
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 6, DECEMBER 2020 2573

FTrack: Parallel Decoding for LoRa Transmissions
Xianjin Xia , Member, IEEE, ACM, Yuanqing Zheng , Member, IEEE, ACM, and

Tao Gu , Senior Member, IEEE, Member, ACM

Abstract— LoRa has emerged as a promising Low-Power Wide
Area Network (LP-WAN) technology to connect a huge number
of Internet-of-Things (IoT) devices. The dense deployment and
an increasing number of IoT devices lead to intense collisions due
to uncoordinated transmissions. However, the current MAC/PHY
design of LoRaWAN fails to recover collisions, resulting in
degraded performance as the system scales. This article presents
FTrack, a novel communication paradigm that enables demod-
ulation of collided LoRa transmissions. FTrack resolves LoRa
collisions at the physical layer and thereby supports parallel
decoding for LoRa transmissions. We propose a novel technique
to separate collided transmissions by jointly considering both the
time domain and the frequency domain features. The proposed
technique is motivated from two key observations: (1) the symbol
edges of the same frame exhibit periodic patterns, while the
symbol edges of different frames are usually misaligned in
time; (2) the frequency of LoRa signal increases continuously
in between the edges of symbol, yet exhibits sudden changes at
the symbol edges. We detect the continuity of signal frequency
to remove interference and further exploit the time-domain
information of symbol edges to recover symbols of all collided
frames. We substantially optimize computation-intensive tasks
and meet the real-time requirements of parallel LoRa decoding.
We implement FTrack on a low-cost software defined radio. Our
testbed evaluations show that FTrack demodulates collided LoRa
frames with low symbol error rates in diverse SNR conditions.
It increases the throughput of LoRaWAN in real usage scenarios
by up to 3 times.

Index Terms— Internet of Things, LoRaWAN, collision resolv-
ing, parallel decoding.

I. INTRODUCTION

RECENTLY , LoRa has emerged as a promising technol-
ogy for Low-Power Wide Area Networks (LP-WANs).

Among many LPWAN technologies (e.g., SigFox [1], NB-IoT
[2]), LoRa technology [3] has attracted wide attention due to
its low cost, long communication range, and supports from
IoT industry as well as open-source and research community.
LoRaWAN is an open-standard networking layer governed
by the LoRa Alliance [3], which has about 400 member

Manuscript received October 24, 2019; revised July 19, 2020; accepted
July 22, 2020; approved by IEEE/ACM TRANSACTIONS ON NETWORKING

Editor B. Shrader. Date of publication August 27, 2020; date of current version
December 16, 2020. This work was supported in part by the National Nature
Science Foundation of China under Grant 61702437; in part by the Hong
Kong GRF under Grant PolyU 152165/19E; and in part by the Australian
Research Council (ARC) Discovery Project under Grant DP190101888 and
Grant DP180103932. (Corresponding author: Yuanqing Zheng.)

Xianjin Xia and Yuanqing Zheng were with the Department of Computing,
The Hong Kong Polytechnic University, Hong Kong. They are now with the
Department of Computing, The Hong Kong Polytechnic University, Hong
Kong (e-mail: csxxia@comp.polyu.edu.hk; csyqzheng@comp.polyu.edu.hk).

Tao Gu was with the School of Computer and IT, RMIT University,
Melbourne, VIC 3000, Australia. He is now with the School of Computer
Science and Software Engineering, RMIT University, Melbourne, VIC 3000,
Australia (e-mail: tao.gu@rmit.edu.au).

Digital Object Identifier 10.1109/TNET.2020.3018020

companies including Tencent, IBM, Cisco, Semtech, etc. LoRa
employs a variant of Chirp Spread Spectrum (CSS) modulation
to support several kilometers of wireless transmissions at
very low power consumption. The CSS modulation of LoRa
is robust against interference, noise, multi-path and Doppler
effects. Such characteristics make LoRaWAN a promising
communication technology for IoT innovations such as smart
city, health care, environment monitoring, warehouse man-
agement, etc. When a LoRa node receives a packet, it first
detects the preamble, then searches for chirp boundaries (i.e.,
symbol edges) and locates the chirp signal of each symbol
to decode. The standard demodulation scheme dechirps the
incoming signals by multiplying with a down chirp, then
performs FFT on the multiplication, which produces a single
FFT peak indicating the symbol. The PHY technique of LoRa
(i.e., CSS) is inherently robust to interference and noise in the
ISM band (e.g., WiFi, RFID, etc.).

Although LoRa uses several PHY techniques for parallel
transmissions of multiple LoRa nodes, a high-end LoRa gate-
way can only support up to 8 LoRa nodes to transmit at
the same time [4]. It fails to meet the need of many IoT
applications which require dense deployment of LoRa devices
in practice. Constrained by the hardware capability and power
supply, LoRa nodes typically adopt a simple aloha-based MAC
for collision avoidance. As a result, collisions may occur
among LoRa nodes with the same PHY configuration. One
may configure LoRa nodes with different radio parameters
(e.g., channel, spreading factor, etc.) to mitigate collision, but
it requires cooperation among different operators and service
providers. A more effective method is to enable parallel decod-
ing for LoRa transmissions without any extension to COTS
LoRa nodes or any coordination among the users. Ideally,
a LoRa node should be able to join on-going communications
in parallel with other nodes without specific coordination.

To enable parallel decoding for LoRa transmissions, prior
work (e.g., Choir [5]) exploits the frequency offset introduced
by radio hardware to separate collided frames. The key idea
is to classify the collided frames according to the distinct
frequency offset of each LoRa node (e.g., carrier frequency).
However, due to background noise and phase jitters, it is diffi-
cult to accurately extract the hardware-induced offset of carrier
frequencies in practice. Moreover, the carrier frequencies of
LoRa nodes inevitably resemble each other as the number of
LoRa nodes increases. Consequently, Choir may incorrectly
classify collided frames and result in decoding errors.

In this article, we present FTrack, a parallel decoding
scheme for LoRa that resolves collision by jointly considering
both time and frequency domain features. We exploit an
observation that, as the airtime of a low-rate LoRa packet is

1063-6692 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: RMIT University Library. Downloaded on December 16,2020 at 12:05:45 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9820-8480
https://orcid.org/0000-0003-3096-687X
https://orcid.org/0000-0002-1350-6639

2574 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 6, DECEMBER 2020

much longer than the packets in other wireless technologies
(e.g., WiFi and RFID), LoRa packets are more likely to be
misaligned and separated in the time domain. Due to the
periodicity of LoRa symbols, the symbols from the same frame
share the same pattern of edge misalignment in time. We
leverage such time-domain information to separate collided
LoRa symbols. In addition, we also leverage the fact that the
chirp of a LoRa symbol starts from an initial frequency and
then increases continuously along a fixed ‘track’ to sweep
through the whole LoRa bandwidth. The different arrival time
of colliding frames would result in timing offset and a corre-
sponding shift in frequency between collided symbols. Thus,
chirps of collided symbols are also likely to exhibit as different
tracks in the frequency domain. We separate the frequency
tracks of individual chirps to recover collisions of all frames.

Intuitively, the decoding process consists of the following
key steps. FTrack first detects the edges of LoRa symbols
in the time domain and groups the symbols according to
different LoRa nodes. Then, it iteratively demodulates and
decodes the symbols of each individual LoRa node. FTrack is
orthogonal to existing parallel decoding techniques for LoRa
transmissions. As long as the transmissions are interleaved
with misaligned symbol edges, LoRa nodes should be able
to transmit concurrently even with the same parameter
configuration in the same channel.

Turning the idea into reality, however, entails tremendous
challenges. First, it is non-trivial to detect the symbol edges of
each individual transmission from collided signals and group
the symbol edges according to each LoRa node. To address
this problem, we leverage the fact that the preamble of a
LoRa node is known in advance, which allows us to extract
the symbol edges from collided signals by correlating the
known preamble with the collided signals. The correlation
peaks indicate the symbol edges in the preamble. The extracted
symbol edges, however, are interleaved in the time domain
due to collisions. As a LoRa preamble consists of repeated
base chirps, the signal frequency would increase continuously
across boundaries of all chirps associated with the preamble,
resulting in a long track of continuous frequency. As such,
we filter out any interfering chirps not belonging to the long
frequency track to extract a pure collision-free preamble.
We detect symbol edges from the extracted preamble and
use that timing information to accurately pinpoint the symbol
edges in its payload. Between the symbol edges corresponding
to the same LoRa node, the frequency of a LoRa chirp
should continuously increase, while the frequencies of other
coexisting chirps may exhibit sudden changes. We leverage
such a fact to filter out coexisting chirps and resolve collisions.
We iterate the above process until all chirps are correctly
associated with their corresponding nodes.

Another practical challenge arises from the requirements of
decoding concurrent transmissions in real-time. Our measure-
ment results show that the computation overhead of FTrack
is dominated by frequency track extraction which requires
to perform FFT on per-sample basis with a sliding window.
To avoid the costly FFTs, we leverage the overlapping of
PHY samples between successive windows to compute the
FFT of a new window by updating the FFT of the previous

window. Besides, we optimize edge detection by avoiding the
computation-intensive correlation operations. We use the spe-
cific frequency-time relationship of chirps in LoRa preamble to
extract the timing of symbol edges directly from the frequency
track of preamble.

We implement FTrack using software defined radios
(SDRs). To reduce the deployment cost, we employ low-cost
SDRs to collect PHY samples and run the proposed parallel
decoding scheme. We build a testbed of 20 LoRa nodes to
evaluate FTrack with a variety of transmission configurations.
Results show that FTrack decodes collided frames with low
symbol error rates in diverse SNRs. Compared with the
state-of-the-art schemes, FTrack improves the throughput of
LoRaWAN networks in real usage scenarios by up to 3 times.

