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Abstract—Understanding and recognizing the activities per-
formed by people is a fundamental research topic for a wide range
of important applications such as fall detection of elderly people.
In this paper, we present the technical details behind Freedom, a
low-cost, unobtrusive system that supports independent living
of the older people. The Freedom system interprets what a
person is doing by leveraging machine learning algorithms
and radio-frequency identification (RFID) technology. To deal
with noisy, streaming, unstable RFID signals, we particularly
develop a dictionary-based approach that can learn dictionaries
for activities using an unsupervised sparse coding algorithm.
Our approach achieves efficient and robust activity recognition
via a more compact representation of the activities. Extensive
experiments conducted in a real-life residential environment
demonstrate that our proposed system offers a good overall
performance (e.g., achieving over 96% accuracy in recognizing
23 activities) and has the potential to be further developed to
support the independent living of elderly people.

Keywords-Activity recognition, RFID, sparse coding, dictio-
nary, feature selection, sensing data

I. INTRODUCTION

Worldwide, the population is aging due to increasing life

expectancy and low birth rate. With recent developments in

cheap sensor and networking technologies, it has become

possible to develop a wide range of valuable applications

such as the remote health monitoring and intervention. These

applications offer the potential to enhance the quality of life

for the elderly, afford them a greater sense of security, and

facilitate independent living [1]. For example, by monitoring

the daily routines of a person with dementia, it is possible to

track how completely and consistently the daily routines are

performed, and determine when the resident needs assistance.

Central to realizing these applications is activity recognition,

which is emerging as an important area of research and

development in recent years [2].

Computer vision related human activity recognition is one

of the directions, but unfortunately, such solutions demand

high computational cost for machine interpretation. In addi-

tion, the performance of such vision-based approaches depends

strongly on the lighting conditions (e.g., poor performance at

night), camera facing angles (e.g., uncovered areas) etc, which

greatly restricts its applicability in real environments. Cameras

are generally considered to be intrusive to people’s privacy.

With the growing maturity of sensor, radio-frequency iden-

tification (RFID), and wireless sensor network technologies,

activity recognition from inertial, unobtrusive sensor readings

has become a popular research area in last few years. Inertial

sensors are the most frequently used wearable sensors for

human activity recognition [3], [2]. Although sensor-based

activity recognition can better address issues such as privacy

than conventional computer vision-based approaches, most

work from sensor-based activity recognition require people

to wear the inertial sensors [4], [3] and RFID tags [2]. The

main drawbacks of such solutions is that they need users’

cooperation. As a result, these approaches are not always

practical, particularly for monitoring elderly persons with

cognitive disabilities.
To overcome the aforementioned issues, we have developed

an effective and unobtrusive activity recognition system to

support independent living of older people by leveraging

passive RFID tags—which are maintenance free (no batteries

needed for tags) and inexpensive (about 10 cents each and still

dropping quickly)—and data mining techniques. Our approach

is lightweight in computational cost, and people do not need

to wear any devices. Passive RFID tags are deployed in an

environment (e.g., on the wall in a room) forming a tag array.

By analyzing the Received Signal Strength Indicator (RSSI)

fluctuations, our system can successfully recognize different

activities performed by a person in the environment.
Recognizing human actions from streaming RFID signals

is a challenging problem due to the nature of signal changes

in real-world conditions like distraction, diffusion and degra-

dation [5]. Sparse coding aims at modeling data vectors as

sparse linear combinations (i.e., sparse representation) of basis

elements, and has been widely used in image processing and

computer vision applications [6]. In this paper, we explore

sparse representation for robust activity recognition. The main

contributions of our work are summarized below:

• We develop a dictionary-based learning approach to un-

cover structural information between RSSI signals of dif-

ferent activities. The dictionaries are learned by a sparse

coding based algorithm. Compared to the existing activity

recognition approaches, our dictionary-based approach

achieves more compact representation of activities while

preserving richer information, thereby underpinning effi-

cient and robust recognition of human activities.

• We propose a lightweight yet effective feature selection

method to extract signal patterns. We particularly exploit

an unsupervised and filter-based feature selection ap-
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Fig. 1. (a) Signal strength fluctuation of activity walking and its correspond-
ing linear/quadratic/cubic/polynomial fittings and residuals, (b) the signal
distribution pattern of activities walking (left) and kicking left leg (right)

proach based on the canonical correlation analysis (CCA),

which not only retains the natural assignment of feature

components but also uncovers the interdependency be-

tween feature components.

