the maximum value
of each row in the sliding window as the gradient list of size 1 × 𝑛.
Note that, the boundary between the material sheet and the ref-
erence bar generally corresponds to the area with high gradient
values, hence we can determine the boundary area by comparing
gradient lists of different sliding windows. Since the sheet has two
edges, i.e., left edge and right edge, we search for the left and right
boundary areas for each bar, respectively. Denote the average and
standard deviation (std) of each gradient list as 𝜇 and 𝜎 . We first
select the sliding window with largest 𝜇, and remove all overlap-
ping windows. Then we select the second window with largest 𝜇
among the remaining. Actually, the two windows contain the left
edge and right edge, separately. Assume the average and std of the
two windows for one bar are 𝜇1, 𝜎1 and 𝜇2, 𝜎2, respectively. Thus,
the score of one bar is calculated as:

𝑠 = 𝜇1 + 𝜇2 − |𝜇1 − 𝜇2 | − ln(𝜎1 + 1) (𝜎2 + 1) (5)

The bar with higher score will be selected for further analysis.

4.3.2 Contrast Enhancement. To reduce the random interference
from ambient noise and improve the quality of edge extraction, we
perform the image enhancement for the boundary area of selected
bar. Specifically, for the corresponding two windows selected above,
we apply the Laplacian filter to highlight the area of boundaries.

4.3.3 mROI Extraction. To achieve time efficiency in edge de-
tection on MEN with limited computing resources, we extract the
mROI from the selected reference bar area. By removing the edge
irrelevant areas, we are able to reduce recognition area by over
100 times compared with the full frame, as shown in Figure 8. Ac-
cording to the continuity of sheet movement, we observe that the
edge position changes slightly between adjacent frames. Thus we
use the previous edge position to determine current mROI. After
obtaining the left and right edge position (𝑥𝑙 (𝑡 − 1), 𝑥𝑟 (𝑡 − 1)) of
the previous frame, we can extract the corresponding mROI areas
of both edges for current frame as follows. Specifically, since the
edge of reference bar helps determine the sheet edge, we set the
height of mROI to a bit larger than the height of reference bar, so
as to ensure that the extracted area contains the edge of reference
bar. Meanwhile, the width of mROI depends on two factors: the
edge position in the previous frame, i.e., 𝑥𝑙 (𝑡 − 1) for left mROI and

Figure 8: mROI extraction

𝑥𝑟 (𝑡 − 1) for right mROI, and the searching range of 2𝑥𝛿 . Moreover,
we extend the edge of mROI at the bar side with additional length of
𝜏𝑥 , to guarantee that enough reference bar and material edges are
inside the mROI. In this way, we can improve the time-efficiency
in the space domain.

4.3.4 Frame Caching. During the actual production process,
due to the continuity of sheet movement, the recognition result
of adjacent frames in the mROI usually tends to be consistent.
Much time could be wasted in recognizing these frames repeatedly.
Therefore, to achieve time efficiency, we propose cache-pool-based
method to avoid the duplicated edge detection and further speed
up the recognition process. Specifically, this pool records a fixed
number of frames in the mROI. We use the Least Recently Used
(LRU) based method [14] to update the cache pool. We define the
cache hit as the entropy value of the difference frame between the
current frame and the cached frame. If the entropy value is less
than the skip threshold, the cache hit is successful. We then use the
recognition result for the cached frame to skip the complicated edge
detection. Otherwise, we start the normal edge detection process,
and use the corresponding recognition result of the current frame
to update the least recently used one in the cache pool. In this way,
we can further improve the time-efficiency in the time domain.

4.4 Edge Detection
4.4.1 Image Upsampling. Compared with low-resolution im-

ages, high-resolution images provide more details in texture and
help to improve the accuracy in edge detection. For example, the
resolution in the 4K image is four times higher than that of 1080p im-
age. However, it is unaffordable for the limited computing platform
MEN to capture and recognize the original 4K resolution frames,
along with providing the Real-Time Messaging Protocol (RTMP)
media service. Besides, the cost of a camera that supports 4K res-
olution is over four times larger than that of an ordinary 1080p
camera. Therefore, according to the frame in the mROI captured by
an ordinary 1080p camera, we leverage the Fast-ESPCN upsampling
technology to generate a super resolution image. Compared with
recognition on original 4K frame, our method can achieve the equiv-
alent edge detection accuracy but require much less recognition
time and fewer computing resources.