II. BACKGROUND AND MOTIVATION

LoRa adopts Chirp Spread Spectrum (CSS) as the PHY
modulation scheme. Symbols are modulated as up-chirp sig-
nals whose frequencies increase linearly with time over a
predefined bandwidth. LoRa varies the initial frequency of an
up-chirp to modulate different data. Such a procedure can be
represented as follows.

S(t, fsym) = ej2π(k
2 t+f0)t · ej2πfsymt = C(t) · ej2πfsymt,

(1)

where fsym denotes the initial frequency of the up-chirp
(i.e., encoded symbol). C(t) = ej2π(k

2 t+f0)t represents the
raw chirp signal (termed base chirp); f0 and k denote the
starting frequency and frequency increasing rate of the chirp,
respectively.

A LoRa receiver can demodulate an incoming chirp as fol-
lows. It first multiplies the received signal with the conjugate
of the base chirp denoted as C−1(t), performs a Fast Fourier
Transform (FFT) on the multiplication, and searches for power
peak in the FFT bins to demodulate symbol. The procedure
can be represented as follows

S(t, fsym) · C−1(t) = ej2πfsymt (2)

The FFT of ej2πfsymt produces one peak in the FFT bins, that
indicates the frequency component of fsym.

When multiple LoRa nodes transmit concurrently, their
signals add up at the receiver. Figure 1 presents the signal
received with USRP N210 when two LoRa nodes transmit
simultaneously. In the figure, we observe multiple chirps
overlapping in time, each of which corresponds to the symbol
of one transmitter. As a standard LoRa demodulator (Eq.(2))
searches for the maximum in FFT results, it cannot reliably
decode the collided signals. We aim to support parallel trans-
missions of multiple LoRa nodes and resolve collisions.

A recent work, Choir [5], exploits the frequency offset
(i.e., offset of carrier frequency) introduced by the hardware
imperfection and diversities of LoRa nodes to separate col-
lided frames. However, it is difficult to extract tiny hardware
frequency offset in the presence of noises and inter-packet
collisions. More importantly, as the number of LoRa nodes
increases, the carrier frequencies of nodes are likely to resem-
ble each other. Solely relying on hardware-induced frequency
offsets may fail to differentiate LoRa nodes in practice.

Authorized licensed use limited to: RMIT University Library. Downloaded on December 16,2020 at 12:05:45 UTC from IEEE Xplore. Restrictions apply.

XIA et al.: FTrack: PARALLEL DECODING FOR LoRa TRANSMISSIONS 2575

Fig. 1. Collision of two LoRa transmissions. Red/blue dashed lines indicate the symbol edges of two LoRa transmissions.

Fig. 2. Edge detection on (a) collision-free and (b) colliding preambles, i.e.,
the preambles of the first and second transmissions in Fig.1. The correlation
peaks indicate the boundaries of base chirps, i.e., symbol edges.

In this article, we leverage the fact that the concurrent
transmissions of LoRa packets are likely to be misaligned in
time. Figure 1 illustrates the time misalignment of two collided
LoRa transmissions. A receiver can increase the sampling rate
to better differentiate the misaligned chirps in the time domain.
Besides, as the frequencies of LoRa chirps vary linearly with
time, the time misalignment of chirps leads to the corre-
sponding frequency offsets between the chirps. Thus, we can
separate collided chirps in both time and frequency domains.
We configure COTS LoRa nodes to transmit with the default
parameters (i.e., Spreading Factor=8, bandwidth=250kHz)
and use a low-cost receive-only SDR (e.g., RTL-SDR dongle)
to sample at a high rate (e.g., 1MS/s). The receiver chain will
decimate the received LoRa packets and produce 256 PHY
samples for each symbol. As the data rate of LoRa node is
low, the high sampling rates of SDRs provide sufficient time
resolution to separate misaligned chirps.

III. DESIGN

A. Detecting Symbol Edges

A LoRa receiver must accurately locate the boundaries of a
chirp (i.e., symbol edges) to demodulate the chirp. For exam-
ple, Fig. 3(a) illustrates three base chirps that start with the
same initial frequency f0. If the chirp boundary t0 is correctly
located, the initial frequency can be correctly measured as
f0 and the base chirp can be demodulated. However, if the
boundaries are located mistakenly with an offset of Δt, where
t1 = t0 + Δt, the measured initial frequency would become
f1 = f0 +Δf , leading to demodulation errors. The increasing
rate of chirp frequency k

2 = Δf/Δt depends on the spreading
factor of LoRa modulation which remains constant during the
transmission of a packet.

Fig. 3. Illustration of (a) preamble chirps, and (b) the corresponding
frequency tracks, i.e., normalize instantaneous frequency into the meta initial
frequency.

Intuitively, we detect chirp boundaries and calibrate the
frequency offset introduced by timing misalignment by lever-
aging our prior knowledge of LoRa preamble which is a
standard method in LoRa demodulation. We calculate the
correlation of received signals with a base chirp to detect
symbol edges. When we apply the method on a non-collided
preamble (e.g., the first preamble in Fig. 1), symbol edges
can be well identified by the correlation peaks as shown in
Fig. 2(a). However, when collision happens (e.g., the second
preamble in Fig. 1), the concurrent LoRa transmissions may
introduce interference as shown in Fig. 2(b). As such, a key
problem arises: how shall we detect symbol edges in the
presence of collisions?

1) Extracting Interference-Free Preambles: To solve the
problem of inter-packet interference, we extract pure pream-
ble from collisions and then detect symbol edges with the
extracted interference-free preamble. The method is inspired
by the following observation. The frequency of a LoRa chirp
will start from an initial value (named meta initial frequency)
and increase linearly with time. All chirps in the preamble
have the same meta initial frequency (i.e., f0 in Fig. 3(a)), yet
those from the payload of LoRa frame do not. We exploit this
fact to detect LoRa preamble.

Ideally, the meta initial frequency of a LoRa chirp (i.e.,
f0) should be measured at the arrival time of the chirp (i.e.,
chirp boundary t0). Without knowing the exact boundary of the
chirp, we may obtain different initial frequency (e.g., f1) when
measuring at different locations (e.g., t1) of the chirp, as illus-
trated in Fig. 3(a). Indeed, f1 corresponds to the instantaneous
frequency of the chirp at the measuring point, but not the meta
initial frequency (i.e., f0). To deduce f0, we leverage the rela-
tionship between chirp frequency and time to remove the fre-
quency deviation (i.e., Δf) induced by time offset Δt, as illus-
trated in Fig. 3(b). Doing so, we normalize the time-varying
frequency of chirps (e.g., f1) into horizontal frequency lines,
termed as frequency tracks, that indicate the meta initial fre-
quency of chirps, i.e., f0. With such a normalization process,
we can measure the meta initial frequency at any time of a
chirp.

Authorized licensed use limited to: RMIT University Library. Downloaded on December 16,2020 at 12:05:45 UTC from IEEE Xplore. Restrictions apply.

2576 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 6, DECEMBER 2020

Fig. 4. Extraction of collision-free preambles: (a) normalize LoRa chirps into meta initial frequency and transform colliding symbols into different frequency
tracks, (b) remove interfering symbols, and (c-d) use inverse operations (i.e., the inverse of frequency normalization, followed by an inverse FFT) to reconstruct
the second preamble.

We employ a sliding window on the received signals shown
in Fig. 1 to extract the normalized initial frequency of chirps.
As shown in Fig. 4(a), the normalized initial frequency of
each LoRa chirp corresponds to a horizontal high-power line
(i.e., frequency track). The long frequency tracks correspond
to LoRa preamble. Since the base chirps in preamble have
identical meta initial frequency, their frequency tracks form a
single long track as illustrated in Fig. 4(a). We exploit such a
property to detect LoRa preambles.

From Fig. 4(a), we also observe that the preambles of
collided frames are separated into different frequency tracks.
The location of frequency track is determined by both the
meta initial frequency and the arrival time of a LoRa chirp
(see § III-C for detail). Therefore, although the chirps of
two preambles have the same meta initial frequency, col-
lided preambles will be separated into different tracks as
long as their chirp boundaries are interleaved in time. We
exploit the property to extract LoRa preamble from collisions.
Specifically, we filter out interference by setting the frequency
tracks of interfering chirps to zero while only keeping the
long frequency track as shown in Fig. 4(b). As the extracted
frequency track indicates the normalized initial frequency of
base chirps in preamble, we employ an inverse operation
to reconstruct a pure, interference-free preamble, as shown
in Fig. 4(c). We can reconstruct the same preamble using a
segment of the frequency track starting from different offsets,
as shown in Fig. 4(c) and (d). We then perform correlation
detection on the reconstructed preamble to detect symbol
edges. In this way, we eliminate the impact of collision and
detect symbol edges of concurrent transmissions.

Fig. 5 summarizes the key steps of edge detecting. Firstly,
we measure the instantaneous frequency of chirps at any time
offset in Step 1. Step 2 normalizes the measured frequency to
chirps’ meta initial frequency (i.e., frequency tracks). In Step
3, we check the length of frequency tracks to detect preamble.
We identify the frequency bin and arrival time of each pream-
ble. Step 4 uses the information to filter the frequency tracks
of interfering chirps. We extract interference-free preambles
in the frequency domain and convert to time domain for edge
detecting in Steps 5, and detect edges using correlation in

Fig. 5. The work flow of edge detection: symbol edges are detected from
the interference-free preamble.

Step 6. The computational overhead mainly stems from FFT
operation and correlation detection. The time complexity is
O(n2), where n denotes the number of samples in a chirp.

2) Optimizing Edge Detection: In the edge detection
process (Step 4–6), the FFT operation and the correlation
detection dominate the computational overhead. In order to
support real-time parallel decoding of LoRa transmissions,
we propose an optimization to avoid the costly the FFT
operation and the correlation detection by leveraging our prior
knowledge of chirps in LoRa preamble.