• We validate and evaluate our proposed system by a pro-

totype application and experiments using a real dataset.

In particular, we set up our experimental environment

in a cluttered office room, and 6 subjects participate

in the data collection for 23 predefined activities. Our

experimental results on these real dataset demonstrate the

effectiveness and efficiency of the proposed techniques.

We formulate the research problem in Section II and the

technical details are described in Section III. In Section IV,

we report the experimental results. We overview the related

work in Section V and wrap up the paper in Section VI.

II. OBSERVATIONS AND PROBLEM FORMULATION

In this section, we discuss two observations, which hold key

groundings for the proposed recognition algorithms.

Observation 1. It is well known that RSSI is quite complicated

in real environments due to signal reflection, diffraction, and

scattering, especially for the passive tags. It is often affected by

the propagation environment and the tagged object properties

or human movements in the signal coverage area. The signal

strength of passive RFID tags is uncertain and non-linear [7],

[5]. As shown in Figure 1 (a), the RSSI variations cannot be

easily fitted using generic linear and polynomial regressions

since the fitting residuals are quite big. It is therefore not

possible to directly use raw RSSI data in activity recognition.

Observation 2. Although RSSI reflects the uncertainty and

non-linear distributed patterns, we still can observe some inter-

esting characteristics. More specifically, we discover that the

variations of signal strength reflect different patterns, which

can be exploited to distinguish different activities. Figure 1

(b) shows the distinctive fluctuation patterns of signal strength

collected from walking and kicking left leg, respectively.

From above observations, we believe that RSSIs of passive

RFID tags embody certain patterns for different activities,

which can be exploited for effective activity recognition. We

therefore formulate our problem as follows.

Let S ⊂ R
t (t is the number of tags) be the domain of

observable signal strength fluctuation (RSSI indicator in this

work), s and L ∈ {1, ...,K} ⊂ R be the domain of output

activity label l (K is the number of activities). Suppose we

have n RSSI and activity label pairs {(si, li)|si ∈ S, li ∈
L, i = 1, ..., n}. The training dataset can be represented as:

S = [s1, ..., sn] ∈ Rt×n

l = [l1, ..., ln]
T ∈ Rn

(1)

Our goal is to learn a predictor F : S → L using training

dataset, which can assign the most appropriate activity label

for a given query sample.

III. THE SYSTEM AND THE TECHNIQUES

Our system (see Figure 2) consists of three main stages:

• Processing the raw signal streaming data from various

RFID tag inputs into individual segments, and then ex-

tracting low-level statistical features from each segment,

• Learning the overcomplete dictionary for each activity

using the extracted features, and

• Given a new signal streaming data, finding the dictionary

from the learned activity dictionaries that best approxi-

mates the testing sample.

A. Segmentation

The first major task is to divide the continuous sequence

of RSSI data stream into a set of individual segments, where

each segment corresponds to a specific concept or an activity

(e.g., one segment corresponds to Sitting, and another segment

corresponds to Standing etc). We incorporate the temporal

information during the segmentation process of feature trans-

formation. We particularly divide the raw streaming signal data

into segments where each segment is generated by a sliding

window based method. Relevant information can be extracted

as features from each single segment. It should be noted

that different activities have different mean temporal lengths.

To incorporate the activity duration, we use a one-sliding-
window-per-activity strategy and the length of each window

corresponds to the activity duration as carried out by the

subject. In this way, our method takes the temporal dependency

into account for constructing each activity’s dictionary.

Some existing segmentation methods (e.g., online time

series segmentation) apply an adaptive model on one dimen-

sional data [8], which are not applicable to build segmentation

for multi-dimensional streaming data (e.g., N-dimensional

RFID RSSI data in our case). In our approach, we design a

slope variation based sliding window segmentation algorithm

by analyzing a distance criterion and the geometrical content

of the RSSI data. The algorithm aims to follow the shape of

the RSSI fluctuation curve. We first read the samples into a

buffer and for each buffer, we mark points with slope change

on each dimensional data. In other words, they indicate the

changes from peak to trough of the curve, which represent the

trend of changes from one posture to the other.
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Fig. 2. The architecture of our proposed activity recognition system

