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a b s t r a c t

Classical remote desktop systems are considered for a single host, thus hindering their applicability on
virtualization environment. Remote desktop virtualization is rising in the recent years as a new advanced
extension to virtualization technology. However, existing remote desktop virtualization solutions intro-
duce weak performance in relation to response time, video quality, and cost saving. This paper proposes
a novel remote desktop virtualization system for multi-tenant, namely FastDesk, which is based on a
server-push mode streaming mechanism and a heuristic virtual desktop placement algorithm. Through
extensive experiments, the results show that FastDesk outperforms other popular platforms in terms of
bandwidth with less than 2 Mbps and 94% video quality. Meanwhile, it creates the minimal resource
wastage compared with other virtual machine placement algorithms. Furthermore, the proposed Fast-
Desk achieves low CPU utilization, low bandwidth and good scalability. At last, to widen its applicability,
FastDesk has been implemented on VirtualBox for running 3D programs.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, Information Technology (IT) organizations find that
the widening gap between the availability and demand of IT re-
sources becomes a challenging issue. Personal desktop computers
are ubiquitous in enterprises, educational institutions and govern-
mental organizations, while the cost of maintenance and upgrade
of these computers turns out to be enormous and unmanageable.
Virtualization technology has been advocated as a realistic solution
for resource consolidation, and it has demonstrated the cost saving
benefit in these circumstances. It also provides many other ben-
efits, including facilitating rapid deployment, offering enhanced
flexibility and scalability [1,2].

Remote desktop virtualization, a new advanced extension of
virtualization technology, is rising in the recent years as an alterna-
tive to classical desktop delivery [3]. It is a software technology that
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separates the desktop environment and associated applications
from the remote client device. An end user only needs a thin
client which handles display, keyboard and mouse combined with
adequate processing power for graphical rendering and network
communication.Moreover, the client no longer has to keep theuser
state and communicatewith the server by using a remote protocol.
This remote protocol allows graphical display to be virtualized,
and transmits user input from client to server [4,5]. Thus, remote
desktop virtualization offers a cost-efficient paradigm shift to ease
management complexity since operating systems, applications
and data are kept in a large data center. In addition, it is easy
to troubleshoot and replace thin client since it is stateless. With
the ever increasing popularity of cloud computing, remote desktop
virtualization can be easily provided through cloud environments.
Similar to the Software as a Service (SaaS) model, this approach is
also referred to as Desktop as a Service (DaaS) [6].

Despite some works [3,6–8] have been contributed on remote
desktop virtualization, technical challenges still exist. One key task
in this field is to provide high fidelity display and good interactive
experiences for end users, especially in multimedia application
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which is typically integrated with modern desktop computing.
Current remote display protocols such as Remote Framebuffer
protocol (RFB) [9] and Remote Desktop Protocol (RDP) [10] are
widely used in remote desktop virtualization systems [11]. They
are mainly designed for slow-motion graphical applications, such
as text editor, which imply minor changes with low frequency. On
the one hand, RFB uses the client-pull model to update its screen.
Nieh et al. [12] pointed out that the performance of the thin-client
system is mainly affected by latency. In this case, the client-pull
system will suffer more since it has to send two messages for each
update and cannot effectively support high-motion scenarios such
as video playback and real-time interactions [13]. On the other
hand, the details of RDP are not open to the public. It is also worth
noting that RDP uses the Microsoft proprietary solution such as
Direct2D and Direct3D, which is not available in Linux andMac OS.
Therefore, the transport of multimedia data over these protocols
is inefficient, requiring high bandwidth to ensure the delivery of
all the frames to the client in time [14]. There are efforts [7,15]
to support high fidelity display and improve user experience in
the thin-client computing architecture, whereas these architec-
tures are dependent on the underlying hardware or implementing
specific hardware driver which is not suitable for a virtualization
environment since Virtual Machine Monitor (VMM) provides an
abstract layer for operating systems and applications.

In a remote desktop virtualization system, another key chal-
lenge is to improve cost saving as much as possible [16–18]. Virtu-
alization technology provides the basis of statistical multiplexing
to server resources in data centers. Typically, in the remote desktop
virtualization system, all operating systems and applications are
installed on Virtual Machines (VMs), which are located on a server
or a cluster in a remote data center. Each virtual desktopmaps into
a VM. Under this scenario, finding the optimal placement strat-
egy of VMs can effectively utilize server resources and maximize
the profits. However, the VM placement is a kind of bin-packing
problem, which is known as an NP-hard [18–20]. At present, the
greedy heuristics [18–22], such as First-Fit (FF), Next-Fit (NF), Best-
Fit (BF) etc., are popular. Nevertheless, these approaches are rough
and hard to obtain maximized profit.

To address the above challenges, we propose FastDesk, a novel
remote desktop virtualization system for multi-tenant, which is
based on our previous work [23]. Combined to a server-push
mode stream architecture and virtualization technology, FastDesk
provides high quality display and good user interactive experience
withoutmodifyingGuest Operating System (Guest OS) or requiring
specific hardware. Meanwhile, to minimize the server resource
wastage, it uses a nature-inspired heuristic algorithm to solve the
VM placement problem. Furthermore, FastDesk supports multi-
tenant management, which is a key feature in cloud computing
services. Multi-tenant management contains resource allocation
and performance monitoring, which transforms FastDesk into a
DaaS system. It can also scale down the screen size to fit different
devices.We implement FastDesk prototype based on Kernel-based
Virtual Machine (KVM) [24], a popular virtualization system, and
conduct extensive experiments. The results show that our system
achieves 94% video quality in a 1024 × 768 display resolution
for video playback in both Local Area Network (LAN) and Wide
Area Network (WAN) environments, while classic remote systems
only achieve at best around 20%. In a high interaction scenario,
FastDesk achieves the shortest response time inWAN, outperform-
ing other popular desktop virtualization systems. Furthermore, the
proposed algorithmminimizes thewaste of resources as compared
with other classical VM placement heuristics.