Our optimized method of edge detection leverages the fact
that the instantaneous frequency of a chirp increases linearly
with time. Once the frequency track of a preamble has been
identified (i.e., freq. bin # in Step 3 of Fig. 5), we can employ
an inverse operation of frequency normalization to extract
the instantaneous frequency (say f1) of chirp at a particular
time offset t1. Then we determine symbol edge based on the
frequency-time relationship of LoRa chirp f1−f0 = k

2 (t1−t0),
as illustrated in Fig. 3(a), where t0 is the edge and f0 the initial
frequency of preamble chirp. As f1 and t1 have been obtained,
while f0 and k (i.e., frequency increasing rate) are known
based on our prior knowledge of preamble, we can directly
extract t0, i.e., the timing of symbol edge, from the frequency
track of preamble. This optimized edge detection method
avoids the computation-intensive correlation operation.

B. Demodulating Symbols

To demodulate symbols in the payload of a LoRa frame,
we need to first locate the chirp of each symbol. We leverage

Authorized licensed use limited to: RMIT University Library. Downloaded on December 16,2020 at 12:05:45 UTC from IEEE Xplore. Restrictions apply.

XIA et al.: FTrack: PARALLEL DECODING FOR LoRa TRANSMISSIONS 2577

Fig. 6. Symbol demodulation: (a) locate a target chirp within a demodu-
lation window, (b) a target chirp and an interfering chirp within the same
demodulation window due to collisions, (c) filter out the interfering chirp by
detecting frequency continuity.

Fig. 7. Demodulation with interference: the target chirp can be demodulated
incorrectly due to interference.

the timing information of symbol edges detected from a LoRa
preamble to deduce symbol edges in the payload. We refer to
the signals located between two symbol edges as a demodula-
tion window. Ideally, when there is no collision, there will be
only one complete chirp (i.e., target symbol) in a demodulation
window, as illustrated in Fig. 6(a). We can demodulate the
chirp using the standard procedure presented in § II, which will
produce a single FFT peak as illustrated in Fig. 7(a). However,
when collision happens, chirps of interfering transmissions
would also appear in the demodulation window, as shown
in Fig. 6(b). Directly applying the standard algorithm to
demodulate the collided chirps will produce multiple FFT
peaks, as shown in Fig. 7(b), where the highest peak may not
correspond to the target symbol. Therefore, how to correctly
demodulate the target symbol in the presence of collisions
becomes a key issue.

Our solution separates the target symbol from collisions
by jointly exploiting the frequency-domain and time-domain
features of concurrent LoRa transmissions. We find that the
frequency of the target chirp changes continuously in the
demodulation window, as there is only one chirp of the
target symbol in the window. Whereas for interfering symbols,
as their symbol edges are misaligned with the demodulation
window of the target symbol, the window spans across two
chirps. Since the second chirp may change its initial frequency
to modulate a different symbol, it will result in a sudden
change of chirp frequency. Based on this observation, we
examine the continuity of frequency tracks to filter out inter-
fering symbols in each demodulation window. As illustrated
in Fig. 6(c), the normalized initial frequency of interfering
symbols will switch to a different track. In contrast, the target
symbol produces a single complete frequency track that spans
over the whole window. A complete frequency track within
the demodulation window indicates the initial frequency (i.e.,
encoded data) of the target symbol.

In case that two successive chirps of interference packet
carry the same data, their frequency tracks also exhibit conti-
nuity in the demodulation window (e.g., Win #1 in Fig. 8). In

Fig. 8. When two successive interfering chirps carry identical data, frequency
discontinuity of interference track (red) is observed in Win #2.

this case, we need to observe with a longer window (e.g., over
two windows). Although the frequency tracks of interference
chirps are continuous in the first demodulation window, we can
observe discontinuity in the second window, as illustrated
in Fig. 8. In contrast, the frequency tracks of target symbols
are continuous within both demodulation windows. We can
filter out interference by checking the discontinuity point of
frequency track against the target’s symbol edges.

C. Frequency Track in Practice

Frequency track plays important roles in collision resolving:
Firstly, it separates colliding symbols into different tracks,
indicating different meta initial frequencies. We exploit this
property for collision recovery. Secondly, we can directly
demodulate symbols from frequency tracks because data are
encoded by the meta initial frequency of LoRa chirps (§ II). In
this subsection, we describe how to extract frequency tracks
from received signals.

1) Considerations of Method Design: The signal of a LoRa
chirp is represented by S(t, fsym) in Eq. (1). Based on Eq.
(1), we can formally represent the frequency track of chirp
S(t, fsym) as follows

Ftrack(fsym) = ej2πfsymt, (3)

where fsym is the meta initial frequency of the chirp. To
extract frequency track from the received signal of a LoRa
chirp, one approach is to measure the instantaneous frequency
of the chirp and subtract a frequency deviation Δf from the
instantaneous frequency, as illustrated in Fig. 3(b). In order
to measure the instantaneous frequency, we can use the
short-time Fourier transform (STFT) to analyze the changing
spectra of signal over time (i.e., spectrogram of signal). How-
ever, such a method only provides a coarse-grained estimate of
chirp frequency, which cannot precisely identify the frequency
track (i.e., meta initial frequency) of LoRa chirp.

As STFT takes PHY samples from received signal with
a PHY Win to analyze the frequency components, the size
of PHY Win affects the resolution of frequency estimation.
Fig. 9(a-c) present the resulting spectrograms of the same
signal with different configurations of PHY Win. Comparing
Fig. 9(b) and (c), we see that the measured frequency of
chirps become narrower with a smaller PHY Win of 32,
because a smaller PHY Win would contain PHY samples with
less time-varying frequencies. Yet, the chirps do not become
thinner as PHY Win further decreases from 32 to 8 (see
Fig. 9(a) and (b)). The reason is that, when PHY Win is too
short, STFT must pad a number of zeros to the PHY samples
before FFT analysis, which will produce a wide main-lobe

Authorized licensed use limited to: RMIT University Library. Downloaded on December 16,2020 at 12:05:45 UTC from IEEE Xplore. Restrictions apply.

2578 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 6, DECEMBER 2020

Fig. 9. Frequency estimation with different PHY Wins (the FFT Win is
256). (a-c): Spectrogram of preamble chirps; (d-f): Width of the FFT peak of
original signal; (g-i): Width of the FFT peak of dechirped signal.

Fig. 10. Illustration of chirp signals in a PHY Win.

and many sinc side-lobes between two main chirps, as shown
in Fig. 9(a). As displayed in Fig. 9(d-f), even with the finest
configuration for spectrogram (i.e., PHY Win=32), the width
of obtained chirp frequency would still span tens of FFT bins,
which does not provide sufficient resolution to precisely locate
the frequency track of the chirp.

We aim to extract narrow frequency tracks that can precisely
indicate the meta initial frequencies of LoRa chirps. As we
mentioned, due to the CSS modulation scheme of LoRa,
signals in a period of Δt would sweep a frequency width
of Δf (see Fig. 3(a)). The time-varying frequencies of chirp
within PHY Win prevent spectrogram from producing narrow
frequency tracks. To solve the problem, we dechirp the signal
in PHY Win by multiplying with a down chirp (i.e., C−1(t),
see Eq. (2)). Fig.s 9(g-i) present the FFT of the signal samples
in PHY Win after being dechirped. The resulting FFT peaks
become narrower and can precisely pinpoint the frequency of
corresponding chirps shown in Fig. 9(d-f). Besides, the width
of FFT peak becomes thinner as PHY Win increases, because
the window includes more PHY samples with the same meta
initial frequency. In particular, when PHY Win= 256, i.e.,
containing all samples of a chirp, the resulting peak width can
reach the resolution of one FFT bin, as shown in Fig. 9(i).

2) Extracting Frequency Tracks: Our approach of frequency
track extraction involves three key steps: Firstly, we dechirp
the signal samples in PHY Win and perform FFT on dechriped
signals to measure the instantaneous frequency of chirps at a
given time offset. Secondly, we normalize the instantaneous
frequency measured at different offsets by subtracting the
corresponding frequency deviation. Finally, we move PHY Win

Fig. 11. Steps of extracting frequency tracks: (a) spectrogram of received
signals (the preamble part), (b-c) dechirp the signal in PHY Win (FFT of
dechirped signals at #660 and #760), (d) slide PHY Win across all samples
(the frequency of dechirped signal vs. offsets of PHY Win), (e) remove the
frequency deviation induced by tw (i.e., the time offset of PHY Win) to
produce the normalized frequency of LoRa chirps, i.e., frequency tracks.

to the next PHY sample of received signals and repeat the
above two steps. We describe in details in the following.

Suppose that n LoRa nodes transmit simultaneously. Let
X(t) denote the signal received by a LoRa device and xi(t)
denote the signal from node i, i.e., X(t) =

∑n
i=1 xi(t). We

focus on the signal of one transmitter (i.e., xi(t) of node i) in
the following. In particular, we configure the length of PHY
Win to T , i.e., the duration of a LoRa chirp. Let tw denote
the offset position of PHY Win in X(t). A PHY Win generally
spans two LoRa symbols as illustrated in Fig. 10, where the
starting edges of the two symbols are represented by t1 and
t1+T , respectively. We denote the offset between t1 and PHY
Win by Δt, i.e., Δt = tw − t1. Specifically, 0 ≤ Δt < T (note
that when Δt = 0, only the first symbol is included in PHY
Win, which is a special case). Let t denote the relative time of
chirp signals within PHY Win, i.e., 0 ≤ t < T . As illustrated
in Fig. 10, signals in PHY Win are composed of two segments
from the first and the second symbols, respectively. Based on
Eq. (1), we denote the first segment of signal in PHY Win as

xi(t) = hi · S(t + Δt, f1), t ∈ [0, T − Δt) (4)

where f1 represents the initial frequency of the first chirp. hi

is a complex value representing amplitude and phase changes
on the wireless channel between transmitter and receiver.