We adopt the majority voting rules to integrate the segmen-

tation points which are calculated from each dimensional data

within each buffer. In terms of all potential segment points

of each dimension in one buffer, we count times of each

potential point and select the points with the most repeating

times as the final segmentation point for the multi-dimensional

RSSI in each buffer. If some points have the same repeating

times, these points could be regarded as the center points and

then we respectively calculate the sum of horizontal geometric

distances between other potential points and these center

points in one buffer. The potential points with the lowest sum

of horizontal geometric distances between itself and others

would be set as the best segmentation point. We also design

a backtrack mechanism to eliminate the troughs or peaks

resulted from outliers. After the segmentation process, the

continuous S will be divided as a set of individual segments.

B. Feature Extraction

The feature extraction process focuses on transforming each

segment into feature vectors. In our approach, we design seven

types of lightweight statistical feature vectors for this purpose,

as listed in Table I.

TABLE I
STATISTICAL FEATURES AND BRIEF DESCRIPTIONS

No. Feature Description
1 Min Minimal value of Si

2 Max Maximal value of Si

3 Mean Average value of Si

4 Variance The square of standard deviation of Si

5 Root Mean Square The quadratic mean value of Si

6 Standard Deviation Measure of the spreadness of Si

7 Median The median Si

The extraction process in our approach yields a total of

m feature vectors O = {o1, ...,oi}, where o ∈ R
m, here

m = 7 × t where t is the number of tags. However, some

features might confuse, rather than help, the classifier to dis-

criminate activities. Also, due to the “curse of dimensionality”,

the performance may degrade sharply as more features are

added when there is no enough training data to reliably learn

all the parameters of the activity models. To achieve the best

classification performance, the dimensionality of the feature

vector should be as small as possible, keeping only the most

salient and complementary features.

We develop a canonical correlation analysis (CCA) based

method to compute initial rankings for each pair of features,

where two feature vectors are given and a projection is

computed for feature vector such that they are maximally

correlated in the dimensionality-reduced space. We first apply

CCA for all pairs of the extracted features. The result is a

similarity matrix of canonical correlations. For each pair of

feature vectors {oi, oj} that can be linearly mapped into:

oi → wT
oi
oi and oj → wT

oj
oj , where woi ∈ R

m and

woj
∈ R

m, their correlation coefficient ρ can be obtained

by maximizing the following equation:

ρ =
wT

oi
oio

T
j woj√

wT
oi
oioT

i woi

√
wT

oj
ojoT

j woj

(2)

After we deploy CCA for all pairs of features, we can generate

an initial ranking for all feature pairs. A higher rank is assigned

to those weakly correlated and thus complementary feature

pairs. Strongly correlated and thus redundant feature pairs get

lower ranks. The initial ranking facilitates the selection of

descriptive and complementary features.

We then employ a forward searching strategy to search

the feature subsets based on their pairwise rankings, which

traverses the full search space provided by the initial ranking

of canonical correlation coefficients of the feature pairs to

find the optimal feature set, and the searching process will

be terminated when either the predefined dimensionality of

features is reached or all features are already considered.

C. Activity Dictionary Learning

Recent research shows that learning a dictionary by fit-

ting a set of overcomplete basis vectors to a collection of

training samples can generate more compact and informative

representation from given data and achieve better recognition

results [9]. We propose a sparse representation based approach

to recognize human activities by investigating RSSI fluctua-

tions. We learn one single dictionary for each activity, which

is formed by a set of basis vectors learned by solving a

sparse optimization problem. Each basis vector can effectively

capture part of key structural information of given training data

from each activity.

There are several advantages in learning activity dictio-

naries. First, the dictionary for each activity is learned from

a collection of training samples via solving �1 optimization

problem [10], which represents structural information of RSSI

data in a more compact and informative way. Second, the

dictionary learning process of each activity is independent

from other activities, which makes an activity recognition

system flexible and scalable, as no change is needed on the
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existing activity dictionaries when a new activity is added.

Third, each dictionary can be trained and learned by using only

very small training samples, which can effectively relax the

heavy workload on labeling and annotating training data in the

activity recognition, as required by most existing approaches.

Assuming we have K types of activities, and we construct

K dictionaries (one dictionary for each activity). After that, a

new signal strength vector is reconstructed using the K dic-

tionaries. The reconstruction errors using different dictionaries

are compared and the smallest reconstruction error indicates

that the new testing signal sample fits better to the specific

corresponding dictionary than others. In what follows, we

present the details of the proposed algorithm.