Fast-ESPCN Structure Design. Inspired from the ESPCN model
[5], we adjust some layers to achieve the fast speed of training
and inference, as shown in Figure 9. For the frame in mROI with
size 𝐻 ×𝑊 , we use the growth type of hidden layers to get a 𝑣2
(upsample factor) channels feature map with the same size. Then, a
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Figure 9: Fast-ESPCN method takes the mROI image (low resolution) as
input, and outputs the SR (super resolution) image

Figure 10: Training/ Validation performance of Fast-ESPCN

sub-pixel convolution layer is used to reshape the𝐻×𝑊 ×𝑣2 feature
map to high resolution frame with size 𝑣𝐻 × 𝑣𝑊 × 1. Empirically,
we set 𝑣 = 2 to upsample the 1080p resolution image to 4K.

Training and Validation. In the training stage, we first collect the
original distorted 4K frames, and use the perspective transforma-
tion to get calibrated 4K frames as ground-truth. Then, we resize
the calibrated frames to 1080p resolution as input. An NVIDIA GPU
is used to complete the model training in offline mode, then MEN
runs this model to upsample the mROI from 1080p low-resolution
image to 4K high-resolution image. Figure 10 shows the bench-
mark performance of Fast-ESPCN module. With the training loss of
0.042 and validation Peak Signal-to-Noise Ratio (PSNR) of 26.3, our
model achieves fast training convergence speed and high quality
in image reconstruction. The results show that the Fast-ESPCN
method achieves average processing time of 10.3ms with a stan-
dard deviation of 4ms, and the single CPU core utilization rate is
50%. Compared with the original downward type of hidden layers
(105ms average processing time and 27.1 PSNR), with the same
upscale factor (𝑣 = 2), our method achieves similar PSNR error but
runs 10 times faster than the former.

4.4.2 Edge Point Extraction. With the high contrast between the
material sheet and reference bar, the edge detection operators, e.g.,
the Canny operator with fine-tuned parameters can achieve good
performance on the edge point extraction, as shown in Figure 11.
However, it is actually difficult to fine-tune parameters for each
sheet color, and there are no static parameters that apply to all
sheet colors. Based on this understanding, we aim to adaptively
adjust parameters for Canny operator to accurately extract the two
vertical lines for edge detection in the recognition area. Therefore,
as mentioned in Section 3, since the double threshold of Canny
operator, i.e., 𝐻𝑙𝑜𝑤 and 𝐻ℎ𝑖𝑔ℎ , is very crucial to the edge detection,
it is essential to obtain optimized values for the two parameters to
improve the performance. We observe that, as shown in Figure 8,
for both the left and right edges of the material sheet in the mROI,

Figure 11: Pre-study for Canny operator: (a) edge extraction performance
for double threshold in Canny operator, (b) 1○ original mROI frame, 2○ large
thresholds obtain fewer edge points, 3○ appropriate thresholds obtain satis-
fying edge points, 4○ small thresholds obtain noisy edge points

Figure 12: Separate static andmoving edge points for current image frame:
(a) original mROI frame, (b) extracted edge points, (c) separated static edge
points, (d) separated moving edge points

they form a line with length no less than the height of mROI, respec-
tively. We can use this property to evaluate whether the extracted
edge points are satisfied for edge detection. Specifically, we set
large values for (𝐻ℎ𝑖𝑔ℎ, 𝐻𝑙𝑜𝑤) initially, it enables us to extract left
and right vertical line for the edge detection, where both lines have
a small number of edge points to start with. Then, we iteratively
update the values of (𝐻ℎ𝑖𝑔ℎ, 𝐻𝑙𝑜𝑤) by step (−𝐻𝑢 ,−2𝐻𝑢 ), and eval-
uate whether the extracted edge points form two major lines which
are long enough. The iteration keeps running until the number of
extracted edge points is greater than a certain threshold 𝜏 .

