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Abstract—Traditional fingerprint based localization techniques mainly
rely on infrastructure support such as GSM, Wi-Fi or GPS. They work
by war-driving the entire indoor spaces which is both time-consuming
and labor-intensive. With recent advances of smartphone and sensing
technologies, sensor-assisted localization techniques leveraging on mo-
bile phone sensing are emerging. However, sensors are inherently noisy,
making this technique challenging for real deployment. In this paper, we
present F-Loc, a novel floor localization system to identify the floor level
in a multi-floor building on which a mobile user is located. It does not
need to war-drive the entire building. Leveraging on crowdsourcing and
mobile phone sensing, we collect users’ Wi-Fi traces and accelerometer
readings. Through advanced clustering and cluster manipulating tech-
niques, we are able to build the Wi-Fi map of the entire building, which
can then be used for floor localization. We conduct both simulation and
field studies to demonstrate the accuracy, scalability, and robustness of
F-Loc. Our field study in a 10-floor building shows that F-Loc achieves
an accuracy of over 98%.

Keywords—Mobile Phone Localization, Floor Localization, Wi-Fi, Ac-
celerometer.

1 INTRODUCTION

With the increasing pervasiveness of mobile phones, we
have experienced an explosive growth of location based
applications (LBAs) [4], [8], in which the location of a
mobile user has to be known. In a multi-floor building
environment, knowing the floor level of a mobile user is
particularly useful for a variety of LBAs. For example,
in a fire emergency, locating the floor level of a user
quickly and accurately is essential for minimizing delays
in emergency response, which is critical to life saving. In
a shopping mall or an airport environment, a navigation
service such as Google maps can prompt a mobile user
with the floor map by knowing her/his current floor
level. This is known as the floor localization problem,
which we aim to determine the floor level in a multi-
floor building on which a mobile user is located.

Indoor localization has been well studied in the lit-
erature. The inability of GPS indoors has led to ap-
proaches based on alternative signals. The fingerprint-
based approach leveraging on Wi-Fi or GSM appears
most. SkyLoc [15] operates on GSM fingerprints, but is
not good enough to identify the correct floor level. It
only guarantees a floor location within three adjacent
levels. RADAR [3] and PlaceLab [13] use Wi-Fi and

GSM signals. The idea is to war-drive the entire building
in order to create a radio map between a physical
location and its Wi-Fi/GSM fingerprints measured from
nearby access points and base stations. Users can then
pinpoint their locations by comparing their measured
signal strength in the map. This approach requires a full
Wi-Fi coverage (i.e., at any point, the signals of at least
one Wi-Fi access point must be present), which may not
be realistic in real worlds. However, the main drawback
is that war-driving is both time-consuming and labor-
intensive for large indoor areas. A cheap and scalable
solution is desirable.

The recent advance of sensors embedded in smart-
phones has motivated a novel sensor-assisted localiza-
tion approach [6], [7]. The accelerometer and compass
can be used to measure the walking distance and di-
rection of a mobile user. The user’s location can be
easily obtained by comparing the user moving trace
and the map. However, sensors such as accelerometer
and compass are highly noisy [12]. The user moving
trace will increasingly diverge from the actual trace.
Hence it requires careful calibration through certain fixed
beacons. Crowdsourcing has been also used to reduce
the war-driving effort [2], [17]. These works rely on
detecting user activities using sensors such as accelerom-
eter. However, to ensure reliable detection, they typically
require user-specific training which is costly, and the
high sampling frequency which may drain the battery
power quickly. In addition, the detection may be often
interrupted by users making or receiving phone calls.
A new fingerprinting approach based on magnetometer
sensor on smartphones has been proposed [5], [11] re-
cently. The abnormalities of the magnetic field can be
used as fingerprints for indoor localization. While this
approach shares a similar idea as Wi-Fi fingerprinting,
but they need even more war-driving cost.

