
Your Eyes Reveal Your Secrets: An Eye
Movement Based Password Inference

on Smartphone
Yao Wang, Wandong Cai, Tao Gu , Senior Member, IEEE, and Wei Shao

Abstract—The widespread use of smartphones has brought great convenience to our daily lives, while at the same time we have

been increasingly exposed to security threats. Keystroke security is essential to user privacy protection. In this paper, we present

GazeRevealer, a novel side-channel based keystroke inference framework to infer sensitive inputs on smartphone from video

recordings of victim’s eye patterns captured from smartphone front camera. We observe that eye movements typically follow the

keystrokes typing on the number-only soft keyboard during password input. By exploiting eye movement patterns, we are able to infer

the passwords being entered. We propose a novel algorithm to extract sensitive eye images from video streams, and classify these

images with Support Vector Classification. We also propose a novel classification enhancement algorithm to further improve

classification accuracy. Compared with prior keystroke detection approaches, GazeRevealer does not require any external auxiliary

devices, and it only relies on smartphone front camera. We evaluate the performance of GazeRevealer on several smartphones under

different real-life usage scenarios. The results show that GazeRevealer achieves an inference rate of 77.89 percent for single key

number and an inference rate of 84.38 percent for 6-digit password in the ideal case.

Index Terms—Keystroke inference, gaze estimation, mobile security

Ç

1 INTRODUCTION

MOBILE payment has become a prevalent mode for
online transaction and personal financial manage-

ment. Various security risks arise in our daily life from the
rapid development of mobile and ubiquitous computing
applications. Among them, keyboard privacy presents the
fundamental risk in mobile payment. The mobile payment
system typically requires users to complete privacy-sensitive
input with keyboard on their mobile devices such as bank
card number, security code, and password. As a result,
attackers can typically launch keystroke eavesdropping to
reveal personal information frommobile users.

Leveraging side-channel attacks, keystrokes on traditional
physical keyboards can be inferred through Trojan applica-
tions (e.g., keyloggers). Typical approaches include electro-
magnetic emanation based [1], acoustics signal based [2], [3],
and video based [4]. However, inmobile scenarios, user inter-
action with smartphones has been changed. The popularity
of virtual soft keyboard on smartphones eliminates the side-
channel emanations (i.e., electromagnetic and acoustic sig-
nals) from physical keyboard. As a result, attackers cannot
leverage these signals to deduce keystrokes anymore.

Besides, app permission restriction policies in smartphone
operating systems restrain apps from intercepting key-
strokes. Trojan applications cannot run directly on smart-
phones to log keystrokes. Traditional approaches thereby
face increasing challenges with smartphones. Recently, sev-
eral smartphone keystroke inference attack approaches have
been proposed. They essentially resemble the traditional
approach, such as adopting WiFi signals [5], and requiring
peripheral camera equipment [6], [7], [8]. They all need an
external data receiver which should be placed close enough
to the victim. To simplify the inference, attackers start to pay
their attentions to smartphone embedded sensors. For exam-
ple, several works [9], [10], [11] show that keystrokes can be
inferred in a stealthymanner with only a few benign app per-
missions by using accelerometers, gyroscopes, and audio
sensors.

In this paper, we present GazeRevealer, a new avenue for
attackers to infer user passwords entered on smartphone’s
touchscreen. GazeRevealer essentially analyzes user eye
movements recorded from the smartphone front camera
during password input. Our motivation derives from the
key observation that user behavior of entering passwords on
smartphone always involves coordinated motion between
eyes and fingers, i.e., the finger usually taps the key number
at which her/is eyes are staring. In other words, eye move-
ment patterns reflect and can be co-located with different
keystrokes on soft keyboard. Using this unique nature, Gaz-
eRevealer records the eye movements video when a victim
enters her/is password and then extracts sensitive images
from the video. By processing and analyzing these sensitive

� Y. Wang and W. Cai are with the Northwestern Polytechnical University,
Xi’an 710129, China. E-mail: wangyao@mail.nwpu.edu.cn, caiwd@nwpu.
edu.cn.

� T. Gu and W. Shao are with the RMIT University, Melbourne, VIC 3000,
Australia. E-mail: {tao.gu, wei.shao}@rmit.edu.au.

Manuscript received 2 Jan. 2019; revised 13 June 2019; accepted 6 Aug. 2019.
Date of publication 14 Aug. 2019; date of current version 1 Oct. 2020.
(Corresponding author: Tao Gu.)
Digital Object Identifier no. 10.1109/TMC.2019.2934690

2714 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 11, NOVEMBER 2020

1536-1233� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: RMIT University Library. Downloaded on December 16,2020 at 12:19:42 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1350-6639
https://orcid.org/0000-0002-1350-6639
https://orcid.org/0000-0002-1350-6639
https://orcid.org/0000-0002-1350-6639
https://orcid.org/0000-0002-1350-6639
https://orcid.org/0000-0002-9873-8331
https://orcid.org/0000-0002-9873-8331
https://orcid.org/0000-0002-9873-8331
https://orcid.org/0000-0002-9873-8331
https://orcid.org/0000-0002-9873-8331
mailto:
mailto:
mailto:
mailto:

images, GazeRevealer is able to infer the corresponding pass-
word on touchscreen. In comparisonwith prior sensor-based
attacks [9], [10], [11], GazeRevealer neither requires the vic-
tim to distinctly vibrate the phone nor relies on keypad tones
during the input process, leading to a more stealthy and
imperceptible solution.

The design of GazeRevealer faces four major challenges.

1) Our approach relies essentially on the analysis of eye
contour images to clip eye image patches from video
frames. The existing image clippers can only crop
image from a fixed position. In our mobile scenarios,
this may lead to the problem that parts of the iris
and the sclera may be excluded from the clipped
patches. To preserve eye images intact, a precise clip-
ping method is required. In GazeRevealer, we use
the Maximum IsoCenter (MIC) based technique [12]
to grasp the pupil center from an image precisely
and rapidly. We then use the pupil center as the
datum to clip a certain pixels in its horizontal and
vertical direction separately. In this way, the com-
pleteness of eye images is ensured.

2) It is not a trivial task to extract sensitive images that
are generated by password input from the video.
Because a user may not immediately enter password
after the front camera is activated, this could result
in noise images at the beginning of the video. Addi-
tionally, the time interval between two keys is not
fixed. Therefore, we cannot adopt the methods that
are commonly used in eye tracking tasks [13] to
extract the sensitive images in our scenario. Through
investigation we find that different eye states cause
intuitive transitions in image histogram. To address
this challenge, we leverage similarity that is mea-
sured by image histograms as the metric to distin-
guish sensitive images from the video.

3) In our attack scenario, the victims may not keep their
heads still during password input. Head movements
could negatively affect the accuracy of gaze estima-
tion, thereby degrade the inference rate. To solve this
issue, we create a 3D geometry model for head pose.
Based on this model, the angles of head movements
(i.e., yaw, pitch, and roll) can be calculated from the
2D front facing images captured by the camera. Then
we combine the angle features of head pose with the
image features extracted from the eyes and use
machine learning algorithms to estimate different
keystrokes.

4) In our experiments, we find that the eye tracking algo-
rithm only estimates an approximate position of the
key tapping. The recognition accuracy is not ideal
enough to get a better inference rate. This can be
expected because the layout of digits on smartphone’s
soft keyboard is typically compact. Study in [14]
shows that human gaze direction enters the cornea
and passes through the pupil, impling that the pupil
naturally follows the movements of gaze direction. By
exploiting this unique biological nature, we design
an auxiliary model in our eye tracking algorithm to
facilitate identifing the most related key number of an
eye image.

In summary, this papermakes the following contributions.

� We design a novel side-channel attack approach that
enables attackers to infer a victim’s password on
smartphone touchscreen by analyzing the video of
eyemovements. Our approach only requires the front
camera permission on smartphones that is commonly
deemed as normal in daily use, thus potentially jeop-
ardizingmobile device security.

� We propose a sensitive image extraction algorithm,
which takes the pupil center as the datum to crop
fine-grained eye contour images, then utilizes an
image similarity based method to determine the sen-
sitive images from the video.

� We develop an auxiliary model for gaze estimation
algorithm, aiming to enhance its classification accu-
racy. Experiment result shows that the auxiliary
model effectively improves the average inference
rate of single key number from 59.03 to 77.89 percent.

� We recruit 26 participants in our experiment and
evaluate GazeRevealer on three commercial off-the-
shelf smartphones. The result shows that GazeRe-
vealer is capable to identify 6-digit password at a
rate of 84.38 percent in the best case.

The rest of the paper is organized as follows. Section 2
gives the background and related work. Section 3 describes
the detailed design of our system. Section 4 presents the eval-
uation and discussion is summarized in Section 5. We give
the conclusion and futurework in Section 6.

2 BACKGROUND AND RELATED WORK

2.1 Threat Model

In our attack, we are not aiming to hack those genuine pay-
ment-related apps and manipulate their functionalities. We
only require GazeRevealer to be installed on the victim’s
smartphones and run in the background. According to the
report [15] in 2018, an increasing number of smartphone
users are jeopardized by untrusted apps, which can be
installed in many ways, such as drive-by-download, silent
installation, and third-party application market. Many stud-
ies have shown that it is not challenging to install malware
on smartphones [16], [17]. We therefore believe this assump-
tion doesmake sense.

The front camera access permission is also required to be
granted to GazeRevealer by the users. We believe that most
users have no misgivings about granting this permission if
GazeRevealer is disguised as normal apps. For example, it is
understandable for users to authorize the front camera per-
mission to the selfie apps and mirror apps. It is not our wish-
ful thinking that users are not sufficiently vigilant for this
permission. According to the finding in [18], the attacker can
acquire the camera permission by any app with some inven-
tiveness. In addition, World Wide Web Consortium (W3C)
has lately updated the HTMLMedia Capture specification to
facilitate web access to the camera by JavaScript, which is
supported by Android 3+ and iOS 6+ [19]. This implies that
GazeRevealer can be more handily embedded in a website
and launched online, without installing any applications on
the user’s smartphones.

GazeRevealer listens to the user’s sensitive events, such
as pop-ups of password field and number pad. It activates

WANG ET AL.: YOUR EYES REVEAL YOUR SECRETS: AN EYE MOVEMENT BASED PASSWORD INFERENCE ON SMARTPHONE 2715

Authorized licensed use limited to: RMIT University Library. Downloaded on December 16,2020 at 12:19:42 UTC from IEEE Xplore. Restrictions apply.

the front camera to record videos when sensitive events are
detected, and turns off the camera once the events are fin-
ished. With some coding efforts, this event listener could be
easily implemented [20]. After recording, GazeRevealer
starts to infer the victim’s sensitive inputs.

