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ABSTRACT
Recent research has demonstrated the feasibility of detecting
human respiration rate non-intrusively leveraging commodity
WiFi devices. However, is it always possible to sense human
respiration no matter where the subject stays and faces? What
affects human respiration sensing and what’s the theory be-
hind? In this paper, we first introduce the Fresnel model in
free space, then verify the Fresnel model for WiFi radio prop-
agation in indoor environment. Leveraging the Fresnel model
and WiFi radio propagation properties derived, we investigate
the impact of human respiration on the receiving RF signals
and develop the theory to relate one’s breathing depth, location
and orientation to the detectability of respiration. With the
developed theory, not only when and why human respiration
is detectable using WiFi devices become clear, it also sheds
lights on understanding the physical limit and foundation of
WiFi-based sensing systems. Intensive evaluations validate the
developed theory and case studies demonstrate how to apply
the theory to the respiration monitoring system design.
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INTRODUCTION
With the rapid development of ubiquitous sensing technolo-
gies and fast growth of the world aging population, intelligent
environments that can monitor and react to elders’ daily activ-
ities have received a lot of attention [2][14]. While early work
focused mainly on environment monitoring and daily-activity
recognition, the past few years have witnessed a surge of inter-
est in health threat monitoring to ensure timely intervention
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and safety for elders, such as fall detection [12][43][38] and
vital sign monitoring [13][3]. Respiratory rate is an important
vital sign that can indicate progression of illness and decline in
health. Abnormal respiration rate, either too high (tachypnea),
too low (bradypnea), or absent (apnea), is a sensitive indicator
of physiologic distress that requires immediate clinical inter-
vention. Given that nearly 5% of the total population suffers
from respiration illnesses such as Sleep Apnea Syndrome and
about 30% of people in their seventies are reported to have a
respiration disease in developed countries [25], cost-effective
and continuous resipration monitoring is essential.

Two common methods for continuous respiration rate mon-
itoring in clinical setting are impedance pneumography and
capnography. However, they are expensive and intrusive, pre-
venting these systems from large scale deployment at ordi-
nary homes with elders. In order to minimize the discomfort
brought by the invasive respiration measurement methods, sev-
eral attempts have been made using wearable [28] and pressure
sensors [27] for long-term respiration monitoring. While these
two types of contact-based sensing methods are more tolerable
for elders, the pressure sensor based systems won’t be able to
measure respiration rate when the subject leaves the bed, while
wearable respiration measurement devices have the issues of
acceptance or usability for quite a number of elders [10].

Compared to the contact-based respiration sensing methods,
contact-free sensing method is more appealing because it nei-
ther confines the subject with cables or beds, nor causes dis-
comfort or skin irritation from contact with electrodes or straps
[34]. Therefore, a lot of studies have been devoted to noncon-
tact respiration measurement. For example, Penne et al. used a
Time-of-Flight camera and applied advanced image processing
algorithms to estimate human respiration rate inside a home
[32], unfortunately, such camera-based approaches require
the subject to face the camera closely besides having privacy
concerns and being affected by the lighting conditions. Kondo
et al. deployed a laser sensor to measure the chest wall motion
during respiration [18], while Min et al. applied an ultrasonic
sensor to achieve the same goal [25]. The most widely studied
methods are RF based, ranging from Doppler radar [26], UWB
radar [36], FMCW radar [3] to USRP (Universal Software Ra-
dio Peripheral) based solutions [33]. The basic idea of all
those systems is to measure the displacement in the chest of

25

UBICOMP '16, SEPTEMBER 12–16, 2016, HEIDELBERG, GERMANY



human subjects during respiration. While these solutions are
quite accurate, their costs are usually prohibitively high which
make these solutions impractical in the home setting.

In order to come out with a cost-effective home monitoring
system, in recent years researchers began to turn their attention
to the commodity WiFi devices already installed in the home
for contact-free vital sign measurement. Among those efforts,
Abdelnasser et al. used WiFi Received Signal Strength (RSS)
signal to extract the respiration rate [1]; while Liu et al. and
Wu et al. exploited the fine-grained Channel State Information
(CSI) [11] to detect the breathing rate with commodity WiFi
devices [22][21][42][23]. Even though these works are still
in the exploratory stage, they offer a potentially inexpensive
means to extend applications to consumer home-healthcare
products. While the RSS-based methods are found to be work-
able only when the subject stays close to the Line-of-Sight
(LOS), the CSI-based methods look more appealing as they
can capture the subject’s respiration rate from a distance, mak-
ing it viable for long-term respiration rate monitoring.

Even though the WiFi CSI-based respiration sensing solutions
look very promising, we notice that all the previous work, in-
cluding all the 2.4GHz RF-based respiration sensing research,
is based on pure empirical experiments and fails to inform
when the minute movement due to human respiration is de-
tectable. Furthermore, there lacks a concrete theory to guide
the respiration sensing system design.

In this paper we intend to answer the following questions: (1)
can human respiration rate be detected in all the places using a
pair of WiFi devices inside a room? Are there any differences
for respiration detection if people stay in different places and
face differently? (2) If we fix two WiFi devices, what are
the best, good, bad places and orientations for respiration
detection? If we fix one or two people’s location and facing,
where should we place the WiFi devices in order to optimally
measure the respiration rate? (3) What’s the theory behind in
order to guide the system design? In a nutshell, we not only
intend to provide practical guide for the WiFi-based respiration
sensing system design, but also develop a theory to reveal the
principles of WiFi RF-based activity sensing in general.