With the recent barometer sensor embedded in many
android phones and the coming iPhone 6, it opens a
good opportunity for floor localization. However, ex-
isting barometer sensors are not perfect, the error of a
reading for the same floor level typically varies from
one to three levels. Furthermore, the readings are highly
affected by the surrounding environments such as tem-
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perature and humidity, which may change from time to
time. Muralidharan’s most recent paper [14] study on
the properties of mobile-embedded barometers across a
number of buildings. He concludes that it is difficult to
use the barometer to determine the actual floor that a
user is on.

In this paper, we propose a novel Floor Localization
approach (F-Loc) based on Wi-Fi fingerprinting and
mobile phone sensing. While F-Loc leverages on Wi-
Fi signal strength to build the fingerprinting map, it
requires neither war-driving nor prior knowledge of the
building. In addition, unlike RADAR [3] and PlaceLab
[13], F-Loc does not require a full Wi-Fi coverage, making
F-Loc more practical for real usage. First, since taking
elevators is the most common way to travel in a multi-
floor building and it shows a very clear pattern on
acceleration sensor readings, we first recognize these
activities using acceleration data. We then collect the
Wi-Fi samples at each entrance and exit areas of an
elevator, and cluster these Wi-Fi samples. By knowing
floor change, we are able to order these clusters from
the lowest to the highest, and each of them corresponds
to a certain floor level. Finally, we expand these Wi-Fi
clusters to include Wi-Fi samples for each floor using
an expanding algorithm. To use F-Loc, a user scans a
few Wi-Fi samples and queries the Wi-Fi map to get the
current floor level which best matches these samples. In
summary, we make following contributions:

1) We propose a novel floor localization approach to
identify the floor level on which a mobile user is lo-
cated. Compared to traditional Wi-Fi fingerprinting
based approaches [3], [18], F-Loc requires neither
war-drive nor the prior knowledge of the building,
and the minimized need of infrastructure support
making our approach more scalable.

2) By clustering Wi-Fi segments, F-Loc is able to work
in low Wi-Fi coverage situations, which is more re-
alistic as compared to other similar approaches. We
only detect user taking elevators using acceleration
data, which is more lightweight and efficient than
other crowdsourcing based approaches [2], [17].

3) We conduct both extensive simulations and a field
study to analyze the performance of F-Loc. The sim-
ulation use real Wi-Fi data from 3 different buildings
and showing that our approach can get an accuracy
of more than 95% to locate user in ± 0 level and 98%
in ±1 level. The field study includes 20 volunteers
for 5 days shows that F-Loc can get an accuracy of
98% in ± 0 level.

The rest of this paper is organized as follows. Section 2
is the overview, followed by the detailed design. Section
3 describes our evaluation. Section 4 discusses the related
work, and finally, Section 5 concludes the paper.

2 SYSTEM DESIGN

We give an overview of F-Loc in this section, as shown
in Fig. 1. The system operates in two phases. In the
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Fig. 1. Overview

first phase, F-Loc builds the Wi-Fi map automatically,
as illustrated by the solid line arrows in Fig. 1. When
a user travels up and down in the building, the mobile
client software collects acceleration data and Wi-Fi sig-
nal strength. The activity recognition algorithm which
runs on the mobile phone recognizes the activities of
taking elevators up and down. The recognized activities,
together with the Wi-Fi signals, will be uploaded to
the cloud server as a user trace. The server runs the
algorithms to find the total floor levels and generate
the Wi-Fi map. The algorithms run incrementally. With
enough traces collected, F-Loc is able to obtain the full
Wi-Fi map for the entire building.