To sum up, the main contributions of FastDesk as follows:

• We proposed a novel remote virtualization system for
multi-tenant,which contains a server-pushmode streaming
mechanism and a heuristic virtual desktop placement algo-
rithm.

• The results show, via a great amount of experiments, that
the FastDesk achieves low CPU utilization, low bandwidth
and good scalability.

• We have also demonstrated that the proposed system out-
performs other popular platforms in terms of CPU utiliza-
tion, bandwidth and video quality. Besides, our proposed
virtual desktop placement algorithm always gets the min-
imal resource wastage against other classical heuristics.

The remainder of this paper is structured as follows: Section 2
explores some existing Remote Desktop Virtualization techniques
and their placement algorithms. Section 3 elaborates on our archi-
tecture. Section 4 describes an evolutionary heuristic VM place-
ment algorithm. Section 5 introduces our system implementations
in details. Section 6 presents experimental results measuring our
performance and compares them to other popular remote desktop
virtualization systems. Finally, conclusion and future work are
presented in Section 7.

2. Related work

Remote desktop virtualization is a thin-client computing pat-
tern [3,25]. A common implementation of this system is that state-
less thin clients interactwith virtual desktops bymeans of network
communication using a remote display protocol. Virtual desktops,
which contain isolated operating system instances and related ap-
plications, are installed on VMs hosted by servers in a remote data
center. Virtualization technology allows multiple VMs to run on a
real server, which implies improving server resources utilization
can increase system benefits. And the benefits rely heavily on VM
placement strategy.

2.1. Remote desktop virtualization systems

Existing works propose many alternative designs. These solu-
tions can be classified by the level of graphical output which are
sent to the client. The X system [26] simply forwards high-level ap-
plication display commands and leaves the graphical user interface
processing to the client for remote display functionality. It is cost-
efficient on the server side, but leads to complexity on the client
side. Software on the client need to be updated frequently, which
violates the goal of zero maintenance in desktop virtualization.

The high complexity of the client can be avoided by sim-
ply running graphical user interface on the server. Microsoft Re-
mote Desktop [10], Citrix MetaFrame [27], PC-over-IP [28] and
TeamViewer [29] are four famous commercial products used in
remote desktop. They encode the display updates into low-level
graphical commands and the client is simplified as an input–output
device. The real application and display states are maintained on
the server while only the transient soft state is on the client.
Windows Remote Desktop and TeamViewer are typically used as
remote tools to access one’s Windows computer. TeamViewer and
the desktop version of Windows both can have only one connec-
tion online. As for Windows Server, the number of simultaneous
connections is configurable. But the remote access is just used to
maintain the server, which is not a DaaS scenario. PC-over-IP is a
closed-sourced protocol developed by Teradici. It is now used in
VMware Horizon View [30] and Amazon WorkSpaces [31] as their
DaaS solutions.

VNC [9] works at the framebuffer level and is independent from
operating system. It reduces thedisplay updates to rawpixel values
and uses a demand-driven update protocol to send update from
the server only in response to an explicit request from the client.
Therefore, VNC decouples the processing of application display
commands from display updates generation and increases the
probability of the systemacross various client platforms. SPICE [32]
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is a new protocol developed by Red Hatwhich is similar to VNC but
has audio support. Furthermore, the SPICE protocol is built in Quick
Emulator (QEMU), so it is suitable for DaaS. However, 3D support
is still limited in SPICE.

Many strategies have been proposed leveraging the semantic
information of desktop to improve the performance of remote
interaction. THiNC [7] intercepts low-level video driver commands
and adopts a push mode to interact with client. Although it sup-
ports native multimedia playback, it suffers from performance
degradation over multimedia content encoding. Muse [8] uses
a window-aware updating mechanism to reduce display update
traffic and response latency. It applies a new RFB-based protocol
that supports window display and dynamic region encoding. This
solution allows user to only view the applicationwhich is currently
in use and quickly switch to other application windows to adapt to
small device screen size and network condition. As a virtual desk-
top can have various guest operating systems and the semantic
information is lost in VMM, those strategies are inappropriate in
desktop virtualization context.

Winter et al. [15] developed a thin-client system where graph-
ical output is captured through a hardware frame-grabber. The
dedicated frame-grabber device in the systemcanonly support one
user at a time, implying that the architecture is neither scalable
nor flexible to support multi-users. Simoens et al. [33] developed
a hybrid encoding system that applies a heuristic algorithm to
determine the amount of motion in a frame in order to switch
codec. Unfortunately, the intrinsic performance of the algorithm
and the video encoding prevent this solution from providing high
resolution real time streaming.

Besides, classic remote access systems suffer performance
degradation due to inefficient mechanisms while the aforemen-
tioned remote access approaches improve performance and inter-
action experience by implementing standalone architectures. As
a drawback, those approaches incur high CPU load and are not
transparent to the operating systems; hence they are not qualified
for a remote desktop virtualization system.

In this paper, FastDesk is built on our previous work [23], which
proposed a streaming based remote desktop virtualization system
to provide high quality display and good interactive experiences.
However, the previous system aims to connect to a single host and
ignores the DaaS scenario. In view of this, the new work extends
the system to support multi-tenant cloud environment.

2.2. VM placement strategies

In a remote virtualization desktop system, virtualization pro-
vides a great deal of benefits such as flexibility in provisioning, but
the real challenge is how to achieve virtual machine placement
efficiently. A lot of literatures lay emphasis on virtual machine
placement, which is well known as a bin-packing problem. In view
of the NP-hard nature of the problem [18–20], these works can
be divided into two categories: greedy heuristic algorithms [17–
21,34,35] and evolutionary heuristic algorithms [16,36].

