
Enabling Context-aware Smart Home with Semantic Web
Technologies

Daqing Zhang, Tao Gu, Xiaohang Wang

Institute for Infocomm Research, 21 Heng Mui Keng Terrace, Singapore 119613
{daqing, tgu, xwang}@i2r.a-star.edu.sg

Abstract. Context-awareness has emerged as a key enabling technology for
future smart homes. In this paper, we propose a generic layered model (the
Context Stack) to guide the context-aware system design. We investigate the
use of Semantic Web technologies in context modeling and reasoning. A Web
Ontology based context model (CONON) is defined to facilitate explicit context
representation, semantic context sharing, and logic reasoning. We show how the
use of logic reasoning enables context-aware services to deduce high-level,
implicit context from low-level, explicit context. In particular, we integrate the
temporal ontology into our ontology model to facilitate annotating and
reasoning about temporal context information. Following the general layered
model, we present an OSGi-based context-aware service architecture for smart
homes. We also build the smart home prototype with context-aware services.

Index Terms:. Context-awareness, smart home, semantic web, ontology

1 Introduction

Recent years have witnessed rapid advances in the enabling technologies for smart
homes, such as the increasingly mature networked appliances, pervasive
sensor/actuator technologies and various kinds of wired and wireless communication
protocols. Home users are progressively offered more and more personalized services,
ranging from home automation, security and monitoring, entertainment, to healthcare.
In particular, many research projects have targeted to build smart homes for ageing
and disabled people, to prolong their stay at home for independent living and assist
them in their everyday life [1]-[3]. It is widely acknowledged that an important step in
ubiquitous computing is context-awareness. Services in pervasive and mobile
environments need to be context-aware so that they can adapt themselves to rapidly
changing situations. By context, we refer to any physical or conceptual information
about the execution environment of a service.
Even though a lot of context-aware systems have been built in the past years, there
lacks, however, a general model to guide the system design. This fact has caused the
duplicate of huge effort and great interoperability issue in the community. Inspired by

the seven-layer OSI model, in this paper, we first propose a generic five-layer model
for guiding the design and implementation of context-aware systems. Our layered
model abstracts the functional elements of context-aware systems, i.e., context
acquisition, context representation, context aggregation, context interpretation, and
context utilization. In order to address the interoperability issue among context-aware
systems, we leverage on our previous ontology-based context model [4] to represent
and reason context information. As compared to previous context representation such
as in [5]-[7], our context model has great advantages in terms of expressiveness,
knowledge reuse, scalability and enabling logic reasoning. Knowledge reuse requires
heterogeneous computational entities such as devices, services, applications, and
agents to have a shared understanding of context information. The use of ontology
enables different context-aware systems to have common concepts about context
information to achieve better interoperability. With context ontology, we are also able
to apply various logic inference engines such as Jena2 [8], JTP [9], FaCT [10] to
deduce high-level context from low-level context. In this paper, we further enhance
our context model by defining a temporal ontology and demonstrate the use of
temporal reasoning to infer time-related context information. We also present the
design of layered model based on OSGi infrastructure in smart home environments.
We show how the functionalities of each layer can be implemented on top of OSGi
platform, and demonstrate typical context-aware services to enhance everyone’s daily
life.
The rest of this paper is structured into five sections. In the next section, we present
the generic layered model: context stack. In Section 3, we briefly describe our context
ontology with the enhancement of temporal ontology. In Section 4, we describe the
use of logic reasoning in our architecture via some use cases, with special focus on
temporal reasoning. In Section 5, we present the design of the OSGi-based service
infrastructure for smart homes with our layered model and describe the
implementation of the smart home prototype with several context-aware services.
Section 6 concludes the paper.

2 The Context Stack: A Layered Model for Context-Aware
Systems

Network oriented systems are easily implemented largely because of the ISO Open
System Interconnection (OSI) layered model which attributes different functionalities
to independent layers. Much the same way, a generic layered model is needed to
guide the development of context-aware systems.
In this section, we present a generic layered model, namely Context Stack, as a
reference model for context-aware systems. Our model is similar in spirit to the
seven-layer OSI model for computer networks. The layered model combines the
functional elements of context-aware systems (i.e., context acquisition, context model
and representation, context aggregation, context interpretation, context utilization),
and melds them into a coherent, generic architecture that most current context-aware
systems can mapped onto. The Context Stack provides context-aware systems with

robust separation of concerns. Fig. 1 shows the proposed five-layer Context Stack and
the illustration of a context-aware smart phone service mapping on to the layered
model as an example.