In order to answer the above questions, we first introduce the
Fresnel Zone concept and the radio propagation properties
in free space, then verify the Fresnel model for WiFi radio
propagation in indoor amplitudes when a pair of transceivers
are placed apart. By analyzing how a static and moving object
affects the receiving RF signal using the Fresnel model and
radio propagation properties in indoor environment, we derive
the mathematical formula characterizing the amplitude and
phase of the receiving radio signal given the radio frequency.
By further modeling a human as a varying-size semi-cylinder,
we develop the theory to relate one’s breathing depth, loca-
tion and orientation to the detectability of respiration rate.
Based on the developed theory, we not only provide the sens-
ing map which informs where are the best, good and bad
places/orientations for respiration detection (fixing the loca-
tion of two WiFi devices), but can provide practical guide
about the WiFi transmitter/receiver placement when two peo-
ple lie on the bed expecting to be monitored simultaneously.

The main contributions of this work can be summarized as
follows:

1) As far as we know, this is the first work introducing the
Fresnel zone model to indoor environment for respiration rate
detection using commodity WiFi devices. This work provides
general theoretical foundation for exploring subtle movement
detection and possibly the sensing limit of RF-based systems.

2) By analyzing how a moving object affects the receiving RF
signal and modeling a human as a varying-size semi-cylinder,
we develop the theory to relate one’s breathing depth, location
and orientation to the detectability of respiration by examining
the receiving signal strength in the context of the Fresnel Zone.

3) We evaluated the developed theory with extensive experi-
ments. In particular, we used the theory to guide the design of
a respiration rate monitoring system in two typical settings.

RELATED WORK
The research for contact-free sensing of vital signs using wire-
less technologies started in the late 70’s [19]. In the past years,
various RF-based approaches ranging from Doppler radar [7],
UWB radar [8], FMCW radar [3] to USRP based solutions
[9] have been explored to sense the human respiration rate.
While these works have shown that the vital signs can be de-
tected accurately, as a drawback, they rely on sophisticated
and expensive hardware making them impractical for large
scale deployment in ordinary homes. The compelling need
for a non-intrusive and cost-effective health monitoring sys-
tem to improve elders’ safety has led researchers to work on
respiration rate sensing solutions leveraging the existing WiFi
devices at home. The closely related work with this paper can
be roughly divided into three categories:

RSS based respiration detection. This line of research was
first explored by Patwari and Wilson where a network of Zig-
bee transceivers and advanced signal processing techniques
are utilized for extracting respiration rate from the RSS data
stream [29][30]. A more cost-effective solution was developed
by O.J. Kaltiokallio et al. [17] where only one pair of Zigbee
transceivers are deployed to detect the respiration rate from the
RSS stream. With similar ideas, Abdelnasser et al. used two
commodity WiFi devices to extract one’s respiration rate from
RSS [1]. The RSS, however, has found to be insensitive for
reliably tracking the minute chest movement due to respiration,
as the RSS changes caused by exhale and inhale are so small
that they can be easily submerged by environmental noise [23].
Therefore, in actual implementation, the subject is requested
to stay either between the line-of-sight of the WiFi devices [1],
or very close to the Zigbee transceivers assuming that one’s
breathing is constant and periodic [29][29][17], rendering it
impossible for abnormal breathing detection (e.g., apnea).

CSI based respiration detection. Compared to RSS, Chan-
nel State Information (CSI) in WiFi devices is richer and more
sensitive for detecting one’s respiration. WiSleep [22] was the
first work to detect human respiration rate for sleep monitor-
ing based on CSI in commodity WiFi devices. This work was
extended in [23] where the sleeping postures and abnormal
breathing patterns are considered. Liu et al. [21] further pro-
posed to track the vital signs of both breathing rate and heart
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rate during sleep by using off-the-shelf WiFi devices. Wu et
al. [42] extended the respiration detection from sleeping to
standing posture for stationary human detection. However,
behind all the systems and encouraging results, we notice that
current WiFi-based respiration detection solutions are mainly
based on empirical experiments, they fail to answer when the
human respiration rate is detectable. Furthermore, there lacks
an underlying theory to guide the system design, researchers
have to resort to trial-and-error to make the system work.

The Fresnel zone model. The concept of Fresnel zone origi-
nated from the research on the interference and diffraction of
light in the early nineteenth century [16]. The first mention of
using the Fresnel zone concept at Radio Frequency appeared
in a 1936 U.S patent [41][4]. From then on, the Fresnel zone
model has found various applications ranging from microwave
propagation, wireless station placement to antenna design [15].
The recent work [20] applies the Fresnel-Kirchhoff knife-edge
diffraction model to localization in sensor networks. Based
on the symmetry properties of the diffraction effect caused by
human body when the subject appears in a pair of symmetrical
grids, they relate one’s location to the Received Signal Strength
(RSS) in the sensor network with MICAz nodes, achieving
meter-level localization resolution in outdoor environment.

In our work, however, we further consider reflection and fre-
quency diversity of the WiFi RF signal in constructing the
Fresnel zone model and reveal the signal change pattern in
each subcarrier caused by minute movement of a subject. With
this new finding, we are able to capture the subtle body dis-
placement on the receiving RF signal at the granularity of
RF wavelength, pushing the sensing resolution to an unprece-
dented centimeter-level. This opens up new opportunities for
high-precision human sensing in indoor environment, such as
respiration detection.