Chowdhury et al. [19] proposed multiple modified versions of
First-Fit-Decreasing (FFD) andWorst-Fit-Decreasing (WFD) to per-
form VM placement. And Bobroff et al. [21] utilized Next-Fit(NF),
First-Fit(FF) and Best-Fit(BF) heuristics to obtain the near highest
profit. Man and Kayashima [17,18] proposed a Pattern-based Vir-
tual Desktop Allocation (PBA) algorithm, which leverages the CPU
usage patterns of the virtual desktops to find the suitable server for
a virtual desktop so as to reduce the waste of resource. Li et al. [20]
presented a novel greedy heuristics: BRP, a Resource Balancing VM
Placement algorithm that aims to maintain a balanced resource
utilization among different dimensions of one server andminimize
the waste of resources. Besides, two famous open source cloud
computing platforms also adopted greedy heuristic algorithms.

Fig. 1. High level architecture of FastDesk.

OpenStack [34] used the Chance algorithm, which randomly se-
lects a server to place a new VM. Another option was Worst-
Fit (WF) algorithm where a new VM chooses a server with the
smallest load. Similar to OpenStack, Apache CloudStack [35] also
used random placement solution but had some First-Fit-based
VM placement algorithms. However, most of the introduced ap-
proaches only considered one-dimensional (i.e., CPU) bin-packing
problems while VM placement problem is a multi-dimensional
bin-packing problem [37]. Moreover, some of these solutions tar-
get to balance the resource workload among servers, which is a
contrary objective to this paper.

With regard to evolutionary heuristics, Xu et al. [36] presented
an improved genetic algorithm with fuzzy multi-objective eval-
uation. This approach conveniently combines possibly conflicting
objectives. And Zhang et al. [16] proposed a unified genetic algo-
rithm to solve virtual desktop placement problem which realizes
the selection of data center and server simultaneously.

In this paper, we properly model the VM placement problem
as an instance of the multi-dimensional bin-packing problem and
propose a nature-inspired evolutionary heuristic method, modi-
fied Ant Colony Optimization (ACO) algorithm, to solve the VM
placement problem to save the server resources as much as pos-
sible.

3. Architecture design

FastDesk can be used either in an internal network like lab and
IT organizations, or as a DaaS platform. Fig. 1 shows the high-level
architecture of FastDesk. The management node is a centralized
control node in the system. The number of management nodes is
not limited to one. It controls several service nodes. As the size of
the system continues to grow, the number of management node
can also be increased. Each service node is a physical machine that
dynamically starts and stops multiple virtual machines according
to the management server requests.

3.1. Service node

In order to provide high fidelity display and good user inter-
actions in a desktop virtualization system, FastDesk service node
combines virtualization with video-streaming. Fig. 2 displays an
overview of such architecture. Thin clients are connected to the
desktop virtualization server through Ethernet or Internet. Users’
applications are executed in Guest OS virtualized by the server. The
architecture of service node has the following features.

Transparency: On the server side, the display of a Guest OS
is generated in the Guest OS’s display driver and then rendered
by a virtual display device. To be transparent to the Guest OS,
FastDesk modifies the virtual display device that sits below the
Guest OS such that FastDesk requires no modification of drawing
functionality in the Guest OS, resulting in a simpler system that
can work seamlessly with existing virtualization systems. Fast-
Desk intercepts the displays rendered by the virtual display device
and redirects them to the virtual loopback, instead of sending
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Fig. 2. Service node architecture.

them to the framebuffer. Virtual loopback is a module to create
virtual video devices. With the virtual loopback, a process can
read these devices as if they were ordinary video devices, which
makes multimedia architecture easier compatible in virtualization
environment.

PushMode Streaming: Themultimedia architecture is a video-
stream pipeline mode. The video-stream in the server is mainly
responsible for encoding the original display. Encoders such as
H.264 [38] andWebM [39], have high performance in compression
which reduces the network traffic to adapt to a low bandwidth
network environment. To improve the response time of desktop
interactions in the virtualized system, FastDesk uses a low-latency
server-push display update mode which minimizes the synchro-
nization costs between the client and the server. This choice was
motivated by the traditional client-pullmodewhich requires client
to send updating requests to server, therefore it does not fit a
remote context. In fact, if video frames are generated faster than
the rate atwhich client can send requests to server then the latency
increases.

Diversified Displays: It becomes important to promise ubiq-
uitous computing access in a cloud environment. The client may
have different screen sizes and computing capabilities. To match
these expectations, FastDesk decouples the original framebuffer
size from the client display size. The display resizing is fully sup-
ported by the server which automatically resizes the display in the
video-stream pipeline whenever a client reports a specific size.

3.2. Management node

The management node controls all the service nodes. Fig. 3
shows the components ofmanagement node and their interactions
with service nodes.

The performance of service node can dramatically influence
user experience. Limited CPU and memory resources may cause
VM to react slowly. The screen will not update timely if network
is congested. Therefore, it is critical for us to monitor all the CPU,
memory and network utilization [40]. To facilitate the support of
multi-tenant resource management, management node contains
the following components.

Resource Monitor: It observes resource usage and availability
of virtual machines on service node. The resource monitor peri-
odically reports resource utilization queries to service nodes and
records corresponding responses. The resource records of each
node are to be provided to Resource Allocator.

Resource Allocator: To satisfy a user’s request, a management
node needs an allocator to allocate and place a virtual machine on
an appropriate service node. The standard allocation and place-
ment strategymustmatch two criteria: first, it meets Service-Level
Agreement (SLA), for cloud providers commonly include an SLA
in their contracts and penalties are applied when SLA violation
occurs [41]. In this paper, we consider SLA violations as dissatisfac-
tion of requirements and quality. To avoid SLA violations, resource
reservation is set in each service node. Reserved resource is to be

assigned to the virtual machines when it bursts into use. Second,
the algorithm should be cost-efficient for cloud providers, which
implies server resources utilization need to be increased as much
as possible. Once a VM is started on a service node, the VM directly
communicates with the client. So, the job of management node
is only to accept the requests of creating new VMs and perform
resource allocation and placement. The service nodes themselves
will not interfere with each other.