2.2 Gaze Estimation

The rationale of GazeRevealer is based on gaze estimation
techniques that estimate the direction of gaze and track the
position of the eyes from eye images. Combined the adva-
nced techniques in computer vision and the current low-cost
sensors, gaze estimation has been used inmany areas such as
marketing to identify which products consumers are inter-
ested in. Gaze estimation can be divided into two categories,
shape-based and appearance-based tracking approaches.

The shape-based approaches mainly rely on a model of
the eyeball and geometrically calculate the gaze direction
[21], [22]. In order to build a reliable model of the eye, these
approaches require an unalterable distance between screen
and user, as well as calibrations for different users. When
using multiple cameras, each camera and screen should be
placed in a fixed position. Subsequently, a slight change in
such parameters may result in a great estimation error [23].
In addition, when using low-resolution cameras and vari-
able lighting conditions, it is difficult for the these appr-
oaches to robustly estimate gaze location [24].

Compared with the shape-based approaches, the appear-
ance-based approaches track the gaze direction directly from
eye images. Specifically, these approaches treat the process of
gaze tracking as a regression problem, they use machine
learning and deep learning algorithms to learnmapping func-
tions from eye images to gaze locations [13], [25]. Because
these approaches commonly extract high-dimensional fea-
tures from an entire eye image and map the features to low-
dimensional gaze locations, they are capable to handle low-
quality images and adaptive to variable lighting conditions
[26]. Amajor issue of these approaches is that they are signifi-
cantly affected by head poses, requiring an assumption of
keeping head pose fixed [27]. In this paper, we leverage on
the appearance-based gaze estimation approach due to its
superiority for processing low-quality images and managing
lighting condition changes. In addition, by taking into account
differnet head poses inmobile scenarios, we create amodel to
mitigate its impact on estimation.

2.3 Keystroke Inference Attacks

Keystroke inference attacks have been developed based on
the sensitive information captured from side channels and
sensors, falling in the following categories.

1) WiFi Signal Based. The attacker infers the keystrokes
through WiFi signal. This is motivated that keystrokes will
cause different finger motions, which will lead to unique
changes in WiFi’s channel state information (CSI). Many
studies have demonstrated its effectiveness. Ali et al. [1]
introduced WiKey that leverages the distinct changes in the
CSI caused by the motions of user’s finger to identify key-
strokes on an external keyboard. Similarly, Zhang et al. [28]
and Li et al. [5] also used CSI signals to eavesdrop the graphi-
cal unlock patterns and the 6-digit passwords on mobile
devices, respectively.

In theseworks, the attackermust first deployWiFi devices
near the victims. Note that the device should be close enough
to the victims (e.g., 30 cm in [1] and 1m in [5]). If a target who
has high security awareness does not connect to public WiFi,
these approaches will hence fail. They also require the users
to keep a fixed hand gesture in a motionless condition when
typing. Besides, the distance and direction between the WiFi
antenna and the victims should be stable, since CSI values
may vary with any change in these settings. These highly
controlled requirements seriously affect their practical appli-
cation. We only require a video recording of victim’s eye
movements generated during password input. With no con-
straints on fixed typing gestures and user behaviors, GazeR-
evealer is more applicable to reality.

2)Video Based. By using an external camcorder, an attacker
records victim’s sensitivemotions to infer keystrokes. Balzar-
otti et al. [4] recovered the text entered on a keyboard by ana-
lyzing a video of victim’s typingmotion.Maggi et al. [7] used
a feature-based template-matching approach to recognize
the keystrokes on touchscreen. By recording touchscreen
reflections from victim’s sunglasses or directly recording vic-
tim’s touchscreen through shoulder surfing, Raguram et al.
[29] reconstructed the text being typed on smartphones.
Analogously, Xu et al. [30] exploited reflections from the eye-
ball when a victim types on touchscreen to detect key presses.
Sun et al. [6] recorded a video of the motion patterns of the
device’s backside caused by taps on touchscreen to infer key-
strokes. In [31] and [32], the authors analyzed the shadow
formation around the fingertip and the hand dynamics from
a video of victim’s typing process, respectively, to recover
the typed text on smartphones. In [8], the authors used a cam-
corder to capture victim’s eye movements when typing on
smartphones, then extracted gaze trace from the video to
infer keystrokes.

Similar to WiFi-based attacks, these approaches also
require an external device nearby, i.e., camcorder, to capture
victim’s full view of the sensitive information when typing
(e.g., touchscreen reflections from sunglasses or eyeballs, fin-
ger motions, and eye movements). If an area is crowded, the
victim may be shielded from the view of the camcorder by
surrounding obstructions, these attacks will consequently
not work. This limitation does not exist in our attack, we
only rely on the smartphone’s embedded camera. Further-
more, these attacks adopt a wide range of complicated image
analysis techniques for motion tacking and eye tracing. Our
approach only employs a generic image processing method
and simple mathematic representations of eyes and head to
identify keystrokes. The simplification of our method
implies that it can easily be conducted by a new attacker who
has little or even no image processing background.

3) Sensor Based. Smartphone embedded sensors provide
side-channel attacks to a capacious platform that can be used
to eavesdrop user’s interactions with the device. Cai et al. [9]
presented an accelerometer based inference approach to
infer the keys on smartphone’s soft keyboard. Later, Owusu
et al. [10] applied a similar idea to extract victim’s 6-character
password on smartphones by using accelerometer readings.
Xu et al. [33] utilized the combination of accelerometer and
gyroscope to deduce sensitive context on smartphone’s
touchscreen. Schlegel et al. [11] developed an application by
exploiting audio sensor to target privacy information.

2716 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 11, NOVEMBER 2020

Authorized licensed use limited to: RMIT University Library. Downloaded on December 16,2020 at 12:19:42 UTC from IEEE Xplore. Restrictions apply.

Moreover, microphone and camera on smartphones were
also adopted to collect victim’s sensitive touch-events for
inferring keystrokes [18], [34].

These attacks more or less require victim to type in a spe-
cific manner. For example, in [9] and [33], a victim is required
to hold smartphone by one hand and type on touchscreen by
the other hand. In [10] and [18], a victim is assumed to type
only using thumbs. In our attack scenario, we do not restrict
typing habits, the participants in our experiments may input
passwords in their own ways. In addition, the key issue to
separate our attack from the sensor based attacks lies in the
extendable application range. Because we only require a
video of eye movements for password input, our attack has
the potential as a side-channel to implement on other devices,
such as bank ATMs and door locks, using pinhole camera, as
well as laptops with internal web camera. Comparatively, it
is difficult to apply the sensor based attacks to such scenarios
since they rely on a variety ofmobile sensors.

The most related work to this paper is EyeTell [8]. In this
paper, the authors developed an attack to infer victim’s key-
strokes on the touchscreen relying on a video of the eye
movements captured by an external HD camcorder. There
are several notable factors that distinguish our work from
EyeTell. (1) To capture eye movements, they placed an exter-
nal camcorder in front of a targetmeters away.Given a victim
who conceals her/is eye motions from the view of the cam-
corder, for example, the victim can lower the head to type on
smartphone or pedestrians pass through during recording,
their attack would hence fail. Our attack relies on the built-in
front camera on smartphone, it is thereby more reliable to
capture eye movements. (2) To identify keystrokes, EyeTell
adopts a number of intricate techniques for image processing
and modeling of the eye trace on touchscreen. Our attack
only relies on a generic image processing method and uses
simple mathematic and geometric representations of head
poses and gaze locations to distinguish different keystrokes.
The simplicity of our attack makes it much easier to launch.
(3) Their attack was shown to work effectively only within a
limited recording angle (i.e., 5 degree), even using a wide-
angle camcorder. This is because they did not take into
account the head postureswhich are sensitive to eye tracking.
In our attack, we do not assume that the victim keeps a rela-
tively fixed head/typing gestures during password input.
We design a 3D geometry model for the head to estimate the

constantly changing head postures. Besides, we get rid of eye
blink images from the video to eliminate their negative effects
on inference, which is not addressed in EyeTell. Overall, with
these unique features, GazeRevealer offers a low-cost (i.e.,
we do not require an additional HD camcorder) and thor-
oughly different breed of side-channel attack from that in [8].

3 SYSTEM DESIGN

In this section, we introduce the system design of GazeRe-
vealer and its key modules and algorithms.

3.1 High-Level Overview

The primary goal of GazeRevealer is to deduce the sensitive
information (i.e., password) victims input on smartphone.
As illustrated in Fig. 1, GazeRevealer starts to work when
keyboard events are detected. The front camera is invoked
to record video when a victim inputs a password. Once
recording is finished, GazeRevealer extracts features from
image frames and adopts machine learning based methods
to estimate digits the victim inputted. To improve the esti-
mation accuracy, we propose an enhanced method based
on pupil’s center location. In the last inference stage, 6-digit
password is deduced by applying a candidate election
method to the estimated digits.

Fig. 2 presents the overall framework of GazeRevealer,
which consists of three main modules. (1) Keystroke eye
image extraction module, which is used to automatically
identify the eye images of different keystrokes from an input
video stream; (2) Data processingmodule, which extracts rel-
evant features and estimates head poses from eye images; (3)
Keystroke recognition module, which determines the key-
strokes based on the extracted features and head poses of dif-
ferent eye images.

3.2 Keystroke Eye Image Extraction Module

3.2.1 Eye Detection, Image Normalization, and Eye

Blink Filtering

In this stage, GazeRevealer first extracts the Region of Inter-
est (ROI) of eyes from each image frame. The process of eye
ROI extraction is presented in Fig. 3. Formore accurate detec-
tion of eye positions, we first rapidly approximate face posi-
tion from the frame by using a cascade classifier based on
Local Binary Patterns (LBP) [35] to narrow down the detec-
tion area for eye-pairs (i.e., the blue bounding rectangle in
Fig. 3a). After procuring the facial region, eye ROI can be

Fig. 1. Illustration of the password inference from eye movements on
smartphone.

Fig. 2. Framework of GazeRevealer.

WANG ET AL.: YOUR EYES REVEAL YOUR SECRETS: AN EYE MOVEMENT BASED PASSWORD INFERENCE ON SMARTPHONE 2717

Authorized licensed use limited to: RMIT University Library. Downloaded on December 16,2020 at 12:19:42 UTC from IEEE Xplore. Restrictions apply.

accurately extracted by using the Haar-based classifier [36],
as shown in Fig. 3b. If eye detection fails in this process, we
delete the corresponding images from the video stream.