Let Ok = {ok
1 ,o

k
2 , ...,o

k
i } be the training sample from

activity class Ck, to learn and encode the information of

the testing samples belonging to a particular activity class,

we first construct an overcomplete dictionary Dk for each

class Ck. Recall the set of training samples from the kth

activity as Ok = {ok
1 ,o

k
2 , ...,o

k
N}, where ok

i ∈ R
m, m is

the feature dimensions. We intend to find a dictionary matrix

Dk ∈ Rm×K having K(K > m) vectors {dk
1 , ...,d

k
K}, over

which Ok has a sparse representation Xk = {xk
1 , ...,x

k
N},

where xk
i ∈ RK . In this case, the original training matrix Ok

can be represented as a linear combination of no more than

τk
0 (τ

k
0 << K) dictionary vectors. The optimization problem

can be formalized as:

min
Dk,Xk

||Ok −DkXk||22, s.t. ||xk
i ||0 ≤ τk

o (3)

We adopt the K-SVD algorithm [9] to solve this problem,

which performs two steps iteratively until converged. The first

stage is the sparse coding stage, Dk is kept fixed and the

coefficient matrix Xk is computed by orthogonal matching

pursuit algorithm, and then the dictionary Dk is updated

sequentially allowing the relevant coefficients to be unique to

K-SVD and resulting in a faster convergence. The dictionary

learning algorithm is detailed in Algorithm 1.

D. Reconstruction-based Classification

As mentioned above, one advantage of having class-specific

dictionaries is that each class is modeled independently and

hence the painful repetition of the training process can be

avoided when a new type of activity is added to the system.

After constructing the dictionary for each activity, for a given

query feature vector of signal samples o∗, its reconstruction

error for the kth activity (k ∈ [1,K]) can be calculated as:

ek = ||o∗ −DkXk||2 (7)

Then the activity label of o∗ can be assigned using:

lo∗ = l(min
k

ek) (8)

Our proposed activity classification is summarized in Algo-

rithm 2.

IV. EXPERIMENTS

A. Experimental Settings

Hardware Setup. We used one Alien 9900+ RFID reader, four

circular antennas (each antenna for one room) and multiple

Squig inlay passive RFID tags in our study. The tags were

Algorithm 1: Activity-Specific Dictionary Learning

Input: Training sample matrix O = {o1, ..., oN}, dictionary size d
Output: Dictionary D and sparse coefficients X

1 Initializing dictionary matrix D(0) ∈ Rm×K with �2 column normalization and
J = 1;

2 while (!= stopping criteria) do
3 Using orthogonal matching pursuit to compute the sparse coefficients xi for

each training sample oi by solving the optimization problem;
4

min
D,xi

||oi − Dxi||22, s.t. ||xi||0 ≤ τo (4)

% Update dj , the j-th column of DJ−1;
5 for j=1:N do
6 1. Finding a group of vectors:

ξj ← {i : 1 ≤ i ≤ N,xi(j) �== 0} (5)

2. Computing the overall representation error matrix Ej by ;
7

Ej ← [o|, ..., |oN ]−
∑

i�=j

dix
i
τ (6)

3. Extracting the i-th column in Ej where i ∈ ξj to form ER
j ;

8 4. Applying SVD to obtain ER
j = UΔV, and di is updated with

the first column of U. The non-zero elements in xi
τ are updated with

the first column of V ×Δ(1, 1)
9 end

10 J ← J+1;
11 end

Algorithm 2: Activity Classification
Input: Signal samples S = S1, ...,SK , where K is the number of activity

classes; Querying signal samples S∗ = {s∗1 , ..., s∗I}
Output: Activity label l∗ = {l∗1 , ..., l∗I} of S∗

1 Extracting Nk feature vectors of signal samples from each activity class Ck

using the proposed feature representation (see Section of “Feature Extraction”);

2 Constructing K activity-specific dictionaries D = {D1, ...,DK} (one
dictionary for each activity) using Algorithm 1 ;

3 for i = 1: I do
4 Transform S∗ to features O∗ ;
5 Computing sparse representation x∗

i of s∗i using K dictionaries D ;
6 Computing reconstruction errors e = {e1, ..., eK}, where

ek = ||o∗ − DkXk||2, k ∈ [1, K] ;
7 Output activity label by l∗i = l(mink ek) ;
8 end

placed along the walls, where each grid is roughly 0.8m ×
0.8m. The antennas were arranged between ≈ 1.3m ∼ 1.6m
height with angle ≈ 70◦. Figure 3 shows part of the setup and

hardware used in our experimental environment.

