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ABSTRACT
The widespread use of smartphones has brought great convenience
to our daily lives, while at the same time we have been increas-
ingly exposed to security threats. Keystroke security is an essential
element in user privacy protection. In this paper, we present GazeRe-
vealer, a novel side-channel based keystroke inference framework
to infer sensitive inputs on smartphone from video recordings of
victim’s eye patterns captured from smartphone front camera. We
observe that eye movements typically follow the keystrokes typ-
ing on the number-only soft keyboard during password input. By
exploiting eye patterns, we are able to infer the passwords being en-
tered. We propose a novel algorithm to extract sensitive eye pattern
images from video streams, and classify different eye patterns with
Support Vector Classification. We also propose a novel enhanced
method to boost the inference accuracy. Compared with prior key-
stroke detection approaches, GazeRevealer does not require any
external auxiliary devices, and it relies only on smartphone front
camera. We evaluate the performance of GazeRevealer with three
different types of smartphones, and the result shows that GazeRe-
vealer achieves 77.43% detection accuracy for a single key number
and 83.33% inference rate for the 6-digit password in the ideal case.

CCS CONCEPTS
• Security and privacy → Privacy protections; • Computing
methodologies → Machine learning approaches;
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1 INTRODUCTION
Mobile payment has become a prevalent mode for online trans-
action and personal financial management. Various security risks
arise in our daily life from the rapid development of mobile and
ubiquitous computing applications. Among them, keyboard privacy
presents the fundamental risk in mobile payment. The mobile pay-
ment system typically requires users to complete privacy-sensitive
input with keyboard on their mobile devices such as bank card num-
ber, security code, and password. As a result, attackers can typically
launch keystroke eavesdropping to reveal personal information
from mobile users.

Leveraging side-channel attacks, keystrokes on traditional phys-
ical keyboards can be inferred through Trojan applications (a.k.a.
keyloggers). Typical approaches include electromagnetic emana-
tion based [3], acoustics signal based [26, 27], and video based [4].
However, in mobile scenarios, user interaction with smartphones
has been changed. The popularity of virtual soft keyboard on smart-
phones eliminates the side-channel emanations (i.e., electromag-
netic and acoustic signals) from physical keyboard. Therefore, at-
tackers cannot leverage these signals to deduce keystrokes anymore.
Besides, app permission restriction policies in smartphone operat-
ing systems restrain apps from intercepting keystrokes. As a conse-
quence, Trojan apps cannot be directly launched to log keystrokes.
Traditional approaches thereby face increasing challenges with
smartphones. Recently, several smartphone keystroke inference
attack approaches have been proposed. They essentially resemble
the traditional approach, such as adopting WiFi signals [12], and
do require peripheral camera equipment [21]. All of the above ap-
proaches need an external data receiver which should be placed
close enough to the victim. Therefore, attackers start to pay their
attentions to smartphone embedded sensors. For example, several
works [5, 15, 17] show that keystrokes can be inferred in a stealthy
manner with only a few benign permissions by using accelerome-
ters, gyroscopes, and even audio sensors.

In ourwork, we present GazeRevealer, a new avenue for attackers
to infer password keystrokes with a number-only soft keyboard on
the touch screen of smartphone. GazeRevealer analyzes victim’s
eye patterns recorded from the front camera during password input.
Our motivation derives from the obversation that the password
input behavior on smartphone always involves eyes and fingers
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coordinated motion, i.e., the finger always taps the key number
that her/is eyes are staring at. Therefore, eye patterns can reflect
the different number keystrokes on the numeric soft keyboard. In
comparison with prior sensor-based attacks, GazeRevealer neither
requires the victim to distinctly vibrate the phone nor relies on
keypad tones during the input process, leading to a more stealthy
and imperceptible solution.

The design of GazeRevealer presents three major challenges.
1) Our inference method is mainly based on the analysis of eye
contour images. It hence requires a precise and effective method
to clip eye image patches from each frame in the video. Since low-
resolution smartphone front camera and poor lighting condition
may generate low-quality video, traditional methods can only ex-
tract coarse and imprecise eye contour images. Parts of the iris and
sclera may sometimes be excluded from the extracted patches in
such scenario. To obtain fine-grained eye contour images while
keeping the image preserving intact iris and sclera information, a
precise method is highly desirable. Our investigation shows that
the Maximum IsoCenter (MIC) based technique can precisely lo-
calize the pupil center even with low-quality images captured by
smartphone front camera. Therefore, we can use the center position
as the datum point and obtain the fine-grained eye contour image
by clipping a certain pixels in its horizontal and vertical direction,
respectively. 2) It is not a trivial task to extract keystroke eye im-
ages from the stream in order to recognize input passwords on the
number-only soft keyboard. Keystroke eye images capture a user’s
eyes when typing a particular number. In reality, a user may not
immediately enter password after the front camera is launched. As
a result, there appear some non-sensitive images at the beginning
of the video. Additionally, the duration of entering any key number
is often short on an order of milliseconds. Therefore, keystroke eye
images cannot be selected using standard methods such as fixed
time interval [9]. To address this challenge, we adopt similarity
which is measured by image histograms as the metric to distinguish
keystroke eye images. Since the stream is divided into multiple seg-
ments by image similarity, we can pick out images from individual
segments as the keystroke eye images. 3) An eye tracking algorithm
can only estimate an approximation position of the key tapping.
Key numbers on the smartphone soft keyboard are usually very
close and dense, hence it is difficult to recognize the keystrokes.
We investigate that different keystroke eye images reveal different
positions of iris. Based on this observation, we regard pupil center
as the center of iris and design an aided inference model to improve
recognition accuracy. The model first measures the Euclidean dis-
tance between the pupil center of the eye image to be identified
and the pupil center of each candidate decided by the eye tracking
algorithm. Next, the model calculates a score based on the distance
and the probability of each candidate. Eventually, we conclude the
candidate with highest score as the key number we predict.

