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Abstract—The ZigBee communication can be easily and severely interfered by Wi-Fi traffic. Error recovery, as an important means for

ZigBee to survive Wi-Fi interference, has been extensively studied in recent years. The existing works add upfront redundancy to

in-packet blocks for recovering a certain number of random corruptions. Therefore, the bursty nature of ZigBee in-packet corruptions

under Wi-Fi interference is often considered harmful, since some blocks are full of errors which cannot be recovered and some blocks

have no errors but are still requiring redundancy. As a result, they often use interleaving to reshape the bursty errors, before applying

complex FEC codes to recover the re-shaped random distributed errors. In this paper, we take a different view that burstiness may be

helpful. With burstiness, the in-packet corruptions are often consecutive and the requirement for error recovery is reduced as

“recovering any k consecutive errors” instead of “recovering any random k errors”. This lowered requirement allows us to design far

more efficient code than the existing FEC codes. Motivated by this implication, we exploit the corruption burstiness to design a simple

yet effective error recovery code using XOR operations (called ZiXOR). ZiXOR uses XOR code and the delay is significantly reduced.

More, ZiXOR uses RSSI-hinted approach to detect in packet corruptions without CRC, incurring almost no extra transmission

overhead. The testbed evaluation results show that ZiXOR outperforms the state-of-the-art works in terms of the throughput

(by 47 percent) and latency (by 22 percent).

Index Terms—ZigBee, bursty corruptions, error recovery, XOR coding
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1 INTRODUCTION

THE ZigBee technology enables low power, reliable and
scalable wireless communications for various energy-

constrained devices. These devices further support emerg-
ing Internet-of-Things applications including smart home
[1], health monitoring [2], emergency response [3], etc. Most
of these applications are real-time, and they have stringent
requirements on both throughput and delay. However, Zig-
Bee operates in crowded unlicensed ISM band (e.g., Wi-Fi,
Bluetooth, microwave oven), and the performance of ZigBee
communications can be easily and severely interfered by
Cross Technology Interference. Among these technologies,
Wi-Fi is the most common interferer due to its pervasive
deployment. Further, Wi-Fi’s signal power (i.e., 20 dBm
usually) is far stronger than ZigBee (i.e., 0 dBm at maxi-
mum), and hence it can easily interfere ZigBee communica-
tion even without sensing its existence [4], [5], [6].

The problem of ZigBee packet error recovery under Wi-Fi
interference has recently attracted much research attention
[7], [8], [9], [10], [11], [12], [13]. There are basically two kinds
of approaches: partial retransmission (e.g., [7], [8], [9]), and
forward error correction (FEC) (e.g., [10], [11], [12]). In the
partial retransmission approach, a data payload is divided
into several small blocks, which are then transmitted in one
packet. In case of errors occurred, a receiver replies NAKs
and the sender then retransmit only the erroneous blocks,
rather than the entire packet as traditional ARQ scheme.
However, the inter-packet transmission delay in this
approach is still unavoidable due to the nature of retransmis-
sion. The FEC approach obviates retransmission bymeans of
sending upfront error-correcting information, along with the
original data. Before transmission, the packet payload is
divided into small blocks which are further encoded using
error-correcting codes (e.g., Reed-Solomon (RS) code). When
certain levels of bit errors occur, the receiver can recover the
original packet without retransmission.

Recent studies have observed that ZigBee corruptions
under Wi-Fi interference are highly bursty [11], [14], [15],
[16]. The burstiness leads to the case that some blocks may
be full of bit errors which cannot be recovered by the FEC,
while other blocks may have no bit errors at all but still
require redundant bits. As a result, existing works consider
burstiness harmful for error recovery. To deal with bursti-
ness, most of these works first use interleaving to reshape
the bursty errors before applying RS/BCH codes [10], [12].
Unfortunately, such methods may still lead to substantial
reduction in throughput due to the high decoding delay. For
example, RS(15,7) decoding consumes over 100 ms on
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TelosB motes, and the block-level CRCs consume tens of
bytes in the limited ZigBee packet length (127 octets). This
further poses a significant challenge for applying the FEC
coding scheme in real time ZigBee communications.

Different from the traditional point of view, we argue in
this paper that burstiness can be indeed helpful for error
recovery. Our key insight with burstiness is that the require-
ment for error recovery turns out to be recovering “any k
consecutive blocks” instead of “any k blocks” since the block
errors are most likely consecutive. This lowered require-
ment motivates us to design a far more efficient FEC coding
scheme for ZigBee under Wi-Fi interference.