To recognize the activities of taking elevators, we use
acceleration data. For each taking elevator activity, based
on the time detected when getting in and out, we obtain
two groups of Wi-Fi samples, one at the entrance and the
other at the exit area of the elevator. We now know which
group is on a higher floor based on the recognition result.
Using a clustering algorithm, we cluster the groups to
generate a larger cluster for each floor, which consists
of all the samples at the entrance or exit area near the
elevator. We then sort all the clusters by the order of the
groups in the clusters. The ordered clusters will have a
one-to-one correspondence to the floor levels. Since each
cluster has been mapped into a unique floor level, we
obtain the Wi-Fi map at the entrance and exit area of
the elevator for each floor level. In order to generate
the full Wi-Fi map which covers the entire building,
we design an algorithm to gradually expand the cluster
using the Wi-Fi trace collected from users. The algorithm
runs incrementally with new user traces added. With
enough user traces, F-Loc is able to generate the full Wi-
Fi map which covers the entire areas for each floor. It is
worth knowing that the first phase to generate the map
is once for all.

In the second phase, as illustrated by the dotted line
arrows in Fig. 1, a user scans the Wi-Fi signal strength
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Fig. 2. Floor-change detection

samples nearby, and queries the cloud server by these
samples. Upon receiving the query samples, the cloud
server runs the algorithm to find the best match and
replies the user with the current floor level.

2.1 Floor-change Detection

Figure. 2(a) shows the acceleration readings when a
person takes the elevator up and down by two floor
levels. The acceleration readings show clear signatures
when taking the elevator. Each travel process consists of
three stages - acceleration, moving at a constant speed,
and deceleration. The acceleration readings at the second
stage keep at about 9.8 due to the gravity. For raw
acceleration readings, we first filter the noise, and then
smooth the values with a reasonable window size. We
then extract the first derivative of the readings and the
resulting curve is shown in Fig. 2(b) (elevator going
down). We can see from the figure that the change of
acceleration readings is transformed to a trough and
crest pair when accelerating and a crest and trough pair
when decelerating.

To detect the floor change activity, we calculate the
area size of each crest or trough. If it meets certain
conditions, an elevator change-floor activity is detected.
In detail, each area is defined as a continuous and closed
region formed by the x axis and the curve. The region
is located below or upon the x axis, which should meet
the following conditions: 1) For elevator going down,
the order is trough-crest and crest-trough, in contrast
with going up, 2) Lasted time between 5 and 60 seconds,
3) For all 4 areas, area size are the same and bigger
than a threshold. After recognition, we define a detected
activity of taking elevator as A = {st, et, dir}, where st
and et is the start and stop time of the elevator, and dir
is the direction of the elevator. The user’s moving trace
can then be defined as MTrace =< A, . . . >. The activity
detection is done in the mobile phone and the result
MTrace is stored and uploaded to the cloud server.
We conducted experiments with two users using three
different smartphones under real-life situations in three
different buildings. Figure 2(c) shows the accuracy of
detecting floor changes is about 94%.

2.2 Wi-Fi Sample Groups

Other than performing activity recognition, a mobile
client also scans and samples the Wi-Fi signal strength
every three seconds. The structure of a Wi-Fi sample P
is represented by P =< t, {< ID,RSS > . . .} >, where
P is the Wi-Fi sample, t is the time performing the scan,
ID is the identity of a Wi-Fi access point, and RSS is
the received signal strength of Wi-Fi. Each Wi-Fi sample
contains a series of the < ID,RSS > pairs, depending
on the number of Wi-Fi access points scanned. The
consecutive Wi-Fi samples ordered by time form the Wi-
Fi trace, which is represented by WTrace =< P, . . . >.
Figure 3(a) shows a user’s Wi-Fi trace in the building,
and the dotted lines show the Wi-Fi trace, each dot rep-
resents a Wi-Fi sample. The mobile client then uploads
the results of activity recognition (i.e., MTrace) and the
Wi-Fi trace (i.e., WTrace) to the cloud server.