UNDERSTANDING WIFI FRESNEL ZONE
In this section, we first introduce the basics of the Fresnel zone
model in free space, then we qualitatively analyze how a static
and moving object affects the receiving RF signal w.r.t. the
Fresnel zone. Based on the ideal Fresnel zone model in free
space, we design real experiments to verify the existence of
the Fresnel zones for WiFi radio propagation in indoor envi-
ronment. Finally we quantitatively characterize the receiving
signal in the presence of a moving object and derive the prop-
erties of RF propagation in the context of WiFi Fresnel zone.

The basics of the Fresnel zone model
In the context of radio propagation, Fresnel zones refer to the
concentric ellipses with foci in a pair of transceivers. Assume
P1 and P2 are two transceivers with certain height (as shown
in Fig. 1), for a given radio wavelength λ , the Fresnel zones
containing n ellipses can be constructed by ensuring:

|P1Qn|+ |QnP2|− |P1P2|= nλ/2

where Qn is a point in the nth ellipse. While the innermost
ellipse is defined as the 1st Fresnel zone, the elliptical annuli
between the first ellipse and the second is defined as the 2nd
Fresnel zone, and the nth Fresnel zone corresponds to the
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Figure 1. Geometry of the Fresnel zone.

elliptical annuli between the (n−1)th and nth ellipses. As the
boundary between two adjacent Fresnel zones is an ellipse,
we further define the boundary of the nth Fresnel zone as the
ellipse between nth and (n+1)th Fresnel zones:

bn = {Qn,P1,P2| |P1Qn|+ |QnP2|− |P1P2|= nλ/2} (1)

Apparently, the width of the Fresnel zone keeps decreasing as
n changes from 1 to N, approaching λ/2. According to the
previous research, the significant zones for RF transmission
are the first 8− 12 zones, more than 70% of the energy is
transferred via the first Fresnel zone [15].

How a static/moving object affects the receiving RF signal
As shown in Fig. 1, P1, P2 are a pair of transceivers in free
space. When P1 sends a radio signal to P2, the amplitude and
phase shift of received signal are determined by the length of
P1P2 (LOS).

Assume a static object appears at the boundary of the first
Fresnel zone, Q1 in Fig. 1, an additional signal path is in-
troduced from the object and the received signal at P2 is a
linear combination of the reflected signal and signal via LOS.
Because the source signal is the same, while the path length of
the reflected signal (P1Q1P2) is λ/2 longer than the length of
LOS, the phase difference between the two signals is π , adding
the phase shift π introduced by the reflection [15], the two
signals have the same phase but different amplitude, leading
to a superposed stronger received signal.

But if we put the object at the boundary of the second Fresnel
zone, as the path length of the reflected signal is λ longer than
that of the signal via LOS, the phase difference between the
two signals is 2π . Considering the additional phase shift π , the
received signals would have destructive phases, causing the
two signals canceling each other. Similarly, when the object is
located at the boundary of an odd number Fresnel zone, the
reflected signal would enhance the receiving signal at P2 as it
is in-phase with the LOS signal; when the object is located at
the boundary of an even number Fresnel zone, the reflected
signal and LOS signal would cancel each other as they have
destructive phases, thus P2 would observe weaker signal than
that without any object in the space.

Now assume an object moves from the 1st Fresnel zone to the
nth Fresnel zone, while the signal traveling via LOS remains
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Figure 2. WiFi Fresnel zone experimental settings (left) and results (right): (a) 0-degree, (b) 45-degree, (c) 90-degree.

Figure 3. Representation of linear superposition of multi-paths.

the same, the signal reflected by the object changes over time.
For the amplitude of the reflected signal received at P2, as
the object moves outward leading to longer traveling distance,
thus the amplitude of the signal will decrease gradually. For
the phase of the reflected signal received, as the object moves
outward across different Fresnel zones, the phase difference
between the two signals increase continuously from 2π to 3π ,
4π , ..., (n+1)π , leading to the changing signal superposition.
According to basic interference principle, the received sig-
nal will present peaks or valleys when the object crosses the
boundaries of the Fresnel zones. However, if the object moves
along ellipses, as there is no length change for the reflected
signal path, the received signal remains the same.

While all the above analyses are based on theory and as-
sumption in free space, does the Fresnel Zone model exist
in multipath-rich indoor environment? What happens when an
object moves along different directions?

Verifying WiFi Fresnel Zone in indoor environment
In this section, we intend to verify the existence of WiFi Fres-
nel Zone in indoor environment through experiments.

Experimental settings: We use two WiFi devices placed
70cm apart and a metal cup with a diameter of 7cm and height
of 19cm to conduct the experiment in an office room. We
leverage the commonly used vertically polarized antennas and
place them vertically to the ground with 70cm height. Also
the antennas and the metal cup are placed in the same hori-
zontal plane so that the electric field is perpendicular to the
plane of incidence. As researchers empirically assume that
a free-space radio propagation [5] means no obstruction or

reflection in the space bounded by the "first several zones",
while the significant zones for RF transmission are the first
8~12 Fresnel zones [15]. Thus in our experiment, we keep the
first 12 Fresnel zones clear from obstruction or reflection, and
choose one subcarrier for evaluation, e.g., f = 5.24GHz.

Experimental Protocol: We first draw the Fresnel concentric
ellipses with two foci corresponding to the above setting in
Fig.2 (left), the boundaries of Fresnel zones are colored in blue
and red. In order to verify the existence of WiFi Fresnel zone,
we move the metal cup along the perpendicular bisector (0-
degree) from the 1st to the 6th Fresnel zone. What we expect
to observe are five valleys and peaks presented alternately,
where the first one should be a peak as a result of crossing
the boundary of the 1st Fresnel zone. In order to verify that
the WiFi Fresnel zones are in shape of concentric ellipses, we
move the metal cup along three paths with the same distance of
15cm as shown in Fig.2 (left), labeling as 0-degree,45-degree
and 90-degree. The total number of valleys/peaks we observe
for these three paths should be 5, 11 and 14, respectively,
corresponding to the number of zone boundaries crossed.