To the best of our knowledge, it is the first work to study the issue
of inferring keystroke towards password input from eye pattern
video recorded from smartphone front camera. In summary, the
paper makes the following contributions.

• We design a novel side-channel attack technique that enables
attackers to deduce the key numbers on touch screen tapped
by a victim by analyzing the video stream of password entry

eye patterns. This technique only requires the smartphone
front camera permission which is usually deemed as normal
and benign.

• We propose a keystroke eye image extraction algorithm,
which uses pupil center position as the datum point to crop
fine-grained eye contour images and leverages image simi-
larity principle to determine the keystroke eye images from
the image stream.

• We present an enhanced recognition method to gaze estima-
tion, improving the inference accuracy for each key number
significantly.

• We collect data from 12 participants in the experiment and
evaluate our approach on three commercial off-the-shelf An-
droid smartphones. The result shows that an individual’s
password can be effectively disclosed at an acceptable recov-
ery rate.

2 BACKGROUND AND RELATEDWORK
2.1 Threat Model
The basic assumption of threat lies in installing an untrusted ap-
plication on smartphone. An increasing number of victims are
jeopardized by a wide variety of malicious apps [11] which can be
installed in many ways, such as drive-by-download, silent installa-
tion, and untrusted third-party market [6]. We therefore believe this
assumption does make sense. The victim is also inquired whether
to grant front camera access permission to the malicious apps.
Notwithstanding potential safety hazards associated with cameras
have been proposed in [17], this permission can still be acquired by
disguising popular apps that have valid reasons for applying front
camera access permission (e.g., selfie apps, mirror apps, and even
some game apps). We assume that malicious app is simply run in the
background as a standard app instead of being used to compromise
any component of the device. We also assume that the malware can
listen victim’s sensitive events such as password input window and
invoke front camera to log eye movements. This functionality may
be easily carried out by malicious JavaScript codes [24]. Based on
the sensor data conveyed to a remote server, attackers can further
infer the entered password.

2.2 Keystroke Recognition
Smartphone embedded sensors provide side-channel attacks a ca-
pacious platform that can be used to eavesdrop user’s interactions
with the smartphone. Cai et al. [5] present an accelerometer based
keystroke inference approach to infer the keys being typed on soft
keyboard on smartphones. Later, Owusu et al. [15] apply a similar
idea to extract victims’ 6-character passwords on smartphones by
making use of accelerometer readings. Similarly, Xu et al. [25] uti-
lize motion sensors such as accelerometers and gyroscopes to infer
user sensitive context on touch screen. Schlegel et al. [17] present
an app by exploiting audio sensor to target privacy information.
Moreover, Simon et al. [19] collect user touch-event orientation
patterns from smartphone microphone and camera to infer PINs
entry. Narain et al. [14] propose an architecture to infer key taps
by applying a combination of microphone and gyroscope sensors.
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The most related work is VISIBLE [21], in which the author
also proposes a video-based keystroke inference method on mo-
bile devices. Specifically, VISIBLE relies on the motion patterns
of device’s backside caused by different taps on the touch screen
to infer different keystrokes. However, it needs an unnoticeable
external camera to record the backside motions of the device and
requires the device to be put at an angle to the table by a holder. In
contrast, our approach only requires the malicious app to invoke
the front camera to record victim’s eye patterns during password
entry, which is easy to launch and difficult to perceive.

2.3 Gaze Estimation
The rationale of GazeRevealer leverages on unique gaze patterns
to recognize the relevant keystrokes. In the following section, we
give a short introduction on the gaze estimation techniques.

Gaze estimation methods can be divided into two categories,
shape-based and appearance-based tracking methods. The shape-
based method exploits the pupil and Purkinje image features cap-
tured by HD cameras with near-infrared lights to infer gaze direc-
tion [7]. However, this method requires an unalterable distance
between screen and user as well as calibrations for different users.
When using low-resolution and low-light images, it is hard to rec-
ognize gaze location.

The appearance-based method extracts features from eye im-
age or directly treats the pixels of eye image as the input vectors,
and constructs a traditional machine-learning model [9] or a deep
learning model [13] to estimate the gaze position on screen, which
substantially regards the gaze tracking process as a regression prob-
lem. This method offers more feasibility in our situation, because it
does not heavily rely on hardware equipment (e.g., no need for a
HD camera and an infrared LED light), and free of calibration.