4. VM placement algorithm

A remain problem is how to minimize the wastage of server
resources, which depends heavily on the VM placement strategies.
This section will cover a nature-inspired solution. After formu-
lating the VM placement as a bin-packing problem, the proposed
evolutionary heuristic algorithm is completely described.

4.1. Problem formulation

In the data centers, there are hundreds of servers in which
VMs place to manage. The problem of VM placement is defined
as a multiple dimensional vector bin-packing problem [37]. In this
work, we use CPU and memory utilization as the two dimension.
We do not count the network utilization assuming that the data
centers have enough network bandwidth and FastDesk requires
little bandwidth.

The following equations is used to calculate the wastage of the
resources:

Wpj =
Tpj − Upj

100

Wmj =
Tmj − Umj

100
where Wpj denotes the CPU wastage of the jth server and Wmj
denotes the memory wastage of the jth server. Tpj and Tmj denotes
the threshold of the CPU and memory resources of the jth server.
Upj and Umj represents the actual usage of the CPU and memory
resources of the jth server.

Suppose we are given n VMs which is going to be placed on m
servers. We make it that I as the set of n VMs and i ∈ I , J as the set
ofm servers and j ∈ J . Let Rpi and Rmi denotes the CPU andmemory
demands of the ith VM. The binary variable yi equals to 1 if the jth
server is in use. And xij equals to 1 if the ith VM is assigned to the
jth server. We can formalize the VM placement problem as:

Min

∑m
j=1

[
yj ×

Tpj−
∑n

i=1(xij·Rpi)∑n
i=1(xij·Rpi)

]
∑m

j=1

(
yj

)

Min

∑m
j=1

[
yj ×

Tmj−
∑n

i=1(xij·Rmi)∑n
i=1(xij·Rmi)

]
∑m

j=1

(
yj

) .
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Fig. 3. Components in management node and interaction with service nodes.

Subject to:
m∑
j=1

xij = 1, ∀i ∈ I (1)

n∑
i=1

Rpi · xij ≤ Tpj · yj, ∀j ∈ J (2)

n∑
i=1

Rmi · xij ≤ Tmj · yj, ∀j ∈ J (3)

yj, xij ∈ {0, 1} , ∀i ∈ I and ∀j ∈ J. (4)

Constraint (1) assigns a VM to one server. Constraint (2) and
constraint (3) ensure that each server has enough CPU andmemory
resources to host the assigned VMs. Constraint (4) describes the
problem.

4.2. Ant colony optimization algorithm

As the VM placement problem is formulated as a vector bin-
packing problem, which is NP-hard [42]. We adopt a modified ACO
heuristics algorithm to solve our problem. The pseudocode of the
algorithm is presented in Algorithm 1.

Algorithm 1 The ACO Heuristics Algorithm
Require:

The list of VMs & their resources demand
The list of Servers & their resources

Output:
Ps: A Pareto set of mapping strategies

1: for t = 1 to iteration times do
2: for i = 1 to Na (number of ants) do
3: Randomly sort the server list
4: while {unplaced VMs} ̸= Ø do
5: Get a server from the list
6: for each VM fits into the server do
7: Calculate ηij (Equ. 5)
8: Calculate Pij (Equ. 8)
9: end for

10: Pick a random value q
11: if q < q0 then
12: Exploitation
13: else
14: Exploration
15: end if
16: end while
17: if Sc is not dominated by So in Ps then
18: Add Sc to Ps
19: for each So in Ps dominated by Sc do
20: Remove So from Ps
21: end for
22: end if
23: end for
24: Update τ local

ij (Equ. 9)
25: Update τij(t + 1) (Equ. 10)
26: end for
27: return Ps

In each iteration, each ant tries to find a map from VMs to
servers, that is to say, the paths from VMs to servers. Once an ant
chooses the path, it will deposit pheromones along the path. Ants
tend to choose the way with strong pheromone. The Pareto set
contains the mapping results. There may be various mapping in
the set as long as a mapping is not dominated by the others. Any
one of the results is a valid solution to the VM placement problem.

A solution x dominates another solution y if both conditions are
true [43,44]:

1. Thewastage of solution x is not less than that of y in CPU and
memory.

2. The wastage of solution x is strictly more than that of y in
CPU or memory.

The key points of applying Ant Colony Optimization algorithm
to the VM placement problem includes the following two aspects:

heuristic information: The ant chooses the path depends on
both the pheromone and the heuristic information. The heuristic
information only considers the wastage of servers, excluding the
pheromone.

pheromone update:When finding path, ants tend to follow the
pheromone. Soweupdate thepheromone in each iteration to guide
the ants to construct a result in the following iterations. Once an
ant constructs a path from a VM to a server, or we come up with
a Pareto set after each iteration, we update the local and global
pheromone according to these information.

4.3. Constructing a solution

For eachVM that can be chosen to fit into current server,we first
calculate the desirability, aka the heuristic information, according
to the server utilization showing in Eq. (5). The equation takes both
CPU and memory wastage into consideration.

ηij =
1∑m

j=1 Wpj
×

1∑m
j=1 Wmj

. (5)

Then we calculate the factor according to (6), where α is a fixed
parameter determine the importance of pheromone. τij refers to
the pheromone on the path from VM i to server j. q ∈ [0, 1] is
a random value, compare it with a fixed parameter q0. If q is less
than q0, we find the VM with the maximum factor, this process is
called exploitation which is described in Eq. (7). Otherwise, we do
the exploration process.

Fij = α × τij + (1 − α) × ηij (6)

i =

{
argmaxs∈Ωj

Fsj, q < q0
s, otherwise. (7)

In exploration, each VM is assigned a probability, according to
Eq. (8). The probability is the factor of VM i over the sum of all VMs.
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Then we randomly pick a VM according to its probability.

Pij =

⎧⎨⎩
Fij∑

s∈Ωj
Fsj

, i ∈ Ωj

0, otherwise.
(8)

Once a placement solution is constructed and this solution is
not dominated by any other solution in the Pareto set, we add this
solution to the Pareto set. If there are some solutions in the Pareto
set is dominated by this one, remove them from the set.