Experimental results: (1) The occurrence sequence of val-
leys and peaks match the Fresnel model, e.g., the first peak
shows up correctly when the object reaches the boundary of
the 1st Fresnel zone, followed with a valley when the object
reaches the second, see Fig.2 (a). (2) The occurrence time
and number of valleys/peaks for each path correctly match
the Fresnel model, i.e., WiFi Fresnel zone is in the shape of
concentric ellipses with foci in points T and R, e.g., the num-
ber of valleys and peaks along the perpendicular bisector is
5, see Fig.2 (a) and along the 45-degree path is 11, see Fig.2
(b), which are the number of the Fresnel zone boundaries the
object crosses over, respectively. (3) When the object crosses
a series of Fresnel zones, the receiving signal shows a con-
tinuous sinusoidal-like wave besides the expected peaks and
valleys, verifying the expected phase change.

Characterizing the receiving signal in the presence of a

moving object
In order to characterize the receiving signal in the presence
of a moving object, we study a typical setting as shown in
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Fig.3 (a) in which a transmitted signal arrives at the receiver
through multiple paths. We divide all these paths into static
and dynamic ones, then the receiving signal H( f , t) can be
denoted as a phase vector with the following equation [35][39]:

H( f , t) = Hs( f )+Hd( f , t) = Hs( f )+a( f , t)e− j2πd(t)/λ

where the static vector Hs( f ) is the sum of signals from static
paths while the dynamic vector Hd( f , t) is introduced by the
reflected signal from the moving object as shown in Fig.3 (b).
The reflected signal can be further represented by a vector,
where a( f , t) is the complex valued representation of ampli-

tude and initial phase offset of the dynamic path, e− j2πd(t)/λ

is the phase shift on the dynamic path length d(t). Appar-
ently when the length of the reflected signal changes by λ ,
its phase shifts 2π (rotates one round). Hence the receiving
signal H( f , t) has time-varying amplitude in complex plane:

|H( f ,θ)|2 = |Hs( f )|2 + |Hd( f )|2 +2|Hs( f )||Hd( f )|cosθ
(2)

where θ is the phase difference between the static vector
|Hs( f )| and dynamic vector |Hd( f )|. In particular, when the
object moves for a short distance, e.g., several wavelengths
as in Fig.2 (a), it is safe to assume the amplitude of the dy-
namic vector remains the same, i.e., |Hd( f )| is const. This
explains why the amplitude of the receiving signal looks like
a sinusoidal wave when the object crosses several Fresnel
zones. Specifically, the peaks appear when θ = 2π,4π,... and
the valleys show when θ = 3π,5π,..., corresponding to the
boundaries of the Fresnel zones.

WiFi RF propagation properties in indoor space
With the above discussions, we summarize the WiFi RF prop-
agation properties in indoor space as follows:

1) WiFi Fresnel zones take the shape of concentric ellipses
with foci in a pair of transceivers which can be calculated
mathematically.

2) A moving object usually produces a reflected signal with
varying amplitude and phase. In a small moving scale, the re-
flected signal roughly has fixed amplitude with varying phase
affecting the received signal. In a large moving scale, the
reflected signal experiences both phase change and amplitude
variation as input to the received signal.

3) When an object crosses a series of Fresnel zones, the re-
ceiving signal shows a continuous sinusoidal-like wave, with
peaks and valleys generated by crossing the boundaries.

4) If the reflected signal by a moving object changes the path
length by λ , its phase will undergo a change of 2π , generating
a complete sinusoidal cycle; if the reflected signal changes the
path length shorter than λ , the generated signal is a fragment
of the sinusoidal cycle.

SENSING HUMAN RESPIRATION IN WIFI FRESNEL ZONE
In this section, we first model a human as a varying-size semi-
cylinder simulating the chest movement during respiration,
then we convert the chest displacement to phase change to
characterize how human respiration affects the resultant re-
ceiving signal. By relating this phase change to one’s loca-
tion/orientation, we develop the theory on the detectability

Figure 4. (a) Physiological behavior during respiration, and (b) semi-
cylinder respiration model.

of respiration w.r.t. the Fresnel model. Then we show when
and how frequency diversity can help respiration detection.
Finally, we study a multi-user respiration sensing scenarios.

Modeling Human Respiration
Human respiration is a process consisting of the cyclical in-
flation and deflation of the lungs. Motions and deformations
that are described from the ribcage are shown in Fig.4 (a) [37].
The chest displacement during respiration is 4.2 ∼ 5.4mm in
anteroposterior dimension, and 0.6 ∼ 1.1mm in mediolateral
dimension [24]; while in the deep inspiratory breath hold
(DIBH), this displacement can be increased up to 12.6mm in
anteroposterior dimension [31]. Hence, we model the person
as a varying-size semi-cylinder, as shown in Fig. 4(b), where
the outer and inner cylinder surfaces correspond to the chest
positions for exhale and inhale, respectively.