According to the CSS modulation, a time shift of Δt in chirp
signals would result in a frequency offset of Δf = k

2Δt as
illustrated in Fig. 3(a). Therefore, Eq. (4) can be transformed
as follows

xi(t) = hi · S(t, f1 +
k

2
Δt), t ∈ [0, T − Δt) (5)

Authorized licensed use limited to: RMIT University Library. Downloaded on December 16,2020 at 12:05:45 UTC from IEEE Xplore. Restrictions apply.

XIA et al.: FTrack: PARALLEL DECODING FOR LoRa TRANSMISSIONS 2579

Similarly, the second segment of signal in PHY Win can be
represented by

xi(t) = hi · S(t − (T − Δt), f2)

⇔ xi(t) = hi · S(t, f2 − k

2
(T − Δt)), t ∈ [T − Δt, T)

(6)

where f2 represents the initial frequency of the second symbol
chirp. For conciseness, we focus on the first segment in the
following. Similar results are obtained for the second segment.

We dechirp xi(t) in Eq. (5) by multiplying a standard down
chirp (i.e., C−1(t)) as follows

xi(t) · C−1(t)=hi · ej2π(k
2 Δt)t

︸ ︷︷ ︸
Offset of PHY Win

· ej2πf1t
︸ ︷︷ ︸

Initial freq.

, t∈ [0, T−Δt)

(7)

The FFT of Eq. (7) produces a peak at f1 + k
2Δt, which

corresponds to the frequency of the first chirp with time shift
Δt, i.e., instantaneous frequency of the chirp in PHY Win.
Fig. 11(d) presents the FFT of dechirped signals when PHY
Win slides across the PHY samples of chirps shown in Fig.
11(a). It produces thin bright lines that precisely indicate the
instantaneous frequency of chirps.

Lastly, we normalize the instantaneous frequency of chirps
to extract frequency tracks. We need to subtract Δf = k

2Δt
from the resulting frequency of the dechirped signal in Eq.
(7), i.e., f1 + k

2Δt. Note that Δt = tw − t1, where t1
denotes the starting edge of symbol chirp f1. As t1 is not
known, we cannot directly remove Δt from Eq. (7). Instead,
we subtract tw, i.e., the offset of PHY Win, from the second
term of Eq. (7) as follows

Fnorm(f1, t1) = hi · ej2π(− k
2 t1)t · ej2πf1t

= hi · Fedge(t1) · Ftrack(f1) (8)

where Fnorm(f1, t1) represents the normalized frequency of
the first chirp in PHY Win, f1 and t1 are the meta initial fre-
quency and arrival time of the chirp, respectively. Ftrack(f1)
denotes the ideal frequency track of the chirp, as defined in
Eq. (3). Fedge(t1) denotes the frequency shift induced by t1,
i.e., the arrival time (symbol edge) of the first chirp. Since
t1 is invariant as PHY Win slides across the signal samples,
Fedge(t1) is a constant.

Fig. 11(e) presents the normalized frequency of the
dechirped signals shown in Fig. 11(d). Note that, with Eq. (8),
we actually normalize the instantaneous frequency of chirp
signals into a different frequency track (i.e., Fnorm(f1, t1))
that shifts from the ideal frequency track (i.e., Ftrack(f1))
with a specific offset Fedge(t1). Since Fedge(t1), i.e., the fre-
quency offset between Ftrack(f1) and Fnorm(f1, t1), remains
constant across all symbols in the received signal, we can
employ Fnorm(f1, t1) to separate collided symbols in practice.
Moreover, as Fnorm(f1, t1) is determined by both the meta
initial frequency (f1) and arrival time (t1) of LoRa chirps,
collided symbols would be separated into different frequency
tracks as long as their edges (i.e., t1) are interleaved in time.

Fig. 12. The workflow of FTrack system. Long track and short track represent
the frequency tracks of LoRa preamble and payload symbol, respectively.

3) Optimizing for Real-Time Processing: The basic method
of frequency track extraction needs to slide PHY Win across
all samples and perform FFT on a per-sample basis. Let Ns

denote the number of PHY samples and nfft the FFT window
size. The computational complexity is O(Nsnfft log(nfft)).
Notice that as we slide PHY Win on a per-sample basis, the
signal samples of a PHY Win overlap with that of the former
window. We leverage the similarity between the signal samples
of two PHY windows to optimize the computation efficiency
of sliding FFT.

Without loss of generality, we denote the signal samples of
PHY Win at time tw and tw+1 by Xw and Xw+1, respectively.
Xw = {x0, x1, · · · , xn−1} and Xw+1 = {x1, x2, · · · , xn}.
Xw overlaps with Xw+1 on samples x1, x2, · · · , xn−1. Sup-
pose that the FFT of Xw has been computed. We slide PHY
Win from Xw to Xw+1 and aim to obtain the FFT of samples
at the new window. Rather than performing another costly FFT
at Xw+1, we can exploit the data similarity between Xw+1 and
Xw, and directly derive the FFT of Xw+1 from the obtained
FFT results of Xw as below [6]:

FFTi(Xw+1) = (FFTi(Xw) + xn − x0)ej2πi/n, (9)

where FFTi(·) represents the i’th element of the FFT results,
i = 0, 1, · · · , n − 1. In Eq. (9), we can obtain the FFT of a
new window by updating the FFT of the previous window.

In the context of frequency track extraction, we dechirp and
normalize the chirp signals in PHY Win before performing
FFTs. We combine the dechirping and normalizing operations
(i.e., Eqs. (7) and (8)) into one step as below.

Fw
norm = Xw · C−1(t) · ej2π(− k

2 tw). (10)

Our goal is to get the FFT of Fw+1
norm from the FFT results of

Fw
norm. In order to apply the optimized method of sliding FFT

(i.e., Eq. (9)), we need to ensure that the elements of Fw+1
norm

overlap with those of Fw
norm.

Denote the n elements of C−1(t) as [c0, c1, · · · , cn−1]T .
Note that C−1(t) · e−j2π k

2 (tw+1) = C−1(t + 1) · e−j2π k
2 tw .

We have C−1(t) · e−j2π k
2 (tw+1) = [c1, c2, · · · , cn−1, cn]T ,

where cn = cn−1e
−j2π k

2 . Therefore, we can get the following.

Fw+1
norm = Xw+1 · C−1(t) · e−j2π k

2 (tw+1)

= Xw+1 · C−1(t + 1) · ej2π(− k
2 tw)

= [x1c1, x2c2, · · · , xn−1cn−1, xncn]T ej2π(− k
2 tw).

Recall that Fw
norm = [x0c0, x1c1, · · · , xn−1cn−1]T ej2π(− k

2 tw).
Fw+1

norm overlaps with Fw
norm on elements x1c1, x2c2, · · · ,

Authorized licensed use limited to: RMIT University Library. Downloaded on December 16,2020 at 12:05:45 UTC from IEEE Xplore. Restrictions apply.

2580 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 6, DECEMBER 2020

Fig. 13. Separating the signals of Fig. 1 into two LoRa frames: the frame structure and demodulated symbols of (a) the first and (b) second transmission.

xn−1cn−1. Therefore, by applying Eq. (9), we obtain

FFTi(Fw+1
norm) = [FFTi(Fw

norm) + xncnej2π(− k
2 tw)

− x0c0e
j2π(− k

2 tw)] · ej2πi/n. (11)

This allows us to compute the FFT of Fw+1
norm from the obtained

FFT results of Fw
norm. We employ Eq. (11) to optimize the

computation of sliding FFT. It reduces the time complexity of
frequency track extraction to O(Nsnfft).

D. FTrack: Put It Together

Fig. 12 illustrates the general workflow of FTrack. Specifi-
cally, it involves the following key operations:

Frequency track extraction. FTrack first dechirps the
received signal with a sliding window. The collided symbols
in each window are normalized into the initial frequency of
corresponding LoRa chirps (i.e., frequency track). The collided
signals are thus converted into a sequence of frequency tracks
for further processing.

Frame identification. FTrack extracts long frequency tracks
to separate preamble from collisions. It detects symbol edges
from the preamble and searches for sync words to identify
LoRa packets. The edges of payload symbols can then be
deduced from the symbol edges of preamble based on the
frame structure of LoRa packets.

Symbol demodulation. FTrack employs the detected sym-
bol edges of a specific preamble to locate the demodulation
window of each payload symbol associating with the pream-
ble. FTrack checks the continuity of frequency tracks, as well
as the timing information, in each window to filter interference
and demodulate symbol from the resulting frequency track of
target based on Eq. (8).

Iteration to decode parallel transmissions. FTrack iterates
to detect more preambles and demodulate concurrent LoRa
transmissions. As collided transmissions may have misaligned
symbol edges, they would have different sequences of payload
symbol. For example, when we apply FTrack to demodulate
the collided LoRa signals shown in Fig. 1, we can detect
two LoRa preambles (exhibiting as long frequency tracks),
as shown in Fig. 13. Thereafter, we separate the collided sym-
bols into two concurrent transmissions (i.e., frequency track
classifying) and demodulate symbols of each transmission.
FTrack removes a frequency track after demodulating symbol

Fig. 14. Experiment equipment.

Fig. 15. Demodulation with two-node collisions.

corresponding to the frequency track, and outputs a sequence
of demodulated symbols for each LoRa transmission, as shown
in Fig. 13. A conventional LoRa decoder can be applied to
decode data from such symbols.

IV. EVALUATIONS

We implement and evaluate the system using software radio
base stations and commodity LoRa devices. For performance
evaluation, we use both high-end software defined radio (i.e.,
USRP N210) and low-cost receive-only software defined radio
(i.e., RTL-SDR dongle) as shown in Fig. 14(a). We develop
our own LoRa demodulator based on the GNU Radio library,
and implement FTrack in MATLAB to process PHY samples.
If not otherwise specified, we employ RTL-SDR dongles to
receive PHY samples at the 900 MHz bands. The USRP N210
is only used for performance evaluations.