After fine-tuning the parameters of Canny operator, we ex-
tract all candidate edge points, including the background-related
edge points and the sheet-related edge points. Thus, it is essential
to separate the sheet-related edge points from the background-
related edge points. We observe that, during the production pro-
cess, only the sheet-related edge points move side to side, whereas
the background-related edge points keep static. Therefore, we can
divide all candidate edge points into static points, i.e., background-
related edge points, and moving points, i.e., sheet-related edge
points, from a time-domain perspective. Based on this understand-
ing, we can calculate the intersection of edge points in multiple
frames to extract the static points 𝑆𝑠 , which keep static across
multiple frames. Specifically, suppose the candidate edge points
calculated by the Canny operator is 𝑆𝑖 for each frame 𝑖 , then, for
the previous 𝑘 frames, we define the common background edge
points 𝑆𝑢 as follows: 𝑆𝑢 = 𝑆𝑖−𝑘 ∩ 𝑆𝑖−𝑘+1 ... ∩ 𝑆𝑖−1. After that, the
static points 𝑆𝑠 can be calculated as follows: 𝑆𝑠 = 𝑆𝑢 ∩ 𝑆𝑖 . Then, the
moving points for each frame 𝑖 can be calculated by subtracting the
static points 𝑆𝑠 from the candidate edge points, i.e., 𝑆𝑚 = 𝑆𝑖 − 𝑆𝑠 .
This separation results are shown in Figure 12. Herein, the mov-
ing points 𝑆𝑚 contain both the edge points of sheet as well as the
occasionally blocked edge points of reference bar.

4.4.3 Bi-direction Edge Tracking. After obtaining the edge points
of sheet, we can perform the edge tracking for each frame by search-
ing vertical lines according to the extracted edge points. However,
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Algorithm 1: Bi-direction Edge Tracking
Input: 𝑆𝑖 : edge points set for current frame 𝑖; 𝑆𝑢 , 𝑆𝑠 , 𝑆𝑚 :

common background edge points, separated static
points and moving points for 𝑆𝑖 ; 𝑥 (𝑡 − 1): previous
position of left/right sheet edge; 𝜏𝑣 : threshold for
vertical line length;

Output: 𝑥 (𝑡): current left/right sheet edge position;
1 Vertical Line Tracking:
2 Project 𝑆𝑚 on 𝑦-axis as 𝑌𝑚 , count the number 𝑁 of 𝑌𝑚 ;
3 if 𝑁 < 𝜏𝑣 then
4 for 𝑝 = (𝑥,𝑦) in 𝑆𝑚 do
5 if 𝑝 ′ = (𝑥 ± 1, 𝑦 − 1) in 𝑆𝑠 then 𝑆𝑚 = 𝑆𝑚 ∪ 𝑝 ′;
6 end
7 end
8 Find an optical vertical line in 𝑆𝑚 , calculate 𝑥𝑣 (𝑡);
9 Horizontal Line Tracking:

10 if size( 𝑆𝑢 ∩ 𝑆𝑖 ) < size(𝑆𝑢 ) then Find optical horizontal
lines in 𝑆𝑠 , calculate 𝑥ℎ (𝑡) ;

11 else Find optical horizontal lines in 𝑆𝑚 , calculate 𝑥ℎ (𝑡) ;
12 Bi-direction Fusion:
13 𝑥 (𝑡) = 𝑓 𝑢𝑠𝑖𝑜𝑛(𝑥𝑣 (𝑡), 𝑥ℎ (𝑡), 𝑥 (𝑡 − 1));
14 return 𝑥 (𝑡).

the edge tracking in a single direction, e.g., searching for edges in
the vertical direction, is susceptible to the interference from am-
bient noise and may lead to the inaccurate recognition result. To
improve the accuracy and robustness for edge tracking, we propose
a Bi-direction Edge Tracking method. As shown in Algorithm 1, the
algorithm is composed of three parts, i.e., vertical edge tracking
for material sheet, horizontal edge tracking for reference bar and bi-
direction fusion. After extracting edge points, we divide each set of
edge points into left-edge-points and right-edge-points according
to coordinates in the 𝑥-axis. Without loss of generality, we take one
side of edge points as an example to show the detailed algorithm
design of Bi-direction Edge Tracking.

Vertical Edge Tracking: In the vertical edge tracking, we aim to
find a vertical line to accurately estimate the edge position of sheet,
according to the extracted moving points 𝑆𝑚 . However, when the
sheet edge moves from side to side during the production process,
the edge points of sheet can coincide with the static background
edge points, resulting in part of missing sheet edge points among
the extracted moving points 𝑆𝑚 when performing 𝑆𝑚 = 𝑆𝑖 − 𝑆𝑠 .
Therefore, to identify the vertical line corresponding to the sheet
edge, we need to verify and search for missing sheet edge points.
Specifically, to verify if there exist missing sheet edge points in the
vertical direction, we first project the moving points on 𝑦-axis and
count the cardinality of unique projected points. If the cardinality
is less than a threshold 𝜏𝑣 , we then use the static points vertically
adjacent to the moving points to recover the originally missing
sheet edge points. After that, we check all vertical lines with length
greater than threshold 𝜏𝑣 from the updated moving points 𝑆𝑚 , and
identify an optimal vertical line to denote the sheet edge 𝑥𝑣 (𝑡).