On receiving the traces, the server obtains many pairs
of Wi-Fi sample groups from WTrace according to the
detected activities in MTrace. For example, given the
following WTrace of user a,

WTa =< P0, P1, . . . , P32, P33, P34, . . . , P100, P101 >

and MTrace MTa =< A1, A2, A3 >. The elevator
stopped twice during user a’s travel to the destination
floor (note that we know this by examining the time
interval between A1 and A2, A2 and A3, respectively).
So the time he enters into and exits from the eleva-
tor is A1.st and A3.et, respectively. Based on the time
stamps of the traces, we found that P32.t < A1.st <
P33.t and P34.t < A3.et < P35.t. We can infer that
LowerGroup = {P28, P29, P30, P31, P32} is scanned when
the user is waiting for elevator, and UpperGroup =
{P36, P37, P38, P39, P40} is scanned after the user exits
from the elevator, and UpperGroup is on a higher floor
than LowerGroup, as shown in Fig. 3(a). In F-Loc, we
obtain five Wi-Fi samples at each entrance/exit area
for each taking elevator activity, which are represent-
ed by the LowerGroup and UpperGoup, respectively,
when elevator is going up and vise versa. So we get
an ordered pair Pair =< LowerGroup, UpperGroup >
where LowerGroup is the group on the lower floor and
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UpperGroup is the one on the higher floor.

2.3 Clustering and Pruning

With more users involved, we obtain a series of ordered
Wi-Fi group pairs. Each pair contains two groups of Wi-
Fi samples scanned at the entrance/exist area of the ele-
vator, as shown in Fig. 3(b). For the same entrance area,
these Wi-Fi samples will have similar signal strength
from nearby Wi-Fi access points. We then cluster these
groups so that the Wi-Fi groups belonging to the same
entrance/exit area will be put into the same cluster.
Using this low and up relation among groups we can
order these clusters, as shown in Fig. 3(c). We show the
details below.

We use the hierarchical clustering algorithm called
CURE [9]. Initially, each Wi-Fi group is a cluster, and
in each step it merges two closest clusters until a certain
number of clusters are formed. The CURE algorithm is
less sensitive to outliers, and it fits in our situation where
there may exist outliers. However, the CURE algorithm
cannot be directly applied because the resulting number
of clusters f is unknown. In F-Loc, we adapt the CURE
algorithm and focus on designing the distance function
and determining when to stop clustering.

In the design of the distance function, we use the
Euclidean distance to calculate the distance between two
Wi-Fi samples. Note that for each Wi-Fi sample at the en-
trance/exit area of an elevator, there may exist different
Wi-Fi access points. The distance function between Pi

and Pj is computed as

Distance(Pi, Pj) =

√√√√ n∑
k=1

(Pi.IDk − Pj .IDk)2

where Pi.IDk is the RSS value of IDk, and IDk repre-
sents the ID of a Wi-Fi access point.

The computation of the Euclidean distance follows the
two rules below:

Rule 1: If a Wi-Fi access point IDj present in Pj , but
not in Pi, we add IDj to Pi, and set its RSS value to

−100, meaning that the received signal strength of IDj

is minimum in Pi.

Formally, given that 1) L1 : IDj /∈ Pi; 2) L2 : IDj ∈ Pj ;
and 3) L3 : Pi.IDj = −100. Rule.1 is then formulated as
follows:

R1 : L1 ∧ L2 → L3.

Rule 2: If the groups of the two Wi-Fi samples come
from an ordered pair, meaning the two samples are
scanned from two different floors, the distance of the
two samples are set to infinity.

Formally, given that 1) L4 : ∃pair =< gi, gj >; 2) L5 :
Pj ∈ gj ; 3) L6 : Pi ∈ gi; and 4) L7 : Pi ∈ gi. Rule.2 is then
formulated as follows:

R2 : L4 ∧ L5 ∧ L6 → L7.

During clustering, we have two observations. First,
if after we merge two clusters into a new cluster, and
if exists an ordered pair whose groups are all in this
new cluster, we reach a contradiction and we should not
merge these two clusters. In addition, all clusters from
the elevator area on the same floor should contain Wi-
Fi signals from similar access points that appear most
often. So if two clusters contain signals from different
access points, we should not merge them. Based on the
observations, we have the following rules.