Converting chest displacement to phase change
In order to sense the respiration rate of a person, we view
the human body as the reflection surface (see Fig.5 (a)) and
study how the chest displacement due to respiration affects the
received RF signal as a moving object. To this end, we first
convert the chest displacement to the change of the reflected
path length, and then convert this path length change to phase
change. Let Δd be the distance of the chest displacement,
then the path length change caused by the chest movement
is around (no more than) 2Δd [39]. If the path length of the
reflected signal changes continuously by a wavelength λ , the
resultant reflected signal will exhibit a phase change (rotation)
of 2π . Thus as shown in Fig.5 (b), the phase rotation θ caused
by respiration can be calculated by the following equation:

θ ≈ 2π ∗2Δd/λ (3)

Where λ is around 5.7cm (for 5GHz) and 11cm (for 2.4GHz).
As the mean distance of chest movement Δd in anteroposterior
for normal respiration and deep respiration like DIBH are
around 5mm and 12mm, respectively [24] [31], the resultant
phase change θ is between 60°to 150°.

Because the reflected signal experiences a phase change of
60°∼ 150°and corresponds to a fragment of sine wave cycle.
Now we ask the following questions: how different fragments
affect the received signal? where are the best and worst posi-
tion of the fragment in the sine wave cycle?

Human location vs resultant receiving signal
According to equation (2), we know that the amplitude of the
received signal H( f , t) is related to the cosθ term when Hs

and Hd are constant. It’s noted that H( f , t) looks like a sine
wave when the moving object crosses several wavelengths,
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Figure 5. Human Location in the Fresnel Zone.

Figure 6. Magnitude and waveform of the resultant receiving signal for
different human locations.

corresponding to several cycles and Fresnel zones. But for a
normal respiration with phase change between 60°to 150°, the
receiving signal H( f , t) is definitely not a sine wave anymore,
so how does it look like? As one respiration cycle consists of
an inhalation followed by a pause and an exhalation followed
by another pause, and human respiration is usually periodical,
then according to equation (2), the receiving signal H( f , t) also
consists of four parts: a waveform generated by inhalation, a
straight line caused by the pause after inhalation, a waveform
generated by exhalation, and another straight line caused by
the pause after exhalation.

As we already know that the phase change θ caused by inhala-
tion or exhalation is between 60°to 150°and it lies in the cycle
of cosine wave (see Fig. 6 (a)), then both the angle of θ and
its position affects the shape of the signal waveform of H( f , t).
Assume θ = π/3 which corresponds to a normal breath, if the
angle covers the range from −π/6 to π/6 as shown in Fig. 6
(b), then we can see a small arc produced by the term cosθ dur-
ing inhalation and another small arc produced by exhalation.
In this worst case, not only the magnitude of the waveform is
small due to small variation of cosθ when θ = 0 or π , but one
cycle contains more than one peak/valley as well. But if the
angle covers the range from π/3 to 2π/3 as shown in Fig. 6
(b), then we can see a big trapezoid-like waveform produced
by the inhalation and exhalation cycle. Assume θ = 2π/3
which corresponds to a deep breath, let the angle cover the
range from π/6 to 5π/6, then we have even a bigger trape-
zoid like waveform produced by the inhalation and exhalation
cycle. Apparently, in order to make the respiration rate easy to
extract correctly from the receiving signal, it is expected that
the θ angle not only covers a large range but also lies fully
in the monotonically changing fragment of the cosine wave
(around π/2 or 3π/2). In particular, the best choice for the
cosine wave fragment of a fixed θ is centered around π/2 or
3π/2, corresponds to the middle of each Fresnel zone.

In conclusion, the receiving signal is affected by both the
breathing depth and the human location. Within each Fres-
nel zone, the worst human location for respiration sensing is

Figure 7. Body Orientation α in the Fresnel zone.

around the boundary, while the best location appears in the
middle, as shown in Fig.5 (b)(c). Comparing different Fresnel
zones, locating in inner zones incurs stronger reflected signal
due to shorter reflection path and makes the receiving signal
easier to detect than in outer zones, if the subject appears
within the same relative location of Fresnel zones.

Body orientation vs resultant receiving signal
We already know that the chest displacement during respira-
tion is different in anteroposterior and mediolateral dimen-
sions, the body displacement on the back is almost zero during
respiration. Hence with the orientation changing, the body dis-
placement for signal reflection changes too. As the variation
of the received signal depends on the variation of the reflected
signal due to body displacement, it is thus affected by the body
orientation besides the breathing depth and body location.

As shown in Fig.7, we assume that the subject is already
located at the best location (case 1), e.g, at the middle of the
second Fresnel zone. When the subject rotates for 180°, the
effective body displacement will change from the biggest to
zero, corresponding to the orientation change from facing the
LOS to opposing the LOS.

As shown in case 3 of Fig.7, we decompose the body dis-
placement in mediolateral dimension into two components:
the effective displacement is along the direction of the normal
line, which causes the reflection path length change; the other
one along the direction of the tangent line, which causes no
change in reflection path. Hence in theory, each orientation
has an associated effective body displacement ranging from 0
to 12mm. For case 1 in Fig.7, as the subject is in parallel with
the tangent line facing LOS, the effective body displacement
is the largest and it will produce the biggest phase change;
For case 2 where the chest of the subject is in parallel with
the normal line, as the chest movement in the mediolateral
dimension is only around 1mm (from 0.6−1.1mm) [24], the
effective body displacement will be small. Further for case 3
and case 4, the effective displacement could be even smaller.
In all the cases, whether the generated reflected signal can be
detected or not depends not only on the location (affecting the
signal magnitude), but also on environment noise.