Horizontal Edge Tracking: In the horizontal edge tracking, we
aim to find a leftmost or rightmost point of selected reference bar

Figure 13: Horizontal edge tracking for selected reference bar: (a) original
frame of left mROI, (b) edge points from original frame, (c) sheet moves
toward center, (d) sheet moves away from center

to accurately estimate the edge position of sheet. Herein, the left-
most or rightmost point corresponds to the boundary between the
reference bar and the sheet, respectively. In principle, the leftmost
or rightmost point can be identified from the static edge points 𝑆𝑠 .
However, when the sheet edge moves from side to side as shown
in Figure 13, the static edge points of selected reference bar can be
occasionally blocked by the sheet, causing the leftmost or rightmost
point to be possibly categorized to moving points. Therefore, we
need to further identify the leftmost or rightmost point from either
the static points or moving points. Specifically, when the sheet edge
moves towards the center position, more points of selected refer-
ence bar can be extracted. In this situation, we search the horizontal
line from 𝑆𝑚 and use the leftmost/rightmost point of the line as
the recognition result. When the material sheet moves away from
the center position, fewer points of reference bar get extracted. In
this situation, for the current frame 𝑖 , we search the horizontal line
from 𝑆𝑠 , and use the leftmost/rightmost point of the line as the
recognition result 𝑥ℎ (𝑡).

Bi-direction Fusion: According to the recognition results from
Vertical Edge Tracking and Horizontal Edge Tracking, it is difficult
to determine which one is more accurate and reliable when the
two relatively independent results are different. Considering the
continuity of sheet movement, we give different weights on current
horizontal/vertical edge tracking results. Specifically, we set the
weight according to the difference between the previous fused result
and the current horizontal/vertical edge tracking results. In the
complimentary filter, the one with closer distance to the previous
fused result will have higher weight, as shown in Eq. (6).

𝑥 (𝑡) = |𝑥ℎ (𝑡) − 𝑥 (𝑡 − 1) | × 𝑥𝑣 (𝑡) + |𝑥𝑣 (𝑡) − 𝑥 (𝑡 − 1) | × 𝑥ℎ (𝑡)
|𝑥𝑣 (𝑡) − 𝑥 (𝑡 − 1) | + |𝑥ℎ (𝑡) − 𝑥 (𝑡 − 1) | (6)

Herein, 𝑥 (𝑡) and 𝑥 (𝑡 − 1) denote the fused results at current time 𝑡
and previous time 𝑡 − 1, respectively. 𝑥𝑣 (𝑡) and 𝑥ℎ (𝑡) denote the
recognition results from vertical direction and horizontal direction
at time 𝑡 . Theweight of current horizontal edge tracking result𝑥ℎ (𝑡)
is |𝑥𝑣 (𝑡) −𝑥 (𝑡 −1) |, which is the difference between current vertical
edge tracking result and previous fused result, and the weight
of current vertical edge tracking result 𝑥𝑣 (𝑡) can be calculated
similarly. Based on the complimentary filter, we can derive the
accurate result with stable and smooth property in the time-domain.

4.5 Deviation Rectification
The edge deviation appears when the detected edge position is not
at the standard position. Once the edge deviation exceeds a certain
threshold, it is essential to efficiently rectify the sheet edge devi-
ation. Traditionally, the edge deviation rectification is conducted
manually. After the material sheet expands to the product size, the
workers will adjust the rolling speed of stretching devices, i.e., the
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left and right spreader rolls, to rectify the sheet edge deviation when
necessary and keep the sheet edge at the standard position. For
example, when the edge position deviates to the left side of standard
position, the workers try to gradually increase the rolling speed of
left spreader rolls or reduce the rolling speed of right spreader rolls,
until the sheet edge returns to the standard position. The adjust-
ment of rolling speed is purely determined by human experience.
However, to perform the edge deviation rectification automatically,
it is rather difficult to figure out the uncertain relationship between
edge deviation and rolling speed. Thus, we propose a negative feed-
back control scheme, which formulates this relationship as a linear
model on a small scale.