2.1 Context Acquisition Layer

The lowest level is the context acquisition layer, in which context in raw format may
be acquired from a wide variety of ubiquitous context sensors. For example, the
indoor location of a user can be obtained from a RFID location sensor system, which
detects the presence of a RFID tag to conclude the location of the user wearing it, the
light level is sensed by X.10 light sensors, and the noise level is obtained from noise
sensors. The acquired sensor data might not provide meaningful context that can be
directly understood and utilized by context-aware services, thus need to be passed to
upper layers for further processing.

Fig. 1 The Context Stack, a reference model for context aware systems

2.2 Context Representation Layer

The upper layers (i.e., representation, aggregation, interpretation, and utilization
layers) rely on a common context model, which forms the basis for context
management to facilitate expressive representation, semantic sharing and
interoperability of heterogeneous computational entities. Existing context models vary
in the type of context they represent and the expressiveness they provide. As shown in
Fig. 1, we choose to use a general object-oriented (or entity-relation oriented) context
model to illustrate the role of context model in context-aware systems. In such context
model, context information is structured around a set of entities, each describing a
physical or conceptual object such as a person or an activity, and these contextual
entities are linked to their attributes and other entities with relations.

At the context representation layer, raw sensor data is represented into a machine-
readable format following the adopted context model. This is actually an abstraction
layer that acquires sensor data from context sources, and then annotates sensor-driven
context with semantics that are structured around a set of contextual entities (e.g.,
‘user’, ‘location’ and ‘device’.) and the relations (e.g., ‘locatedIn’) that hold between
them.

2.3 Context Aggregation Layer

The context aggregation layer aggregates and relates contexts from distributed context
sensors to form a centralized context database. Context aggregation helps simplify the
context query procedure of computational entities through a centralized manner
instead of distributed approach, and provides a basis for further interpretation over
related contextual knowledge. Therefore, context aggregation by its nature is to
provide the functionalities of a context knowledge base. Another function of context
aggregation is to store historical context to support further interpretation based on
both current and past contexts.

2.4 Context Interpretation Layer

When taking a context model approach to represent and manage context, context can
be interpreted with various kinds of reasoning and/or learning mechanisms to derive
high-level additional context. The context interpretation layer leverages
reasoning/learning techniques to deduce high-level, implicit context needed by
intelligent services from related low-level, explicit context. For example, the rule-
based reasoning engine can deduce user’s current situation based on his location and
environmental contexts. The inferred context might suggest that the user might be
sleeping currently, since the time is 11 pm and he is staying at a dark, quiet ‘Bedroom’.
Another example of context interpretation could be machine learning based behavior
prediction. The intelligent system could learn the pattern of user’s actions from
historical sequences of context data and then use this learned pattern to predict next
event. For example, it could be predicted that once the user finished showering (turn
off the electronic water heater) after 10:30 pm, he will check emails using the hand
phone, and then go to bed after reading them.

2.5 Context Utilization Layer

Finally, At the uppermost level (context utilization layer), context-aware services
utilize both low-level and high-level context to adjust their behaviors. The smart
phone service then queries user’s context (sleeping) and decides to forward all phone
calls to the voice message box. It also could take account of predicted context to
trigger certain actions.

Obviously, the Context Stack provides a concise layered architecture for the
specification of context-aware systems design. In the following sections, we will
investigate how to use Semantic Web technologies to model and reason context, and
show how the Context Stack is adopted as the design abstraction to develop a context-
aware service infrastructure for smart homes.

3 The Context Ontology

In this section, a Web ontology based context model (CONON) is defined to facilitate
explicit context representation, semantic context sharing, and logic reasoning [4]. We
further integrate the temporal ontology to facilitate the annotation and reasoning about
temporal relationships between different context events and activities.