Inspired by this implication, in this paper, we propose a
novel forward error recovery scheme to improve ZigBee com-
munication performance under Wi-Fi interference with XOR
(called ZiXOR). Different from the traditional FEC coding
schemes which try to recover “any k blocks”, ZiXOR uses a
simple yet effective approach based on XOR operations to dis-
tribute any k consecutive erroneous blocks into k separate
XORed redundant blocks. In this way, each redundant block
contains only one erroneous block, and any k consecutive block
errors can be recovered by simple XOR operations. The cod-
ing delay can be significantly reduced.

When under non-bursty scenarios (e.g., outdoor communi-

cation), ZiXORmay not workwell. To deal with this problem,

we propose an adaptive switch scheme to switch to fountain

code mode when there are multiple error bursts within one

packet. The switch is designed “seamingless”, which means

the previous transmitted ZiXOR blocks can be directly used

as fountain encoded blocks for decoding. Therefore the per-

formance of ZiXOR is similar with fountain code (e.g., DLT

[17]) under non-bursty scenarios.
Despite the coding delay can be greatly reduced by

leveraging the burstiness, the block-level CRC bytes could
still greatly degrade the throughput given that the maxi-
mum ZigBee packet length is only 127 bytes, which is
largely different from the 802.11 networks. Take RAT [12] as
an example, when a packet payload is divided into 12
blocks, 24 CRC bytes will be required. In order to reduce
the overhead, we sample fine-grained RSSI values during
packet reception. The correlation between RSSI samples and
byte errors allows us to detect block errors without CRCs,
thus saving room in the payload for data transmissions.

We implement ZiXOR in a testbed with 8 � 10 TelosB
nodes. We then incorporate it into an existing routing protocol
CTP [18] and compare its performance with the state-of-the-art
works [7], [11], [12], [17]. We conduct both trace-driven and
testbed experiments, and the results demonstrate that ZiXOR
provides real-time forward error recoverywith nearly no over-
head (less than 1ms delay). Comparedwith the existingworks,
ZiXOR greatly improves the end-to-end protocol performance
in terms of throughput (47 percent), transmissions (37 percent)
and latency performance (22 percent), respectively.

The major contributions of this paper are summarized as
follows:

1) We identify the opportunity to leverage the bursty
nature of ZigBee corruptions under Wi-Fi interfer-
ence for error recovery.

2) We design ZiXOR, a fast forward error correction
scheme for ZigBee communication under Wi-Fi

interference. ZiXOR is lightweight in both transmis-
sion and coding overhead, which is highly applica-
ble for resource-constrained ZigBee devices.

3) We implement ZiXOR on a real sensor testbed and
conduct extensive evaluations. The results show that
ZiXOR outperforms existing works in terms of both
throughput and latency.

The remainder of this paper is organized as follows:
Section 2 introduces related work and positions ZiXOR in
the literature. Section 3 presents our motivation, observation
and key idea. Section 4 presents the main design of ZiXOR.
Section 5 presents the trace-driven study and testbed evalu-
ation of ZiXOR. Section 6 concludes this work.

2 RELATED WORKS

The problem of ZigBee error recovery under Wi-Fi
interference has been extensively studied. Basically, all
existing approaches can be classified into two categories:
retransmission-based and FEC-based. Both categories divide
a packet payload into several blocks. The difference is that
the first category retransmits the erroneous native blocks
when errors occur; the second category encodes the blocks
by adding redundant bits before packet transmission and
can recover the native packet without retransmission.

Partial Packet Retransmission. In this category of approaches,
the sender retransmits only the erroneous blocks when errors
occur. Existing works try to reduce the block CRC overhead
in order to achieve better link performance.

Seda [7] adds a 1-byte sequence number and a 1-byte CRC
to each block. Then the receiver can identify and request the
erroneous blocks. Maranello [8] is a similar approach, but the
difference is that Maranello does not transmit block CRC in
the first round transmission. When errors occur, the receiver
computes the block CRCs and reply them to the sender for
retransmission. Such design incurs no block CRC when the
packet is loss free. REPE [9] equips each low power nodewith
a high resolution timer (i.e., 62.5 kHz) and periodically sam-
ples the RSSI values for each received symbol. Based on the
RSSI series, the receiver then requests the detected erroneous
symbols. Ourwork differs fromREPE in two important ways.
First, we do not require additional hardware support. Second,
instead of using a threshold to detect errors, we use a proba-
bility-based approach, which achieves more accurate error
estimation. Third, the coding scheme significantly reduces the
retransmission rounds, resulting in higher channel utilization.