Sampling Rate. Passive RFID tags tend to be noisy. For

example, one of the challenges in existing RFID systems

is false negative readings, caused by missed detections (i.e.,

a tag is in the antenna’s reading range, but not detected).

Meanwhile, RSSI data is much sensitive to environments.

Appropriate sampling rates can reduce the aforementioned

problems. However, too small sampling rates make our method

more sensitive to the noise of RFID readings, while too

big sampling rates blur the inter-class activity boundaries. In

our implementation, we collected the continuous RSSI data

streams at the sampling rate of ≈ 0.5 second.

Data Collection. The data acquisition process involves six

subjects (five males and one female), and the set of 23 fine-

grained, orientation-sensitive activities (including 6 postures

and 17 actions). The 23 postures and activities are the most

common ones in people’s daily lives. Each subject performed

each posture or action for 120 seconds and all 23 different

activities performed sequentially by one subject were regarded

as one set of activity data.
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(a) (b) (c)

Fig. 3. (a) hardware devices, and example experimental setup: (b) kitchen and (c) bedroom

Validation Strategy. We validated our approach using a subject-
dependent strategy, where partial samples of a subject were

used for testing and the remaining samples of the same

participant were used for training. This is reasonable since

that elderly people often live alone.

B. Comparison With Other Methods

We report our experiments that focus on two aspects. First,

we implemented four heuristics based on sparse representation

proposed in [11], in which the training samples are directly

used to construct the dictionaries. Suppose the matrix B
formed by training feature vectors is transformed from K
activities, B = [B1, ...,BK ], where Bi is the subset of training

samples from activity i. Given query samples o∗, the overall

process includes two main steps. The first step is about finding

sparse representation of o∗ on B. We computed its sparse

representation, i.e., the coefficient vector wi associated with

different activities which can be used to recover o∗. In other

words, the querying sample o∗ can be represented as a linear

span of B ∈ Rm×d.

o∗ = b11ŵ1 + b12ŵ2 + ... + b1nŵn = Bŵ (9)

The equation can be reformulated as:

ŵ = argmin
w

||ŵ||, s.t. o∗ = Bŵ (10)

where the sparse solution of ŵ can be found via �1 minimiza-

tion using truncated Newton interior point method [12].

The second step is about classification. Given a query sam-

ple o∗, the four heuristics utilize the reconstruction coefficients

to perform activities classification by harnessing the subspace

structure of coefficients ŵ, detailed as the following:

• Maximal Coefficients (MC). The testing sample label

associates with the largest coefficient of oi. So the

predicted activity label li for the query sample is:

lo∗ = argmax
k

(δk(o
∗)) (11)

where δk(o
∗) represents the coefficients in o∗ only asso-

ciated with label lk.

• Maximal Coefficients Sum (MCS). The predicted label of

the query sample is the label whose sum of coefficients

of o∗ is maximized:

lo∗ = argmax
k

(
∑
k

o∗) (12)

For a given testing RSSI, the label with the largest sum

value is the predicted activity.

• Minimal Residual (MR). For each activity k, we define

a characteristic function δk : Rn → R
n, which selects

the coefficients associated with the kth posture class.

For ŵ ∈ R
d, δk(ŵ) is a new vector whose only non-

zero entries are the entries in ŵ that are associated with

kth posture class. We can reconstruct the given query

sample o∗ as ô∗ = Bδk(ŵ). Thus, we can classify o∗ to

the posture class based on reconstruction approximations

from each activity class that has the minimal residual

between the real o∗ and the estimated ô∗:

rk(o
∗) = ||o∗ −Bδkŵk||2 (13)

Then oi can be classified to activity k that has the

minimal residual value using the following equation:

lo∗ = argmin
k

rk(o
∗) (14)

• Maximal Number of Nonzero Coefficients (NonZero).

The predicted activity label of sample o∗ is denoted as:

lo∗ = argmax
k

|δk(o∗)| (15)

where δk(o
∗) represents the coefficients in o∗ only asso-

ciated with label lk. | · | denotes the length of δk(o
∗).