Rule 3: For an ordered pair, the distance of cluster ci
and cj is set to infinity if the following holds.
LowerGroup ∈ ci ∧ UpperGroup ∈ cj .

Rule 4: If in two clusters, there are different access
points appeared often, the distance of the two clusters
is set to infinity.

The above rules have been used in the clustering
algorithm. The algorithm first finds the nearest two
clusters, then check the two clusters using the above
rules, after this, if their distance were not set to infinity, it
will merge the two clusters. It iterates until the distance
of the nearest two clusters is infinity, and then output
the result clusters.
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Fig. 4. Build the Wi-Fi map

After clustering, ideally we get f clusters whereas
each cluster corresponds to a floor level of the building.
However, in reality, we may obtain more than f clusters
due to noise. Hence, we perform cluster pruning to
remove noisy clusters. First we filter out the smallest
clusters. We then build a directed acyclic graph (DAG)
of clusters, and find the longest path in the DAG which
has an one-to-one mapping to the floor levels. The details
are illustrated as follows.

We first order the clusters using the following rule.
Given that 1) L8 : ∃gi ∈ Cm; 2) L9 : ∃gj ∈ Cn; 3) L10 :
∃pairi =< gi, gj >; and 4) L11: Cm is lower than Cn .
where gi and gj are two Wi-Fi sample groups, Cm and
Cn are two clusters, and pi is an ordered Wi-Fi group
pair. The rule is then formulated as follows.

R : L8 ∧ L9 ∧ L10 → L11.

In reality, due to noise, there may exist ordered pairs
showing that Cm is lower or higher than Cn at the
same time. In this situation, we vote for majority to
determine which one is lower. By ordering clusters, we
are now ready to build a weakly connected directed
acyclic graph, in which each vertex represents a cluster
and each directed edge represents the cluster order,
pointing from a lower level to a higher level. Finally, we
choose the longest path in the DAG, and the vertices
in this path have a one-to-one correspondence to the
floor levels. Note that if there are more than one longest
paths, we can merge them based on the following rule.
Since the clusters in the longest path have a one-to-one
correspondence to the floor levels, the clusters which
correspond to the same floor level from different paths
can be merged. As a result, we obtain a unique, longest
path. We now finished building the Wi-Fi map which
contains the Wi-Fi signatures in the entrance/exit area
of the elevator on each floor. Note that, if we build
more than one weakly connected DAG, meaning that the
building has more than one elevator area, we handle the
graphs independently in the same way.

2.4 Inferring Wi-Fi Ordered Pairs
As described in Section 2.3, we use ordered Wi-Fi group
pairs to determine the order of the clusters (i.e., which

one is higher or lower). The more ordered pairs we
collect, the faster the ordered clusters we obtain. We ob-
serve from MTrace that the activities of taking elevators
by different users have some overlaps. These overlaps
imply that some users appear in the same elevator (i.e.,
they encounter each other) for a period of time. Based
on this observation, we can interrelate the activity traces
of different users, and use their temporal relation to sort
the Wi-Fi groups. In this way, we are able to infer and
obtain more ordered pairs, as shown in Fig. 4(a).

2.5 Cluster Expanding

After clustering and pruning, we get one cluster for each
floor level. Each cluster contains the Wi-Fi signatures
at the extrance/exit area of the elevator on each floor.
We now expand each elevator-area cluster (Ci) to its
corresponding floor-level cluster (Fi) which consists of
the Wi-Fi signatures for the entire area of floor i using
the Wi-Fi traces we collected, as shown in Fig. 4(b). The
main idea is to gradually expand each Ci, by adding a
few Wi-Fi samples following the samples of the groups
(i.e., all UpperGroup and LowerGroup in Ci) in the Wi-Fi
segments. We add five samples each time until we find
these samples do not belong to floor i.