FEC-Based Approach. FEC-based approaches add upfront
redundancy to each block for forward recovery. Many works
on the spatial-temporal wireless behaviors [19], [20], [21], [22]
have observed that ZigBee corruptions under Wi-Fi interfer-
ence are often bursty. The burstiness is often considered
harmful for FEC, because with bursty errors, it is most likely
that some blocks are full of errors which cannot be recovered
as the redundant bits are insufficient, while some other blocks
have no errors and the redundant bits arewasted.

To deal with burstiness, existing works first use inter-
leaving to spread the bursty errors, and then apply different
types of codes. Since the errors are reshaped as random dis-
tributed, the FEC codes have to be able to recover “any ran-
dom k errors”, which further leads to complex coding
designs. ZipTx [10] is originally proposed for 802.11
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networks. It selectively uses Reed-Solomon code to recover
block errors when error rate is low. TinyRS [11] is an imple-
mentation of RS code in TinyOS/TelosB platform. Although
it can recover the errors in relatively high-error scenarios
(e.g., severely interfered links), it introduces too much cod-
ing and transmission overhead (RS(15,7)’s decoding time is
�100 ms and two redundant bits are required to recover
one bit error). To reduce the high coding delay of RS code,
RAT [12] is proposed to selectively exploit BCH-code and
hamming code according to the estimated channel condi-
tions, which consume less decoding time than RS-code.
However, considering the transmission time is 4 ms, the
decoding delay is still remarkably large (e.g., RS(15,7) takes
�104 ms for decoding in MSP430 platform, see Section 5).

Different from the above works, we consider the cor-

ruption burstiness as a chance for designing lightweight

and effective FEC code. ZiXOR has two main differences

from the above works. First, it disables the interleaving,

and exploits the consecutiveness of the block errors to

design highly lightweight code using only XOR opera-
tions. Second, ZiXOR exploits fine-grained RSSI to

detect block errors, avoiding the extra bytes for block

checksums.
DLT [17] is the state-of-the-art work that exploits sub-

tly optimized fountain code for in-packet error recovery.
The sender continuously transmits encoded blocks. The
receiver recovers the native packet when sufficient linear
independent blocks are received. While DLT is applicable
for general scenarios with random errors, ZiXOR is more
suitable for bursty errors. First, DLT decoding still
requires Gaussian elimination while ZiXOR requires only
XOR operations. Second, DLT requires one byte CRC for
each block, while ZiXOR identifies block errors without
block CRCs. It is also worth noting that, we design an
adaptive switch scheme with which ZiXOR can switch to
fountain codes under random error patterns.

Table 1 compares ZiXOR with existing works in respect
to the following key desired features.

� Forward Error Correction. The ability to correct errors
in advance, which is important for reducing inter-
transmission delay.

� Control overhead. The extra control bytes introduced to
the packet payload (e.g., block CRC, sequence num-
ber, etc.). It has a significant impact on the channel
utilization of resource constrained ZigBee devices.

� Decoding delay. Decoding delay has a significant
impact on link throughput.

� Incremental retransmission. When a packet transmis-
sion fails, the already received correct data is still
effective for further decoding.

� No H/W Support. This is important for practical appli-
cations of the approach on existing devices.

We can see that none of the existing works meet all these
features simultaneously, which motivates our work.

3 MOTIVATION AND KEY IDEA

In this section, we first describe the empirical observations
and motives, then we present the key idea using a simple
example.

3.1 Empirical Observations and Motivation

Error Distribution under Wi-Fi Interference. Recent studies
have shown that Wi-Fi traffic is usually bursty and clustered
[14], [15], [23], implying that corruptions of ZigBee packets
are also expected to be bursty and clustered. We first con-
duct an experiment to study the corruption patterns of in-
packet ZigBee packets under Wi-Fi interference. We use
two TelosB nodes (one sender and one receiver) to form a
link. The sender keeps transmitting full-payload packets to
the receiver. To simulate Wi-Fi interference, a physically
nearby laptop is operated to surf the Internet (including
web browsing, data downloading and video streaming)
through Wi-Fi connection. We turn off the CC2420 hard-
ware checksum such that the receiver can receive corrupted
packets. By comparing the received data and the original
data, we can know the error positions in corrupted packets.