Second, we employed multiple classifiers to evaluate the

quality of the generated feature subsets. The following classi-

fication techniques were selected since they have already been

successfully applied for activity recognition applications.

• Multinomial Logistic Regression with �1 (MLGL1) is a

modification of linear regression that is able to predict

dependent variables based on the logistic function. Given

our multi-class activity recognition problem, we combine

the �1 regularization with multinomial logistic regression,

which models the conditional probability Pw(lj = ∓1|o).
The prime problem with �1 regularization can be calcu-

lated by optimizing the log likelihood:

min
w

K∑
k=1

||wk||1−
n∑

i=1

K∑
k=1

likw
T
k oi+

n∑
i=1

log
( K∑

k=1

exp(wT
koi)
)

(16)

• k-Nearest Neighbor (kNN) is a common classifier for a

variety of classification problems. It predicts the class of

a sample by a majority voting of the class labels of the

K nearest training instances.

• Linear Support Vector Machine (LSVM) aims at find-

ing the best separation of binary-labeled instances by

determining a hyperplane which maximizes the margin

between support vectors of different classes. Given the
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sequence of training RSSI and corresponding posture

labels O = {(o1, li), ..., (on, ln)}, where o ∈ R
D and

l ∈ {1, ..., k}. The objective function is formulated as:

min
w,b,ξ

wTw + C
n∑

i=1

ξi

s.t. li(w
Tφ(oi) + b) ≥ 1− ξi, i = 1, 2, ..., n

ξi ≥ 0, i = 1, 2, ..., n

(17)

where ξi is the slack variables, C is the penalty of error

term, K(oi,oj) = φ(oi)
Tφ(oj) is the kernel function.

• Random Forest (RF) builds a forest of decision trees that

have the same distribution but independent output classes.

Figure 4 shows the overall performance comparison re-

sults. We can observe that our method (RFM, RFID-based

Activity Monitoring) significantly outperforms all of the other

approaches, which shows a good potential and effectiveness

in activity classification. From the results, our method can

accurately recognize most of orientation sensitive activities in

a cluttered real living environment. Figure 5 shows a detailed

example of a sequences of activities, our proposed method can

identify a series of activities only with minor misclassification

during the activity transitions.

V. RELATED WORK

RFID has been increasingly explored in the area of human

activity recognition. Some research efforts propose to real-

ize human activity recognition by combining passive RFID

tags with traditional sensors (e.g., accelerometers). In this

way, daily activities are inferred from the traces of object

usage via various classification algorithms such as Hidden

Markov Model, boosting and Bayesian networks [2]. Other

efforts dedicate to exploit the potential of using “pure” RFID

techniques for activity recognition [5]. For example, Wang

et al. [13] use RFID radio patterns to extract both spatial

and temporal features, which are in turn used to characterize

various activities. However, such solutions require people to

carry RFID tags or even readers (e.g., wearing a bracelet).

Recently, there have emerged research efforts focusing on

exploring device-free activity recognition. Such approaches

require one or more radio transmitters, but people are free

from carrying any receiver or transmitter. Most device-free

approaches concentrate on analyzing and learning distribution

of radio signal strength (RSSI) or radio links. For instance,

Youssef et al. [14] propose to pinpoint people’s locations by

analyzing the moving average and variance of wireless signal

strength. Zhang et al. [7] develop a sensing approach using

an RFID tag array. However, most of these efforts focus on

localization and tracking. There are not much work on study

device-free activity recognition.

VI. CONCLUSION AND FUTURE RESEARCH

We have presented in this paper the technical details un-

derneath a device-free, unobtrusive human activity recogni-

tion system with location support that holds the potential

to support independent living of older people, which is a

critical research and development area given the significant

challenges presented by the aging population in most coun-

tries. We particularly investigate a dictionary-based approach

for sparse representation of noisy and unstable radio frequency

identification (RFID) streaming signals. Our approach achieves

a more compact representation of the activities while preserves

richer information, thereby supporting efficient and robust

recognition of human activities. Our future work will focus

on two main directions: (1) we plan to evaluate our system

on larger datasets along with more subjects via incorporating

with local aged care centers; (2) we will work on identifying

complex human activities is one main goal of our future work,

e.g., inferring a person is eating or watching TV.
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