Fresnel zone vs frequency diversity
So far, we only investigate the Fresnel zone model for a sin-
gle carrier with frequency f , but actually in WiFi Intel 5300
devices we have the CSI measurement of 30 subcarriers, each
subcarrier has its own wave length and frequency. Now let’s

choose two subcarriers f = 5.24GHz, f
′
= f + ΔF where
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the frequency interval ΔF between adjacent subcarriers in
802.11n is at most 625KHz for 30 subcarriers and put their
Fresnel zones together. Interestingly we notice that for the
inner Fresnel zones, these two subcarriers have almost over-
lapping boundaries; but the difference between their corre-
sponding zone boundaries keeps increasing as the number of
zones increases, until the boundary of the ith Fresnel zone
of f catches up with (i+1)th Fresnel zone of the subcarrier

f
′
. From the above observation, we understand that for inner

Fresnel zones, if one subcarrier cannot measure the respira-
tion, the other subcarriers cannot either. But starting from
certain Fresnel zone outwards, when one’s location is close
to a bad position (close to the Fresnel zone boundary) for one
subcarrier, maybe we can exploit the frequency diversity to
find another subcarrier which shows the best or good location
for the same position (near the middle of the Fresnel zone).

With this idea in mind, suppose we choose the first subcarrier
to sense one’s respiration corresponding to a phase angle of
π/3, then we ask the subject locates in the worst place (from
−π/6 to π/6) for subcarrier 1, from which Fresnel zone m
onwards can we always find a subcarrier which has a phase
shift of pai/6 from subcarrier 1?

To solve this problem, we consider the two extreme subcarriers
f1 = 5.24GHz and f2 = f1+29∗ΔF with wavelengths λ1 and
λ2, respectively. Assume the subject is located at the boundary
of the mth Fresnel zone of f 1. Let c be the speed of light,
ϕre f be the additional phase shift caused by reflection, L be
the LOS length, then the path length PL of the reflected signal
is PL = m/2λ1 +L. The phase difference Ψ( f ) between the
LOS and the reflected signal is Ψ( f ) = 2π f (PL −L)/c+ϕre f ,
then the phase shift between f1, f2 is given by ΔΨ( f1, f2) =
2π f2(PL −L)/c−2π f1(PL −L)/c, bringing f1, f2,PL into the
equation:

ΔΨ(m) = mπΔF/ f1 ≈ 0.0035mπ (4)

Hence m can be derived for ΔΨ(m) >= π/6. The obtained
m is 48, which means that if the subject locates outside the
48th Fresnel zone, at least one subcarrier is good for use. For
the case that LOS is set to 1m, the 48th Fresnel zone is 108
cm away along the perpendicular bisector of the LOS. Of
course, besides frequency diversity, we also need to consider
the power loss in the reflected path when the subject is far
from transceivers.

Figure 9. Web-based User Interface.

Multi-user location vs respiration detectability
Based on the theory developed for a single subject, we now
consider sensing two subjects’ respiration rates, where the
two subjects are assumed to lie on a bed as shown in Fig.8.
As the two subjects are viewed as two moving objects in the
same static environment, the total receiving signal variance
can be approximated as a linear combination of the variance
caused by the chest displacement of each person [40]. Assume
that the respiration is the only body movement from the two
subjects, then the impact of each subject’s breathing depth,
body location and orientation to the receiving signal is inde-
pendent and the same as before. Thus, to detect two subjects’
respiration rates simultaneously, we need to make sure that
the location of each subject is around the middle of an inner
Fresnel zone. As an illustration in Fig.8, we show that it is
pretty easy to expose two subjects’ locations to the middle of
a certain Fresnel zone (best place) by fixing their locations
while changing the location of one WiFi device. In such a
setting, the respiration rate of each person can be extracted in
the frequency domain using Power Spectral Density (PSD).

EVALUATION
To validate the theory we developed, we first implement a real-
time human respiration detection system using off-the-shelf
WiFi devices. We then conduct comprehensive evaluations
and report the results in this section.

System Implementation and Experimental Environment
Our prototype system consists of two main modules: Signal
Preprocessing and Breathing Rate Estimation. We follow
many design choices as in other systems [6, 21] to understand
and validate our theory in real-world contexts.

We collect WiFi CSI, and each CSI stream contains readings
from 30 subcarriers. The CSI streams are first handled by
Signal Preprocessing to reduce noise. In particular, we apply
the Hampel filter [6] with a sliding window at each subcarrier
to remove outliers which typically have significantly different
values from neighboring CSI measurements. In addition, since
human respiration rate usually has a low-frequency range, we
apply a moving average filter to remove high-frequency noise
which is unlikely to be caused by respiration. The resulting
CSI streams are then analyzed by Breathing Rate Estimation
to estimate breathing rate. Specifically, we utilize a threshold
based method to select subcarriers having large variance of
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Figure 10. Evaluation of user location and body orientation: (a) moving along the ellipse line with fix body orientation; (b) moving along perpendicular
bisector line with fixed body orientation; (c) rotating body orientation with fix user location.

CSI amplitude in a time window as in [21]. For single-user res-
piration detection, to capture the periodic changes caused by
chest movements during inhaling and exhaling, we use a Fake
Peak Removal algorithm as in [21] to remove peaks which are
too close to each other. For multi-user respiration detection,
since CSI signal is a linear combination of the variance of each
subject, we hence use Power Spectral Density (PSD) to trans-
form the time series of CSI measurements on each subcarrier
to its power distribution in the frequency domain. A strong pe-
riodic signal generates a peak at the frequency corresponding
to its period in PSD, e.g., when detecting breathing rate for
two subjects, the CSI measurements should present two peaks
at the frequency corresponding to that of each subject.

We deploy a prototype system which consists of a WiFi device
(i.e., mini-pc) and a commodity wireless access point (i.e.,
TP-Link WDR5300 with one antenna running on the 5.24GHz
channel) in an 802.11n WiFi network. The mini-pc is equipped
with an Intel WiFi Link 5300 card for measuring CSI [11] and
one external antenna. The packet transmission rate is set to
20pkts/s. We choose and place the antennas same as we did
for verifying the Fresnel Zones previously.