Fig. 1 shows the typical error patterns with and without
Wi-Fi interference. We can see that when under Wi-Fi inter-
ference, the errors are highly bursty. Fig. 2 shows the statis-
tical characteristics of in-packet corruptions under different
typical Wi-Fi interferences. The blue lines denote the cumu-
lative distribution function (CDF) of the number of errone-
ous bytes bursts.1 We can see that compared with non-
interference scenario, most corrupted packets under Wi-Fi
interference have only one single error burst (consisting one
or several consecutive block errors).

Existing FEC coding designs often consider burstiness
harmful [10], [11], [12] and use interleaving to spread the
errors. The coding approaches are often designed to recover

TABLE 1
ZigBee Error Recovery Approaches under Wi-Fi

Forward
Correction

No
ctrl bytes

Decoding
Delay

No H/W
modification

ZiXOR @ @ Very low @
RAT [12] @ � High @
BuzzBuzz [11] @ � Very high @
ZipTx [10] @ � Very high @
REPE [9] � @ N/A �
Maranello [8] � � N/A @
Seda [7] � � N/A @
DLT [17] @ � Low @

Fig. 1. Typical bit error patterns in packets under Wi-Fi interference and
with weak link.

1. Similar with [16], [24], we allow up to one correct byte inside a
corruption burst.
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any k random errors. Due to this requirement, existing works
choose to use RS/BCH codes instead of XOR code, despite
XOR code is much more lightweight.

However, different from the traditional views, we take
the burstiness as a chance to reduce the coding requirement.
With burstiness, the coding requirement could be reduced
as “recovering any k consecutive errors” due to the block
error consecutiveness. This offers a chance for reducing the
coding complexity.

3.2 Challenges

XOR is promising for designing such code due to its fast
operation and 1� recovery overhead (one redundant block
recovers one erroneous block). For each packet transmis-
sion, XORed redundant blocks can be added, such that the
receiver can recover the native packet by XORing the correct
native blocks and redundant blocks. However, there are two
significant challenges for the XOR-based framework.

Stringent Coding Requirement. One redundant block com-
bines multiple native blocks. The key to successful recovery
is to ensure that no more than one combined native block is cor-
rupted in the transmission. Otherwise, the packet may not be
recovered or the recovery will require Gaussian elimination
(like fountain code). However, the above requirement is
very challenging because we can never know which blocks
will be corrupted before the actual transmission. This is the
main reason why the existing approaches gave up the XOR-
based framework, despite XOR is lightweight in both cod-
ing delay and transmission.

Block-Level Checksum and Limited Packet Length. Like many
existingworks, ZiXORdivides the packet payload into several

blocks. In order to help receivers identify which blocks are
erroneous, two kinds of information are essential for decod-
ing: 1) block level CRC bytes. 2) block length and number of
blocks information. Considering that the maximum ZigBee
packet length is only 127 bytes, the above two additional fields
will still greatly degrade the channel utilization.

3.3 The Key Idea

Modulo-k XOR Coding. The key idea is to exploit the bursti-
ness to isolate the erroneous blocks. Although it is impossi-
ble to know which blocks are erroneous before the actual
transmission, however, based on the bursty nature of Zig-
Bee packet corruptions under Wi-Fi interference, we can
know that the erroneous blocks are most likely consecutive.
This allows us to effectively distribute any k consecutive
erroneous blocks into k redundant blocks without knowing
the exact block errors, ensuring that each redundant block
covers only one block error.

The idea works as follows: Suppose there are k erroneous
blocks, we encode each redundant block by combining one
native block in every k native blocks. As the k blocks are
consecutively distributed, these erroneous blocks can be
encoded into different redundant blocks. Then each redun-
dant block combines only one corrupted block, and the corrupted
block can thus be decoded. In this way, we can recover any k
consecutive erroneous blocks by simple XOR operations.