3.1 The Ontology for Contextual Entities

To completely formalize all contexts in pervasive service environments is an
insurmountable task; the objectives of designing a reasonable context ontology is as
follows:
Modeling a set of top-level contextual entities and their interrelationships.
Providing flexible future extensions to add specific ontologies in different service
domains.
Fig. 2 (a) shows the top-level context ontology. The context model is structured
around a set of contextual entities, each describing a physical or conceptual object
such as a user or an activity. Each entity is associated with its attributes (represented
in owl:DatatypProperty) or relations with other entities (represented in
owl:ObjectProperty). The built-in OWL property owl:subClassOf allows for
hierarchically structuring additional entities, thus provides future extensions to add
new type of contextual entities that are required in specific services. Each subclass
entity inherits common attributes and relations from its superclass, and is associated
with a number of additional properties.
The context ontology provides a shared vocabulary for describing basic concepts
including users, locations, activities as well as a set of computational entities (i.e.,
services, applications and devices). It also defines a set of attributes (e.g., user’s status)
and relationships (e.g., spatial containment between different locations) hold between
these contextual entities.

Fig. 2 The context ontology and a partial serialization

3.2 The Temporal Ontology

Context-aware services are often interested in more than the current state of context,
as temporal context plays an important role in analyzing historical information and
predicting future trends. Capturing the temporal information requires the annotation
of temporal information including both instantaneous time point of events, duration of
activities and ordering between events, among other things.
OWL-Time [11], a part of OWL project has defined an ontology of temporal concepts,
for describing the temporal characteristics of Web resources. It is built on well-
defined model of temporal representation, Interval Temporal Logic [12], and is
formulated as a set of first-order predicate calculus axioms. We adopt this temporal
ontology to annotate and reason about temporal contexts.

Fig. 3. The annotation and reasoning about temporal contexts based on the temporal
ontology.

We associate time to temporal relationships by tagging properties with time-stamps or
time intervals. For example, the OWL segment shown in Fig. 3 describes a piece of
sensed context “Ray is located in the meeting room now (e.g., the current time is
16:10)”, and a piece of profiled context “a meeting is scheduled to be held in the
meeting room during 16:00 to 17:00”. Through temporal reasoning, the inference
service can deduce the additional temporal relation “the time point (16:10) is inside of
the time interval (16:00-17:00)” according to the interval temporal logic, and this
inferred context along with other related contexts might be used to further deduce
more complex upper level contexts such as “Ray is in a meeting now”.

4 Context Reasoning

The goal of context reasoning is to deduce high-level, implicit context from low-level,
explicit context. In this section, we show the reasoning power based the proposed
context model CONON. We choose to implement context-reasoning by using first-

order logic. For example, the physical location context “Ray is located in the
bedroom” can be described as: (Ray, locatedIn, BedRoom). The structure of the
context predicate has tree fields - a subject (i.e., Ray) that is a contextual entity, an
object (i.e., BedRoom) that is contextual entity or a datatype value, and a verb (i.e.,
locatedIn) that describes the attributes of the subject or the relationship between the
subject and the object. We believe that logics are powerful tools for representing and
reasoning context, they are sufficient for a large number of context-aware smart
home applications.

4.1 Relational Reasoning

In this section, we demonstrate relational reasoning via a number of use cases. These
use cases focuse on the inference over relationships between related entities.

Use Case 1: Deducing user’s Location
A user’s location is an important customization criterion for context-aware computing.
Location contexts are quite useful in location-based services, for example, when a
user is near his/her friends, or to find out nearby restaurants or automatic teller
machines.
In the context ontology, the property locatedIn is specified as transitive property,
which implicitly defines the spatial containment relationships between different
spaces. The following inference rule can be used to determine “whether Ray is located
at any room inside of the building”:
rdf:type(locatedIn, owl:TransitiveProperty) ∧ locatedIn(Ray, BedRoom)∧
 locatedIn(BedRoom,RayHome)⇒ locatedIn(Ray, RayHome)
This rule demonstrates that if Ray is locatedIn the BedRoom, which is locatedIn the
RayHome, then Ray must be also locatedIn RayHome, since locatedIn is a transitive
relationship”.
Another example concerning location contexts is to determine the proximity of
different entities by examining their spatial locations:
locatedIn(Ray, RayHome)∧ locatedIn(John, RayHome) ⇒ locatedNear(Ray, John)
This rule demonstrates that if “Ray and John are both locatedIn RayHome, we can
conclude that “Ray is locatedNear John”.