We scale down the eye ROI to a fixed size (i.e., 100 � 100
pixels in our scenario). In the detected eye ROI, it still con-
tains some factors that are not conducive to gaze estimation,
such as eyebrows, hairs, and eyeglass frames. As a conse-
quence, we require a much tighter region around eyes for
gaze prediction. The most ideal region is to crop a certain
quantity of pixels around the pupil center, this can get rid of
interference as well as preserve the main information of
eyes. To locate the pupil center from low-resolution images
(i.e., those captured by smartphone front camera), we utilize
the MIC based method [12], which is effective on those low-
resolution images. In poor lighting conditions, pupil center
may not effectively be detected, we increase the contrast to
compensate for the low illumination images. As shown in
Fig. 3c, pupil center is located by the red dot. Next, the
upper and lower areas of the pupil center are clipped 20 pix-
els off, respectively, while the horizontal axis keeps 100 pix-
els unchanged. As shown in Fig. 3d, the size of the final eye
image is normalized to 40 � 100 pixels. In Fig. 3, we take the
left eye as an example to illustrate the extraction process.
The right eye is processed using the same method.

Eye blinks and eye motion blur are also useless informa-
tion for gaze estimation and need to be filtered out. Eye blink
is a rapid closing of the eyelid, which results in the disap-
pearance of the pupil from the video, as shown in Fig. 3e. Eye
motion blur is the streak-like effect in the frame that occurs
when the eye blinks, as shown in Fig. 3f, part of the pupil is
covered by the eyelid. Intuitively, these interferences can be
detected through determining the existence of the pupil. If
the pupil detection fails, the eye blinks and eye motion blur
are detected. We can also use the MIC based method [12] in
this process, since the pupil center is located by this method
mainly based on the relatively unbroken pupil image.

3.2.2 Keystroke Eye Images Extraction

After normalization, we obtain two correlated sequences of
fixed-size eye images (i.e., the left eye and the right eye). In

general, human two eyes are yoked so that they blink at the
same time and point towards the same fixation position
[37]. In this work, we do not consider special cases such as
strabismus. Besides, the study [38] also demonstrated that
measurements obtained in one eye are similar to those of
the other eye. In this stage, we use the sequence of a single
eye to determine the fixation images that can typically rep-
resent the corresponding keystrokes. After the keystroke
images are determined in the sequence of the single eye, we
consequently extract the images from the sequence of the
other eye by their correlation properties. The fixation refers
to the visual gaze on a specific key that the victim is enter-
ing. In the field of eye tracking, the existing fixation image
extraction schemes rely on certain defined regulations. For
example in [13], the video is divided into several chunks by
fixed time intervals (i.e., predetermined duration of the fixa-
tion), then different fixation images can be picked out from
the chunks. This method is not effective in our scenario
since fixation for a key during password input is usually
transient (on an order of milliseconds) and non-keystroke
images at the beginning of the video are likely to be divided
into such chunks. To address this problem, we propose a
novel algorithm to precisely extract keystroke eye images.
The extraction algorithm consists of three steps as follows:

1) Image Similarity Estimation. An eye movement is com-
prised of fixations and saccades (e.g., a quick eye switch
from one key to the next). If we can determine the break
points of all fixations and saccades, the stream can be split
intomultiple segments. Thenwe can extract image from fixa-
tion segment as the feature image for a particular keystroke.
Based on this, we introduce image similarity to search the
break points in the stream. Fig. 4 illustrates the comparison
of histograms of four different eye image frames over gray-
scale intensity. Figs. 4a and 4b show the histograms of two
frames that are selected from the same fixation segment (i.e.,
key number 1). We compare the histograms in Fig. 4e and
observe that different frames under same eye state would
lead to similar histograms. Fig. 4c displays the histogram of a
frame extracted from key number 2 fixation. As can be
observed in Fig. 4f, different eye states result in dissimilar
histograms. Fig. 4d presents the histogram of a frame in the
saccade moving from number 1 to number 2. We compare it
with the histograms of number 2 and number 1 in Figs. 4g
and 4h, respectively. It can be observed that they are differ-
ent from each other. The comparison motivates us to con-
clude that frames in different eye states would cause
intuitive transitions in histogram. We therefore use histo-
gram as the metric to quantize the similarity between two
images as follows:

Sðh; h0Þ ¼ 1

n

Xn
i¼1

1� jhi � h0
ij

Maxðhi; h
0
iÞ

� �
; (1)

where Sðh; h0Þ (the value lies in [0,100]) denotes the similar-
ity between histograms (h and h0) of two images and n is
the total number of histogram bins (n ¼ 256 in our case).
The greater the value is, the higher the similarity would be.

2) Image Stream Similarity Building. By using the above
equation, we can calculate the ith similarity between the ith
and the ðiþ 1Þth image in the stream which can be
expressed as fSiðIi; Iiþ1Þgi¼1:n�1 where n is the number of

Fig. 3. Eye image extraction process. (a)-(d) illustrate the four steps of
the eye image extraction. (e) and (f) are the examples of eye blink and
eye motion blur, respectively, in which the pupil detection fails.

2718 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 11, NOVEMBER 2020

Authorized licensed use limited to: RMIT University Library. Downloaded on December 16,2020 at 12:19:42 UTC from IEEE Xplore. Restrictions apply.

images in the stream. Given the Frames per Second (FPS) of
camera f , and the video time duration t, n can be repre-
sented by f � t. As shown in Fig. 5a, we take a video of a 6-
digit password input as an example to illustrate. After cal-
culating the similarities of all images in the sequence, a

similarity waveform can be built. We focus on the red dots
where the similarities are lower than the predefined thresh-
old, they are likely to be the break points between fixations
and saccades. The threshold denoted by the blue horizontal
line is empirically set to 90 in our experiments. It is defined
based on the procedure of similarity comparison on our
dataset, as illustrated in Fig. 4, which separates the fixation
and the saccade for most subjects. We do not consider the
impact of light changes on similarity calculation, since the
durations of fixation and saccade are typically short during
password input (approximately a few hundred millisec-
onds), light conditions basically maintain stable in such a
short time. Therefore, we adopt simple histogram-based
method with an empirically predefined threshold to com-
pare eye images rather than using more sophisticated meth-
ods such as deep learning.

3) Keystroke Image Extraction. After separating the image
sequence into several segments by the break points, we next
determine the fixation segments of the keystrokes. We con-
tinue to use the example in Fig. 5a, 17 break points divide the
sequence into 16 segments. In Fig. 5b, we count the number
of images in each segment, and select the segments that have
numbers satisfying the threshold constraint as our potential
keystroke segments (denoted by the purple bars). We mea-
sure the threshold constraint based on our investigation of
the 26 participants in the experiment. By inspecting the video
sequences of 6-digit password input, we find that a keystroke
fixation typically contains 11-28 frames and a saccade
between two keystroke fixations usually lasts 1-7 frames.
This finding is consistent with that in [39] where the authors
stated that the duration of a reflexive saccade is usually less
than 250 ms (i.e., 8 frames recorded by the 30 fps camera in
our scenario). To determine the six keystroke segments from
the seven fixation segments (i.e., Segment 1, 5, 7, 9, 12, 14,

Fig. 4. Image histograms of different eye states. (a) and (b) are the histograms of two different eye image frames when looking at key number 1, (c) is
the histogram when looking at kye number 2, and (d) is the histogram of saccade when moving the sight from key number 1 to key number 2. (e)-(h)
are the overlaid plots for intuitive comparison.

Fig. 5. Keystroke image extraction.

WANG ET AL.: YOUR EYES REVEAL YOUR SECRETS: AN EYE MOVEMENT BASED PASSWORD INFERENCE ON SMARTPHONE 2719

Authorized licensed use limited to: RMIT University Library. Downloaded on December 16,2020 at 12:19:42 UTC from IEEE Xplore. Restrictions apply.

and 16), we count the saccade frames between every two fix-
ations and check whether the result falls within the range 1-7
frames. As we can see from Fig. 5b, the saccades between the
six consecutive fixation segments, i.e., Segment 5, 7, 9, 12, 14,
and 16, satisfy the constraint. We hence regard these six fixa-
tions as the keystroke segments for the 6-digit password.
Finally, we choose the center frame in each keystroke seg-
ment as the key frame to represent the corresponding key-
stroke. This is because blurry transition frames (e.g., from
saccade to fixation) may exist at the beginning and at the end
of the keystroke segment, while the center frame is more sta-
ble. In Algorithm 1, we conclude the the above three steps
for keystroke eye images extraction.

Algorithm 1. Keystroke Frames Extraction

Input: Frame sequence: F ¼ f1; f2; . . . ; fnf g;
Break point set: B ¼ f;
Frame segment set: Seg ¼ f;
Potential keystroke segment set: Sp ¼ f;
Keystroke segment set: S ¼ f;

Output: Six keystroke frames:

Fkey ¼ F 1
key; F

2
key; . . . ; F

6
key

n o
;

1: Compute similarity simiðfi; fiþ1Þ; i ¼ 1; 2; . . . ; n� 1 using
Equation (1);

2: for i ¼ 1 to n� 1 do
3: if simi < 90 then
4: append fi to B;
5: end if
6: end for
7: Update B ¼ fi1 ; fi2 ; . . . ; fij ; . . . ; fimf g;
8: Update Seg ¼ fijþ1; fijþ1�1

� �� �
; j ¼ 1; 2; . . . ;m� 1;

9: Num Segj ¼ Countðfijþ1; fijþ1�1Þ; //Count the number of
frames in each segment.

10: for j ¼ 1 tom� 1 do
11: if 11 < Num Segj < 28 then
12: append Segj to Sp;
13: end if
14: end for
15: Update Sp ¼ Segj1; Seg

j
2; . . . ; Seg

j
k; . . . ; Seg

j
h

n o
;

16: Num Sk ¼ CountðSegjk; Segjkþ1Þ; //Count the number of
frames between every two segments.

17: for k ¼ 1 to h do
18: if Num Sk < 8 then
19: append Segjk and Segjkþ1 to S;
20: end if
21: end for
22: Select six consecutive segments from S;
23: Extract the center frame from each segment;
24: Output the keystroke frames:

Fkey ¼ F 1
key; F

2
key; . . . ; F

6
key

n o
;

3.3 Data Processing Module

In this section, we extract features from the selected key-
stroke images for gaze estimation. In addition, considering
that users are not likely to keep a fixed head pose in front of
the screen when inputting password, they may have varia-
tional head poses that would affect the accuracy of gaze pre-
diction. For example, head may shift around during a
conversation while the eyes may still maintain tracking on

the screen during password input. In order to ensure the
effectiveness of our system, we also need to estimate user’s
head poses and define relevant features.