Fig. 3 shows an illustrative example in which seven
native blocks are to be transmitted. The gray rectangle
denotes the Wi-Fi interfered interval. Three redundant
blocks are needed for recovering the three corrupted blocks.
We pick one block every three blocks for encoding
redundant blocks, as shown in Fig. 3a (R1 = N1 � N4 � N7,
R2 = N2 � N5, R3 = N3 � N6). Fig. 3b shows the coefficient
matrix for encoding. We can see that, every three consecu-
tive blocks are encoded to different redundant blocks, such
that the receiver can decode any error burst within three
erroneous blocks.

Exploiting RSSI for Block Error Identification. Recent study
[16] shows that the in-packet RSSI values are highly correlated
with byte errors. We record the in-packet RSSI values and the
corrupted positions to study the correlation. Fig. 4 shows a
typical packet transmission and the received byte-level RSSI.
We can see that at the corrupted positions, the measured RSSI
samples are higher than those of correct bytes.

This phenomenon can be explained as follows. Gener-
ally, the bit error rate (BER) is determined by signal-to-noise
ratio (SNR). It could be assumed that the transmission sig-
nal during one packet will not severely change. Therefore,
the sudden RSSI variation is more likely to be caused by
noise and interference, and SINR will decrease in this case.
This explains why byte errors are along with RSSI rises.

Fig. 2. Corruption patterns under Wi-Fi interference.

Fig. 3. ZiXOR encoding: An example.

Fig. 4. Typical RSSI and block error patterns.
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This observation allows us to exploit RSSI readings for
block error detection, thus reducing the block-level CRC
overhead. When RSSI rises are detected, we can know that
it is likely that the corresponding bytes are corrupted.

4 ZIXOR DESIGN

We incorporate the above ideas into a novel XOR coding
framework, ZiXOR. With corruption burstiness, ZiXOR can
efficiently distribute the errors into different redundant
XORed blocks. Using the RSSI patterns, ZiXOR can detect
block errors without CRCs.

4.1 Overview

Fig. 5 shows the system framework of ZiXOR. A sender
node first estimates the number of redundant blocks
(Section 4.2), and then encodes the redundant blocks with
the ZiXOR.encode procedure (Section 4.3). After that, the
native payload (with CRC) and the redundant blocks are
combined into one packet for transmission, as depicted in
Fig. 6. The block size is stored in the five reserved bits in the
header, and the number of redundant blocks is calculated at
both sender and receiver side (Section 4.2). The CRC is the
checksum calculated with the original data payload, with
which the receiver is able to check whether the decoded
packet is correct. It is worth noting that the native packet
payload is divided as blocks but not encoded.

When receiving the packet and the CRC check is not
passed, the receiver first estimates the block errors
(described in Section 4.4). If the receiver finds that the
received blocks cannot be decoded, the receiver directly
transmits an NAK indicating the erroneous blocks. After
that, the receiver still puts the received blocks into ZiXOR.
decode in case that there may be false negative (FN) estima-
tion results. Otherwise, if the blocks are identified decod-
able, the receiver directly decodes the received blocks.
When decoding fails, retransmission starts (Section 4.5). The
sender extracts the block error information when receiving
the NAK, and encodes the new blocks for the retransmis-
sion. The receiver then decodes for the native packet when
receiving the retransmissions.

4.2 Redundancy Estimation

When a sender prepares to transmit a packet, it should first
decide how many redundant blocks should be added. We
estimate the number of redundant blocks according to the
block error rate collected in previously transmitted packets.

At the end of each transmission (either success or fail-
ure), the receiver replies an ACK/NAK to the sender (as
depicted in Fig. 5) which contains a bitmap indicating the
block errors of the last packet transmission. For example, a
bitmap of “0011000000” means that the third and fourth
blocks are erroneous in the last packet. With this bitmap,
the sender can calculate the fraction of “1”s as block error
rate, pe. Like many link estimation approaches [25], we
apply moving average using multiple history packets to cal-
culate pe. Suppose there are n native blocks and we add x
redundant blocks to ensure the receiver correctly receives n
blocks, we can get the following equation:

ðnþ xÞð1� peÞ ¼ n: (1)

Solving the above equation, we can obtain the number of
redundant blocks as

x ¼ npe
1� pe

: (2)