The details of cluster expanding work as follows. We
expand all the LowerGroup and UpperGroup of each Ci

gradually. In each step, we expand all the LowerGroup
and UpperGroup by a sliding window. The window is set
to 5 Wi-Fi samples. The expanding continues for all the
samples until the Wi-Fi samples chunked by a window
do not belong to this floor (i.e., Ci). First, for each cluster
Ci, we generate a temp floor cluster EFi, as shown in
Fig. 4(b). EFi contains all the Wi-Fi segments in floor
i. We then get the Wi-Fi samples by a sliding window.
For each window of Wi-Fi samples, we compute the
distance between these Wi-Fi samples to each EFi, and
find the nearest cluster EF . If these Wi-Fi samples and
cluster EF belong to the same floor, the expanding
process continues, otherwise it stops. The main idea of
the algorithm of finding the nearest cluster is that, for
all Wi-Fi access points in the window of Wi-Fi samples,
find a cluster EFi they appear most frequently, the EFi
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is then the nearest cluster. In summary, we expand each
elevator-area cluster Ci to floor-level clusters Fi, and
finally, we build the Wi-Fi map for the entire building.
With more users involved in data collection, the coverage
of the Wi-Fi map gets increased until the full coverage.
The Wi-Fi map will be stored in the cloud server for
users to access the floor localization service.

2.6 Accessing F-Loc

To access F-Loc, a mobile user travelling in the building
first scans a few Wi-Fi samples (e.g., k samples), and
sends them to the cloud server. The server runs the
findMyFloor algorithm, and replies the user with the
floor level. It uses k Wi-Fi samples to find the nearest
floor cluster Fi, and the floor level of Fi is the result.
The choose of k depends on the Wi-Fi coverage in the
building. Low Wi-Fi coverage needs more samples, and
high Wi-Fi coverage needs less samples. In our studies,
described in Section. 3, k = 3 is a reasonable setting for
the building where we ran our field trial.

3 EVALUATION

3.1 Simulation Methodology

We design a simulator to evaluate the efficiency and
scalability of F-Loc. We use real Wi-Fi data by collecting
Wi-Fi signal strength from three real-world buildings
(i.e., a shopping mall, an office building, and a hotel).
Figure 4(c) describes the detailed information of each
building, and Wi-Fi signal strength samples collected.
For each building, we have three users and three dif-
ferent phones, we collect Wi-Fi samples for each floor,
and divide the samples into two sets—one for samples
at the elevator entrance/exit areas, and the other for
samples at all other areas of the floor. We collect a
Wi-Fi signal strength sample every three seconds. For
each entrance/exit area of an elevator, we select five
consecutive samples. The number of Wi-Fi samples can
be adjustable according to the size of the entrance/exit
of an elevator. Bigger entrance/exit area requires more
samples. Our experiments show that taking five samples
at each entrance/exit area works well in reality. These
Wi-Fi sample sets will be used in our simulation.

The simulator models the process of taking the eleva-
tor up and down in a multi-floor building. It works as
follows. The simulation process is divided into cycles,
and each cycle simulates the process that the elevator
goes up from the ground floor, with people entering and
leaving the elevator from or to any levels, until the ele-
vator is empty. Based on the elevator taking simulation
results, we can get the ordered pairs of LowerGroup
and UpperGroup used for clustering and ordering. In
real situations, the activity recognition algorithm may
not work perfectly. To make the simulation process
more realistic, we add more errors to the floor change
recognition process.

The parameters of the simulator are listed as follows.