Specifically, to achieve time-efficiency in the edge deviation rec-
tification, we use the linear model to describe the relationship
between the rolling speed of spreader rolls and the sheet edge
deviation, as shown in Eq. (7).

𝛼 × 𝑓𝑙 (𝑡) − 𝛽 × 𝑓𝑟 (𝑡) = 𝛾 × (𝑥 (𝑡) − 𝑥𝑠 ) (7)

Here, 𝑓𝑙 and 𝑓𝑟 denote the frequency of electric motor for the left
and right spreader rolls, respectively, which are linearly related to
the rolling speed of spreader rolls. 𝑥 (𝑡) and 𝑥𝑠 denote the current
edge position and the standard edge position, respectively. 𝛼, 𝛽 ,
and 𝛾 are the ratio factors measured during the production process.
According to this model, we can adjust the parameters of stretching
devices, i.e., 𝑓𝑙 and 𝑓𝑟 , and rectify the sheet edge to the standard
position. However, in the real deployment, these parameters 𝛼, 𝛽,𝛾
do not only vary among different production lines, but also change
with the conveyor speed and the rolling speed of spreader rolls. This
leads to the sheet edge drift on the standard position. Moreover,
the time delay in the edge position recognition and round-trip feed-
back further amplifies the jitters of sheet edge alignment. To tackle
these issues, we propose the multi-stage feedback regulation, which
adaptively adjusts the parameters and smooths the results to obtain
the stronger delay tolerance and better rectification performance.

In the negative feedback control, we first calculate the smoothed
edge position 𝑥 (𝑡) from the current recognition result and the
previous 𝑘 recognition results, i.e., 𝑥 (𝑡 −𝑘), ..., 𝑥 (𝑡). Then, we check
whether the edge position deviates from the standard range. If not,
we maintain the last control parameters 𝑓𝑙 and 𝑓𝑟 . Otherwise, we
start the deviation rectification by changing 𝑓𝑙 and 𝑓𝑟 to adjust sheet
position movement Δ𝑥 . According to Eq. (7), given a sheet position
movement Δ𝑥 (𝑡) = 𝑥 (𝑡) − 𝑥 (𝑡 − 1), to minimize the change for
control parameters 𝑓𝑙 and 𝑓𝑟 in both left side and right side, we
use the Minimum Mean Square Error (MMSE) method to compute
optimal values of 𝑓𝑙 (𝑡) and 𝑓𝑟 (𝑡) as follows:

arg min
𝑓𝑙 (𝑡 ),𝑓𝑟 (𝑡 )

( |𝑓𝑙 (𝑡) − 𝑓𝑙 (𝑡 − 1) | + |𝑓𝑟 (𝑡) − 𝑓𝑟 (𝑡 − 1) |)

subject to
𝛾 × Δ𝑥 (𝑡) = 𝛼 × (𝑓𝑙 (𝑡) − 𝑓𝑙 (𝑡 − 1)) − 𝛽 × (𝑓𝑟 (𝑡) − 𝑓𝑟 (𝑡 − 1))

(8)

Considering that 𝛼, 𝛽,𝛾 change with the conveyor speed and the
rolling speed of spreader rolls from time to time, we need to dy-
namically update 𝛼, 𝛽,𝛾 along with time. According to Eq. (7), we
observe that the value of 𝛾 is linear to 𝛼 and 𝛽 , so we only need to
update 𝛾 in an equivalent manner. Therefore, after figuring out the
optimal values of 𝑓 ∗

𝑙
(𝑡) and 𝑓 ∗𝑟 (𝑡), for the next time slot 𝑡 + 1, given

the sheet position movement Δ𝑥 (𝑡 + 1), we can further use the two

optimal values to update the parameter 𝛾 as follows:

𝛾∗ =
1

Δ𝑥 (𝑡 + 1) (𝛼×(𝑓 ∗
𝑙
(𝑡)− 𝑓𝑙 (𝑡−1))−𝛽×(𝑓 ∗𝑟 (𝑡)− 𝑓𝑟 (𝑡−1))) . (9)

In this way, we can perform the negative feedback control scheme
by dynamically adjusting the parameters of the model, while achiev-
ing time-efficiency and adaptivity in dynamic environments.