3 THE DESIGN OF GAZEREVEALER
3.1 System Overview
The primary goal of GazeRevealer is to deduce the sensitive in-
formation (i.e., password) users input on smartphone. Assuming
that an attacker obtains a victim’s video stream of eye patterns,
GazeRevealer can start to infer keystrokes on the numeric soft
keyboard of smartphone. As shown in Fig. 1, we give an overall
framework of GazeRevealer which consists of three modules. 1)
Keystroke eye image extraction module, which is used to automati-
cally identify the eye images of different keystrokes from an input
video stream; 2) Data preprocessing module, which processes the
eye images to extract relevant features and reduces the dimension;
3) Keystroke recognition module, which calculates the features of
different eye images after dimension reduction and determines the
relevant keystrokes.

3.2 Keystroke Eye Image Extraction Module
3.2.1 Eye Detection and Image Normalization. In this stage, Gaz-

eRevealer first extracts the Region of Interest (ROI) of eyes from
each frame which is extracted from victim’s video stream. An exam-
ple of the eye ROIs detection is presented in Fig. 2. Formore accurate
detection of eye positions, we first rapidly approximate rough face
position from the frame by using a cascade classifier based on Local
Binary Patterns (LBP) [1] to narrow down the detection area for
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Figure 1: Framework of GazeRevealer

(a) Face position
detection

(b) Eye position
detection

(c) Eye ROI and pupil
center

(d) Final eye image

Figure 2: Eye Image Extraction Process

eye-pairs (i.e., the blue bounding rectangle in Fig. 2(a)). Once we
procure the facial region, eye ROIs can be extracted as shown in
Fig. 2(b), by means of a more precise Haar based classifier [23].

The aforementioned process can only limit the ROI size to fixed
100×100 pixels. The larger detected region may still contain some
other ambiguous factors which are not conducive to gaze estimation,
such as eyebrows, hairs, and eyeglass frames. Therefore, we require
a much tighter region around eyes as our final eye image for further
analysis. The most ideal region is to crop a certain quantity of
pixels around the pupil center, this can get rid of interference as
well as preserve the main information of eyes. Therefore, how to
localize pupil center has to be taken into consideration. To solve this
problem, we apply the MIC based technique [22] to estimate pupil
center which is effective on those low-resolution images, such as
captured from smartphone front camera. Considering poor ambient
illumination in our situation, pupil center sometimes cannot be
effectively detected by only the MIC based method. Therefore, we
employ an additional mean shift algorithm to resolve the problem of
inaccurate pupil center localization caused by undesirable lighting
conditions. In Fig. 2(c), the red dot represents the position where
the pupil center is localized. In what follows, the upper and lower
area of the pupil center is clipped 20 pixels off, respectively, while
the horizontal axis keeps 100 pixels unchanged. As shown in Fig.
2(d), the size of the final eye image is set to 40×100 pixels.

3.2.2 Keystroke Eye Images Extraction. After normalization, we
obtain a sequence of fixed-size eye images. The major challenge
for keystroke eye image extraction is how to single out the fixation
images that can specifically represent the corresponding keystrokes
from the sequence. The fixation refers to the visual gaze on a specific
key which the victim is entering. In the field of eye tracking, the
existing fixation image extraction schemes rely on certain defined
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(a) An image in a particular fixation (b) Another image in the same fixa-
tion

(c) An image in a saccade (d) An image in another particular fix-
ation

Figure 3: Image Histograms of Different Eye States

regulations. For example in [9], the video is divided into several
chunks by fixed time intervals (i.e., predetermined fixed-length
fixation time of several seconds), then different fixation images can
be picked out from the chunks. This method is not effective in our
scenario since fixation for a keystroke performs quickly with an
unfixed duration (on an order of milliseconds) and non-keystroke
images (imagine that a victim conducts glimpses on the screen
instead of immediately watching the soft keyboard to input her/is
password after the front camera is launched) at the beginning of
our video stream are likely to be divided into chunks. To solve
this problem, we propose a novel algorithm to precisely extract
keystroke eye images, and this algorithm consists of three steps as
follows:

• Image Similarity Estimation: An eye movement is com-
prised of fixations and saccades (e.g., a quick eye switch
from one key to the next). Namely, two fixations are always
separated by a single saccade. If we can determine the inter-
sections of all fixations and saccades, the stream can be split
into multiple segments. Then we select the center image of
the fixation segment as the feature image for a particular
keystroke. Based on this, we introduce image similarity to
search the break points in the stream. Fig. 3 illustrates the
comparison of histograms of four different eye images. Fig.
3(a) and Fig. 3(b) show the histograms of two eye images
which are picked out from one particular fixation. We ob-
serve that different images from the same fixation would
lead to quite similar histograms. Fig. 3(c) and Fig. 3(d) display
the histograms of two eye images which are extracted from a
saccade and another fixation, respectively. It can be observed
that the two histograms differ from each other and from that
in Fig. 3(a) and Fig. 3(b). The comparison motivates us to
conclude that eye images in different status would cause
intuitive transitions in histograms. We use histogram as the
metric to quantize the similarity between two images as

(a) Image stream similarity

(b) Keystroke segment determination

Figure 4: Keystroke Image Extraction

follows:

S(h,h′) = 1
n

n∑
i=1

(
1 −

|hi − h′i |
Max(hi ,h′i )

)
where S(h,h′) (the value lies in [0, 100]) denotes the similar-
ity between histograms (h and h′) of two images and n is the
total number of histogram bins (n = 256 in our case). The
greater the value is, the higher the similarity would be.