1) miss detection: an activity of taking the elevator
occurs, but it is not detected. 2) not exist: an activity
of taking the elevator is detected, but actually it is not
occurred. 3) wrong detection: an activity of taking the
elevator is detected wrongly (e.g., activity direction, start
and end time). 4) Wi-Fi coverage: the average number of
Wi-Fi access points obtained in each scan. 5) user sample
size: the number of times users taking the elevator. A
user sample is defined when a user gets in and out of
the elevator. The performance metrics used in the paper
are summarized as follows. 1) Floor accuracy: it is defined
as an accuracy of detecting the correct floor level for a
mobile user, and it is measured by ± 0 level, ± 1 level,
or ±2 levels. 2) Number of floors detected: it is defined as
the number of floor levels detected by F-Loc after the
clustering and pruning.

3.2 Simulation Results
Figures 5(a) and 5(b) show F-Loc achieves floor accuracy
of about 95% in ± 0 level, 98% in ± 1 level, and 100%
in ±2 levels with 400 user samples in a 5-floor building,
and 800 user samples in a 10-floor building. Figure 5(d)
shows an accuracy of 90%, 96%, and 100%, respectively,
with 1500 user samples in a 20-floor building. Figure
5(a), 5(b) and 5(c) show the floor accuracy in the shopping
mall and the office building when the Wi-Fi coverage is 4
and 2. From the real Wi-Fi data we collected, the average
Wi-Fi coverage for both the shopping mall and the office
building is 4. To test F-Loc under low Wi-Fi coverage
situations, we reduce the Wi-Fi coverage by to randomly
remove some access points in the Wi-Fi samples until
the average Wi-Fi coverage becomes 3 and 2.

Figures 5(e) and 5(f) show that lower Wi-Fi coverage
lead to lower accuracy, but F-Loc still achieves an ac-
curacy of more than 85% in ± 0 level even the average
Wi-Fi coverage is only 2. Figures 5(g), 5(h), and 5(i) show
the floor accuracy with different settings of wrong detection
in a 10-floor building. Figure 5(g) shows the accuracy in
± 0 level with a wrong detection rate of 0%, 5%, 10%, 15%,
50%. Higher wrong detection rate leads to lower accuracy,
but F-Loc keeps high accuracy with wrong detection rate
lower than 15%.

Figure 5(j), 5(k), and 5(l) shows the correct number of
floors detected when the Wi-Fi map accuracy is higher than
75%. It demonstrates that the accuracy of F-Loc finding
the clusters with one-to-one mapping to the floors when
at least 75% samples in each floor cluster belongs to the
floor. Each figure shows the accuracy with different Wi-
Fi coverage settings. A higher accuracy of number of floors
detected implies a higher floor accuracy.

3.3 Field Study
To evaluate F-Loc under the real-world situations, we
conduct a field study which involves twenty users for
five days in a 10-floor building, the floor plan is show in
Fig. 6. They use their own smartphones (e.g., Samsung,
HTC, and Moto) which are used in their daily lives.
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(c) Floor accuracy in 10-floor office

with a Wi-Fi coverage of 2

0

0.2

0.4

0.6

0.8

1

0 400 800 1200

F
lo

o
r 

ac
cu

ra
cy

 

User sample size 

 Error = ±0 floor

 Error = ±1 floor

 Error = ±2 floor
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(f) Floor accuracy in 10-floor office
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(h) Floor accuracy of ±1 level
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(i) Floor accuracy of ±2 levels
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Fig. 5. Simulation results (parameter setting: right detection= 70%, miss detection=19%,wrong detection=10%, not exist = 1%)
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Each smartphone is equipped with an embedded 3-axis
accelerometer and the Wi-Fi connectivity. We conduct the
field study as follows. Each smartphone is installed with
the data collection software we design. Once started, this
software continuously collects acceleration readings at a
rate of 10 samples per second, and scans Wi-Fi signal
strength every 3 seconds. All the samples will be logged
in a data file. The software runs in the background so
that the users are still able to use their mobile phones as
usual. We do not give special instructions to control their
behaviors during the study, instead, all the users are told
to perform their daily routines. Since F-Loc runs in the
background, they are even not aware of the experiments
we intend to run. We collect the data for five days, and
use the data for the experiments, described as follows.