Discussion on Redundancy Estimation Errors. The issue of
how to add appropriate redundancy is critical to all FEC
approaches. When redundancy is over-estimated (i.e.,
excessive redundancy), both ZiXOR and other approaches
will have unnecessary redundancy transmission overhead.
Fortunately, ZiXOR’s coding delay remains much smaller
than other approaches since only several extra XOR opera-
tions are added. When redundancy is under-estimated,
however, the FEC based approach will have to reassemble a
new packet because the previous transmissions have no
enough redundancy for decoding. Although in ZiXOR, pre-
viously transmitted redundant blocks are still useful for
future decoding, the inter-packet interval may increase the
overall transmission delay. At least �4.9 ms will be incurred
into the overall delay. Therefore we consider over-estima-
tion less harmful than under-estimation, and deliberately
over-estimate the redundancy by one. We can also employ
various machine learning algorithms [25], [26], [27], [28] for
redundancy estimation if they can be optimized lightweight
for low power devices. The redundancy estimation is evalu-
ated in Section 5.

4.3 ZiXOR Coding

Encoding. For an estimated error burst of k blocks, we
encode the redundant blocks as follows. We select one block
in every k blocks, saym,mþ k,mþ 2k, ... Then, we tune the
starting offset m to obtain k different redundant blocks.
With such encoding, any k (or � k) consecutive block errors
can be separately covered by the redundant blocks. The
ZiXOR encoding is formulated as follows:

Ri ¼ �
k%Se¼i

bk; k 2 ½0; Nb � 1�; (3)

Fig. 5. ZiXOR overview.

Fig. 6. ZiXOR packet format.
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where Ri denotes the ith redundant block, � denotes the
XOR operation, Se denotes the size of error burst (i.e., the
number of consecutive erroneous blocks) and Nb denotes
the total number of native blocks. By such design, any k (or
�k) consecutive block errors can be recovered because each
redundant block would cover one different erroneous block.
Moreover, different from fountain codes and random linear
codes, the encoding rule is shared by both senders and
receivers, and does not rely on any random seed or explicit
coefficients. When receiving a ZiXOR packet, a receiver can
identify which blocks are combined by each redundant
block, using only the number of redundant blocks. For
example, if a receiver receives a packet containing k redun-
dant blocks, it can infer the coefficients using Eq. (3) with k
and further decode the native packet.

Algorithm 1. ZiXOR.decode

Input: received blocks (rxBlocks) and the number of
redundant blocks (rbn)

Output: native blocks
1 decodable = TRUE;
2 buffer[][], err[][];
3 blks = sizeof(rxBlocks);
4 for i : 0 � i < blks do
5 if !est(rxBlocks[i] then
6 push rxBlocks[i].blockNumber, err[i % rbn];
7 if sizeof(err[i % rbn]) > 1 then
8 decodable = FALSE;
9 else
10 push rxBlocks[i].blockNumber, buffer[i % rbn];
11 if decodable then
12 temp = {0x00} ;
13 for i : 0 � i < sizeofðerrÞ do
14 for j : 0 � j < sizeofðbuffer½i%rbn�Þ do
15 temp � = buffer[ i % rbn ][j];
16 rxBlocks[err[i][0]] = temp;
17 if CRC checkðrxBlocksÞ then
18 flash.write(rxBlocks);
19 composeACK();
20 else
21 composeNAK(blockCrc(rxBlocks));
22 else
23 composeNAK(blockCrc(rxBlock));

Compared with the retransmission based approaches,
ZiXOR adds k redundant blocks in advance to recover k con-
secutive erroneous blocks. This greatly reduces retransmis-
sion delay. Compared with the FEC based approach,
ZiXOR 1) is quite lightweight in decoding, and 2) requires
1� redundancy to recover 1� errors while most FEC based
approaches require 2� redundancy.

Decoding. In this section, we formally give the algorithm
for ZiXOR decoding, as described in Algorithm 1. Decoding
is called when the packet CRC is not passed. The receiver
first identifies the decodability of the received packet. If one
redundant block covers more than one block errors, the
packet will not be decodable. When decodable, the receiver
can just recover the erroneous block by XORing its corre-
sponding redundant block and other native blocks (with the
same MOD k remainder). When decoding is done, we com-
pare the payload CRC to check whether the decoded packet

is correct. Since each encoded block can be identified by its
position and redundant block number, our decoding does
not need Gaussian elimination and is thus highly computa-
tion efficient.

4.4 Block Error Estimation

In order to save the space for block transmission, we use the
fine-grained in-packet RSSI sampling (IRS) [9] to identify
the block errors. The estimation results further give block
error rate and block error bitmaps, which are of significance
for coding efficiency.