Use Case 2: Deducing User’s Status
High-level contexts such as “what the user is doing” are often deduced from relevant
environmental contexts. In this section, we demonstrate several example rules which
are used to derive a user’s status. These rules have been built in a smart phone
application. By using these rules, users can customize the behaviors of the augmented
mobile phone. Examples of the rules are:
IF status(Ray, Shower) ∨ status(Ray, Sleep)
THEN forward the incoming call to voice message box
IF status(Ray, Lunch) ∨ status(Ray, Dinner)
THEN set the mobile phone to vibrate
IF status(Ray, WatchingTV) ∨ status(Ray, LisentingMusic)
THEN turn up the ring volume

The following relational reasoning rules show parts of the deductions of these high-
level contexts. Other contexts used in the rules above are deduced from temporal
contexts, which will be discussed in use case 3.
locatedIn(Ray, Bedroom)∧ drapeStatus(Bedroom, ON)∧
 lightLevel(Bedroom, LOW)⇒ status(Ray, Sleeping)
locatedIn(Ray, Bathroom)∧ status(WaterHeater, ON)⇒ status(Ray, Shower)
locatedNear(Ray,TV)∧ status (TV, ON) ⇒ status(Ray, WatchingTV)
locatedNear(Ray,CDPlayer)∧ status (CDPlayer, ON)
 ⇒ status(Ray, ListeningMusic)

4.2 Temporal Reasoning

A major advantage of the context ontology is to allow the combination of relational
reasoning and temporal reasoning about contexts to describe a dynamic changing
environment. The temporal ontology and temporal contexts are also formulated as
first-order predicates: Instant (e, t) represents that an event e occurs at time instant t;
Interval (e, T) represents that an activity e happens during a time interval T.
Note that e could be either a contextual entity (e.g., the birthday party will be hold
during 16:00 to 17:00) or a temporal relationship between two entities (e.g., Ray
stayed at RayHome during 2001-01-01 to 2002-10-01, Ray entered his BedRoom at
16:10).

Use Case 3: Deducing temporal context
Precisely determining a user’s status often relies on various kinds of contextual
knowledge, including environmental contexts and their temporal information.
For example, in a smart home environment, location sensors periodically report the
presence of a user, and this information is associated with a time-stamp. An online
calendar service provides the information about scheduled activities, including time,
location, etc. From these original contexts, the inference service concludes the
temporal relationships between different context activities and events based on
temporal interval logic. This temporal context along with other related environmental
contexts can be used to further deduce more complex high-level context. For example,
the following temporal reasoning rule helps to determine “whether Ray is really in a
meeting”:
locatedIn(BirthdayParty, RayHome) ∧
 Interval (BirthdayParty,, Scheduled-birthdayparty-time)∧
Instant (locatedIn(Ray, RayHome), NOW)∧
insideOf (NOW, Scheduled-birthdayparty-time)
 ⇒ status(Ray, BirthdayParty)
Another similar rule can be used to determine the opposite context- “whether Ray is
not really in a birthday party”:
locatedIn(BirthdayParty,, RayHome) ∧
 Interval (BirthdayParty,, Scheduled-birthdayparty-time)∧
Instant (locatedIn(Ray, RayHome), NOW)∧

(before(NOW, Scheduled-birthdayparty-time)∨ after(NOW, Scheduled-birthdayparty-
time))
 ⇒ ¬ status(Ray, BirthdayParty,)
From the use case described above, we see the capability of our context ontology to
support advanced relational and temporal reasoning about context.

5 Service Architecture for Context-aware Smart Home

In this section, we describe the design and implementation of service-oriented
architecture for context-aware smart homes.