Experimental Methodology
We recruit nine participants over a period of three months.
Each participant is required to sit on a chair or lie on a bed,
breathing normally and naturally. We build a web-based user
interface to show the breathing rates along with a real-time
video recorded as shown in Fig. 9. When the subject is con-
ducting the experiment, other two subjects are independently
watching the video stream to record the ground truth manually.

With the prototype system, we investigate the following two
cases: (1) With a pair of WiFi transceivers placed in an indoor
environment, can we detect single-user respiration effectively
at any location, does user location or body orientation matter,
and how do they affect the performance? (2) Given two sub-
jects with fixed user location and body orientation, where do
we place WiFi devices to achieve the best performance?

Case 1: Single User with a Pair of WiFi Tx/Rx
We first ask a subject to sit on a chair in an office room. We fix
the LOS distance (i.e., 1m apart with 70cm height) between
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Figure 11. Evaluation of body orientation in different Fresnel zones.

the WiFi Tx and Rx, and evaluate the performance by changing
the subject’s location and body orientation.

A. Fix LOS Distance
With the LOS distance (R1+R2) set to 1m and wavelength (λ )
set to 5.7cm (i.e., central frequency 5.24GHz), we first obtain
the theoretical ground for Case 1 by computing the Fresnel
zone mathematically following Equation (1), e.g., the bound-
aries of the first three Fresnel zones are 12.05cm, 17.16cm and
21.16cm away from the LOS along the perpendicular bisector,
respectively. We then conduct a series of experiments to evalu-
ate the performance by varying user location, body orientation,
as well as CSI subcarriers.

(1) Does Subject’s Location Matter? In this experiment, with
a pair of WiFi Tx/Rx (LOS distance = 1m) placed in an office
room, a subject is asked to sit on a chair at different locations,
and breath normally with 0° body orientation. We first vary
subject’s location within the same Fresnel zone. A subject first
moves along the middle ellipse of a Fresnel zone (a Fresnel
zone can be physically viewed as the area between an inner
ellipse and an outer ellipse). Figure 10 (a) shows the results
of different locations in the 2nd Fresnel zone. We observe
that the CSI signals at different locations along the middle
ellipse of the same Fresnel zone are quite consistant and sharp
enough to be used for detection. The subject is then asked
to move across different Fresnel zones. Figure 10 (b) shows
the result when the subject moves along the perpendicular
bisector across Fresnel zones 2 and 3. The figure shows that
while CSI signals have a strong presence in the middle ellipse
of a Fresnel zone, they start fading when moving toward the
boundary. We cannot observe clear periodic patterns at each of
the boundaries, hence it is likely resulting in detection failure.
While we observe a similar phenomenon in each Fresnel zone,
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Figure 14. Two-person respiration detection: the red line indicates the
ground truth; (a-c) time domain; (d-f) frequency domain.

the closer a subject is to the LOS, the clearer periodic patterns
we obtain. In this experiment setting, the result shows that we
are not able to detect respiration when a subject is 2m beyond
the LOS along its perpendicular bisector (i.e., approximately
the 110th Fresnel zone).

(2) Does Subject’s Body Orientation Matter? We now study
subject’s body orientation, and evaluate how the system per-
forms with respect to different body orientations in various
locations of a Fresnel zone. Taking an example for illustra-
tion, a subject sits in the middle of the 2nd Fresnel zone, and
changes his body orientation from 0°to 135°. The result is
shown in Fig. 10 (c). From the figure, we observe that the
most clear periodic pattern presents at 0°, and it starts fad-
ing when body orientation increases. After 90°, it becomes
quickly flattening as the chest reflection surface is blocked by
human body. With a similar experiment setting as above, we
now move to the further Fresnel zones (i.e., 2nd, 3rd, etc) by
increasing the distance to LOS. While we observe a similar
trend, the body orientation range which can be detected keeps
decreasing when going further away, as illustrated in Fig. 11.

(3) Impact of CSI Subcarriers Finally, we evaluate the impact
of CSI subcarriers. We first evaluate if CSI subcarriers respond
differently in a detectable area (i.e., ideal case). A subject
is asked to sit close to the LOS in the middle of the 2nd
Fresnel zone, and we plot the magnitude of each subcarrier
in Fig. 12 (a). The figure shows the periodic patterns caused
by human respiration is clear, and all the subcarriers give
similar responses. We then conduct similar studies in the
boundary of a Fresnel zone (i.e., worst case). A subject is
now moved to the boundary of the 2nd Fresnel zone. Figure
12 (b) shows that no clear periodic patterns can be observed
for all the subcarriers. With the same experimental setting,
the subject is asked to take a deep breath, and as shown in
Fig. 12 (b), we observe two double peaks present in each
respiration cycle for all the subcarriers which matches our
theoretical analysis. Finally, we evaluate another worst case
scenario which a subject sits further away from the LOS. A
subject moves 1m away from the LOS along the perpendicular
bisector. As shown in Fig. 12 (d), we are now able to obverse
the difference among subcarriers. We can see that the first five
subcarriers respond obviously than all the others. Recall that
in Equations (1) and (4), if L = 100cm, the bound is around
100cm, if the first subcarrier fails to respond, at least one
subcarrier (with 29 intervals) can be used. This proves our
previous analysis that when a subject is far away from the
LOS, we can leverage different CSI subcarriers to provide
better detection.