3.3.1 Eye Feature Extraction

For appearance-based gaze estimation methods, it is impor-
tant to choose appropriate method and features to discrimi-
nate keystrokes. In our scenario, we simply assume that
user has an ordinary smartphone with a front-facing cam-
era. We do not assume users commonly have the latest
hardware for smartphones that allows the use of computa-
tionally expensive methods, such as convolutional neural
networks (CNNs) [40]. As such we use the feature-based
estimation technique in our implementation.

Since ambient illumination changes may arise in different
usage scenarios, we select Histogram of Oriented Gradients
(HoG) as the descriptor which is invariant to the influence of
illumination effects [41]. Besides, HoG can distinguish the
iris and sclera in low-resolution eye images. As shown in
Fig. 6, the HoG features of an eye image are visualized. It is
observed that iris region (highlighted by red bounding
ellipse) is darker than the surrounding sclera region, which
means HoG can effectively represent our eye images. There-
fore, we choose HoG features and use the scikit-image tool
[42] for gaze estimation, using the following parameters: 9
orientations, 2� 2 pixels per cell, and 2� 2 cells per block.

HoG features extracted from an eye image would result
in high dimension (over 33 k) and suffer from noise. Next,
we use Principal Component Analysis (PCA) to reduce the
size of the original feature space to a lower dimension. PCA
is expected to find the most correlated features and remain
the representative information of an image. Fig. 7 shows the
result. We observe that the first 4 components almost retain
all variance of the original data. As a result, high dimen-
sional original data can be compressed to 4 dimensions in
our work. To extract features from an eye-pair, we apply
the method described above to both of the eye images. As a
consequence, we have 8 features in this stage.

3.3.2 Head Pose Estimation

To make our systemmore flexible in real-world scenario, we
measure user’s head poses and extract relevant features
from the raw face images of the keystrokes. Here the raw

Fig. 6. Feature visualization of an eye image.

2720 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 11, NOVEMBER 2020

Authorized licensed use limited to: RMIT University Library. Downloaded on December 16,2020 at 12:19:42 UTC from IEEE Xplore. Restrictions apply.

face images refer to the intact video frame, such as the
frames in Figs. 3a and 3b.

We use the geometry features to determine the head’s ori-
entation. As shown in Fig. 8a, the 3D head movement can be
decomposed into three motions, i.e., yaw, pitch, and roll.
From a 2D face image captured by the front camera, we intui-
tively find that the distance between the eyes dee changes in
the case of yaw; the spacing of the nose to the midpoint
between two eyes dne varies in the case of pitch; the position
of dne displaces in the case of roll. Ideally, to calculate the
angles of the three motion, users are required to look directly
at the front camera for the nominal “0” angles. At this point,
we thus have the reference against the subsequent keystroke
images to be compared. In our attack scenario, we cannot
strictly calibrate the victim’s face for the reference. We select
a face image which is approximately looking straight ahead
from the victim’s video as our reference. In what follows, we
detail the process of calculating the angles.

As shown in Fig. 8b, yaw can be projected onto the xz
plane. Assuming that the eyes move from the reference
positions el ¼ ðxl; ylÞ; er ¼ ðxr; yrÞ to e

0
l ¼ ðx0

l; y
0
lÞ; e

0
r ¼ ðx0

r; y
0
rÞ

by rotating b degrees, where el; er; e
0
l; and e

0
r are the pixel

positions in the image. Formally, b is calculated as

b ¼ cos�1 x
0
r � x

0
l

xr � xl

 !
: (2)

Similarly, in Fig. 8c, pitch can be projected onto the zy
plane. When the head rotates from n to d, where the pixel
positions of n and d are ðxlþxr

2 ; ylþyr
2 Þ and ðx

0
l
þx

0
r

2 ;
y
0
l
þy

0
r

2 Þ, respec-
tively. g can thus be calculated as

g ¼ cos�1 y
0
r þ y

0
l

yr þ yl

 !
: (3)

By projecting roll to xy plane, the angle a in Fig. 8d repre-
sents the rotation for a keystroke eye image. In the image,
the nose position o ðxo; yoÞ is calculated by nose detection,
the positions of the midpoints n and a between the eyes are

ðxlþxr
2 ; ylþyr

2 Þ and ðx
0
l
þx

0
r

2 ;
y
0
l
þy

0
r

2 Þ, respectively. Formally a can be
derived as

a ¼ tan�1 y
0
r þ y

0
l � 2yo

x0
r þ x

0
l � 2xo

 !
� tan�1 yr þ yl � 2yo

xr þ xl � 2xo

� �
:

(4)

Next we use the three angles as head pose features for a
keystroke image and combine them with the eye features
(i.e., a total of 11 features) for gaze estimation.

3.4 Keystroke Inference Module

In this module, we will discuss the details of keystroke rec-
ognition based on the extracted features and our enhance-
ment method that aims to improve the inference accuracy.

3.4.1 Keystroke Recognition

In our work, keystroke recognition is essentially a ten-class
classification problem. Based on the features extracted from
eye-pairs and head poses, GazeRevealer estimates the corre-
sponding key number. In our experiment, we use Support
Vector Classification (SVC) [43] with Radial Basis Function
(RBF) kernel as our classifier. Other classifiers (e.g., Gauss-
ian Process Classifier and Random Forest Classifier) are
also deployed for comparison, and we confirm that SVC
achieves the best performance.

SVC with RBF kernel is constrained by two parameters,
C and g. C trades off misclassification of training data
against simplicity of the decision hyperplane. g defines how
far the influence of a sample can reach. The low values of g
means lower bias and higher variance while high values
means higher bias and lower variance. The optimal values
are selected from a prebuilt set of possible parameters,
based on experiments that adopt 5-fold-cross-validation: for
each pair of possible parameters, 4/5 of the data is used as
training data, while the remaining 1/5 data is used as vali-
dation data for evaluating the performance of the classifier,
the process is then repeated 5 times. We choose the pair
of parameters that performs the best result as the final

Fig. 7. Principal components selection.

Fig. 8. Decomposition of head pose.

WANG ET AL.: YOUR EYES REVEAL YOUR SECRETS: AN EYE MOVEMENT BASED PASSWORD INFERENCE ON SMARTPHONE 2721

Authorized licensed use limited to: RMIT University Library. Downloaded on December 16,2020 at 12:19:42 UTC from IEEE Xplore. Restrictions apply.

parameters for SVC. Specifically, in our experiment, the ini-
tial set of the parameters contains 6 values which is logarith-
mically spaced from 10�3 to 102. After testing, the best
values for C and g are 100 and 10�1, respectively.

3.4.2 Classification Enhancement

Although the classification algorithm can differentiate the
most probable key number based on the 11 features, some
unavoidable factors such as the distance between eyes and
smartphone, the touchscreen size, the camera resolution,
and even body postures (e.g., standing, sitting, and slouch-
ing) are more or less expected to negatively affect the classi-
fication. In order to minimize such influence on key number
inference, we propose an auxiliary method to the basic clas-
sification algorithm to improve the results.

We firstmeasure the average pixel position of pupil center
for each of the ten keystroke eye images, denoted as
fLi

avgðxi
avg; y

i
avgÞgi¼0:9. As mentioned in Section 3.2.2, two eyes

perform similarmeasurements duringmovements. To calcu-
late the reference value for each number, we use the 100x100-
pixel images of the single eye in our dataset and measure
their average pupil center position instead of calculating the
positions for the two eyes separately.We report themeasure-
ments in Table 1 and take these ten tuples as the references
for further use. To infer the corresponding key number of an
input eye image, we calculate its pupil center positionLðx; yÞ
and the classification probabilities fPigi¼0:9. Then, we
arrange the ten probabilities in a descending order and select
the top n highest estimates numbers as the candidates for the
input eye image. Generally, the higher Pi, the more possible
that the correct inference number is covered in the candidate
set. In our experiment, n is empirically set to 3 (determina-
tion of nwould be discussed in Section 4.3). Simultaneously,
we measure the euclidean distance between the pupil center
of the input eye image and the average pupil center of each
of the n candidates as follows:

fDððx; yÞ; ðxi
avg; y

i
avgÞÞgi¼1:n

¼ f
ffi
ðx� xi

avgÞ2 þ ðy� yiavgÞ2
q

gi¼1:n;
(5)

where ðx; yÞ is the pupil center of the input eye image and
ðxi

avg; y
i
avgÞ represents the average pupil center of the selected

candidate. The above calculation is a generic compensation
for the keystroke recognition in Section 3.4.1 and relies on an
assumption that different users may perform similar pupil
center positionswhen looking at the same location on screen.
This assumption is proved by the study [44] under a con-
straint that the distance between the eyes and the screen is
relatively unchanged. In the implementation, we collect data

at a distance of about 20 cm,1 resulting in similar pupil center
distributions for different users.

Ultimately, a score for each candidate is calculated as

fScorei ¼ Pi=Digi¼1:n; (6)

where Pi represents the classification probability of the
candidate and Di refers to the corresponding euclidean
distance. The equation denotes that the higher the score is,
the more likely that the candidate is the victim’s input key
number. GazeRevealer chooses the candidate that has the
maximum score as our predicted keystroke number. The
above process of inference enhancement is concluded in
Algorithm 2.

Algorithm 2. Classification Enhancement

Input: A keystroke eye image img:
Lðx; yÞ; //Pupil center location.

Output: Inferred key number n;
1: Piji¼0:9 ¼ clf:SVCðIÞ; //Calculate the probability estimates

using SVC classifier.
2: Niji¼0:9 ¼ SortDescendingðPiji¼0:9Þ; //Arrange the ten prob-

abilities in descending order.
3: Select the top 3 candidates from Niji¼0:9;
4: Search the corresponding average pupil center location

Lj
avgðxj

avg; y
j
avgÞjj¼0:2 for the 3 candidates from Table 1;

5: Measure the distance between Lðx; yÞ and Lj
avgðxj

avg; y
j
avgÞjj¼0:2

using Equation (5);
6: Calculate scores Sjjj¼0:2 for the 3 candidates using

Equation (6);
7: Select number nwith the maximum score as the inferred key

number;
8: Output the inferred key number n;

4 EVALUATION

In this section, we evaluate the performance of our system.