The LoRa nodes are composed of Dragino LoRa shields
[7], which consist of HopeRF’s RFM96W transceiver mod-
ule embedded with the Semtech SX1276 chip, as shown
in Fig. 14(b). We connect the LoRa shield to Arduino Uno
motherboard to control SX1276 chip in packet transmission
and reception. The SX1276 chip operates at 915MHz with
the bandwidth of 250kHz or 125kHz, depending on the

Authorized licensed use limited to: RMIT University Library. Downloaded on December 16,2020 at 12:05:45 UTC from IEEE Xplore. Restrictions apply.

XIA et al.: FTrack: PARALLEL DECODING FOR LoRa TRANSMISSIONS 2581

Fig. 16. In-depth study of FTrack performance: (a) CDF of the Symbol Error Rates (SERs); (b-d) Relationships between SERs and the normalized edge
offsets of colliding symbols: FTrack produces high SERs when colliding symbols are closely-aligned in time (i.e., with short edge offsets).

configuration of LoRa parameters. We note that radio broad-
casting, RFID and P-GSM-900 may also work in the 900MHz
frequency band. The measured noise floor is around -90dBm
in our experiments. By default, we set the spreading factor
(SF), coding rate (CR) and bandwidth (BW) of LoRa com-
munication as 8, 4/5 and 250kHz, respectively. The sampling
rate of RTL-SDR dongle is 1 MS/s.

A. Parallel Demodulation

1) Basic Performance: In the following experiment, we use
an RTL-SDR dongle as a receiver and three LoRa nodes as
transmitters in an indoor environment. To experiment with
varied colliding time, we configure one transmitter to send
beacons every 2 seconds. Upon receiving such beacons, the
other two LoRa nodes reply a 30-Byte data frame, which
consists of 61 payload symbols and lasts for about 80ms
when SF=8, BW=250kHz. Specifically, we configure the two
LoRa nodes to delay for a random period of time before
transmission with a maximum delay of 20ms (i.e., the air time
of 20 symbols). The experiment setting can result in collisions
at different parts of packets (e.g., preambles, sync words and
payloads) as reported in [8]. We vary the transmission power
of LoRa nodes to evaluate demodulation performance across
three SNR regimes: low (<5dB), medium (5-20 dB) and
high (>20 dB). For each SNR regime, we collect 500 col-
liding frames and repeat the experiment 5 times. We compare
FTrack against GR_LoRa (i.e., a standard LoRa demodulation
scheme) and Choir [5] which represents the state-of-the-art on
LoRa collision recovery.

Fig. 15 compares the average SERs of the three demodu-
lation schemes when two LoRa nodes transmit concurrently.
According to the experiment results, FTrack performs the
best and GR_LoRa is the worst (SER > 80%) because
GR_LoRa is not capable of recovering any collisions. Our
experimental study reveals that the hardware frequency offset
(i.e., the fractional part of chirp frequency) extracted by Choir
is not reliable to classify colliding symbols in practice. The
main reason is that along with the hardware imperfection,
various influencing factors (e.g., phase jitters, noise) may
cause variations in the measurement of fractional part of
carrier frequency. We also notice that the time offset between
a detection window and a symbol edge also influences the
measurement of fractional part of carrier frequency. As a
result, Choir suffers high symbol error rates (70%∼80%) in

our experiments. In contrast, FTrack can leverage the timing
misalignment to separate colliding symbols. It yields <10%
symbol error rates across all SNR regimes. The low symbol
error rates of FTrack can be corrected by standard error
correction schemes (e.g., Hamming code) adopted by current
LoRa nodes.

We present the CDF of SERs of FTrack in Fig. 16(a). As we
can see, FTrack achieves better performance in the high SNR
condition than in the low SNR condition. More importantly,
the performance of FTrack does not degrade dramatically even
in the low SNR condition. That is because FTrack can still
leverage the long transmission time of a LoRa packet to boost
the signal strength. In particular, 80% of the symbol error rates
are below 10% when SNR is high. Even in the medium and
low SNR conditions, nearly 70% of the collided frames are
demodulated with <10% SERs.

2) Impact of Time Offsets and SNR: We analyze the
major factors that may influence the performance of FTrack.
Figures 16(b-d) examine the relationships between SERs and
the timing offsets of collided symbols. In each SNR regime,
we divide the demodulation results into three groups for
analysis: low SER (<0.1), medium SER (0.1∼0.2) and high
SER (>0.2). We observe that in the high-SNR condition, 100%
of high SERs and 50% of medium SERs appear when the
edges of colliding symbols are closer than 10% of a chirp
duration, as shown in Fig. 16(b). Similar results are observed
in the medium and low SNR cases, as shown in Fig.s 16(c,d).
That is because once the symbols are not separated in time
with sufficient margin, FTrack may not be able to separate such
edges, leading to incorrect symbol grouping and demodulating
results.

In practice, LoRa nodes may transmit packets in random
time slots. Fig. 17(a) shows the edge offsets of collided sym-
bols in our collected traces, where edge offsets are normalized
in percentages of a chirp duration. As LoRa nodes transmit at
random time, the edge offsets of colliding symbols distribute
uniformly across the whole range of one chirp duration (i.e.,
length of a LoRa symbol). As we mentioned, FTrack may
fail to demodulate concurrent transmissions when the edge
offsets are short (e.g., <10% chirp duration), while FTrack
can successfully recover collisions in most other cases.

We examine the symbol error rates of demodulation when
the edge offsets of colliding symbols are small (<10%),
medium (10%∼20%) and large (>20%), respectively. By
comparing Fig.s 17(b-d), we see that FTrack achieves lower

Authorized licensed use limited to: RMIT University Library. Downloaded on December 16,2020 at 12:05:45 UTC from IEEE Xplore. Restrictions apply.

2582 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 6, DECEMBER 2020

Fig. 17. Relationship between the demodulation performance of FTrack and edge offsets of colliding symbols: (a) CDF of edge offsets in the collected
frames, (b-d) Demodulation performance when edge offsets are small (<10%), medium (10%–20%) and large (>20%), respectively.

Fig. 18. Impact of the Spreading Factor (SF) of LoRa PHY modulation,
BW=250kHz: (a) SERs under different SFs, (b) Demodulation results when
edge offsets are small (<10%).

SERs as the edge offsets of interfering symbols increases. For
instance, as shown in Fig. 17(b), when the edge offsets are
shorter than 10% chirp duration, nearly 40% of the results of
high-SNR (60% of medium-SNR and 80% of low-SNR) have
high or medium symbol error rates (i.e., SER>0.1, collisions
may not be recovered). This number decreases to lower than
5% when the edge offsets increases to 20%, as shown in
Fig. 17(d). In this case, 80% of the results have SERs<0.05.

In addition, by increasing the SNR of received signals,
FTrack can produce better demodulation results. For example,
as shown in Fig.s 16(b) and (d), when the SNR is low, 82% of
low SERs are produced in the case that symbol edges are apart
farther than 20% of the symbol length; whereas the results
of low SER appear uniformly in all edge offset occasions
when SNR becomes high. Therefore, as the SNR increases,
FTrack may demodulate with low SERs even when the edges
of colliding symbols are closely located. This implies that we
can increase the transmission power of LoRa nodes for better
collision recovery performance.

3) Impact of LoRa Packet Configuration: The demodulation
performance of FTrack can be affected by the symbol duration
of LoRa packets. Some parameters configure the symbol
duration of LoRa (e.g., Spreading Factor (SF) and Bandwidth
(BW)). In the following, we investigate the impact of SF
and BW on collision recovery performance. Unless otherwise
specified, we adopt the same experimental settings as in §IV-
A.1. We only present the evaluation results of high-SNR. The
experiment results exhibit similar trends in both medium-SNR
and low-SNR regimes (not presented).

We set the Bandwidth of LoRa to 250kHz and study the
impact of Spreading Factor on demodulation performance.
Fig. 18(a) presents the overall symbol error rates of FTrack

Fig. 19. Impact of LoRa Bandwidth (BW), SF=8: (a) SERs under different
BW settings, (b) Demodulation results when edge offsets are small (<10%).

with varied SFs (e.g., SF=6, 8, and 10). We see that FTrack
achieves lower SERs with a larger SF. The average SER
decreases from 0.17 to 0.05 as SF increases from 6 to 10.
In particular, a larger SF facilitates collision recovery espe-
cially when the edge offsets of interfering symbols are small,
as shown in Fig. 18(b). When SF=6, only 20% of the
collisions with small edge offset can be correctly recovered
(i.e., SER<0.1). This number increases to 40% for SF=8 and
around 70% for SF=10. That is because when SF increases,
a symbol takes a longer air time [4], which helps FTrack
separate collisions in time.

Next, Fig. 19 evaluates the demodulation performance of
FTrack with varied BWs. The Spreading Factor is fixed to 8.
The results show that FTrack performs better with a larger
BW. The average SER decreases from 0.21 to 0.07 as the
LoRa bandwidth increases from 62.5kHz to 500kHz. That is
because when the LoRa bandwidth increases, the frequency
gap between the symbols coexisting within a demodulation
window also increases, which helps the differentiation of
symbols in the frequency domain. As shown in Fig. 19(b),
when the edge offsets of colliding symbols are small, even
though it is hard to separate symbols in time, FTrack recovers
more collisions with larger BWs. For instance, less than 20%
collisions can be correctly recovered (i.e., SER<0.1) when
BW=62.5kHz. The number increases to about 45% when
BW=500kHz. However, we note that a larger BW comes at
the cost of an increased number of PHY samples and higher
computational overhead to process the PHY samples.