4.4. Local pheromone update

After each iteration, the local pheromone is updated according
to Eq. (9).ρ is a fixed parameter refers to the pheromone trail decay
rates.

τ local
ij = (1 − ρ) × τij(t) +

Na∑
k=1

1τ k
ij (t) (9)

1τ k
ij (t) is the quantity of the pheromone of ant k:

1τ k
ij (t) =

⎧⎨⎩
1∑m

j=1 Wpj ×
∑m

j=1 Wmj
, (i, j) ∈ Sk(t)

0 otherwise

Sk(t) is the solution given by the ant k. The more resources are
wasted on server j, the less pheromone will be left on the path.
Hence in following iterations, this pathwill less likely to be chosen.

4.5. Global pheromone update

Similar to local pheromone update, the global pheromone is
updated as well in each iteration according to Eq. (10). Ns means
number of solutions. For each solution in the Pareto set, the
pheromone is updated according to the mapping result on every
path.

τij(t + 1) = τ local
ij +

Ns∑
s=1

1τ s
ij(t) (10)

1τ s
ij(t) is the quantity of the pheromone of solution s:

1τ s
ij(t) =

⎧⎨⎩
1∑m

j=1 Wpj ×
∑m

j=1 Wmj
, (i, j) ∈ Ss(t)

0, otherwise.

5. Implementation

This section elaborates the details of the FastDesk system im-
plementation, including server-side, client-side and the remote
display protocol.

We implemented a prototype server node based on QEMU-
KVM1 (version 1.2.0) and a client by extending a simple VNC
Viewer2 . Since FastDesk only hooks virtual display device under
the Guest OS, no modification is required to applications and
operating systems. The rendered images are written into a virtual
loopback by using the standard Video4Linux interface. To support
virtual loopback, we use a v4l2loopback3 as a kernel module that
creates virtual video devices. The FastDesk virtual loopback utilizes
the v4l2loopback interfaces and multiplexes its resources. Fig. 4
shows the pipeline details of the video-stream. The server uses
a display scaler to resize the output of an image in the virtual

1 wiki.qumu.org/KVM.
2 www.realvnc.com/download/open.
3 github.com/umlaeute/v4l2loopback.

Fig. 4. Pipeline of video-stream.

loopback in order to respond to the client size requirement. Then
pipeline is directed to encoding. We choose the ×264 videocodec4
, an open source H.264 encoder. Since we are encoding a live
streaming environment, we have to minimize encoder delay. To
reduce the latency of x264 codec , the zerolatency flag is enabled,
which disables rc-lookahead and b-frames. Those two parameters
are mainly used for offline encoding, as they incur higher latency.
Once a frame is encoded, the pipeline starts to encapsulate it into
Real-time Transport Protocol (RTP) packets, which are then sent to
the client through UDP (User Datagram Protocol).

The client reads the RTP packets received and pushes them to
the decoder. Since video decoding is an extremely CPU-intensive
task, especially at higher resolutions, we use hardware-accelerated
video decoding to allow CPU to concentrate on other tasks. For
the test client machine called Raspberry Pi, OpenMAX5 is used to
accelerate video decoding.

The communication between server and client is achieved
through TCP (Transmission Control Protocol) connections. The
event manager on the client handles interaction inputs such as
keystrokes and mouse clicks and sends them to the server. The
event manager on the server handles the request and forwards the
commands to the video-stream, and the interactions to the Guest
OS.

The remote display protocol is designed based onRFB. RFB oper-
ates in a client-pull updating mode. The display screen is updated
and sent each time the client sends a FramebufferUpdateRequest.
Since FastDesk adopts the server-push mode, the client no longer
sends FramebufferUpdateRequest to the server. To support diver-
sified displays in the server, an extension message SetScreenSize is
added to the protocol.Whenever the client needs to update display
size, SetScreenSize is sent from the client to the server.

6. Evaluation

To demonstrate the effectiveness of FastDesk, we first test dif-
ferent scenarios and evaluate the overall performance. We then
conduct a comparison study with a number of widely used plat-
forms such as X, VNC, Microsoft Remote Desktop, ThiNC, Spice
and TeamViewer. Some commercial platforms like PCoIP, Citrix
MetaFrame are not public available, and hencewe did not compare
them in this paper. Besides, we also compare the proposed nature-
inspired evolutionary algorithm with other four classical heuristic
VM placement methods. Finally, we evaluate the effectiveness of
management component by analyzing potential SLA violation in
multiple scenarios.

Since the Microsoft Remote Desktop Protocol is not open to
public and there is no official RDP client on Linux, there are only
some reverse-engineer work to use RDP in Linux. In our testbed,
we use rdesktop6 (version 1.8.3), a famous third-party RDP client
on Linux, as the RDP client to test the performance of RDP. Some
advanced features like support for Direct 2D, 3D and HD video

4 www.videolan.org/developers/x264.html.
5 www.khronos.org/openmax.
6 https://www.rdesktop.org.

http://www.wiki.qumu.org/KVM
http://www.realvnc.com/download/open
http://www.github.com/umlaeute/v4l2loopback
http://www.videolan.org/developers/x264.html
http://www.khronos.org/openmax
https://www.rdesktop.org
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Fig. 5. Experimental testbed.

playback is lacking. Considering that we should not force users to
a specific platform, we choose the open-source client rdesktop so
the Linux users can still access to remote Windows computers.

6.1. Experimental setup

We conduct the experiments using an isolated network. Fig. 5
shows our testbed setup. The management node has a 2.66 GHz
Intel Core i7-920 processor and 6GB of RAM. The service nodes are
two identical machines both with a 2.67 GHz Intel Xeon X5650
processor and 8 GB of RAM. For all the clients, we use a 2.0 GHz
Intel Core II laptopwith 1Gbyte of RAMand a Raspberry Pi, a credit-
card-sized single-board computer featuring a 700 MHz ARM11
processor and 512 MB of memory. They are applied to all the
experiments. We consider two network environments: LAN and
WAN. The LAN is a 100 Mbps network with ideal latency while the
WAN is a 10 Mbps network with 66ms RTT emulated by ns-27 .