• Image Stream Similarity Building: By using the above
equation, we can calculate the ith similarity between the ith
and the (i + 1)th image in the streamwhich can be expressed
as {Si (Ii , Ii+1)}i=1:n−1 where n is the number of images in
the stream. Given the Frames per Second (FPS) of camera f ,
and the video time duration t , n can be represented by f × t .
As shown in Fig. 4(a), a similarity waveform can be built after
calculating the similarities of all images in the stream. We
are only interested in the red dots with the similarity which
is lower than the predefined threshold (the blue horizontal
line), since they are likely to be the break points between
fixations and saccades.

• Keystroke Image Extraction: To extract keystroke images,
the essential issue is to determine the fixation segments for
individual keystrokes, which should include as many key-
stroke images as possible while removing the non-keystroke
images. As shown in Fig. 4(a), n break points divide the
stream into n − 1 segments. We count the number of images
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Figure 5: Feature Visualiza-
tion

Figure 6: Principal Compo-
nents Selection

in each segment, and set the average value of the segment
images as the key threshold. In the following stage, we con-
sider the segments with the number of images is higher than
the threshold, which are likely to be the fixation segments.
Since every two fixations are connected by a saccade, as long
as the saccade segments are identified, we can determine the
fixation segments. According to a study of eye saccades [20],
latency of a reflexive saccade (e.g., saccades in password in-
put) is usually less than 250ms , which suggests the number of
images in a saccade is usually less than 8 (⌈0.25 × 30⌉, where
30 is the front camera FPS) in our situation. We calculate the
total number of images between the considered segments
and check whether the number is lower than 8 (determina-
tion of saccades). The segments adjacent to the saccades are
regarded as the fixations. Finally, we choose the center image
of the fixation segment as the feature image of this keystroke.
Fig. 4(b) shows the process of extracting keystroke images.

3.3 Data Preprocessing Module
After eye image data is collected, GazeRevealer conducts feature
extraction and dimension reduction.

3.3.1 Feature Extraction. It is important to choose appropriate
features to discriminate keystrokes. Since ambient illumination
changes may arise in our situation, we select Histogram of Oriented
Gradients (HoG) as the descriptor which is invariance to influence
of illumination effects [10]. Besides, HoG can distinguish the iris and
sclera in low-resolution eye images. In Fig. 5, the HoG features of an
eye image are visualized. It is observed that iris region (highlighted
by red bounding ellipse) is darker than the surrounding sclera
region, which means HoG can effectively represent the eye pattern.
Therefore, we choose HoG features for gaze estimation, using the
following parameters: 9 orientations, 2×2 pixels per cell, and 2×2
cells per block.

3.3.2 Dimension Reduction. Dimension reduction plays a key
role in gaze estimation. HoG features extracted from an eye image
would result in high dimension (over 33k) and suffer from noise. In
this work, GazeRevealer uses Principal Component Analysis (PCA)
to find most correlated variables in the extracted feature space. PCA
is expected to reduce the size of the original feature space to a lower
dimension while remaining the representative information.

We can then select the most valuable components in the feature
space after filtering with PCA. In Fig. 6, we observe that the first
4 components almost retain all variance of the original data. As
a result, high dimensional original data can be compressed to 4
dimensions for further gaze estimation in this work.

3.4 Keystroke Recognition Module
GazeRevealer aims to recognize the keystrokes based on the rele-
vant eye images. We show the process in the following two steps.

3.4.1 Classification. Keystroke recognition process is essen-
tially a ten-class classification problem. Based on the features ex-
tracted from any eye-pair images, GazeRevealer estimates the cor-
responding key number. In our experiment, we use Support Vector
Classification (SVC) [8] with Radial Basis Function (RBF) kernel,
available in the scikit-learn machine learning library [16] as our
classifier since it is efficient for classifying non-linear data. Other
classifiers (e.g., Gaussian Process Classifier and Random Forest Clas-
sifier) are also deployed for comparison, and we confirm that SVC
achieves the best performance.

SVC with RBF kernel is constrained by two parameters, C and
γ . C trades off misclassification of training data against simplicity
of the decision hyperplane. γ defines how far the influence of a
sample can reach. The low values of γ means lower bias and higher
variance while high values means higher bias and lower variance.
The optimal values are selected from a prebuilt set of possible pa-
rameters, based on experiments that adopt 5-fold-cross-validation:
for each pair of possible parameters, 4/5 of the data is used as train-
ing data, while the remaining 1/5 data is used as validation data
for evaluating the performance of the classifier, the process is then
repeated 5 times. We choose the pair of parameters that performs
the best result as the final parameters for SVC. Specifically, in our
experiment, the initial set of the parameters contains 6 values which
is logarithmically spaced from 10−3 to 102. After testing, the best
values for C and γ are 100 and 10−1, respectively.

3.4.2 Classification Enhancement. Although the classification
algorithm can differentiate the most probable key number based on
the relevant eye image, some unavoidable factors such as distance
between eyes and smartphone, size of the screen, resolution of front
camera, and even body posture (e.g., standing, sitting, and slouch-
ing) are more or less expected to negatively affect the classification
results. In order to minimize such influence on key number infer-
ence, we propose an enhancement method to the basic classification
algorithm to reinforce the inference results.