5.1 Design Objective

The design of the service infrastructure adopts the generic layered model - Context
Stack as the design abstraction to provide reusable service middleware. It demonstrate
the following features:

• the component based middleware architecture aims to combine independent
functional elements of context-aware systems (namely context acquisition,
aggregation, interpretation, utilization, and discovery), and melt all the
elements together into coherent, reusable middle layers.

• the design explores the Semantic Web infrastructure to acquire rich context
information. Semantic Web Ontology (CONON), Semantic Web query and
inference mechanisms are incorporated into this infrastructure to facilitate
formal context modeling, knowledge sharing, semantic query, context
reasoning and semantic context discovery.

• we leverage open standards including OSGi and UPnP to simplify the
programming of reusable service components. It aims to provide a set of API
standards and implement a number of deliverable context-aware services in a
smart home environment.

5.2 Overview of OSGi-based Service Infrastructure for Smart Home

The OSGi-based service architecture is shown in Fig. 4 and has been described in
[13][14]. Central to the architecture is an OSGi residential service gateway that is
responsible for connecting home appliances, mobile terminals and sensor/ actuator
devices to Internet through broadband access technologies. Various home networking
technologies such as Ethernet, X.10, IEEE 1394, Lonworks, WLAN or Bluetooth can
be used to interconnect various appliances devices. The OSGi framework standardizes
the way for secure and reliable home service delivery and provisioning, for remote
service lifecycle management as well as for bridging between different home
networking standards.

In order to achieve the knowledge sharing and logical inference about context
information, the following four key functional modules are incorporated into the
service architecture in form of OSGi service bundles:

Fig. 4 OSGi-based context-aware service architecture

• SW (Semantic Web) Service: The SW service bundle provides Semantic Web

APIs for accessing and manipulating OWL-encoded contexts, for persisting
and querying semantic models of contexts in relational databases and for
inferring additional contexts from existing contexts in KB. The current
implementation is based on Jena2 Semantic Web Toolkit, however,
alternative Semantic Web engines and KB tools should be wrapped in a
generic interface so that they can be plugged into the service architecture.
The SW service bundle provides fundamental for the following three
services.

• Context Acquisition Service: The context acquisition service is responsible
for collecting context information from a wide variety of context sources and
transforming the ad hoc context description to semantic representation using
context ontology. This service provides the functionalities of context
acquisition layer and semantic representation layer in our generic layered
model described in Section 2.

• Context KB (Knowledge Base) Service: The context KB service provides a
persistent storage for context knowledge through the use of relational
database. It stores and manages both static context ontology (the ontological
descriptions of classes or types of interrelated entities) and dynamic context
information (situational instances or individuals represented based on the
context ontology), thus supports for reasoning about both context ontology
and situational context information. The KB service enables the service
architecture to aggregate and relate dynamic contexts from highly distributed
context sources, therefore provides the functionalities of semantic
aggregation layer.

• Context Inference Service: The context inference service is a packaged
reasoning engine that can be used by context-aware services to deduce high-
level contexts from low-level contexts. The inference service is based on
Jena2 APIs, which provides rule-based inference support for RDFS and
OWL through pluggable reasoners. This service provides the functionalities
of context inference layer.

5.3 Implementation of the Context-aware Smart Home

The OSGi-based context-aware smart home prototype has been implemented as
shown in Fig. 5. The prototype system consists of an OSGi-compliant residential
gateway (RG) and different kinds of devices and sensors connecting to the RG. The
RG is Intel Celeron based with embedded Linux (kernel 2.4.17), developed by our
team. The OSGi framework adopted is ProSyst’s mBeded Server.

Figure 5. Prototype system set-up and experimental results

Context is acquired from a wide variety of context sources including sensors, profiles,
devices, internal and external context services, as well as the context inference engine.
The acquisition of users’ location information is accomplished by indoor wireless
LAN and RFID based solutions. Physical contexts are provided by embedded sensor
devices (temperature sensor, light sensor, X.10 drape controller etc.). Runtime status
of networked appliances (digital TV, CD player, electric water heater, projector, etc.)
is collected by a device monitoring service hosted by OSGi service gateway. High-
level conceptual context needed by context-aware services is either provided by user-
defined profiles (e.g., user calendar or activity schedule table) or inferred from
relevant context (e.g., the situational context that one is taking shower can be
determined from the physical context that he is in bathroom and the water heater is
turned on). Other external contexts such as future weather report are provided by
external services of certain domain service providers (e.g., weather information
servers).