Since 100 Mbps network is commonly used, we define the LAN
speed as 100Mbps. If FastDeskperformswell in 100Mbpsnetwork,
we conclude it has the same performance in Gigabit Ethernet.

We design four different scenarios with a 1024 × 768 display
resolution to represent slow-motion, high-motion, low and high
interactive scenarios, respectively. Since FastDesk is transparent
to the Guest OS, we run both Linux and Windows Guest OS on
FastDesk server in order to provide a fair comparison with other
systems. The four scenarios are listed below.

• Office: Perform a sequence of actions in Openoffice on
Linux platforms and Microsoft Office on Windows plat-
forms. These actions include typing, creating objects, editing
tables, etc.

• Browsing Web: Browse a sequence of 30 web pages con-
taining a mix of texts and images. The browser we choose
is Mozilla Firefox which is supported by both platforms. The
web pages are saved on a local web server.

• Photo Editing: For the photo editing,we apply a sequence of
filters such as blur, red eyes removal, sharpen. The GNU Im-
age Manipulation Program and Adobe Photoshop are used
on the Linux and Windows platforms, respectively.

• Video Playback: We play an H.264 codec movie clip at 24
frames per second (fps) in fullscreen. The video player used
isMPlayer 1.0rc4 on both the Linux andWindows platforms.
The original clip size is 853 × 480.

All scenarios are recorded with Xnee8 by the client to ensure
that clients provide the same inputs each time. Every scenario lasts
at least 5 min and is tested 3 times. To perform scenarios on the

7 http://nsnam.sourceforge.net/wiki/index.php/Main_Page.
8 http://www.gnu.org/software/xnee.

Fig. 6. CPU utilization in server.

Fig. 7. CPU utilization in client.

Guest OS, we choose Ubuntu 12.04 for Linux, and Windows 7 for
Windows platform.

To evaluate the application environment differences, we use
common configuration options whenever possible. We set display
to 32-bit color, RDP to LAN settings when in the LAN environment
and WAN settings in the WAN environment. Any other settings
remain unchanged.

6.2. Overall performance

First we run one scenario at a time. Figs. 6 and 7 show the
average CPU utilization for both client and server. On the server
side, the Office scenario has the lowest CPU utilizationwith 12.86%
on Linux against 12.57% on Windows, since it contains a large
number of slow-motion display updates. The Video playback sce-
nario as the representation of high-motion display has the highest
CPU utilization among all the scenarios that is around 10% higher
than slow-motion scenarios. BrowsingWeb andPhoto Editing have
some high CPU-intensive actions, but human interactions lowers
it down. It is worth noting that the CPU usage of GStreamer9 is
quite higher than that of QEMU. This is due to the CPU intensive
video encoding task. In the future we may use GPU acceleration

9 https://gstreamer.freedesktop.org.

http://nsnam.sourceforge.net/wiki/index.php/Main_Page
http://www.gnu.org/software/xnee
https://gstreamer.freedesktop.org
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(a) Scenarios in Linux Guest OS.

(b) Scenarios in Windows Guest OS.

Fig. 8. Bandwidth in four scenarios and two operating systems.

to perform the hardware encoding part in order to reduce the
CPU use. It is also critical to keep the CPU utilization as low as
possible for the client device. Fig. 7 shows that the CPU utilization
on the client has no relevance to the scenarios and that the average
CPU utilization of a client is around 14.5%. Leveraging hardware-
accelerated video decoding, the CPU utilization of the Raspberry Pi
device is lower than 50% in average; this means that a limited thin
client can still be used on FastDesk architecture.

Fig. 8 shows the bandwidth of each 5 min scenario. The band-
width costs of both web browsing scenario change suddenly, since
web browsing contains a lot of clicks which makes the display
vary frequently. Fig. 9 shows the average bandwidth cost for each
scenario and demonstrates that FastDesk requires no more than
2 Mbps for control and image transmission. Even though the high-
motion scenario needs more screen updates, the Video Playback
scenario requires only 1.56Mbps. Since Video Playback is themost

bandwidth consumption scenario, a comparison of Video Playback
bandwidth with other systems will be described in Section 6.4.

To test the scalability of FastDesk, we run 2, 4 and 6 scenarios
together on a server. We select web browsing, photo editing and
video playback scenario on both Windows and Linux system to
conduct the test. Two Linux systems for photo editing and video
playback are used in these two scenarios. The two Linux and Win-
dows virtual machines perform Photo Editing and Video playback
are used in the four scenarios. And all of them are used in the 6 sce-
narios. Fig. 10(a) and (b) show the CPU utilization and bandwidth
cost for the server over 5 min. The CPU utilization of the server is
30.97%, 69.03% and 82.76% for 2, 4 and 6 scenarios, respectively.
When running 4 scenarios, the CPU utilization is 2.23 times higher
than with 2, and 1.21 with 6. This demonstrates the scalability of
FastDesk. Fig. 10(a) demonstrates that FastDesk server affords at
least 6 clients together in various scenarios without any perfor-
mance degradation in our testbed, since the server CPU utilization
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Fig. 9. Average bandwidth usage in four scenarios and two operating systems.

has never reached 100% at any time. Fig. 10(b) reveals that even
with 6 connections on a single server, the bandwidth does not
exceed 5 Mbps.