B. FTrack Capability

We examine the capability of FTrack on collision recov-
ery with an increasing number of colliding nodes. In this
experiment, we use the same configuration as in §IV-A.1 and

Authorized licensed use limited to: RMIT University Library. Downloaded on December 16,2020 at 12:05:45 UTC from IEEE Xplore. Restrictions apply.

XIA et al.: FTrack: PARALLEL DECODING FOR LoRa TRANSMISSIONS 2583

Fig. 20. Performance of FTrack on decoding a varied number of parallel
transmissions.

Fig. 21. Computational time of collision resolving with various number
of concurrent transmissions: (a) The overall time costs (in milliseconds),
(b) Anatomy of the time costs of FTrack: T1—time of frequency track
extraction, T2—frame identification (preamble & symbol edge detecting) and
T0—others (including symbol classifying & iterative frame demodulation).

increase the number of concurrent transmissions from 1 node
to 10 nodes. We measure the PHY-layer symbol error
rate (SER) and the ratio of packets being correctly decoded
(i.e., packet reception ratio, PRR). As shown in Fig. 20,
the demodulation errors of FTrack increase as more nodes
transmit in parallel. For instance, the average SER is 7% when
two nodes collide. Yet it increases to 14% in the case of
10-node collisions. When two nodes transmit concurrently,
nearly 80% of the packets can be successfully recovered.
The packet reception ratio, however, decreases as more nodes
collide. When 10 nodes transmit in parallel, although we
cannot recover all packets, 58% of the packets can still be
correctly decoded leading to a considerable throughput gain.

C. Real Time Performance

In this experiment, we evaluate the time costs of collision
recovery. We record the computation time of Choir and
FTrack when running on a PC with the Intel Core i5 CPU
processor.Fig. 21(a) compares the overall computation time
of collision resolving under different number of concurrent
transmissions. Generally, the computational time of FTrack
is shorter than that of Choir. The decoding time increases
proportionally with the number of collided packets. As the data
rates of LoRa are much lower than other wireless technologies
(e.g., WiFi, RFID, cellular, etc.), it leaves sufficient time for
LoRa base stations to decode collisions.

Fig. 21(b) examines the effectiveness of proposed optimiza-
tions for FTrack, i.e., optimized edge detecting (§ III-A) and
frequency track extraction (§ III-C). We anatomize the time
costs of FTrack into three main parts: frequency track extrac-
tion (T1), edge detecting (T2) and others (T0). As we can see,

Fig. 22. Layout of a LoRaWAN testbed.

frequency track extraction dominates the computation time of
FTrack before optimizing. The optimized method significantly
reduces the time costs of frequency track extraction by one
order of magnitude, from hundreds of milliseconds to a few
tens of milliseconds. The time costs of edge detecting decrease
from milliseconds to micro-seconds (i.e., reduced by 1,000×).
The overall computation time is reduced by 50%∼60% with
the optimized designs of FTrack algorithm. In practice, we can
adopt more efficient hardware (e.g., multi-processor, FPGA,
ASIC) to further accelerate FTrack so as to meet the real-time
processing requirement.

D. Performance in Real Network

In the following, we evaluate how FTrack performs in
practice. We deploy the testbed LoRaWAN network within
our office building, as illustrated in Fig. 22. Each node
senses the environments (e.g., light, temperature, humidity,
etc.) and randomly selects a 200ms-slot to transmit data to
a base station. The payload is 30 Bytes, corresponding to
about 80 PHY symbols (payloads + headers) and 80ms air
time when SF=8, BW=250kHz. The duty cycle of LoRa
nodes are set to 10%, far higher than the typical LoRaWAN
configurations of ≤2%, to emulate a serious collision scenario.
In particular, the ordinary LoRa nodes in our testbed can
transmit in 8 uplink slots during each data collection cycle
(the rest two slots are reserved by the LoRaWAN testbed
to send control messages). We increase the number of nodes
from 1 to 20 to compare the scalability of different approaches.
We compare FTrack with GR_LoRa [9] and Choir [5]. We also
compare the performance against an Oracle scheme that is
assumed to optimally schedule the LoRa nodes such that no
collision could happen.

Fig. 23(a) shows the network throughput of four approaches.
We see that the throughput of all approaches increase as more
nodes join the network, when the network size is small (e.g., #
of nodes≤4). However, the throughput of GR_LoRa and Choir
saturate (around 80 symbols/sec) rapidly when the network
size increases to 4 nodes. That is because as more nodes
transmit concurrently, GR_LoRa and Choir cannot recover
collisions among the nodes. Benefiting from a perfect trans-
mission schedule, Oracle yields the highest throughput that
increases linearly with network size as the number of nodes
increases from 1 to 8. However, the Oracle reaches its capacity

Authorized licensed use limited to: RMIT University Library. Downloaded on December 16,2020 at 12:05:45 UTC from IEEE Xplore. Restrictions apply.

2584 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 6, DECEMBER 2020

Fig. 23. Performance of decoding concurrent transmissions in real-world
LoRaWAN network (SF=8, BW=250kHz).

limit (200 symbols/sec) when network size is 8. In contrast, the
throughput of FTrack further increases to 250 symbols/second
as network size increases to 20 nodes, which is about 3 times
the throughput of Choir and GR_LoRa. The performance gain
stems from FTrack’s capability of decoding concurrent LoRa
transmissions.

Fig. 23(b) presents the number of concurrent transmis-
sions with a varied number of LoRa nodes working in the
low-duty cycle mode. We see that when the network size
exceeds 4, nodes collide more frequently even if they work
in the low-duty cycle mode. As such, the performance of
GR_LoRa and Choir starts to degrade when the number of
nodes exceeds 4, as shown in Fig. 23(a). As the network
size further increases, we observe more collisions: A median
of 2 and a maximum of 5 nodes transmit concurrently at a
slot when the network size exceeds 16. In this case, FTrack
achieves the highest network throughput as it is able to recover
collisions.

V. RELATED WORK

A variety of LP-WAN technologies [10], [11] have been
proposed to enable the fast-growing IoT applications. SigFox
[1] uses Ultra Narrow Band (UNB) technology combined
with DBPSK and GFSK modulation to support low-power
long-range communication in the ISM band. NB-IoT [2] and
LTE-M [12] are introduced by 3GPP. They use a subset
of the LTE standard, operate at licensed spectrum yet limit
the bandwidth to a single narrow-band of 200kHz. LoRa
[3], [11], like SigFox, works at license-free frequency band.
It employs Chirp Spread Spectrum (CSS) modulation to
transmit data, which is resilient to interference, multi-path
fading and Doppler effects. Such characteristics make LoRa
a competitive candidate for long-range low-cost IoT networks
[13], [14]. We focus on LoRa in this article and refer the
readers to [15]–[17] for detailed comparisons of existing
LP-WAN technologies.

There are some pioneer researches on LoRa and LoRaWAN
[18], [19]. Early efforts have been devoted to the measurement
study [4], [20], [21] and performance analysis, such as trans-
mission air time [22], [23], power consumption [4], [24]–[26],
coverage [27], [28], physical layer security [29], etc. Based
on these studies, some improvement schemes [30]–[32] are
introduced for better performance. Although the LoRa PHY is
proprietary, authors of [9] and [33] employ reverse engineering
to study the encoding and decoding schemes of LoRa.

With respect to the limited capability of hardware,
LoRaWAN [3] adopts a simple ALOHA-based MAC for
access control. The limits of LoRaWAN MAC have been
analytically concluded in [34], [35]. [36] studies LoRa col-
lisions via simulation. [37] employs commodity devices to
empirically study the characteristic of LoRa collisions. More
recently, [8] presents an in-depth investigation of LoRa col-
lisions within actual running networks. To avoid collisions,
some researchers [38], [39] proposed new MAC designs that
incorporate advanced scheduling schemes on top of LoRa.
However, these schemes would add higher complexity yet
produce lower efficiency in terms of network capacity and
throughput.

The work most related to ours is Choir [5], which exploits
the frequency offsets introduced by LoRa hardware to separate
collisions. However, in practice, the extracted frequency offset
is not reliable to classify colliding symbols due to various
influencing factors (e.g., phase jitters, time offset).

Our work [40] is inspired by the previous works of col-
lision recovery and parallel decoding in various wireless
systems (e.g., WiFi, RFID). ZigZag [41] decodes collisions
by exploiting the fact that the time offset of collided trans-
missions produces some interference-free chunks. It extracts
the interference-free chunks and subtracts from collisions to
separate each individual transmission. BiGroup [42] examines
the collision states of concurrent transmissions of RFID tags,
and iteratively detects the state transitions of collided signals to
decode tag transmissions. LF-Backscatter [43] employs power-
ful RFID readers to detect the interleaving signal edges with
high sampling rates and separate collided tag signals. More
recently, FlipTracer [44] and Hubble [45] support parallel
decoding of backscatter communications by leveraging both
PHY and time domain information. NetScatter [46] proposes
a new coding scheme that combines On-Off Keying and CSS
to support concurrent transmissions. Recently, [47] and [48]
also studied the problem of LoRa collision resolving by using
specific features of LoRa chirps in the frequency and time
domain. They are complimentary to FTrack.

In addition to the collision recovery approach, some works
aim to avoid collisions, including MIMO [49]–[51], TDMA
[52], [53], collision-recovery methods [54], [55], and con-
structive interference [56], [57]. LoRa also supports orthogonal
communications by transmitting with different channels, band-
widths and spreading factors. However, even with orthogonal
parameter settings, transmission collisions may still happen as
the number of devices further increases, e.g., in scenarios like
urban and warehouse [8], [37]. Our work is complementary to
such collision avoidance schemes.

VI. DISCUSSIONS

Demodulating capacity and the gain. The demodulation
capacity of FTrack is not unbounded as the number of col-
liding nodes increases. If the edges of collided symbols are
aligned or closely-located, FTrack may not be able to separate
them in time. Besides, the configurations of LoRa transmis-
sion, such as spreading factor (SF) and bandwidth (BW),
also affect the demodulation performance. In fact, current

Authorized licensed use limited to: RMIT University Library. Downloaded on December 16,2020 at 12:05:45 UTC from IEEE Xplore. Restrictions apply.