Figure 7 shows the floor accuracy of F-Loc using the

real data from our field study. We have in total 274 user
samples for the taking the elevator activity. To calculate
the accuracy, we randomly choose 195 user samples from
274 user samples as input to build the Wi-Fi map. We
also collect 200 new groups of Wi-Fi samples, each group
tagged with a floor level. The Wi-Fi map is used to locate
the floor of each group. This experiment runs over 100
times, and we obtain an average accuracy of 98.8% for
locating a user at ± 0 level with the user sample size
of 195. The result shows that F-Loc works well in real
situations with high accuracy. Note that we have only
20 users for 5 days. With more users involved, we can
get user samples much faster. For example, for a 10-floor
office building with 600 users, we can collect at least 600
samples in a day assuming everyone takes the elevator
at once a day. Compared to the result in the simulation,
the field study requires fewer user samples to achieve the
same accuracy. This is because we have a tight parameter
setting in the simulation.

4 RELATED WORK

Many fingerprint based techniques for indoor localiza-
tion have been proposed such as [3], [15], [18]. They
mainly rely on Wi-Fi signal strength, and they are ca-
pable of achieving a high accuracy in an indoor envi-
ronment. However, like RADAR [3] has to war-drive
the entire building in order to obtain the radio map.
War-driving is very time-consuming and labor-intensive.
SkyLoc [15] uses GSM fingerprints to locate a user’s floor
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Fig. 7. Accuracy of F-Loc in the 10 floor office building

level in a multi-floor building. They report an accuracy
of 73% for locating a user to the right floor, and 95%
within 2 floors. But the GSM signals vary significantly in
indoor environments, and the training process in SkyLoc
is time-consuming. It has a poor scalability since war-
driving and training are required for every building.
Several recent approaches [2], [17] use crowdsourcing to
construct the floor map for localization; however, they
need many energy-draining sensors and they require
complicate training to achieve good accuracy.

Muralidharan’s most recent paper [14] study on the
properties of mobile-embedded barometers across a
number of buildings. But failed to solve the problem of
using the barometer to determine the floor of a user. In
another typical solution proposed by Wang in [16]. They
track the user using barometer readings, but they need
to know the initial floor of the user and the height of
all floors. Furthermore, a miss or wrong detection of the
floor will cause serious errors in the latter localization.
Sensor-assisted localization methods [6], [7] have been
proposed, making use of embedded sensors available on
smartphones. These systems typically use accelerometer
and electronic compass. However, careful calibration is
needed from time to time due to the limitations of
the sensoring technology. Escort [6] leverages on fixed
beacons for calibration, and CompAcc [7] makes use of
possible walking paths extracted from Google Maps [1].
FTrack [10] detect user activities of changing floors, and
track their floor levels based on their initial locations.
It requires neither infrastructure nor training. The main
problem of this approach is that they cannot handle
some practical issues such as different user walking
patterns and a variety of ways to carry/use mobile
phones, which may affect the accuracy and limit the
feasibility. F-Loc detects user activities of changing floor
by elevator only, but it has no strict assumption of users
walking pattern or the ways to carry/use mobile phones.

5 CONCLUSION AND FUTURE WORK

This paper presents a novel, scalable floor localiza-
tion scheme. Leveraging on mobile phone sensing and
crowdsourcing, F-Loc requires neither any infrastructure
nor any prior knowledge of the building. Different from
similar approaches, F-Loc does not require war-driving,
and it works well in buildings with low Wi-Fi coverage.

F-loc do not rely on high accuracy of activity recognition,
making it more realistic for real-world deployment. We
collect real Wi-Fi data from three different buildings, and
conduct both simulation and field studies to demonstrate
the performance, scalability, and robustness of F-Loc.
For our future work, we will further improve F-Loc by
enhancing the clustering and pruning algorithms. We
also plan to offer F-Loc as a free service to Google’s play
store and the Apple store for public use, and test F-Loc
under real-life situations.
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