We also compare the CPU utilization of FastDesk against other
platforms. The results are shown in Fig. 11. Fig. 11(a) shows the CPU
utilization on servers. As mentioned before, the CPU utilization of
FastDesk is quite higher than others because GStreamer consumes
lots of CPU resources to encode video stream,while other protocols
use their own less CPU-consuming encoding methods. However
we can use GPU acceleration to perform hardware encoding in
future to reduce the utilization of CPU. The detailed information
has been shown in Fig. 6 before. Because the RDP protocol is a
closed source protocol built in Windows and there is no official
RDP support in Linux, the RDP data of the four scenarios are blank.
Fig. 11(b) presents the CPU utilization on clients. In most cases,
VNC performs the best since it transfers raw data so that the client
does not need or only needs little CPU resources to decode network
data. However, the problem is that VNC requires more bandwidth
than others. TeamViewer performs the worst. Another interesting
observation is that the CPU utilization of FastDesk in different
scenarios are almost the same while other clients vary. Thanks to
the hardware decoding ability, FastDesk uses almost the same CPU
in different scenarios.

6.3. Interaction response analysis

Good response time is the key to overall user satisfaction, espe-
cially in highly interactive scenarios. Therefore, wemainly focus on
the Photo Editing Scenario. We record the time between a mouse
click or keystroke and a complete screen update for the corre-
sponding signal. A full response time consists of the processing
time of both client and server, the transmission time of the remote
display protocol and the application execution time. Since some
actions in photo editing last for a relative longer application exe-
cution time, we also test Photo Editing scenario on a local PC as a
baseline in order to exclude the impact of the application execution
time. Fig. 12 shows the average latency of a sequence of actions on
a Photo Editing scenario over both LAN and WAN environments.
VNC has the slowest response time for LAN at 635 ms, and X11 is
the worst for WAN at 1935 ms. They are much slower than others
due to client-pull mode or bandwidth limitation they face.

Fig. 12 shows that FastDesk has a 300 ms latency on a LAN
environment and does not suffer much performance degradation
in a WAN environment. Although RDP achieves nearly native per-
formance in a LAN environment, it suffers a major degradation in

(a) CPU utilization in server with 2, 4 and 6 running scenarios.

(b) Bandwidth in server with 2, 4 and 6 running scenarios.

Fig. 10. CPU utilization and Bandwidth in server with 2, 4 and 6 running scenarios.

a WAN environment and is 1.8 times slower than FastDesk, and
TeamViewer in Windows is alike. FastDesk provides the fastest
response time in WAN environment over all the platforms. THiNC
achieves a similar result than FastDesk, as they both adopt the
server-push mode.

6.4. Video quality analysis

Multimedia performance ismeasured using a benchmark based
on video quality [12], which takes both playback delays and frame
drops into consideration. Video quality VQ (P) at a given playback
rate P is calculated according to Formula (11). In actual situation,
a video is watched at full playback rate IdealFPS(P) which is equal
to the specified playback rate P . Then, the data transfer rate can be
calculated as the total transferred data Data(P) divided by the total
playback time PlaybackTime(P). Slow motion scenario is the ideal
situation where all the data Data(slowmo), of which frames would
not be dropped, are transferred to the client, and the playtime
PlaybackTime(slowmo) does not increase or decrease. The video
quality is actually the ratio of the data transfer rate at the full
playback rate and the data transfer rate in slow motion scenario.
In the test, we play the video at 1 fps IdealFPS(slowmo) as the ideal
situation. 100% video quality is the optimal quality, which means
all video frames are played at real-time speed. 50% video quality
means that either half of the video data are dropped or the video
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(a) CPU utilization in different servers.

(b) CPU utilization in different clients.

Fig. 11. CPU utilization on various platforms.

plays two times slower than expected.

VQ (P) =

Data(P)/PlaybackTime(P)
IdealFPS(P)

Data(slowmo)/PlaybackTime(slowmo)
IdealFPS(slowmo)

. (11)

Fig. 13 shows the video quality results on both LAN and WAN
environments. X11, VNC, RDP, Spice and TeamViewer deliver a
very poor video quality. TeamViewer in Linux has theworst quality
for LAN at only 7.84%, and X11 has the worst quality forWAN at no
more than 2%. These systems suffer from their mechanisms and
algorithms. These algorithms are unable to keep upwith the speed
of screen updates, leading to frame dropping or longer playback
time. X11 will ensure that you will get all the needed data. If the
network speed is not fast enough, the remote side will slow down
the video. The remote side will not play the next frame until it
gets all the needed data. This results in a longer playback time.
Thus, the video quality of X11 drops. VNC drops one third of the
video quality in theWANenvironment, as it uses a client-pullmode
which expects the client to send screen update requests to the
server. In a higher latency WAN environment, the rate of update
requestwill be slower than the video playback rate, such that some
of the frames are dropped. However, THiNC and FastDesk achieve
almost ideal video quality. THiNC reaches 97.62% and 71.42% video
quality in LAN and WAN environment, respectively. FastDesk gets
95% video quality in a LAN environment, and 92.94%, the highest

Fig. 12. Latency in photo editing scenario.

Fig. 13. Video quality in video playback scenario.

Fig. 14. Total data transferred during video playback.

one, in a WAN environment benefiting from using a server-push
mode.

Fig. 14 shows the amount of data transferred during the video
playback for each system. FastDesk is transparent to the Guest
OS, so the video performance and data sizes are almost the same
in these two operating systems. Among all the systems, FastDesk
is the least bandwidth consuming for video playback. It sends
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Fig. 15. CPU wastage of different algorithms.

6.09 MB and 6.08 MB of data in LAN and WAN environment,
respectively, with 94% video quality on average. Although THiNC’s
video quality is slightly better than FastDesk in a LAN environment,
it needs more bandwidth. Since THiNC intercepts drawing com-
mands in the driver of Guest OS, it has to contain more semantic
display information which increases the data size. Some protocols
have their own compression methods, like RFB and RDP. The de-
fault option for the VNC client is to automatically negotiate the
compression level. Itwill detect the network status to decidewhich
one to use. We leave it to the client to choose the compression
method. RDP uses disk cache to speed up and to save network
bandwidth. We have turned on the option to save the network
bandwidth. In spite of this, they still transfer too much data.