4.1 System Setup

We now move to evaluate GazeRevealer. We conduct our
experiments on a popular online payment platform, WeChat
Pay offered by the social media application WeChat. The
experimental setting is illustrated in Fig. 9. When a payment

TABLE 1
Average Pupil Center Positions for

the Ten Key Numbers

Key Number Position Key Number Position

0 (48,32) 5 (50,16)
1 (63,13) 6 (42,21)
2 (54,17) 7 (58,27)
3 (39,16) 8 (42,23)
4 (61,18) 9 (52,25)

Fig. 9. GazeRevealer setup.

1. In general, most people tend to hold smartphones about 20 cm
from their eyes when typing. This smartphone habits report is available
at: https://www.entrepreneur.com/article/232665.

2722 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 11, NOVEMBER 2020

Authorized licensed use limited to: RMIT University Library. Downloaded on December 16,2020 at 12:19:42 UTC from IEEE Xplore. Restrictions apply.

https://www.entrepreneur.com/article/232665

interface is brought up on the screen, the front camera starts
to record a video of the victim’s eye movements during the
password input process. The video sample will be then fed
into GazeRevealer to infer the 6-digit password.We use three
types of smartphones, i.e., Huawei Honor V8, Oppo R11, and
Samsung Galaxy S5. These smartphones are equipped with
a 30fps front camera and a screen size of 5.7, 5.5 and 5.1
inches, respectively. In the setting of front camera for video
capturing, we use the frame resolution of 1280 � 720 pixels
and the X1 zoom level (i.e., the default zoom setting of front
camera for most of the off-the-shelf smartphones) for all the
experiments.

We recruit 26 participants (i.e., 8 females and 18 males) in
our experiments, of whom 17 are wearing glasses, and the
others are not. They are student volunteers aged between 19
to 33 and they do not have eye problems (e.g., esotropia and
exotropia). During data collection, we follow a typical pass-
word entering scenario (as illustrated in Fig. 9), a participant
sits on a bench in a naturally lit research office where the
illumination is in a range between 500-1000 lux. The partici-
pants are instructed to hold a smartphone in front of them-
selves at a distance of approximately 20 cm, and input
password by following their own styles (e.g., in their own
typing speed on touchscreen, free to blink their eyes as
usual during input). We use the above default settings for
our experiments unless stated otherwise.

4.2 Data Collection

We first conduct an experiment to evaluate the inference
accuracy of entering single key number. Next, we evaluate
the inference accuracy of entering 6-digit password. Finally,
we discuss the robustness of GazeRevealer against various
factors including the distance between eyes and smartphone
screen, the ambient illumination intensity, and the motion of
victims.

To collect single key numbers, each of the 26 participants
is asked to perform 10 cycle samples, where a cycle is defined
as a video that records the participant’s eye movements
when entering the key number from 0 to 9 on soft keyboard.
For each type of the three smartphones, we hence obtain a
total number of 26 participants� 10 cycles�10 numbers ¼
2600 keypresses. Keeping the phone at roughly the same
position and repeating the same actions may cause fatigue,

which could greatly affect the variance across the data. To
reduce the impact of fatigue and collect realistic data, we ask
the participants to take a break between cycles and stop col-
lection freely once they feel tired.

To collect 6-digit passwords, each of the 26 participants is
required to input 50 random passwords produced by a pass-
word generator. For each of the three smartphones, the data-
set contains 26 participants� 50 sets ¼ 1300 samples. To
behave as naturally as possible, for a random password, we
ask the participants to keep it in mind. After they claim that
they have remembered the random password, they start to
enter the password in front of the smartphone. As we can
imagine, this data collection process requires the participant
to remember the randomly generated password and input it
naturally, which may cause extreme fatigue. Similarly, to
reduce the impact of fatigue on our data, we take two meas-
ures to relieve such negative effects as much as possible. For
one thing, the participants are told to get enough rest
between random passwords and stop data collection when-
ever they need a break. For another, we control the data col-
lection time, and ask the participants to complete 5 random
passwords on a single day.

In our experiment, collecting the above two types of data
costs us more than 20 days. For the data of impact factor exp-
eriments, wewill present the details in each relevant section.

4.3 Single Key Number Inference

In this section, we apply the inference method described in
Section 3 on our collected data and investigate whether the
proposed method is effective enough to infer different key-
strokes. In real-attack scenarios, it is unlikely for attackers to
obtain sufficient data to train a specificmodel for each victim.
To make our attack more realistic, we build a generic model
by using data from 26 participants with 5-fold cross valida-
tion in the experiment. For every 10 cycles data, 8 of them are
used for training and the remaining 2 are used for testing.

We use Huawei Honor V8 as an example to elaborate the
inference process. We first evaluate the performance of SVC
classification on our dataset. Fig. 10 shows the confusion
matrix of the result for Honor V8. For a specific key number,
the confusion matrix presents the corresponding prediction
accuracy which is shown along the diagonal regions. Darker
areas in the figure denote higher predictive accuracy for a
specific key number. We observe from the matrix that the
classifier typically confuses each actual input number with
other two numbers. This phenomenon may due to the phys-
ical layout of numeric soft keyboard where each number
has 2 to 3 closest neighbors.

Based on such observation, we then use our classification
enhancementmethod (which is concluded in Algorithm 1) to
improve accuracy. We choose the first 3 highest-probability
candidates, and determine the best candidate for each actual
input number. In Table 1, we have measured all the average
pupil center positions of the ten numbers. We take an exam-
ple in Table 2 to illustrate the calculation process of our
enhancement method. From the table, we observe that
although the distance D5;3 (i.e., the distance between the
average position of candidate 5 and the position of the actual
input number 3) is smaller than D3;3, our method ultimately
chooses the candidate number 3 with the highest score as
our inferred number. From the classification results, we can

Fig. 10. Confusion matrix of SVC classification on Honor V8.

WANG ET AL.: YOUR EYES REVEAL YOUR SECRETS: AN EYE MOVEMENT BASED PASSWORD INFERENCE ON SMARTPHONE 2723

Authorized licensed use limited to: RMIT University Library. Downloaded on December 16,2020 at 12:19:42 UTC from IEEE Xplore. Restrictions apply.

see that the classifier recognizes the input key number cor-
rectly (the prediction probability of number 3 is the highest,
i.e., 0.3365). It seems unnecessary to add the following dis-
tance comparison. In Table 3, we provide another example to
explain its necessity. From prediction probabilities, we can
figure out that the classifier recognizes the actual input key
number 1 as number 2 (the prediction probability of number
2 is 0.3275, which is the highest). However, after appending
the distance comparison constraint, number 1 achieves the
highest score. As a result, we take number 1 as our final infer-
ence for the input key number. Fig. 11 presents the average
inference accuracy of each key number on Honor V8. We
observe a significant improvement on individual keys when
employing the enhancement method to the classifier, i.e., the
overall average accuracy of all the ten numbers increases
from 59.03 to 77.89 percent.

Fig. 12 shows the accuracy of each key number on the three
devices we used, i.e., Huawei Honor V8, Oppo R11, and Sam-
sung Galaxy S5. The result shows that GazeRevealer achieves
an overall average accuracy of 77.89 percent on V8, 74.26 per-
cent on R11, and 68.64 percent on S5, respectively, for all the
ten numbers. In WeChat Pay, the numeric soft keyboard size

is adaptively adjusted to the size of smartphone screen, users
cannot customize the size of the soft keyboard. In otherwords,
the bigger the screen size is, the larger the soft keyboard will
be. From the accuracy results, we see that the size of smart-
phone screen does influence accuracy. The bigger the screen
size is, the higher the inference accuracy will achieve. V8 has
the highest accuracy with a screen size of 5.7 inches, the accu-
racy of R11 with a screen size of 5.5 inches is slightly lower
than that of V8. S5 with a screen size of 5.1 inches has the
lowest accuracy among the three devices.

4.4 6-Digit Password Inference

In this experiment, we evaluate the performance of GazeRe-
vealer for 6-digit password inference.

For each type of the three smartphones, we have collected
1,300 random passwords, which include 7,800 key numbers.
The results show that a total of 6,125 key numbers are accu-
rately inferred on V8 (78.53 percent), 5,913 key numbers are
recovered on R11 (75.81 percent), and 5,260 key numbers are
recovered on S5 (67.44 percent), respectively. In a real-world
scenario, for inferring an integral 6-digit password, it fails
when any single digit in the password is misjudged. To
improve the inference accuracy for 6-digit password, we
introduce a premise which is similar to that in [5]. For deduc-
ing a 6-digit password, an attacker can implement several
attempts to obtain the correct password. It resembles a bit
the brute-force attack which tries at most 999,999 times to
crack a 6-digit password. We further investigate how many
attempts it needs that GazeRevealer can correctly predict a 6-
digit password. Each digit number is associated with an eye
image. GazeRevealer analyzes the image and yields the first
3 candidates with the highest scores. The overall predicted
score of a 6-digit password is defined as

Soverall ¼
Y6
i¼1

Si; (7)

TABLE 3
Inference Process of Number 1

Input key number: 1
Pupil center position: (61,10)
3 Candidates:
Number 2, P2 ¼ 0:3275
Number 4, P4 ¼ 0:2166
Number 1, P1 ¼ 0:1408
Distance comparison:

D2;1 ¼
ffi
ð54� 61Þ2 þ ð17� 10Þ2

q
� 9:9

D4;1 ¼
ffi
ð61� 61Þ2 þ ð18� 10Þ2

q
¼ 8:0

D1;1 ¼
ffi
ð63� 61Þ2 þ ð13� 10Þ2

q
� 3:61

Scores:
S2 ¼ P2=D2;1 � 0:033
S4 ¼ P4=D4;1 � 0:027
S1 ¼ P1=D1;1 � 0:039 @

TABLE 2
Inference Process of Number 3

Input key number: 3
Pupil center position: (45,18)
3 Candidates:
Number 3, P3 ¼ 0:3365
Number 5, P5 ¼ 0:194
Number 2, P2 ¼ 0:1178
Distance comparison:

D3;3 ¼
ffi
ð39� 45Þ2 þ ð16� 18Þ2

q
� 6:32

D5;3 ¼
ffi
ð50� 45Þ2 þ ð16� 18Þ2

q
� 5:39

D2;3 ¼
ffi
ð54� 45Þ2 þ ð17� 18Þ2

q
� 9:06

Scores:
S3 ¼ P3=D3;3 � 0:058 @
S5 ¼ P5=D5;3 � 0:036
S2 ¼ P2=D2;3 � 0:013

Fig. 11. Inference accuracy per key.