XIA et al.: FTrack: PARALLEL DECODING FOR LoRa TRANSMISSIONS 2585

LoRaWAN supports concurrent transmission of packets using
orthogonal spreading factors which require careful configura-
tion and coordinations of LoRa nodes. However, due to lack of
coordination, some nodes may still collide if they choose the
same parameter settings especially in densely-populated LoRa
networks (e.g., an urban or warehouse scenario). As such, the
proposed collision recovery strategy can be complementary to
current LoRa network.

Accounting for SNR variations and the near-far prob-
lem. In practice, FTrack may fail to detect the frequency power
of weak transmitter (i.e., false negative error) or mistakenly
detect the power leaking from the main frequency of strong
transmitter as frequency track (i.e., false positive error). We
solve the problem by selecting thresholds for frequency track
detection dynamically based on the SNR conditions. More-
over, to handle the case that strong receptions of a nearby
transmitter overwhelm the weak signals of far-away transmit-
ters (i.e., the near-far problem [58]), we can employ a method
similar to ZigZag [41] and successive interference cancellation
[59] to extract signals of comparable power strength. We apply
FTrack on the signals with similar power strength to detect
frequency tracks.

Combating the absence of LoRa configurations. Gen-
erally, the BW and SF configurations are chosen by LoRa
transmitter. A receiver may not know the configurations of
received frames. With FTrack, we can detect BW and SF from
a short segment of the received signals (e.g., ≤ 5 chirps).
We exploit the fact that chirps are transformed into horizontal
frequency tracks only if down-chirp C−1(t) is produced with
the correct BW and SF. One approach is to detect the existence
of frequency tracks by trying all BW-SF combinations. To
accelerate the process, we can process the PHY samples in
parallel with multiple threads, each of which is configured by
a particular pair of BW and SF.

Limitations. In practice, some LoRaWAN MAC protocols
schedule LoRa transmissions with CSMA or random slotting
mechanisms, which can lead to collisions in synchronized time
slots. As a result, the symbol edges of collided frames can be
aligned, which affects the capability of FTrack on collision
recovery. To address this problem, we can modify the MAC
protocols in practice to intentionally mis-align collided trans-
missions. Moreover, we can properly select the parameters
of LoRa communication (e.g., spreading factor, bandwidth,
transmission power, etc.) to maximize the capability of FTrack
in supporting more parallel transmissions.

VII. CONCLUSION

This article presents FTrack, a practical strategy that
resolves LoRa collisions in both time and frequency domains.
FTrack jointly exploits the distinct frequency tracks and
misaligned edges of LoRa symbols to separate collisions. It
enables a novel communication paradigm that allows LoRa
node to join on-going communications in parallel without spe-
cific coordination. We optimize FTrack for real-time decoding
and implement it on a low-cost SDR platform. We deploy
an indoor testbed to evaluate the performance of FTrack
in a variety of network settings. Results show that FTrack

recovers collided LoRa frames with low symbol error rates
in diverse SNR conditions. It can boost the throughput of
real-world LoRaWAN by up to 3 times. The parallel decoding
capability of FTrack can benefit the deployment of large-scale
LoRaWAN in densely-populated IoT scenarios.

REFERENCES

[1] SigFox. (Jan. 2019). SigFox Overview. [Online]. Available: https://www.
sigfox.com/en/sigfox-iot-technology-overview

[2] R. Ratasuk, B. Vejlgaard, N. Mangalvedhe, and A. Ghosh, “NB-IoT
system for M2M communication,” in Proc. IEEE Wireless Commun.
Netw. Conf. (WCNC), Apr. 2016, pp. 1–5.

[3] LoRa Alliance. (Jan. 2019). Lorawan for Developer. [Online]. Available:
https://lora-alliance.org/lorawan-for-developers

[4] J. Liando, A. Gamage, A. Tengourtius, and M. Li, “Known and unkown
facts of LoRa: Experiences from a large scale measurement study,” ACM
Trans. Sensor Netw., vol. 15, no. 2, pp. 16:1–16:35, Feb. 2019.

[5] R. Eletreby, D. Zhang, S. Kumar, and O. Yağan, “Empowering low-
power wide area networks in urban settings,” in Proc. Conf. ACM Special
Interest Group Data Commun. (SIGCOMM), Aug. 2017, pp. 309–321.

[6] E. Jacobsen and R. Lyons, “The sliding DFT,” IEEE Signal Process.
Mag., vol. 20, no. 2, pp. 74–80, Mar. 2003.

[7] Dragino. (Mar. 2019). LoRa Shield for Arduino. [Online]. Available:
http://www.dragino.com/products/module/item/102-lora-shield.html

[8] A. Rahmadhani and F. Kuipers, “When LoRaWAN frames collide,” in
Proc. 12th Int. Workshop Wireless Netw. Testbeds, Exp. Eval. Charac-
terization (WiNTECH), Nov. 2018, pp. 89–97.

[9] M. Knight and B. Seeber, “Decoding LoRa: Realizing a modern LPWAN
with SDR,” in Proc. 6th GNU Radio Conf., Sep. 2016, pp. 1–5.

[10] A. Lavric and A. I. Petrariu, “LoRaWAN communication protocol:
The new era of IoT,” in Proc. Int. Conf. Develop. Appl. Syst. (DAS),
May 2018, pp. 74–77.

[11] J.-P. Bardyn, T. Melly, O. Seller, and N. Sornin, “IoT: The era of
LPWAN is starting now,” in Proc. 42nd Eur. Solid-State Circuits Conf.
(ESSCIRC), Sep. 2016, pp. 25–30.

[12] M. Lauridsen, I. Z. Kovacs, P. Mogensen, M. Sorensen, and S. Holst,
“Coverage and capacity analysis of LTE-M and NB-IoT in a rural area,”
in Proc. IEEE 84th Veh. Technol. Conf. (VTC-Fall), Sep. 2016, pp. 1–5.

[13] A. Augustin, J. Yi, T. Clausen, and W. M. Townsley, “A study of LoRa:
Long range & low power networks for the Internet of Things,” Sensors,
vol. 16, no. 9, p. 1446, Sep. 2016.

[14] J. de Carvalho Silva, J. J. Rodrigues, A. M. Alberti, P. Solic, and
A. L. L. Aquino, “LoRaWAN—A low power WAN protocol for Internet
of Things: A review and opportunities,” in Proc. 2nd Int. Multidiscipli-
nary Conf. Comput. Energy Sci. (SpliTech), Jul. 2017, pp. 1–6.

[15] R. S. Sinha, Y. Wei, and S.-H. Hwang, “A survey on LPWA technology:
LoRa and NB-IoT,” ICT Express, vol. 3, no. 1, pp. 14–21, Mar. 2017.

[16] B. Vejlgaard, M. Lauridsen, H. Nguyen, I. Z. Kovacs, P. Mogensen, and
M. Sorensen, “Coverage and capacity analysis of sigfox, LoRa, GPRS,
and NB-IoT,” in Proc. IEEE 85th Veh. Technol. Conf. (VTC Spring),
Jun. 2017, pp. 1–5.

[17] J. P. S. Sundaram, W. Du, and Z. Zhao, “A survey on LoRa networking:
Research problems, current solutions, and open issues,” IEEE Commun.
Surveys Tuts., vol. 22, no. 1, pp. 371–388, 1st Quart., 2020.

[18] J. Haxhibeqiri, E. De Poorter, I. Moerman, and J. Hoebeke, “A survey of
LoRaWAN for IoT: From technology to application,” Sensors, vol. 18,
no. 11, p. 3995, Nov. 2018.

[19] A. Gamage, J. C. Liando, C. Gu, R. Tan, and M. Li, “LMAC: Efficient
carrier-sense multiple access for lora,” in Proc. 26th Annu. Int. Conf.
Mobile Comput. Netw. (MobiCom), to be published.

[20] N. Blenn and F. A. Kuipers, “LoRaWAN in the wild: Measurements
from the things network,” CoRR, 2017, pp. 1–9.

[21] A. Carlsson, I. Kuzminykh, R. Franksson, and A. Liljegren, “Measuring
a LoRa network: Performance, possibilities and limitations,” in Proc.
18th Int. Conf. NEWAN, 11th Conf. ruSMART, Aug. 2018, pp. 116–128.

[22] U. Noreen, A. Bounceur, and L. Clavier, “A study of LoRa low power
and wide area network technology,” in Proc. Int. Conf. Adv. Technol.
Signal Image Process. (ATSIP), Oct. 2017, pp. 1–6.

[23] A. Lavric and V. Popa, “A LoRaWAN: Long range wide area net-
works study,” in Proc. Int. Conf. Electromech. Power Syst. (SIELMEN),
Oct. 2017, pp. 417–420.

[24] T. Bouguera, J.-F. Diouris, J.-J. Chaillout, R. Jaouadi, and G. Andrieux,
“Energy consumption model for sensor nodes based on LoRa and
LoRaWAN,” Sensors, vol. 18, no. 7, p. 2104, Jun. 2018.

Authorized licensed use limited to: RMIT University Library. Downloaded on December 16,2020 at 12:05:45 UTC from IEEE Xplore. Restrictions apply.

2586 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 6, DECEMBER 2020

[25] W. Gao, W. Du, Z. Zhao, G. Min, and M. Singhal, “Towards energy-
fairness in LoRa networks,” in Proc. IEEE 39th Int. Conf. Distrib.
Comput. Syst. (ICDCS), Jul. 2019.

[26] X. Xia, Y. Zheng, and T. Gu, “LiteNap: Downclocking LoRa recep-
tion,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM), Jul. 2020,
pp. 2321–2330.