6.5. Server resources wastage analysis

In order to show the large-scale virtual desktops placement
scenarios and evaluate the performance of the proposed algorithm
more exactly, the experiment is conducted using simulation on
a PC with a 3.20 GHz Intel Core i5-4570 processor and 8 GB of
RAM. The VM data are collected using the results of the above
experiments. The parameter settings of the algorithmare: iteration
times = 50, Na = 4, α = 0.4, ρ = 0.3, τ0 = 0.01, q0 = 0.9. Besides
the proposed algorithm, we also implement FirstFitDecrease-CPU,
FirstFitDecrease-Memory, BestFitDecrease-CPU, BestFitDecrease-
Memory [45] to compare the server resource utilization.

The resource wastage is the key to evaluate the VM placement
algorithms. There are five different scenarios in the experiment,
whose VMs’ numbers are separately 40, 80, 120, 160, 200.

We compare the CPU wastage and the Memory wastage of the
proposed algorithm against other four heuristics, and Figs. 15 and
16 show the results under those five algorithms. As shown in the
figures, the modified Ant Colony Optimization algorithm always
get the minimal resource wastage against other four strategies.
Meanwhile, the results show that the resource utilization of our
algorithm varied little in five different scenarios.

6.6. SLA violation analysis

In order to measure the performance of our allocation strat-
egy, we assume that an SLA violation occurs when the CPU is
overloaded or there are no free memory or network bandwidth.
We allocate as many VMs as possible using a resource reservation
policy and randomly run 8 scenarios. The average of SLA violation
ratio is depicted on Fig. 17. It shows that the SLA violation increases

Fig. 16. Memory wastage of different algorithms.

Fig. 17. Average SLA violation.

dramatically when the reserved resource is lower than 20% and
reaches up to 52% when the reserved resource is 10%.

CPU and network resources are shared among all the VMs. If
a user is doing some CPU-intensive work inside a VM such as
compiling software, the available CPU resource for other VM are
lower. Reserving 10% of CPU means that all the CPU utilization
shouldnot exceed90%. This canbe easily exceeded ifmultiple users
are doing CPU-intensive work simultaneously.

When reserving more than 20% system resources, SLA viola-
tions happen less frequently, which means that 20% is the optimal
ratio of reserved resource in our experiment.

However, searching the optimal ratio of reserved resource off-
line is not practical, since the ratio of SLA violation is changing
in a large scale over different scenarios. In practice, the selection
of reserved resources has to be done dynamically based on the
fluctuation of the current workload. We will investigate this in our
future work.

6.7. 3D Support

Another obstacle in desktop virtualization is gaming. One re-
markable advantage of DaaS is that end users do not need to
upgrade their hardware to use the cutting-edge software, which
is usually done by service providers using virtualization. However,
the existing virtualization technology like KVM and Xen has poor
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Fig. 18. CPU Utilization of VirtualBox.

GPU support. Although the host may have some powerful graphics
cards, the guest machines cannot benefit from it. Consequently,
the performance of some modern games becomes extremely low,
some games which requires high version of DirectX cannot even
run.

VMware and VirtualBox have their own guest 3D drivers to
enable graphics card acceleration by passing the drawing calls to
host tomake use of the real hardware. Hence, we port our FastDesk
to VirtualBox to enable 3D support. VirtualBox uses Chromium [46]
to create a virtual graphics card, then passes the graphics API
commands to the host. At the host side, a kernel module will
receive the commands and process them to the result, then send
back to the virtual machine.

We test the 3D support on a server with an i7-965 processor
and a Nvidia 9800GT graphics card. With the help of VirtualBox,
we can finally run some 3D program. Besides, we use 3DMark 03
to test the performance. It is worth noting that the 3D support is
still an experimental feature of VirtualBox and someprogramsmay
not work properly.

Fig. 18 shows the CPU utilization of VirtualBox in the five
different scenarios. In this figure we have not distinguished the
CPU utilization of VirtualBox and GStreamer like before in Fig. 6.
The CPU utilization is the whole usage of the VM, the VM itself
and GStreamer module which processing the screen update in real
time. We only want to check the performance of 3D processing
in our system by comparing it with other scenarios. From the
result we can find that although the CPU utilization of 3DMark
is the highest with 49.43%, it is only slightly higher than the CPU
utilization the video playback. So it is feasible to use FastDesk to
deliver 3D program to end users.

7. Conclusion and future work

This paper presents FastDesk, a novel remote desktop virtual-
ization system for multi-tenant. By intercepting the virtual display
driver under Guest OS, FastDesk works seamlessly with common
applications, desktops and operating systems without any modi-
fication. FastDesk takes advantage of a video-stream architecture
and an efficient video codec to provide high quality display updates
with low latency and bandwidth consumption. Meanwhile, it pro-
poses a heuristic Ant Colony Optimization based algorithm, which
could solve the VM placement problem and reduce the server
resourceswastage.With a server-side display scaling, FastDesk can
also support small screen devices. Another interesting feature of
FastDesk is its support for multi-tenant environment through a
management component.

We measure the overall performance of FastDesk in various
scenarios over a variety of network environments and compare
FastDesk with widely used remote desktop systems. The results
show that FastDesk delivers good user experience with low CPU
utilization on both client and server. FastDesk has good scalability
as the result demonstrates that a server affords at least 6 clients
without degrading performance.Moreover FastDesk achieves good
response time in both LAN and WAN environments and outper-
forms all the other systems in the WAN environment. FastDesk
gives the same top video quality as THiNC but uses less bandwidth.
Although video streaming has a higher CPU cost than virtual ma-
chine,wemay useGPU acceleration to performhardware encoding
and hence reduce the CPU burden. Besides, our proposed VM
placement algorithm always gets the minimal resource wastage
against other classical heuristics.

We plan to use GPU to do encoding so that servers can have
more CPU resources for VMs. Another future research direction is
to investigate which VM placement strategy would perform better
in each scenario and how to allocate resources according to users’
past behaviors. In addition, we can expand our system to support
distributed data centers.
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