Using the same prototype, several context-aware services are developed and tested.
One is the home monitoring service: when a child is detected falling down and crying
at home using audio and video analysis technique, a SMS message is sent to you and
you can use remote monitoring service to see what is happening in your home.
Another service is the situation-aware phone service: when the house owner is
sleeping, the phone is put in silent mode automatically and all the phone calls are
forwarded to the voice message box.

6 Conclusion

Context-awareness is critical to achieving the vision of future smart homes. To date,
the development of context-aware systems lacks a generic model to avoid duplicate of
effort and interoperability issue. In this paper, we remove this obstacle by proposing a
five-layer reference model to guide the context-aware system design and deploying
Semantic Web technology for context representation and reasoning. As a part of our
long term research project - Context-Aware Smart Home, we are incorporating
different new ideas into the OSGi-based service infrastructure for smart homes. Over
time, we envision the context-aware services will significantly improve the quality of
our life, benefiting particularly the elderly and disabled people in their everyday life.

Reference

1. Z. Zenn Bien. Human-friendly Man-Machine Interaction in Smart Home. Keynote speech
at the 3rd International Conference On Smart homes and health Telematic, Sherbrooke,
Québec, Canada, July 4-6, 2005.

2. A. Helal, W. Mann, H. Elzabadani, J. King, Y. Kaddourah and E. Jansen, "Gator Tech
Smart House: A Programmable Pervasive Space", IEEE Computer magazine, March 2005,
pp 64-74.

3. Mohamed Ali Feki, Stéphane Renouard, Bessam Abdulrazak, Gérard Chollet, Mounir
Mokhtari. Coupling Context Awareness and Multimodality in Smart Homes Concept. The
10th International Conference on Computers
Helping People with Special Needs. Lecture Notes in Computer Science 3118 Springer
2004, ISBN 3-540-22334-7. Paris, France, July, 2004.

4. Xiaohang Wang, Tao Gu, Daqing Zhang, Jinsong Dong, Hung Keng Pung: Ontology
Based Context Modeling and Reasoning using OWL. To appear in Workshop on Context
Modeling and Reasoning at 2nd IEEE International Conference on Pervasive Computing
and Communication (PerCom’04), March 14, 2004, Orlando, Florida

5. Kindberg, T., et al.: People, Places, Things: Web Presence for The Real World. Technical
Report HPL-2000-16, Hewlett-Packard Labs, 2000

6. Dey, A.K., Salber, D. Abowd, G.D. A Conceptual Framework and a Toolkit for Supporting
the Rapid Prototyping of Context-Aware Applications, Human-Computer Interaction (HCI)
Journal, Vol. 16(2-4), pp. 97-166, 2001.

7. Anand Ranganathan, Roy H. Campbell, Arathi Ravi and Anupama Mahajan: ConChat: A
Context-Aware Chat Program. IEEE Pervasive Computing, pp. 52-58, July-Sept 2002.

8. Jena2, May. 2003. http://www.hpl.hp.com/semweb/jena2.htm.

9. Fikes, R., Jenkins, J., & Frank, G.: JTP: A System Architecture and Component Library for
Hybrid Reasoning. Knowledge Systems Laboratory, 2003.

10. Horrocks, I.: The FaCT System. Automated Reasoing with Analytic Tableaux and Related
Methods, 1998

11. OWL-Time - http://www.isi.edu/~pan/OWL-Time.html
12. Allen, J.F.: Towards a General Theory of Action and Time. Artificial Intelligence 23, pp.

123-154, 1984.
13. Daqing Zhang, Xiaohang Wang: OSGi Based Service Infrastructure for Context Aware

Connected Home. Proceeding of 1st International Conference On Smart Homes and
Health Telematics (ICOST2003), IOS Press, Paris, France.

14. T. Gu, H. K. Pung, D. Q. Zhang, “Towards an OSGi-Based Infrastructure for Context-
Aware Applications in Smart Homes”, IEEE Pervasive Computing, Vol. 3, Issue 4, 2004.