In-Packet RSSI Sampling. In order to exploit the correlation
between RSSI and byte errors, we should first measure RSSI
sampleswhile receiving a packet. By using a 32.5 kHz timer in
IRS (supported by most low power platforms ), we are able to
obtain one RSSI value in per byte granularity [9], [16], enabling
the identification of byte-level errors. We implement such a
high-resolution sampling procedure (i.e., at least one sample
per byte) without extra hardware. We modify the existing
radio driver in TinyOS 2.1.2 to support sampling at a rate of
one sample per byte. This is different from REPE [9], which
requires additional 62.5 kHz timer hardware.

Error Detection. With byte level RSSIs, the next step is to
identify block errors using these values. We use the smallest
RSSI value as the RSSI base, and study the relationship
between byte error rate and the RSSI distance from the RSSI
base. Fig. 7 shows the empirical results of byte error proba-
bilities with different RSSI distances. We can see that the
error rate increases when RSSI distance becomes larger.
Using this table, we are able to estimate the byte error rate
using the RSSI distances.

To estimatewhether a block is erroneous or not, we sumup
all the expected byte error rates within the block. If the sum
exceeds 1, the block is expected to contain at least one byte
error and is judged erroneous.We can see that comparedwith
byte error detection, block error detection is more accurate.
The reason is that a block error can be dismissed only when
all byte errors are not detected, of which the probability is
much less. The relationship between RSSI distance and BER
could be learned from the several pilot packets, of which the
data payload is shared by the sender and receiver, such that
the receiver is able tomeasure the real BER.

REPE [9] also uses IRS for block error detection. In REPE, a
byte is considered corruptedwhen the RSSI exceeds a certain
threshold. Our scheme has twomajor differences with REPE.
First, our goal is to identify block errors. We do not require
strict position correspondence between the RSSI values and
byte positions, thus is more tolerant to the RSSI and byte
positions offset. Second, we use the corresponding error
rates of certain RSSI values, instead of the threshold-based

Fig. 7. The relationship between byte error rate and RSSI distance.
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detection. This is expected to achieve the better block error
detection accuracy.

Some works also exploit error correction codes for error
detection and correction [29], [30]. We compare error detec-
tion using RSSI samples and error correction codes, e.g.,
Hamming codes as follows.

1) Both error detection codes and byte-level RSSI sam-
ples can be used to detect in-packet errors.

2) Error detection codes are more reliable than the
RSSI-based detection since it is based on the probabi-
listic relationship between RSSI and the byte errors.

3) RSSI-based detection can identify the positions of the
byte errors while error detection codes can only
detect the number of byte errors. This additional
information allows us to design far more efficient
error recovery codes such as ZiXOR.

We will evaluate the detection scheme in Section 5.
Discussion. False negatives. An FN indicates that a correct

block is estimated erroneous. Obviously, our estimation
scheme is more prone to FNs. When FNs happen, a receiver
may find there are more block errors than redundant blocks,
and a decodable packet may be judged undecodable, incur-
ring an unnecessary retransmission. To deal with this prob-
lem, we need to ignore the FNs and proceed to decode. When
a receiver identifies that a packet is not decodable, it replies an
NAK and proceeds to decode in case that FNs occur. If the
packet CRC check is passed after the decoding, it can be
inferred that the ignored blocks are FNs. Otherwise, the node
waits for the sender’s retransmission (Section 4.5).

False Positives (FPs). An FP indicates that an erroneous
block is estimated correct. FPs are harmful because the
receiver cannot identify which blocks are incorrect when
the packet CRC check is not passed. In case that FPs occur,
retransmission is required (Section 4.5).

From the above analysis, we can see that FNs incur much
less extra overhead than FPs. Fortunately, as we sum up all
byte error probabilities for block error detection, most detec-
tion errors are FNs. We will empirically study the accuracy
of IRS based block error estimation in Section 5.

4.5 Retransmission

ZiXOR adds redundant blocks based on the burst length esti-
mation using historical data. Although the accuracy is high
under Wi-Fi interference, there are still two cases in which the
first round transmission fails, where retransmission is needed.
First, the number of erroneous blocks is under-estimated2 (as
shown in Fig. 8a). R1 covers 1/5/9, R2 covers 2/6/10, R3 covers
3/7, R4 covers 4/8.We can see that blocks 5 and 6 can be recov-
ered while 3/4/7/8 cannot be recovered. Second, the

erroneous blocks are not consecutive. We observe in Fig. 2 that
there are small portions of inconsecutive errors. As shown in
Fig. 8b, although there are four block errors, they are not conse-
cutive. R1 covers 1/5/9, R2 covers 2/6/10, R3 covers 3/7 and
R4 covers 4/8. In this case, R1 is useless for error recovery.