We first calculate the average pixel location of pupil center
for each of the ten keystroke eye images on our dataset, that is
{Liavд(x iavд ,yiavд)}i=0:9, and take the ten tuples as the metrics for
further use. For an input keystroke eye image, we compute its corre-
sponding pupil center location L(x ,y) and the probability estimates
for each of the ten classes ({Pi }i=0:9) whose sum should be 1. We
then arrange the ten probabilities in a descending order and choose
the top n numbers as the candidates of the input eye image (deter-
mination of n would be discussed in Section 4.2). Simultaneously,
we measure the Euclidean distance between the pupil center of
the input eye image and the average pupil center of each of the n
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Figure 7: GazeRevealer Setup

candidates as follows:

{D((x ,y), (x iavд ,yiavд))}i=1:n

= {
√
(x − x iavд)2 + (y − yiavд)2}i=1:n

where (x ,y) is the pupil center of the input eye image and (x iavд ,yiavд)
represents the average pupil center of the selected candidate. Ulti-
mately, a score for each candidate can be calculated as:

{Scorei = Pi × λDi }i=1:n

where Pi represents the classification probability of each of the
candidates. Di refers to the corresponding distance. λ is a weight
value which equals to 1/Di

2. The formula denotes that the higher
the score is, the higher possibility the candidate is actual the input
key number that the keystroke eye image related to. GazeRevealer
elects the candidate which has the maximum score as the predicted
keystroke number.

4 EVALUATION
4.1 System Setup
We now move to evaluate GazeRevealer. We conduct our experi-
ments on WeChat Pay, a popular online payment platform offered
by the social media application WeChat in China. The experimental
setting is illustrated in Fig. 7. When a payment interface is brought
up on the screen, the front camera starts to record a video of the
victim’s eye movements during the password input process. The
video sample will be then fed into GazeRevealer to infer the 6-digit
password. We use three types of smartphones, i.e., Huawei Honor
V8, Oppo R11, and Samsung Galaxy S5. These smartphones are
equipped with a 30f ps front camera and a screen size of 5.7 inches,
5.5 inches and 5.1 inches, respectively. In the setting of front camera
for video capturing, we use the frame resolution of 1280×720 pixels
and the X1 zoom level (i.e., the default zoom setting of front camera
for most of the off-the-shelf smartphones) for all the experiments.

We recruit 12 participants (i.e., 4 females and 8 males) in our
experiments. They are student volunteers aged between 22 to 33.
During data collection, we follow a typical password entering sce-
nario and instruct the participants to gaze at the key number that
is being tapped. Participants who wear glasses are asked to adjust
their glasses on the top of the nose, following a usual practice1. This

1https://www.wikihow.com/Wear-Your-Glasses

Figure 8: Confusion Matrix Figure 9: Average Pupil Cen-
ter Positions

is to avoid the potential occlusions from glass frames. Since the clas-
sification relies on specific features of the eye image, glass frames in
the image may obfuscate the features, leading to misclassification.

We first conduct an experiment to evaluate the inference accu-
racy of the single key number and the inference accuracy of the
6-digit password. Next, we evaluate the robustness of GazeRevealer
against various factors including the distance between victim’s eyes
and smartphone screen, the ambient illumination intensity, and
the motion of victims. Finally, we evaluate the influences of user-
dependency and user-independency, and compare the performance
in these two cases.

4.2 Single Key Number Inference
In our keystroke recognition process, the performance of SVC clas-
sification is the key to the success in recognition while the en-
hancement method is used for improving inference accuracy. In
this experiment, we evaluate different keystroke images which are
used to recognize different numbers in a real-world scenario. For
each type of the three smartphones, we collect the data from 12
participants in an office under normal lighting circumstance (i.e.,
in a range between 500-1000 lux ). The distance between eyes and
screen is 20 cm typically. Each of the participants is asked to per-
form 10 cycles, and for each cycle we obtain a video stream that
records the eye patterns for the number from 0 to 9 by tapping
the corresponding key on smartphone screen. We hence obtain
a total number of 12 participants× 10 cycles×10 numbers = 1200
keypresses . We apply the inference method described in Section 3
on the collected dataset and obtain the inference accuracy. In this
experiment, we use 5-fold cross validation to evaluate the classifier
for user-dependent recognition. For every 10 cycles data, 8 of them
are used for training and the remaining 2 are used for testing.

We use Huawei Honor V8 as an example to elaborate the infer-
ence process. Firstly, we evaluate the performance of SVC on the
relevant dataset in 5-fold cross validation. Fig. 8 shows the confu-
sion matrix of classification result for Honor V8. For a specific key
number, the confusion matrix presents the corresponding predic-
tion accuracy which is shown along the diagonal regions. Darker
areas in the figure denote higher predictive accuracy for a specific
key number. We observe from the figure that the classifier typi-
cally confuses each actual input number with other two numbers.
This phenomenon may due to the physical layout of numeric soft
keyboard where each number has 2 to 3 closest neighbours.