4.6 Summary
Edge-Eye focuses on providing a deviation rectification system
for the real IXPE production, which satisfies high accuracy, time-
efficiency and robustness in the limited computing platform. To
improve the sensing accuracy in the real scenario, Perspective Trans-
formation is used to calibrate the distortion of lens, and Bi-direction
Edge Tracking is used to detect the edge positions based on the super-
resolution image after unsampling. To achieve the time-efficiency,
Reference Bar Selection and mROI Extraction are proposed to reduce
the recognition area, and Frame Caching is used to skip the recog-
nition of duplicated frames. To achieve the robust performance of
deviation rectification, Negative Feedback Control with dynamic
parameters is proposed to adapt to the dynamic and noisy environ-
ments and make the rapid and accurate command response.

5 PERFORMANCE EVALUATION
5.1 Implementation
Hardware: We have fully implemented Edge-Eye and deployed the
system in the foaming production line at a local factory.We describe
the system deployment and our evaluation setup and report the
performance results from a series of experiments. We use industry-
grade alloy as reference bars because the natural color of alloy is
highly resistant to high temperature. We deploy two reference bars
(i.e., W Bar and B Bar) in the central position inside the vertical
heating furnace. A shading plate is placed in front of the recognition
area to reduce the light reflection. We deploy a camera (LT-OV2710
of BlueSky Tech) in front of the vertical heating furnace with a dis-
tance of 1.2m from the target material sheet plane. The camera has
a wide-angle lens of 120◦ and its video quality of 1080p/30fps. Thus,
one pixel of the image frame captured by this camera represents
the width of 1.87mm on the material sheet plane. We combine the
camera with an ARM64 computing platform (Raspberry Pi 4 with
2GB RAM and 64GB ROM) in MEN to accomplish the on-device
sheet edge detection task. A Programmable Logic Controller (PLC)
server receives the recognition result from MEN through Modbus
protocol and makes rectification commands for edge deviation.
Since the PLC server collects each production line information in
5Hz, a consistent update frequency contributes to the delivery of
control command. Therefore, the time of edge detection needs to
be controlled below 200ms.

Setup: Our IXPE products have 11 different colors, divided into
7 major kinds. For each color, there exist 3 different sizes. For
each sheet type, we collect 1 hour of production data at the begin-
ning (Init), 2 hours in the middle (Mid), and 1 hour in the end (End).
With 11×3 different types, we obtain 11×3×4 hours of data in total.

Metrics: For edge detection, we use the recognition accuracy and
latency. For deviation rectification, we use the sheet edge alignment
error which is highly influenced by the detection performance. For
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(a) Recognition comparison of different solutions (b) Edge-Eye in different production terms (c) Edge-Eye in different material colors

Figure 14: Evaluation of recognition performance with different settings

utilization of rawmaterial sheets, we use the ratio of product weight
after getting cut and aligned to raw material weight, which depends
on the performance of edge alignment.

5.2 Evaluation of Edge Position Recognition
The traditional manual method can identify the sheet edge position
of any material. However, in the long-term production, the average
recognition accuracy may decrease to 5cm, resulting in the poor
edge alignment. We compare our solution with other classic edge
detection methods. The Canny operator with Houghlines detection
is taken as the baseline. We also deploy the camera that supports
4K resolution to evaluate the recognition difference between SR
4K resolution frames and original 4K resolution frames. After each
method produces its result, we check the pixels near the result
position to see if the difference matches the value of current sheet
color and reference bar color, and this is used as the ground-truth.

5.2.1 Unrecognition Rate. In actual production, unavoidable in-
terruption (e.g., material sheet expands or extra rod pulls sheet)
may occur, causing the failure of edge detection. We define these
cases as unrecognition results when the edge detection method
gives no edge position or the recognition result has a large dis-
tance with the ground-truth, e.g., over 20mm. By calculating the
ratio of unrecognition time to full production time, we evaluate the
recognition robustness for each recognition method. As shown in
Figure 14, Edge-Eye achieves an unrecognition rate of 1.04%, and
the main unrecognition time is in the initialization stage where
material sheet expands and width changes rapidly with extra rod
appearance. Since the human worker rectifies the edge deviation
during the initialization stage, the unrecognition rate of Edge-Eye
has no influence on auto rectification performance. Classic Canny
operator achieves an unrecognition rate of 21.6% on average, and
most of the unrecognition cases occur during the auto rectification
stage. Interestingly, when we use Classic Canny operator to process
the ROI area of reference bars instead of full frame, the unrecog-
nition rate decreases to 8.3% which shows a high contribution of
the reference bars. We also find the unrecognition rate of the black
color material sheet is the lowest among all colors. It comes from
the large contrast with the original background, which contributes
to the successful recognition of Canny operator with houghlines
detection. Also the black color provides the best contrast with W
Bar compared with other sheet colors. As the opposite, the gray

color material sheet has the highest unrecognition rate because of
the low contrast with either W Bar or B Bar.