Fig. 12. Inference accuracy on different devices.

2724 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 11, NOVEMBER 2020

Authorized licensed use limited to: RMIT University Library. Downloaded on December 16,2020 at 12:19:42 UTC from IEEE Xplore. Restrictions apply.

where Si is the score of an individual digit number. As each
digit number has 3 candidates, we obtain 36 ¼ 729 potential
passwords for a 6-digit password. It is much smaller than
the number of attempts needed in the brute-force attack.
We next arrange the potential passwords in a descending
order by their scores. Then, we can estimate how many
attempts it needs to infer the actual password. Fig. 13 shows
the inference rate of different attempts on the three smart-
phones. If given only 1 trial, GazeRevealer is able to success-
fully infer 41.46 percent of the 1,300 passwords on V8,
38.46 percent on R11, and 32.38 percent on S5, respectively.
Given 31 trials, the recovery rate can be significantly
improved to 84.38 percent on V8, 69.15 percent on R11, and
55.69 percent on S5, respectively. In reality, most of the
mobile payment apps have their own security policies, e.g.,
the app will be locked if the user enters the password incor-
rectly more than 3 times. In our attack, if we try 3 times, the
inference rate achieves 48.77 percent on V8, 39.38 percent
on R11, and 37.54 percent on S5, respectively. It means that
we have at least over one-in-three chance to crack user’s
password in a practical attack.

Aswe can see from Table 4, in order to achieve a relatively
reasonable inference rate (i.e., less number of trials and
higher rate of password inference), V8, R11 and S5 require
approximately 31, 50, and 60 attempts, respectively. The cor-
responding inference rates are 84.38, 77.53, and 69.00 per-
cent, respectively. The result also demonstrates that, for
inferring 6-digit passwords inWeChat Pay, the recovery rate
is correlated with the smartphone’s screen size. It is much
easier to infer passwords on a smartphone with a larger
screen size.

4.5 Impact Factors

In this section, we study the impact of various factors on the
inference rate of GazeRevealer, including the distance
between eyes and screen, the illumination intensity for video
recording, the recording angle, the user’s motion, and the
eyeglasses. We use the default experimental settings (dis-
played in Table 5), unless stated otherwise.

4.5.1 Influence of Eyeglasses

As shown in Fig. 14, we generate 3 groups from the 8 partici-
pants to study the factor of eyeglasses. Each participant is
asked to enter 10 randomly generated 6-digit passwords on
each of the three smartphones. Each password is repeated
5 times. The inference rates are shown in Fig. 15. As we can
observe, for the same smartphone, the inference rate keeps
almost the same. The result means that dividing the partici-
pants based on eyeglasses does not have a great influence on
inference rate. The factor of wearing eyeglasses does not
affect the final inference mainly due to the following two rea-
sons. On the one hand, we apply eye image clipping process
to remove potential interferences (e.g., eyeglass frames), as
mentioned in Section 3.2.1. On the other hand, in normal
lighting conditions, the reflection from eyeglasses is not
strong so that it would not producemuch noise in the images.

4.5.2 Influence of Distance

In real situations, the distance between victim’s eyes and
smartphone screen varies from one to another. According to
a study in [45], people are likely to hold smartphones at a dis-
tance between 30 to 40 cm, and people who are under age 25
tend to keep a distance as close as 18 or 20 cm. In this experi-
ment, we use three distances, i.e., 20, 30, and 40 cm, to evalu-
ate the performance of GazeRevealer. For each distance, We
ask each participant to record videos for entering 10 ran-
domly generated passwords on each of the smartphones,
and each password is repeated 5 times.

Fig. 16 shows the result for this experiment. When the dis-
tance increases from 20 to 40 cm, the inference rate decreases
from 84.5 percent on V8, 76.25 percent on R11, 66.25 percent
on S5 to 66.25, 59.75, and 52 percent, respectively. This indi-
cates that the performance of GazeRevealer can be greatly
affected by distance. It is mainly because with a fixed screen
size, eye movements become less apparent with longer

Fig. 13. The impact of different trials on inferring 6-digit password.

TABLE 4
Inference Rate on Different Devices

Attempts 31 40 50 60 70

V8 84.38% 84.38% 84.38% 84.62% 84.62%
R11 69.15% 74.46% 77.53% 77.61% 77.61%
S5 55.69% 57.23% 61.38% 69.00% 69.00%

TABLE 5
Experiment Settings

Settings Parameters

Number of Participants 8 (4 are wearing eyeglasses)
Distance 20cm
Illumination Intensity Normal lighting (500-1000 lux)
Recording Angle 0 degree
Motion Sitting
Number of Trials 60

Fig. 14. Diagram of participant grouping for studying the impact of eye-
glasses. The 8 participants are partitioned into 3 groups: Group 1, 4 are
wearing eyeglasses; Group 2, 4 are not wearing eyeglasses; Group 3,
randomly select 4 participants, of whom 2 are wearing eyeglasses, and
the other 2 are not.

WANG ET AL.: YOUR EYES REVEAL YOUR SECRETS: AN EYE MOVEMENT BASED PASSWORD INFERENCE ON SMARTPHONE 2725

Authorized licensed use limited to: RMIT University Library. Downloaded on December 16,2020 at 12:19:42 UTC from IEEE Xplore. Restrictions apply.

distance. Hence, the recognition of the eye image for differ-
ent key numbers reduces, leading to decrease in inference
rate. Even so, if given enough trials, GazeRevealer can per-
form an acceptable rate on 6-digit password inference. The
results are listed in Table 6. As we can see, if given 300
attempts in this experiment, the recovery rate of V8 in the
distance of 20, 30, and 40 cm can reach to 84.75, 82.25, and
74.00 percent, respectively. Similarly, R11 rises up to 80.25,
75.25, and 64.50 percent, respectively, and S5 achieves 69.25,
63.25, and 60.75 percent, respectively. This also demonstrates
that GazeRevealer significantly reduces the search space of
the potential passwords. In addition, such limitation is
expected to be relieved if the attacker uses more advanced
video recording techniques. For example, automatic adjust-
ment of zoom settings according to the distance.

4.5.3 Influence of Illumination Intensity

In this section, we investigate the usability of GazeRevealer
under three different illumination scenarios: low illumina-
tion with less than 50 lux (e.g., twilight and areas with dark
surroundings), normal illumination with 500-1500 lux (e.g.,
office work and library), and high illumination with 10,000-
30,000 lux (e.g., full daylight and sunlight). For each sce-
nario, we ask each participant to record videos for entering
10 randomly generated passwords on each of the smart-
phones, and each password is repeated 5 times.

The result is shown in Fig. 17. Aswe can observe, when the
illumination switches to low and high, the inference rates sig-
nificantly decrease to less than 21 and 64 percent, respectively.
The reason can be explained as follows. Low illumination
usually causes blurry and dim images, as illustrated in
Fig. 18a. In high illumination environment, especially for peo-
ple whowear eyeglasses, it causes strong light reflection from
eyeglasses as shown in Fig. 18b. GazeRevealer fundamentally

relies on gaze estimation from eye images, unlike the eye
image in normal lighting conditions (shown in Fig. 18c), the
accuracy of gaze estimation and pupil center detection in
such two cases degrades, leading to reduction in password
inference.

Noteworthily, we find that screen brightness is automati-
cally adjusted to a higher level in the dark environment (e.g.,
0-20 lux), eye images thus can be clearly recorded by the front
camera (illustrated in Fig. 18d). We do not consider the case
ofwearing eyeglasses since it leads to excessively strong light
reflection, just as the image in Fig. 18b. We ask the 4 partici-
pants who are not wearing eyeglasses to input 10 randomly
generated passwords 5 times in this scenario and evaluate
the performance. From Fig. 17 we can see that the perfor-
mance is even higher than that in normal lighting conditions.
This is expected because eye contour and pupil center can be
clearly captured, thus resulting in better inference rate.

4.5.4 Influence of Recording Angle

Next, we study the impact of angle between eyes and front
camera. We evaluate the performance of GazeRevealer on
two types of angles, i.e., horizontal angle and vertical angle,
they are 0, 10, 20, and 30 degree, respectively. In this experi-
ment, because the distance between eyes and screen is 20 cm,
the four different angles can be adjusted by moving the
smartphone horizontally and vertically. In each scenario,
each participant is asked to perform 10 randomly generated
passwords on each of the smartphones. Each password is
repeated 5 times.

Figs. 19a and 19b show the results under horizontal angle
and vertical angle, respectively. The inference rates in both
scenarios drop sharply to less than 35 percent as the angles

Fig. 15. Impact of glasses on inference rate for different smartphones.

Fig. 16. Impact of distance on inference rate for different smartphones.

TABLE 6
Inference Rates of Different Trials in Different Distances

Device Attempts 20 cm(%) 30 cm(%) 40 cm(%)

V8

60 84.50 80.25 66.25
180 84.75 81.75 69.50
300 84.75 82.25 74.00

R11

60 76.25 72.75 59.75
180 80.25 74.00 63.25
300 80.25 75.25 64.50

S5

60 66.25 61.00 52.00
180 66.25 63.25 53.25
300 69.25 63.25 60.75

Fig. 17. Impact of illumination on inference rate for different
smartphones.

2726 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 11, NOVEMBER 2020

Authorized licensed use limited to: RMIT University Library. Downloaded on December 16,2020 at 12:19:42 UTC from IEEE Xplore. Restrictions apply.

increase to 30 degree. It indicates that GazeRevealer is
greatly effected by recording angle. This is because of the
following two reasons. First, the eye images that are used
for training the classifier and calculating the average pupil
center are recorded under less than 10 degree. Second, espe-
cially for 20 and 30 degree scenarios, part of an eye or an
entire eye may not be captured by the front camera. We do
not construct the model for one eye gaze estimation,
because we find that all the 26 participants tend to hold the
smartphone in front of their faces during password input
(i.e., the recording angle is less than 10 degree). We do not
explicitly ask them to hold the smartphone right in front of
their faces before data collection. Gaze estimation under
varying head positions (i.e., arbitrary recording angles) is
still a challenge in this field [46]. To overcome this issue in
our attack scenario (we cannot require the victims to cali-
brate their head locations before using GazeRevealer), we
plan to create several models in our future work. Each
model consists of one position and distance of the head.
Accordingly, by fitting several models, the system could
infer the gaze of users more accurately in varying angles.
Furthermore, an increasing number of new smartphones
support wide-angle camera, which is easier to capture both
eyes in a larger recording angle. We believe that the perfor-
mance of GazeRevealer could be better on those smart-
phones with wide-angle camera.