[27] J. Petajajarvi, K. Mikhaylov, A. Roivainen, T. Hanninen, and
M. Pettissalo, “On the coverage of LPWANs: Range evaluation and
channel attenuation model for LoRa technology,” in Proc. 14th Int. Conf.
ITS Telecommun. (ITST), Dec. 2015, pp. 55–59.

[28] J. Petäjäjärvi, K. Mikhaylov, M. Pettissalo, J. Janhunen, and J. Iinatti,
“Performance of a low-power wide-area network based on LoRa tech-
nology: Doppler robustness, scalability, and coverage,” Int. J. Distrib.
Sensor Netw., vol. 13, no. 3, pp. 1–16, Mar. 2017.

[29] N. Hou and Y. Zheng, “Cloaklora: A covert channel over LoRa phy,” in
Proc. 28th IEEE Int. Conf. Netw. Protocols (ICNP), Oct. 2020, pp. 1–9.

[30] B. Reynders, W. Meert, and S. Pollin, “Power and spreading factor
control in low power wide area networks,” in Proc. IEEE Int. Conf.
Commun. (ICC), May 2017, pp. 1–6.

[31] J.-T. Lim and Y. Han, “Spreading factor allocation for massive con-
nectivity in LoRa systems,” IEEE Commun. Lett., vol. 22, no. 4,
pp. 800–803, Apr. 2018.

[32] K. Abdelfadeel, V. Cionca, and D. Pesch, “Poster: A fair adaptive data
rate algorithm for LoRaWAN,” in Proc. Int. Conf. Embedded Wireless
Syst. Netw. (EWSN), 2018, pp. 169–170.

[33] P. Robyns, P. Quax, W. Lamotte, and W. Thenaers, “A multi-channel
software decoder for the LoRa modulation scheme,” in Proc. 3rd Int.
Conf. Internet Things, Big Data Secur. (IoTBDS), 2018, pp. 1–11.

[34] F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez,
J. Melia-Segui, and T. Watteyne, “Understanding the limits of
LoRaWAN,” IEEE Commun. Mag., vol. 55, no. 9, pp. 34–40, Sep. 2017.

[35] D. Bankov, E. Khorov, and A. Lyakhov, “On the limits of LoRaWAN
channel access,” in Proc. Int. Conf. Eng. Telecommun. (EnT), Nov. 2016,
pp. 10–14.

[36] M. C. Bor, U. Roedig, T. Voigt, and J. M. Alonso, “Do LoRa low-power
wide-area networks scale?” in Proc. 19th ACM Int. Conf. Modeling,
Anal. Simulation Wireless Mobile Syst. (MSWiM), Nov. 2016, pp. 59–67.

[37] J. Haxhibeqiri, F. Van den Abeele, I. Moerman, and J. Hoebeke, “LoRa
scalability: A simulation model based on interference measurements,”
Sensors, vol. 17, no. 6, p. 1193, May 2017.

[38] B. Reynders, Q. Wang, P. Tuset-Peiro, X. Vilajosana, and S. Pollin,
“Improving reliability and scalability of LoRaWANs through lightweight
scheduling,” IEEE Internet Things J., vol. 5, no. 3, pp. 1830–1842,
Jun. 2018.

[39] C. Pham, “Investigating and experimenting CSMA channel access
mechanisms for LoRa IoT networks,” in Proc. IEEE Wireless Commun.
Netw. Conf. (WCNC), Apr. 2018, pp. 1–6.

[40] X. Xia, Y. Zheng, and T. Gu, “FTrack: Parallel decoding for LoRa trans-
missions,” in Proc. 17th Conf. Embedded Netw. Sensor Syst. (SenSys),
Nov. 2019, pp. 192–204.

[41] S. Gollakota and D. Katabi, “Zigzag decoding: Combating hidden
terminals in wireless networks,” in Proc. ACM SIGCOMM Conf. Data
Commun. (SIGCOMM), Aug. 2008, pp. 159–170.

[42] J. Ou, M. Li, and Y. Zheng, “Come and be served: Parallel decoding for
cots RFID tags,” in Proc. 21st Annu. Int. Conf. Mobile Comput. Netw.
(MobiCom), Sep. 2015, pp. 500–511.

[43] P. Hu, P. Zhang, and D. Ganesan, “Laissez-faire: Fully asymmetric
backscatter communication,” in Proc. ACM Conf. Special Interest Group
Data Commun. (SIGCOMM), Aug. 2015, pp. 255–267.

[44] M. Jin, Y. He, X. Meng, Y. Zheng, D. Fang, and X. Chen, “Flip-
tracer: Practical parallel decoding for backscatter communication,” in
Proc. 23rd Annu. Int. Conf. Mobile Comput. Netw. (MobiCom), 2017,
pp. 275–287.

[45] M. Jin, Y. He, X. Meng, D. Fang, and X. Chen, “Parallel backscatter in
the wild: When burstiness and randomness play with you,” in Proc. 24th
Annu. Int. Conf. Mobile Comput. Netw. (MobiCom), 2018, pp. 471–485.

[46] M. Hessar, A. Najafi, and S. Gollakota, “NetScatter: Enabling large-
scale backscatter networks,” in Proc. 16th USENIX Symp. Netw. Syst.
Design Implement. (NSDI), 2019, pp. 271–284.

[47] X. Wang, L. Kong, L. He, and G. Chen, “MLoRa: A multi-packet
reception protocol in LoRa networks,” in Proc. IEEE 27th Int. Conf.
Netw. Protocols (ICNP), Oct. 2019, pp. 1–11.

[48] S. Tong, J. Wang, and Y. Liu, “Combating packet collisions using non-
stationary signal scaling in LPWANs,” in Proc. 18th Int. Conf. Mobile
Syst., Appl., Services (MobiSys), Jun. 2020, pp. 234–246.

[49] N. Anand, R. E. Guerra, and E. W. Knightly, “The case for UHF-
band MU-MIMO,” in Proc. 20th Annu. Int. Conf. Mobile Comput. Netw.
(MobiCom), 2014, pp. 29–40.

[50] H. S. Rahul, S. Kumar, and D. Katabi, “JMB: Scaling wireless capacity
with user demands,” in Proc. ACM SIGCOMM Conf. Appl., Technol.,
Archit., Protocols Comput. Commun., 2012, pp. 235–246.

[51] Y. Xie, J. Xiong, M. Li, and K. Jamieson, “mD-track: Leveraging multi-
dimensionality for passive indoor Wi-Fi tracking,” in Proc. MobiCom,
2019, pp. 8:1–8:16.

[52] A. Rowe, D. Goel, and R. Rajkumar, “FireFly mosaic: A vision-enabled
wireless sensor networking system,” in Proc. 28th IEEE Int. Real-Time
Syst. Symp. (RTSS), Dec. 2007, pp. 459–468.

[53] X. Xia et al., “Surviving screen-off battery through out-of-band Wi-
Fi coordination,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM),
May 2017, pp. 1–9.

[54] K. Jamieson and H. Balakrishnan, “PPR: Partial packet recovery for
wireless networks,” in Proc. Conf. Appl., Technol., Archit., Protocols
Comput. Commun. (SIGCOMM), 2007, pp. 409–420.

[55] Y. Wu, G. Zhou, and J. A. Stankovic, “ACR: Active collision recovery in
dense wireless sensor networks,” in Proc. IEEE INFOCOM, Mar. 2010,
pp. 1–9.

[56] W. Du, J. C. Liando, H. Zhang, and M. Li, “When pipelines meet
fountain: Fast data dissemination in wireless sensor networks,” in Proc.
ACM Conf. Embedded Netw. Sensor Syst., 2015, pp. 365–378.

[57] Z. Li, W. Du, Y. Zheng, M. Li, and D. Wu, “From rateless to hopless,”
IEEE/ACM Trans. Netw., vol. 25, no. 1, pp. 69–82, Feb. 2017.

[58] D. J. Goodman and A. A. M. Saleh, “The near/far effect in local ALOHA
radio communications,” IEEE Trans. Veh. Technol., vol. VT-36, no. 1,
pp. 19–27, Feb. 1987.

[59] D. Halperin, T. Anderson, and D. Wetherall, “Taking the sting out of
carrier sense: Interference cancellation for wireless LANs,” in Proc. 14th
ACM Int. Conf. Mobile Comput. Netw. (MobiCom), 2008, pp. 339–350.

Xianjin Xia (Member, IEEE) received the B.S.,
M.Sc., and Ph.D. degrees in computer science
from Northwestern Polytechnical University, Xi’an,
China, in 2010, 2013, and 2018, respectively. He is
currently a Post-Doctoral Research Fellow with the
Department of Computing, The Hong Kong Poly-
technic University. His research interests include
low-power wide-area networks, localization, mobile
computing, and so on. He is a member of the ACM.

Yuanqing Zheng (Member, IEEE) received the
B.S. degree in electrical engineering and the M.E.
degree in communication and information system
from Beijing Normal University, Beijing, China,
in 2007 and 2010, respectively, and the Ph.D. degree
from the School of Computer Engineering, Nanyang
Technological University, in 2014. He is currently an
Associate Professor with the Department of Com-
puting, The Hong Kong Polytechnic University. His
research interest includes wireless networking and
mobile computing, acoustic and RF sensing, and the

Internet of Things (IoT). He is a member of the ACM.

Tao Gu (Senior Member, IEEE) received the bach-
elor’s degree from the Huazhong University of
Science and Technology, the M.Sc. degree from
Nanyang Technological University, Singapore, and
the Ph.D. degree in computer science from the
National University of Singapore. He is currently an
Associate Professor with the School of Computer
Science and IT, RMIT University, Australia. His
research interests include mobile computing, ubiq-
uitous computing, wireless sensor networks, sensor
data analytics, and the Internet of Things. He is a
member of the ACM.

Authorized licensed use limited to: RMIT University Library. Downloaded on December 16,2020 at 12:05:45 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