An enhancement method described in Section 3.4.2 is proposed
to improve the accuracy based on the above observation. In this
method, we choose the first 3 highest-probability candidates, and
determine the best candidate for each actual input number. The
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Table 1: Inference Process of Number 3

Input key number: 3
Pupil center position: (45,18)
3 Candidates:
Number 3, P3 = 0.3365
Number 5, P5 = 0.194
Number 2, P2 = 0.1178
Distance comparison:
D3,3 =

√
(39 − 45)2 + (16 − 18)2 ≈ 6.32

D5,3 =
√
(50 − 45)2 + (16 − 18)2 ≈ 5.39

D2,3 =
√
(54 − 45)2 + (17 − 18)2 ≈ 9.06

Scores:
S3 = P3/D3,3 ≈ 0.058

√

S5 = P5/D5,3 ≈ 0.036
S2 = P2/D2,3 ≈ 0.013

Table 2: Inference Process of Number 1

Input key number: 1
Pupil center position: (61,10)
3 Candidates:
Number 2, P2 = 0.3275
Number 4, P4 = 0.2166
Number 1, P1 = 0.1408
Distance comparison:
D2,1 =

√
(54 − 61)2 + (17 − 10)2 ≈ 9.9

D4,1 =
√
(61 − 61)2 + (18 − 10)2 = 8.0

D1,1 =
√
(63 − 61)2 + (13 − 10)2 ≈ 3.61

Scores:
S2 = P2/D2,1 ≈ 0.033
S4 = P4/D4,1 ≈ 0.027
S1 = P1/D1,1 ≈ 0.039

√

average pupil center positions of the ten numbers are summarized
in Fig. 9. We use an example in Table 1 to illustrate the calculation
process of our enhancement method. Although the distance value
D5,3 (i.e., the distance between the position of the candidate number
5 and the position of the actual input number 3) is smaller than
D3,3, the method ultimately chooses the candidate number 3 with
the highest score as our inferred number. From the result shown
in Table 1, we can see that the classifier recognizes the input key
number correctly (the prediction probability of number 3 is the
largest, i.e., 0.3365). It seems unnecessary to add the following
distance comparison. In Table 2, we provide another example to
explain its necessity. From the prediction probabilities, we can figure
out that the classifier recognizes the actual input key number 1 as
number 2 (the prediction probability of number 2 is 0.3275, which
is the highest). However, after appending the distance comparison
constraint, number 1 achieves the maximum score. As a result, we
take the number 1 as the final inference result for the input key
number. Fig. 10 presents the average inference accuracy of each
key number on Honor V8. We observe a significant improvement
on individual keys when employing the enhancement model to the
classifier, i.e., the overall average accuracy of all the ten numbers
increases from 57.09% to 77.43%.

Figure 10: Inference Accu-
racy per Key

Figure 11: Inference Accu-
racy on Different Devices

Fig. 11 shows the accuracy of each key number on the three
devices we used, i.e., Huawei Honor V8, Oppo R11, and Samsung
Galaxy S5. The result shows that GazeRevealer achieves an overall
average accuracy of 77.43% on V8, 73.68% on R11, and 66.33% on S5,
respectively, for all the ten numbers. In the WeChat Pay app, the
numeric soft keyboard size is adjusted to the size of its smartphone
screen, users cannot customize the size of the soft keyboard. In other
words, the bigger the smartphone screen size is, the larger its soft
keyboard will be. From the result, we see that the size of smartphone
screen does influence the inference accuracy. The bigger the screen
size is, the higher the inference accuracy will be. V8 has the highest
accuracy with a screen size of 5.7 inches, the accuracy of R11 with
a screen size of 5.5 inches is slightly lower than that of V8. S5 with
a screen size of 5.1 inches has the lowest accuracy among the three
devices.

4.3 6-digit Password Inference
In this experiment, we evaluate the performance of GazeRevealer for
6-digit password inference. For each type of the three smartphones,
we ask the 12 participants to input 50 randomly generated 6-digit
passwords. The dataset contains a total of 12 participants× 50 sets
= 600 samples for each smartphone.

The 600 passwords include 3600 key numbers. The results show
that a total of 2770 key numbers are accurately inferred on V8
(76.94%), 2668 key numbers are recovered on R11 (74.11%), and
2357 key numbers are recovered on S5 (65.47%), respectively. For
an integral 6-digit password, it fails when a single digit number
is misclassfied. We introduce a premise which is similar to that in
[12]. For deducing a 6-digit password, an attacker can implement
several attempts to gain the correct password. It resembles a bit
the brute-force attack which tries at most 999,999 times to crack
a 6-digit password. We further investigate how many attempts it
needs that GazeRevealer can correctly predict a 6-digit password.
Each digit number is associated with an eye image. GazeRevealer
analyzes the image and yields the first 3 candidates with the highest
scores. The overall predicted score of a 6-digit password is defined
as:

Soverall =
6∏
i=1

Si

where Si is the score of an individual digit number. As each digit
number has 3 candidates, we obtain 36 = 729 potential passwords
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Figure 12: InferenceAccuracy of 6-digit Password

Table 3: Inference Rate on Different Devices

Attempts 30 45 60 75
V8 83.16% 83.16% 83.33% 83.33%
R11 66.83% 79.5% 79.5% 79.83%
S5 51.16% 57.33% 68.5% 68.5%

for a 6-digit password. It is much smaller than the number of at-
tempts needed in the brute-force attack. We next arrange the poten-
tial passwords in a descending order by their scores. Thus, we can
estimate how many attempts it needs to infer the actual password.
Fig. 12 shows the inference rate of different attempts on V8, given
only 1 trial. GazeRevealer is able to successfully infer 39.66% of
the 600 passwords. Given 29 trials, the recovery rate can be signifi-
cantly improved to 83.16%. In reality, most of the mobile payment
apps have their own security policies, e.g., the app will be locked if
the user enters the password incorrectly more than 3 times. In our
attack, the password inference rate achieves 46% in 3 trials.