(4) Discussions We now summarize the results we obtain so
far, and revisit the questions we ask in the beginning. We
plot the user location heat map in Figure 13(a), which shows
how CSI signals vary with respect to different user locations.
Several observations can be drawn from this map. First, there
exist clear Fresnel zones in the space. The closer a subject
is to the Tx/Rx, the stronger CSI signals we obtain. When
a subject goes beyond a limit (i.e., detection bound), there
are no clear CSI signals present to effectively detect human
respiration. Second, in the region which is close to the de-
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tection bound, which we name Frequency Diversity Enabled
Region, there is no guarantee to successful detection unless
we choose specific CSI subcarriers. Third, for each of the
Fresnel zones, we observe strong CSI signals in the middle,
but they start fading when moving towards the boundaries
until no clear signals present at each boundary, resulting in
detection failure. Figure 13(b) shows that how CSI signals
vary with respect to different body orientations. Note that the
figure is plotted when a subject is located in a detectable area
(e.g., the middle of each Fresnel zone). We obverse that while
we are able to detect a subject’s body orientation from 0-90
degree in the Fresnel zones which are close to the Tx/Rx, body
orientation we can detect keeps decreasing until 0 degree in
the Fresnel zone which is close to the detection bound. Please
note that while we achieve good results in the 1st Fresnel zone,
the theoretic model in the cases which a subject blocks the
LOS involves more complicated factors such as shadowing,
diffusion, etc., which are subject to further study.

In summary, we conclude that user location and body ori-
entation do influence the quality of CSI signals, and hence
affect system performance when detecting human respiration.
Through this case study, we verify the existence of the WiFi
Fresnel zone and prove its properties in a real world setting, re-
vealing the insights and new principles important for designing
any CSI-based human respiration detection system.

B. Varying LOS Distance
In this experiment, we vary LOS distance to 0.5m, 2m, 3m,
and 6m, respectively, and repeat the same experiments we did
with fixed LOS distance. To ensure the first 12 Fresnel zones
clear from reflectors such as the ground, the antenna heights
are set to 50cm, 70cm, 70cm and 100cm with respect to the
above LOS distance settings. We conduct the experiments
for the first two cases (i.e., LOS = 0.5m, 2m) in the same
office, but move to a large hall for the other two cases (i.e.,
LOS = 3m, 6m). We observe similar results as in our previous
experiments. However, when the LOS distance is larger than
3m, the CSI signals become vulnerable with the environment
noise, and it does not guarantee to be detected effectively even
with the best user location and body orientation.

Case 2: Two Users with a Pair of WiFi Tx/Rx
Finally, we briefly present the multi-user case, using a two-
user case as an example. A pair of WiFi Tx/Rx with 2m apart
is deployed in a room. From the nine participants, we select
six pairs who have different respiration rates and ask them to
lie on a bed side-by-side between the Tx and Rx, as shown in
Fig. 9. We first fix the Tx, then we intend to sense one person’s
breathing rate (without sensing the other’s) and two subjects’
breathing rates by changing the position of Rx. Figure 14
shows the results from three different scenarios. The upper
figures in Fig. 14 are plotted in terms of the time domain while
the lower figures are plotted in the frequence domain. Figures
14 (a,d) illustrates the first scenario where we successfully
detect the respiratory rates for both subjects. In the second
scenario (as shown in Figures 14 (b,e)), we purposely detect
the respiratory rate of one subject but miss the other’s, and
vice versa in the third scenario in Figures 14 (c,f).

LIMITATIONS
The system has the following limitations: (1) for single-user
respiration sensing, when some users are moving around in
the proximity, the system might fail to detect one’s respiration
rate. However, when those users perform normal activities
far from the subject and LOS, the subject’s respiration rate
could still be detected. (2) for the two-user case, the partici-
pants are assumed to have different breathing patterns so as
to distinguish their breathing rates in the frequency domain.
However, it is difficult to know whose breathing is whom’s
unless we assume different people have different and relative
stable respiration patterns.

CONCLUSION AND FUTURE WORK
Starting from the recent work on WiFi CSI-based human respi-
ration detection and other fine-grained human activity recogni-
tion, in our research we intend to ask and answer the questions
like: Is it always possible to sense human respiration with a
pair of WiFi devices no matter where a subject stays and faces
in a room? What affects human respiration sensing and what’s
the theory behind in order to guide the respiration sensing
system design? What is the possible physical limit for WiFi
RF-based contactless sensing? Driven by the above questions,
in this paper, we introduce a novel WiFi Fresnel model and
develop the related theory to underpin the theoretical founda-
tion for WiFi radio propagation in indoor environment. We
apply our theory to the contactless human respiration detec-
tion application, and conduct comprehensive theoretical and
experimental studies to investigate how user location, body ori-
entation, and frequency diversity affect the respiration sensing
performance. The obtained results not only prove the theory
we developed, but also provide basic principles and practical
guidelines for building cost-effective WiFi CSI-based human
respiration sensing systems.

It is worth noting that while in this paper we apply our theory
only in detecting human respiration, the theory can actually
be applied to any RF-based sensing and detecting system in
general. Further more, the work also sheds lights on under-
standing the physical limit of RF-based movement detection
with numerous potential applications such as gesture recogni-
tion, virtual keyboard, etc. For our future work, on one hand,
we plan to leverage higher transmission power, frequency di-
versity and multiple antennas to further improve the WiFi
CSI-based respiration monitoring system; on the other hand,
we intend to further develop the theory to understand issues
such as how diffusion, reflection and shadowing interfere with
each other and apply the developed theory to new applications.
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