4.5.5 Influence of Motion

We now evaluate the impact of user’s walking motion on
inference rate. In this experiment, we ask each participant
to record videos for entering 10 randomly generated pass-
words 5 times on each device under two states, i.e., static
and motion (walking at a speed of about 1.2 m/s). Fig. 20
shows the inference rate of GazeRevealer with different
user states. From the result, we see that the inference rates
nearly keep the same on the three devices when the user
state changes. The result indicates that GazeRevealer still
works well when the users are in typical walking. The rea-
son is that users’ steady walking motion has little impact on

recording of eye patterns and consequently causes little
impact on password inference.

5 DISCUSSION

5.1 Limitations

GazeRevealer is currently implemented in a lab environ-
ment. While our results are encouraging, several limitations
need to be considered before real deployment.

1) Front Camera FPS. The FPS of front camera directly
relates to the number of images in gaze fixation and
saccade. Keystroke eye image extraction process
relies on howmany images in each segment. Different
FPS result in different numbers of images in fixation
and saccade segments, which would affect the thresh-
old. Consequently, it is difficult to apply GazeRe-
vealer to infer victim’s password on smartphones
with different FPS. Formost of the off-the-shelf smart-
phones, the current front camera records videos at a
speed of 30 FPS. In our experiment, we use several
smartphones (Huawei Honor V8, Oppo R11, and
Samsung Galaxy S5) with front cameras of 30 FPS to
demonstrate the practicability of the proposed cam-
era-based keystroke inference approach. To overcome
this limitation, the most straightforward solution is to
train and construct variousmodelswith different FPS.

2) Lighting Conditions. Through experiments and obser-
vation, the performance of GazeRevealer is not very
ideal in low and high illumination scenarios. In high
illumination, for people who are wearing eyeglasses,
it causes light reflection from eyeglasses, leading to
inaccurate gaze estimation and pupil center detec-
tion. To solve this issue, we plan to adopt an image
inpainting approach [47] to eliminate the reflections
in eye images. Low lighting conditions also lead to
the failure of GazeRevealer. To alleviate this limita-
tion, some videography tips can be employed. For
example, adjusting the ISO sensitivity to a higher
level, thereby capturing more light. With further
coding effort, GazeRevealer can be more robust in
various lighting conditions.

3) Recording Angle. In our experiments, we find that the
performance of GazeRevealer drops significantly
when recording angle is larger than 10 degree. This is
because the classification algorithm and the enhance-
ment algorithm we used in the paper assume that the

Fig. 18. Eye images in different illuminations.

Fig. 19. Impact of recording angle on inference rate for different
smartphones.

Fig. 20. Impact of motion on inference rate for different smartphones.

WANG ET AL.: YOUR EYES REVEAL YOUR SECRETS: AN EYE MOVEMENT BASED PASSWORD INFERENCE ON SMARTPHONE 2727

Authorized licensed use limited to: RMIT University Library. Downloaded on December 16,2020 at 12:19:42 UTC from IEEE Xplore. Restrictions apply.

recording angle is less than 10 degree. This limitation
can be addressed by creating several models with
various head positions. In addition, user’s one eye
may not be captured by the camera when recording
angle increases. To improve the accuracy of gaze esti-
mation by using features from one single eye, we
intend to apply more advanced eye tracking techni-
ques to our system. For example, the approach in [48]
effectively estimates eye gaze from single eye image.
Besides, this limitation could also be alleviated on
smartphones with wide-angle camera as we men-
tioned in Section 4.5.4.

4) Gaze Direction. The study is based on the observation
that the gaze directions follow the fingers as they
move from one keystroke to another during pass-
word entry. This is true in most cases, while some
users may not strictly look at each digit, just mechan-
ically moving their fingers because of muscle mem-
ory. In this case, as long as the user is not utterly
typing without using the sense of sight, we can
construct a password dictionary and train probabi-
listic classifiers to assist our approach. This solution
resembles the dictionary-based method in character
keystroke recognition to some extent [4], which
reduces the complexity of password searching for
GazeRevealer.

5.2 Mitigation Strategies

We discuss the mitigation strategies in the following three
aspects.

1)Avoidance. Since our attack only leverages the user’s eye
information to infer the sensitive inputs on smartphones, the
most direct countermeasure is to hide their gaze information
during password input. For example, users can narrow or
squint their eyes when inputting password. They can also
wear sunglasses to input on touchscreen, so that the gaze
information can hardly be acquired by the attacker. Besides,
users can mimic the eye movements when typing before
entering the real password, the system may thus mistakenly
identify those mimicked images as the sensitive images,
leading to inference failure.

Another approach against this attack is to employ ran-
domized layout of numeric soft keyboard, the exact number
cannot be deduced even if an attacker is capable of figuring
out the gaze position on the screen. However, randomizing
soft keyboard provides defenses at the cost of usability. For
example, it is hard to build muscle memory to type, and
hence typing accuracy will be reduced.

2) Elimination. Preventing data acquisition is also an
effective defense against the camera-based side-channel
attack. First, app stores such as Google Play should provide
a comprehensive inspection mechanism to prevent mali-
cious apps from displaying on the shelves and request every
released app to declare the intention of accessing the front
camera and other sensors. Second, users should selectively
grant sensor permissions to the apps on their smartphones
especially to those that contain payments functionality.

In addition, a more extreme solution is to eliminate the
use of password. Biometrics-based authentication such as
fingerprint identification, facial scan, and speech recogni-
tion may be an alternative to replace password. Users can

forget or lose a password, but it is challenging for attackers
to steal and forge the personal characteristics.

3) Workaround. One easy approach to stay on top of secu-
rity is to sign up for text alerts for the accounts, e.g., banking
and online payment. If the user receives a text notifying that
an account has been breached, coupled with considering
the credential-stuffing attack, it is imperative to change the
password that is also associated with any other accounts.
Users should subsequently recheck the apps and remove
the suspicious ones on their smartphones.

Besides, taking into account trade-offs in term of security
and convenience, payment apps can provide one-time pass-
word (OTP) services to users. Under OTP services, small
amount payments simply require memorized static pass-
words; dynamic OTPs are necessitated once the payments
exceed users’ autonomously preset limits. Because of the
one-use nature, OTPs have the potential to secure users even
that their keystrokes are captured by attackers.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel side-channel based key-
stroke inference approach using eye movement recordings
captured by smartphone’s front camera. We present the
detailed design of GazeRevealer and evaluate our approach
on three types of commercial off-the-shelf smartphones. The
evaluation results show the promise of employing front cam-
era as the side channel to recognize the victim’s password on
smartphones. We study several external factors that may
influence GazeRevealer on password inference, including
eyeglasses, distance, ambient illumination, recording angle,
and motion. In contrast to prior works, our approach only
relies on smartphone’s front camera without the need of
complex and easily perceived external devices.

For our future work, we will investigate new approaches
to alleviate the limitations and improve practicability. We
also plan to evaluate GazeRevealer with more external fac-
tors, such as studying performance under different body ges-
tures (e.g., standing, sitting, and slouching). Furthermore,
we will extend GazeRevealer in other application scenarios,
such as number dialing, smartphone unlocking, and key-
stroke inference on a full QWERTY soft keyboard.

ACKNOWLEDGMENTS

We would like to thank all the reviewers and editors for
their constructive suggestions. We would also like to thank
Xiaoluan Zhang and Qianfeng Wang for their supports to
this paper. This work is supported by the Key Science and
Technology Program Grant (No. 2015GY015) of China and
Australian Research Council (ARC) Discovery Project
Grants (DP180103932 and DP190101888).

REFERENCES

[1] K. Ali, A. X. Liu, W. Wang, and M. Shahzad, “Keystroke recogni-
tion using WiFi signals,” in Proc. ACM Annu. Int. Conf. Mobile
Comput. Netw., 2015, pp. 90–102.

[2] L. Zhuang, F. Zhou, and J. D. Tygar, “Keyboard acoustic emana-
tions revisited,” ACM Trans. Inf. Syst. Secur., vol. 13, no. 1, 2009,
Art. no. 3.

[3] T. Zhu, Q. Ma, S. Zhang, and Y. Liu, “Context-free attacks using
keyboard acoustic emanations,” in Proc. ACM SIGSAC Conf. Com-
put. Commun. Secur., 2014, pp. 453–464.

2728 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 11, NOVEMBER 2020

Authorized licensed use limited to: RMIT University Library. Downloaded on December 16,2020 at 12:19:42 UTC from IEEE Xplore. Restrictions apply.

[4] D. Balzarotti, M. Cova, and G. Vigna, “ClearShot: Eavesdropping
on keyboard input from video,” in Proc. IEEE Symp. Secur. Privacy,
2008, pp. 170–183.

[5] M. Li, Y. Meng, J. Liu, H. Zhu, X. Liang, Y. Liu, and N. Ruan,
“When CSI meets public WiFi: Inferring your mobile phone pass-
word via WiFi signals,” in Proc. ACM SIGSAC Conf. Comput. Com-
mun. Secur., 2016, pp. 1068–1079.

[6] J. Sun, X. Jin, Y. Chen, J. Zhang, R. Zhang, and Y. Zhang, “VISIBLE:
Video-assisted keystroke inference from tablet backside motion,”
in Proc. ISOC Netw. Distrib. Syst. Secur. Symp., 2016, pp. 1–15.

[7] F. Maggi, A. Volpatto, S. Gasparini, G. Boracchi, and S. Zanero, “A
fast eavesdropping attack against touchscreens,” in Proc. IEEE Int.
Conf. Inf. Assurance Secur., 2011, pp. 320–325.

[8] Y. Chen, T. Li, R. Zhang, Y. Zhang, and T. Hedgpeth, “EyeTell:
Video-assisted touchscreen keystroke inference from eye move-
ments,” in Proc. IEEE Symp. Secur. Privacy, 2018, pp. 144–160.

[9] L. Cai and H. Chen, “TouchLogger: Inferring keystrokes on touch
screen from smartphone motion,” in Proc. USENIX Workshop Hot
Topics Secur., 2011, pp. 9–9.

[10] E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang, “ACCessory:
Password inference using accelerometers on smartphones,” in
Proc. ACMWorkshop Mobile Comput. Syst. Appl., 2012, Art. no. 9.

[11] R. Schlegel, K. Zhang, X. Zhou, M. Intwala, A. Kapadia, and
X. Wang, “Soundcomber: A stealthy and context-aware sound tro-
jan for smartphones,” in Proc. Netw. Distrib. Syst. Secur. Symp.,
2011, pp. 17–33.