5.2.2 Recognition Accuracy. We compare the difference between
recognition result and the ground-truth for position error. As shown
in Figure 14, the baseline solution recognizes sheet edge position
from the entire frame which is full of interference edge lines, and
achieves an average error of 13.4mm. After narrowing down the
recognition area from the entire frame to the ROI area of reference
bars in the baseline, the average error decreases to 8.6mm. Edge-Eye
achieves the average position error of 2.8mm with a standard devia-
tion of 2.4. Compared with the manual recognition, our solution can
improve the edge recognition accuracy by over 10×. However, if
without reference bars, Edge-Eye will achieve the lower recognition
accuracy, as illustrated by Gray*, Red* and Yellow* in Figure 14(c).
That is, the contrast between the sheet and the background is re-
duced in the absence of reference bars, which would greatly affect
the performance of edge detection. Judging from the production
terms in Figure 14(b), the position error at the beginning stage is
relatively large, with an average position error of 3.6mm. This is
because that the material edge will get bent when the material
expands in the initial stage, such that the issue of edge blur appears
and the error of edge detection increases. Additionally, we evaluate
the performance of image upsampling module. The average errors
of original 4K frame and repaired 4K frame by 1080p frame are
2.6mm and 2.8mm, while their standard deviation values are 1.5
and 2.4, respectively. That is, Edge-Eye can efficiently improve the
image quality with the image upsampling module.

5.2.3 Recognition Latency. During the production stage, Edge-
Eye achieves an average recognition time of 200ms. As shown in
Figure 15(a), the module of bi-direction edge tracking consumes
the most time. Besides, the cache module has to calculate the image
entropy for each frame in the cache pool thus consumes extra time.
In Figure 15(b), we evaluate the recognition latency after disabling
the module of cache, image upsampling, and mROI extraction in
succession. Without module of cache, the average recognition time
increases to 270ms. Without module of image upsampling, the
average recognition time decreases to 110ms. Without module of
mROI extraction, Edge-Eye directly tracks edge position in entire
reference bar area and achieves an average latency of 460ms. It
can be clearly found that the mROI extraction module reduces the
latency most, and the module of image upsampling increases the
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(a) Latency analysis for each Edge-Eye module (b) Latency comparison without specific modules (c) Edge deviation rectification performance

Figure 15: Latency analysis and rectification performance

(a) Analysis of skip threshold (b) Analysis of pool size

Figure 16: Evaluation of hyper-parameters of cache pool

extra latency, but without this module, the position error increases
from 2.8mm to 5.4mm. From the perspective of material production,
this is a considerable trade-off between latency and accuracy.

5.2.4 Cache Pool Analysis. We further evaluate the performance
of cache pool scheme through hit success rate, hit calculation time
and false positive rate, by adjusting the skip threshold and cache
pool size. The hit success rate refers to the probability of success-
fully finding duplicated frames, and the false positive rate refers
to the probability of mistaking the current frame as the duplicated
one. 1) Skip Threshold: We make further experiments to determine
the optimal skip threshold for cache pool, and the result is shown
in Figure 16(a). As the skip threshold increases, the hit success
rate increases. However, when the skip threshold is greater than
0.3, the false positive rate increases rapidly, affecting the further
recognition accuracy. In fact, the entropy value represents the sim-
ilarity between the two different frames in the pixel level. Thus,
the larger skip threshold will lead to the wrong hit for the frames
without enough similarity. Finally, we set the skip threshold to
0.03, which can reduce the recognition time without degrading the
recognition accuracy. 2) Cache Pool Size: A large size of cache pool
always leads to higher hit success rate, but also enlarges the hit
calculation time. Here we conduct experiments about cache pool
size for best recognition performance. As shown in Figure 16(b),
the calculation time increases linearly with pool size, but the hit
success rate increases slowly after the pool size exceeds 80. The
slow increase of hit success rate means that most of similar frames
are cached in the pool, thus a larger pool size contributes little to
the hit success rate but greatly increases the hit computation time.
Therefore, we choose the value of 80 as our cache pool size.