As we can see from Table 3, in order to achieve a relatively
reasonable inference rate (i.e., less number of trials and higher rate
of password inference), V8, R11 and S5 require approximately 30, 45,
and 60 attempts, respectively. The corresponding inference rates are
83.16%, 79.5%, and 68.5%, respectively. The result also demonstrates
that, for inferring 6-digit passwords in WeChat Pay, the recovery
rate is correlated with the smartphone screen size. It is much easier
to infer passwords on a smartphone with a larger screen size.

4.4 Influence of Distance
In real situations, the distance between victim’s eyes and smart-
phone screen varies from one to another. According to a study in
[18], people are likely to hold smartphones at a distance between
30 cm to 40 cm, and some people who are under age 25 tend to keep
a distance as close as 18 cm or 20 cm. In this experiment, we use
three distances, i.e., 20 cm, 30 cm, and 40 cm, to evaluate the perfor-
mance of GazeRevealer. For each distance, We ask each participant
to record videos for entering 50 randomly generated passwords on
each of the smartphones. We finally obtain 600 password samples
for each smartphone on each of the three distances.

Fig. 13(a) shows the average key number inference accuracy for
each smartphone on different distances. The result shows that the
accuracy of key number inference on the three devices decreases

(a) Average accuracy in different dis-
tance

(b) 6-digit password inference accuracy
comparison

Figure 13: Influence of Distance

Table 4: Inference Rate in Different Distances

Device Attempts 20cm 30cm 40cm

R11
100 79.83% 70.16% 61.67%
150 80.17% 70.16% 61.83%
200 80.17% 70.83% 62.5%

S5
100 68.5% 59.67% 53.17%
150 68.66% 61.33% 53.83%
200 68.83% 61.33% 56.83%

from 76.94%, 74.11%, and 65.47% to 57.4%, 55.19%, and 46.53%, re-
spectively, when the distance increases from 20 cm to 40 cm. We
observe a decrease of almost 20% for all the three devices. This
indicates that the performance of GazeRevealer can be greatly af-
fected by distance. It is mainly because with a fixed screen size,
eye moving patterns become less apparent with longer distance.
Hence, the recognition of the eye image for different key num-
bers reduces, leading to decrease in inference accuracy. Although
distance has a relatively great impact on inference, GazeRevealer
can still perform an acceptable accuracy on the 6-digit password
inference given enough trials. Fig. 13(b) shows the 6-digit password
inference rate in different distances on V8. In the cases of 30 cm and
40 cm, the recovery rate rises up to 73.33% and 64.07%, respectively,
given over 100 trials. The inference results of R11 and S5 are listed
in Table 4. We can see from the table, if given enough trials (200
attempts in our experiment), the inference rate on R11 using the
distance of 20 cm, 30 cm, and 40 cm can achieve 80.17%, 70.83%, and
62.5%, respectively; meanwhile, the inference rate on S5 rises up to
68.83%, 61.33%, and 56.83%, respectively. We hence conclude that
GazeRevealer can significantly reduce the search space of potential
passwords.

4.5 Influence of Illumination Intensity
In this section, we evaluate the impact of illumination on inference
rate. We investigate the usability of GazeRevealer under three differ-
ent illumination scenarios–low illumination (in the range less than
50 lux , e.g., twilight and areas with dark surroundings), normal
illumination (in the range 500-1500 lux , e.g., normal office work and
library), and high illumination (in the range 10,000-30,000 lux , e.g.,
full daylight and sunlight). Fig. 14 illustrates the impact of different
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(a) Low illumina-
tion

(b) Normal illumi-
nation

(c) High illumina-
tion

(d) Only screen
backlight

Figure 14: Eye Images in Different Illuminations

Figure 15: Impact of illumina-
tion on inference rate

Figure 16: Impact of user sta-
tus on inference rate

illuminations on eye images. Fig. 14(a) to Fig. 14(c) show images
recorded under the three illumination scenarios. In low illumina-
tion or darkness circumstance, if we adjust the smartphone screen
brightness to the maximum, we observe from Fig. 14(d) that the
eye images of the victims without wearing glasses can be clearly
recorded only relying on the light from screen. We do not consider
the case of wearing glasses since it may lead to excessively strong
light reflection on glasses. For the former three scenarios, we ask
each participant to record videos for entering 50 randomly gener-
ated passwords on each smartphone under different illuminations;
for the last one, we ask the participants to take out the glasses and
record videos on each smartphone under low illumination by ad-
justing the screen backlight to the maximum. For every smartphone
under four different scenarios, we obtain 600 video samples.

Fig. 15 shows the 6-digit password inference rate (given 100 trials
in the experiment) on the three devices under different illumina-
tions. When the illumination switches to low or high, the inference
rates of the three devices are even lower than 25% or 40%, respec-
tively. The inference rates under low illumination with maximum
screen brightness are slightly higher than those under normal light-
ing condition, increasing from 83.33% on V8, 79.83% on R11, and
68.5% on S5 to 87.83%, 83.16%, and 71.33%, respectively. It shows
that GazeRevealer can still work well under darkness circumstance
only when the victims do not wear glasses and the screen backlight
is adjusted to the maximum. From the overall results, GazeRevealer
is greatly affected by illumination, excessively strong or weak ambi-
ent lighting condition may result in failure of GazeRevealer, which
can be explained as follows. GazeRevealer fundamentally relies
on gaze recognition from relatively high-quality eye images, low
illumination usually leads to low image quality, and high illumina-
tion may cause light reflection, resulting in low-quality of the eye
image. As a consequence, the accuracy of gaze recognition reduces
on low-quality images, leading to decrease in password inference.