[12] R. Valenti and T. Gevers, “Accurate eye center location through
invariant isocentric patterns,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 34, no. 9, pp. 1785–1798, Sep. 2012.

[13] Q. Huang, A. Veeraraghavan, and A. Sabharwal, “TabletGaze:
Dataset and analysis for unconstrained appearance-based gaze
estimation in mobile tablets,” J. Mach. Vis. Appl., vol. 28, no. 5/6,
pp. 445–461, 2017.

[14] R. Wang, J. Qiu, K. Luo, L. Peng, and P. Han, “Eye gaze tracking
based on the shape of pupil image,” in Proc. SPIE Int. Conf. Opt.
Instruments Technol., 2018, pp. 1–8.

[15] I. Mehta, “500,000 android users downloaded malware made by
one developer,” Nov. 19, 2018. [Online]. Available: https://
twitter.com/EdwardGately/status/1065313844577411072

[16] A. Eshmawi and S. Nair, “Smartphone applications security: Sur-
vey of new vectors and solutions,” in Proc. IEEE Int. Conf. Comput.
Syst. Appl., 2013, pp. 1–4.

[17] X. Lu and S. S. Huang, “Malicious apps may explore a
smartphone’s vulnerability to detect ones activities,” in Proc. IEEE
Int. Conf. Adv. Inf. Netw. Appl., 2017, pp. 787–794.

[18] L. Simon and R. Anderson, “PIN skimmer: Inferring PINs through
the camera and microphone,” in Proc. ACM Workshop Secur. Pri-
vacy Smartphones Mobile Devices, 2013, pp. 67–78.

[19] A. Kostiainen, I. Oksanen, and H. Dominique, “HTML media
capture,” Feb. 1, 2018. [Online]. Available: https://www.w3.org/
TR/html-media-capture

[20] A. Wulf, “Stealing passwords is easy in native mobile apps
despite OAuth,” Jan. 12, 2011. [Online]. Available: https://
welcome.totheinter.net/2011/01/12/stealing-passwords-is-easy-
in-native-mobile-apps-despite-oauth

[21] D. W. Hansen and Q. Ji, “In the eye of the beholder: A survey of
models for eyes and gaze,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 32, no. 3, pp. 478–500, Mar. 2010.

[22] E. Wood and A. Bulling, “EyeTab: Model-based gaze estimation
on unmodified tablet computers,” in Proc. ACM Symp. Eye Track-
ing Res. Appl., 2014, pp. 207–210.

[23] Z. Guo, Q. Zhou, and Z. Liu, “Appearance-based gaze estimation
under slight head motion,” J. Multimedia Tools Appl., vol. 76, no. 2,
pp. 2203–2222, 2017.

[24] X. Zhang, Y. Sugano, M. Fritz, and A. Bulling, “Appearance-based
gaze estimation in the wild,” in Proc. IEEE Conf. Comput. Vis. Pat-
tern Recognit., 2015, pp. 4511–4520.

[25] A. Mayberry, P. Hu, B. Marlin, C. Salthouse, and D. Ganesan,
“iShadow: Design of a wearable, real-time mobile gaze tracker,” in
Proc. ACMAnnu. Int. Conf.Mobile Syst. Appl. Serv., 2014, pp. 82–94.

[26] F. Lu, Y. Sugano, T. Okabe, and Y. Sato, “Adaptive linear regres-
sion for appearance-based gaze estimation,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 36, no. 10, pp. 2033–2046, Oct. 2014.

[27] K. Liang, Y. Chahir, M. Molina, C. Tijus, and F. Jouen, “App-
earance-based gaze tracking with spectral clustering and semi-
supervised Gaussian process regression,” in Proc. ACM Conf. Eye
Tracking, 2013, pp. 17–23.

[28] J. Zhang, X. Zheng, Z. Tang, T. Xing, X. Chen, D. Fang, R. Li,
X. Gong, and F. Chen, “Privacy leakage in mobile sensing: Your
unlock passwords can be leaked through wireless hotspot
functionality,” J. Mobile Inf. Syst., vol. 2016, 2016, Art. no. 8793025.

[29] R. Raguram, A. M. White, D. Goswami, F. Monrose, and J. Frahm,
“iSpy: Automatic reconstruction of typed input from compromis-
ing reflections,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., 2011, pp. 527–536.

[30] Y. Xu, J. Heinly, A. M. White, F. Monrose, and J. Frahm, “Seeing
double: Reconstructing obscured typed input from repeated
compromising reflections,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2013, pp. 1063–1074.

[31] Q. Yue, Z. Ling, X. Fu, B. Liu, K. Ren, and W. Zhao, “Blind recog-
nition of touched keys on mobile devices,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., 2014, pp. 1403–1414.

[32] D. Shukla, R. Kumar, A. Serwadda, and V. V. Phoha, “Beware,
your hands reveal your secrets!” in Proc. ACM SIGSAC Conf. Com-
put. Commun. Secur., 2014, pp. 904–917.

[33] Z. Xu, K. Bai, and S. Zhu, “TapLogger: Inferring user inputs on
smartphone touchscreens using on-board motion sensors,” in
Proc. ACM Conf. Secur. Privacy Wireless Mobile. Netw., 2012,
pp. 113–124.

[34] S. Narain, A. Sanatinia, and G. Noubir, “Single-stroke language-
agnostic keylogging using stereo-microphones and domain spe-
cific machine learning,” in Proc. ACM Conf. Secur. Privacy Wireless
Mobile Netw., 2014, pp. 201–212.

[35] T. Ahonen, A. Hadid, and M. Pietikainen, “Face description with
local binary patterns: Application to face recognition,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 28, no. 12, pp. 2037–2041,
Dec. 2006.

[36] P. I. Wilson and J. Fernandez, “Facial feature detection using Haar
classifiers,” J. Comput. Sci. Colleges, vol. 21, no. 4, pp. 127–133, 2006.

[37] J. Findlay and R. Walker, “Human saccadic eye movements,” J.
Scholarpedia, vol. 7, no. 7, 2012, Art. no. 5095.

[38] A. Karakosta, M. Vassilaki, S. Plainis, N. H. Elfadl, M. Tsilimbaris,
and J. Moschandreas, “Choice of analytic approach for eye-specific
outcomes: One eye or two,” Amer. J. Ophthalmology, vol. 153, no. 3,
pp. 571–579, 2012.

[39] I. Sluganovic, M. Roeschlin, K. B. Rasmussen, and I. Martinovic,
“Using reflexive eye movements for fast challenge-response
authentication,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., 2016, pp. 1056–1067.

[40] K. Krafka, A. Khosla, P. Kellnhofer, H. Kannan, S. Bhandarkar,
W. Matusik, and A. Torralba, “Eye tracking for everyone,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 2176–2184.

[41] P. Koutras and P. Maragos, “Estimation of eye gaze direction
angles based on active appearance models,” in Proc. IEEE Int.
Conf. Image Process., 2015, pp. 2424–2428.

[42] Scikit-Image, “Image processing in Python,” 2014. [Online]. Avail-
able: https://scikit-image.org

[43] C. W. Hsu and C. J. Lin, “A comparison of methods for multiclass
support vector machines,” IEEE Trans. Neural Netw., vol. 13, no. 2,
pp. 415–425, Mar. 2002.

[44] J. G. Wang, E. Sung, and R. Venkateswarlu, “Eye gaze estimation
from a single image of one eye,” in Proc. IEEE Int. Conf. Comput.
Vis., 2003, pp. 136–143.

[45] T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “The zone of
comfort: Predicting visual discomfort with stereo displays,” J.
Vis., vol. 11, no. 8, 2011, Art. no. 11.

[46] R. Valenti, N. Sebe, and T. Gevers, “Combining head pose and eye
location information for gaze estimation,” IEEE Trans. Image Pro-
cess., vol. 21, no. 2, pp. 802–815, Feb. 2012.

[47] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and
A. A. Efros, “Context encoders: Feature learning by inpain-
ting,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 2536–2544.

[48] S. Park, A. Spurr, and O. Hilliges, “Deep pictorial gaze
estimation,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 721–738.

WANG ET AL.: YOUR EYES REVEAL YOUR SECRETS: AN EYE MOVEMENT BASED PASSWORD INFERENCE ON SMARTPHONE 2729

Authorized licensed use limited to: RMIT University Library. Downloaded on December 16,2020 at 12:19:42 UTC from IEEE Xplore. Restrictions apply.

https://twitter.com/EdwardGately/status/1065313844577411072
https://twitter.com/EdwardGately/status/1065313844577411072
https://www.w3.org/TR/html-media-capture
https://www.w3.org/TR/html-media-capture
https://welcome.totheinter.net/2011/01/12/stealing-passwords-is-easy-in-native-mobile-apps-despite-oauth
https://welcome.totheinter.net/2011/01/12/stealing-passwords-is-easy-in-native-mobile-apps-despite-oauth
https://welcome.totheinter.net/2011/01/12/stealing-passwords-is-easy-in-native-mobile-apps-despite-oauth
https://scikit-image.org

Yao Wang received the BS and MS degrees in
software engineering from Xidian University,
China. He is currently working toward the PhD
degree in computer science and technology at
Northwestern Polytechnical University, China.
His research interests include privacy protection,
mobile computing, and machine learning.

Wandong Cai is currently a professor with the
Department of Computer Science and Technology,
Northwestern Polytechnical University, China. He
is the director of Information Security Institute of
Northwestern Polytechnical University, the senior
member of China Computer Federation. He auth-
ored 16 teaching materials, published more than
220 technical papers, holds more than 10 autho-
rized invention patents. His research interests
include complex network and information security.

Tao Gu received the PhD degree in computer sci-
ence from the National University of Singapore, in
2005. He is currently an associate professor with
the School of Computer Science and Information
Technology, RMIT University. His research inter-
ests lie in the areas of ubiquitous and pervasive
computing, mobile computing, wireless sensor net-
works, big data analytics, and Internet of Things.
He is a senior member of the IEEE and a member
of the ACM.

Wei Shao received the BS degree in software
engineering from Xidian University, China, and
the MS degree in software engineering from the
University of Hong Kong. He is currently working
toward the PhD degree in computer science at
RMIT University, Australia. His interest research
area focuses on data mining, spatio-temporal
data analysis, and device-free activity recognition.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2730 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 11, NOVEMBER 2020

Authorized licensed use limited to: RMIT University Library. Downloaded on December 16,2020 at 12:19:42 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