Figure 17: Some typical challenging conditions

5.3 Evaluation of Edge Deviation Rectification
Finally, we evaluate the rectification performance for sheet edge
deviation on the actual production line. First we deploy Edge-Eye on
2 production lines as the preliminary attempt. After this validation,
we evaluate the deviation rectification performance of Edge-Eye on
all production lines. 1) Edge Alignment Error: Figure 15(c) shows the
alignment performance of Edge-Eye. Compared with the average
deviation of 45mm for manual rectification, our solution performs
much better in the validation stage, i.e., the average deviation is
4.86mm and the maximum value is 6.2mm. Further evaluation on all
production lines reveals the average alignment error of 4.95mmwith
the maximum of 6.8mm. That is, Edge-Eye can provide the satisfying
performance for the edge deviation rectification. 2) Raw Material
Utilization Rate: Benefiting from the high edge alignment accuracy,
the average utilization rate of raw material sheets increases from
87% to 94%. Among all sheet types, the utilization rate for products
with minimum width (850mm) achieves the largest improvement,
from 84.6% to 95.7%, which comes from the reduction of absolute
edge alignment error and less raw material waste. Compared with
the manual method, Edge-Eye uses the automatic rectification to
improve the product quality and reduce the risk of being exposed to
high temperature for personnel. Therefore, Edge-Eye can contribute
to the IXPE production and provide a practical example for IIoT.

5.4 Case Study
Edge-Eye has been actually deployed in a large IXPE manufactur-
ing enterprise. Specifically, 36 production lines are equipped with
Edge-Eye system for automatic edge deviation rectification over 20
months. Here, in addition to the above experiment results in real
production, we show some results towards some typical challenging
conditions in Figure 17.

1) Light reflection: The deployment of shading plate reduces most
of the light reflection, but still in some cases the light reflects to key
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(a) Manual rectification by human (b) Automatic rectification by Edge-Eye

Figure 18: Comparison of different rectification methods

recognition area and causes huge interference. When light reflects
to the mROI area, it makes the vertical edge tracking unreliable,
thus decreases the average recognition accuracy to 6.4mm. Due
to the calculation of background edge points, the reflection light
will be considered as the background and get subtracted from sheet
edge points. In this way, the reflection light will cause the slight
effect on the deviation rectification. Further design of the shading
plate will be required to improve the stability of recognition.

2) Weak background light: It comes from the light equipment
malfunction in the vertical heating furnace and lasts for a short
time. In this case, the camera captures dark frames and reference
bars provide less contrast with sheet color. Similar with the issue
of light reflection, the vertical edge tracking fails to work, and
the horizontal edge tracking may experience an accuracy drop.
Nevertheless, we can achieve the average recognition accuracy of
4.8mm, which is acceptable for automatic rectification.

3) Glass dirt: As the small dirt is treated as the common back-
ground edge point, it brings no effect on the edge detection. In this
case, the average recognition accuracy is 2.83mm, which is consis-
tent with the accuracy of normal situation. The result indicates that
Edge-Eye can achieve the millimeter-level accuracy for edge recog-
nition even in challenging conditions, satisfying the requirements
of actual production scenarios.

Meanwhile, we compare the variation of edge position between
the traditional human supervision and our solution Edge-Eye. As
shown in Figure 18, the edge position with the automatic rectifica-
tion by Edge-Eye is much smoother than the manual rectification.
In general, during the process of 20-month real deployment, 66
manpower per day (90% of the overall manpower) has been saved
for 36 production lines, the utilization rate of IXPE material in-
creases from 87% to 94%, thus the comprehensive output value has
increased 400000 dollars per month.

6 CONCLUSION
In this paper, we propose Edge-Eye, a camera-enabled automatic
edge deviation rectification system for IXPE production with mm-
level accuracy. To achieve the robust edge detection, we deploy a
pair of high contrast reference bars to enhance the edge contrast.
To achieve the time-efficient edge detection with high accuracy in
MEN, we use the minimized ROI extraction and cache method to
reduce computing resources in both space and time domains, and
then adopt the image upsampling method to improve the frame
resolution for bi-direction edge tracking. Finally, Edge-Eye auto-
matically rectifies the edge deviation in fine-grained level using
multi-stage negative feedback control. We implemented Edge-Eye
on the ARM64 platform. The real evaluation of 20-month deploy-
ment for 36 production lines shows that 90% of manpower is saved,
and the utilization rate of IXPE material increases from 87% to 94%.
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