4.6 Influence of Motion
We now evaluate the impact of victims’ walking motion on infer-
ence rate. In this experiment, we ask each participant to record
videos for entering 50 randomly generated passwords on each de-
vice under two states, i.e., static and motion states (walking at
a speed of 1.2 m/s approximately while keeping the smartphone
steady in front of the face). For each device we used, we obtain 600
video samples for each of the two states.

Fig. 16 shows the inference rate of GazeRevealer with different
user states (given 100 trials in the experiment). From the result,
we see that the inference rates of 6-digit password nearly keep the
same on the three devices when the user state changes. The result
indicates that GazeRevealer is robust to the state of motion. The
reason is that victims’ steady walking motion has little impact on
the recording of eye patterns and consequently cause little impact
on the password inference.

5 DISCUSSION
5.1 Limitations
GazeRevealer is currently implemented in a lab environment. While
our results are encouraging, several limitations need to be consid-
ered before real deployment.

• Front Camera FPS. The FPS of front camera directly re-
lates to the number of images in a gaze fixation and saccade.
Keystroke eye image extraction process relies on how many
images in each segment. Different FPS result in different
numbers of images in the fixation and saccade segments,
which would affect the threshold. Consequently, it is hard to
apply GazeRevealer to infer the victim’s password on other
type of smartphones with different FPS. For most of the
off-the-shelf smartphones, the current front camera records
videos at a speed of 30 FPS. In our experiment, we use a
wide range of smartphones (Huawei Honor V8, Oppo R11,
and Samsung Galaxy S5) with front cameras of 30 FPS to
demonstrate the practicability of the proposed camera-based
keystroke inference approach. To overcome this limitation,
the most straightforward solution is to train and construct
various models with different FPS.

• Controlled Input Fashion. In our experiment, we instruct
the participants to gaze at the key number while entering.
This is because the inference rationale is based on eye track-
ing which relies on the relevant eye image to estimate the
gaze direction. In reality, victims may selectively or ran-
domly gaze at certain numbers rather than every number of
their password. In this case, we can construct a password
dictionary and train probabilistic classifiers such as hidden
Markov model (HMM) and neural network (NN) to reduce
the complexity of password searching, which resembles the
dictionary-based method in character keystroke recogni-
tion [4].

• Head Movement. Head movement will influence the fea-
tures in the eye image such as the position of pupil center
and the size of the eye contour. Consequently, it can signifi-
cantly affect the accuracy of gaze estimation. GazeRevealer
works on the prerequisite that the user keeps a relatively
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fixed head position in front of smartphone during password
input. In real application scenarios, head may shift around
during a conversation while the eyes may still maintain
tracking on the screen during password input. This problem
can be mitigated using the schemes in [2], or deploying dual
front cameras on smartphone (i.e., two different eye images
will offer robust computation for gaze estimation).

5.2 Mitigation Strategies
The most direct countermeasure is to employ randomized layout of
numeric soft keyboard, the exact number cannot be deduced even
if an attacker is capable of figuring out the gaze position on the
screen. However, randomizing soft keyboard provides defenses at
the cost of usability. For example, it is hard to build muscle memory
to type, and hence typing accuracy will be reduced.

Preventing data acquisition is an effective defense against the
camera-based side-channel attack. Firstly, app stores such as Google
Play should provide a comprehensive inspection mechanism to pre-
vent malicious apps from displaying on the shelves and request
every released app to declare the intention of accessing the front
camera and other sensors. Secondly, users should selectively grant
sensor permissions to apps on their smartphones especially pay-
ment apps.

Moreover, a more extreme solution is to eliminate the use of
password. Biometrics-based authentication such as fingerprint iden-
tification, facial scan, and speech recognition may be an alternative
to replace password.

6 CONCLUSION AND FUTUREWORK
In this paper, we propose a novel side-channel based keystroke
inference approach using eye movement recordings captured by
smartphone front camera. We present the detailed design of Gaz-
eRevealer and evaluate our approach on three types of commercial
off-the-shelf smartphones. The evaluation results show the promise
of employing front camera as the side channel to recognize the vic-
tim’s password on smartphones. We study several external factors
that may influence GazeRevealer on password inference, including
the distance, the ambient illumination, and the motion. We also
study the performance of GazeRevealer under user-independent
case, and the result demonstrates that GazeRevealer is capable of
launching the attack for a new victim. In contrast to prior works,
our approach only relies on smartphone front camera without the
need of complex and easily perceived external devices.

Due to the limitation of camera FPS, we will investigate the
performance of GazeRevealer on other devices with different front
camera FPS in our future work. We will also study the performance
under different body gestures. Furthermore, we will deploy Gaz-
eRevealer in many other scenarios such as phone number dialing,
smartphone unlocking, and keystroke inference on a full QWERTY
soft keyboard.
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