When retransmission is required, it is likely that FPs or FNs
of block error detection happen. Therefore, we should first
confirm the real erroneous blocks. Then we find out which
blocks are essential for retransmission recovery. Finally, we
retransmit the necessary blocks using ZiXOR code.

Identifying Erroneous Blocks. We adopt a mechanism simi-
lar to [8]. When a receiver estimates all blocks are correct
but the CRC does not match, it calculates the CRCs for each
block, and replies the CRCs to the sender in an NAK mes-
sage. The sender compares the block level CRCs to identify
incorrect blocks at the receiver side. Then, the sender com-
poses a retransmission packet by combining all incorrect
blocks and redundant blocks.

Identify Bottleneck Blocks. Now that we obtain the errone-
ous blocks. However, not every erroneous block is required
to be retransmitted, since some of them may already be cov-
ered by the redundant blocks in the last round transmission.
Hence we should identify which erroneous blocks cannot be
decoded and are necessary for further decoding, denoted as
bottleneck blocks.

The key insight is that with ZiXOR encoding, each block is
supposed to be used for encoding only once. Therefore, to find
bottleneck blocks, we can simply calculate how many errone-
ous blocks are used for encoding each redundant block. If k
erroneous blocks (k > 1) are encoded into one redundant
block, the first k-1 blocks are identified as bottleneck blocks.
The reason is that each block is encoded only once and other
blocks contain no information about these k blocks.

After obtaining bottleneck blocks, we treat these blocks
as new blocks to send, i.e., transmit these native blocks and
encoded redundant blocks using ZiXOR encoding (if redun-
dant blocks are required by the redundancy estimation
module).

Algorithm 2. ZiXOR.retransmit

Input: ErroneousBlocks(errorneousBlocks) and redundant
block number(rbn) for current round transmission

Output: Packet payload for retransmission
1 blks = sizeof(rxBlocks);
2 for i : 0 � i < blks do
3 blkNo = erroneousBlocks[i].blockNumber;
4 push blkNo, arrary[blkNo % n];
5 for i : 0 � i < n do

/* identify and record the encoding offset of k
erroneous blocks */

6 if sizeof(array[i]> 1 then
/* bottle-neck blocks detected */

7 for j : 0 � j < sizeofðarray½i�Þ � 1 do
/* prepare the blocks to retransmit
natively */

8 push barray½i�½j�, retransmitBlocks;
9 RSSIbase =min0�i <LRSSI½i�;
10 if rbn> 1 then
11 ZiXOR.encode(retransmitBlocks, rbn);

Fig. 8. Illustration of decoding failure at the receiver.

2. The decoding will be successful when over-estimated.
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We now revisit the examples shown in Fig. 8. For the
example in Fig. 8a: Though decoding fails, we still have the
information of 3 � 7 and 4 � 8. Consequently, if 3 or 4 is
obtained, 7 or 8 can be recovered and vice versa. To this
end, we retransmit blocks 3 and 4. Considering the block
error rate is 0.6, we expect one block error in the two
retransmission blocks and add one more redundant block.
This block is encoded by 3 � 4. For the example in Fig. 8b,
there are multiple bursts and ZiXOR redundant blocks car-
ries less information. We solve the problem of multiple
bursts with the coding switch scheme as in the next section.

4.6 Seamingless Code Switching for Non-Bursty
Error Patterns

From Fig. 2, we can see that there can be multiple bursts
within one packet. In such scenario, ZiXOR may no longer
be effective. To deal with this problem, we adaptively
switch ZiXOR to fountain code when there are multiple
bursts, in a “seamingless” manner as follows.

Burstiness Estimation.We first use the short-term statistics
to estimate the burstiness in the transmissions and then
switch coding strategy between ZiXOR and fountain code
accordingly. Specifically, we estimate whether the packets
contain single bursts or multiple bursts. We first obtain a
series of single burst probability using the windowed his-
tory packet trace (with window size, k). Then we can obtain
the probability that the next packet contain single-burst as

pnew ¼ aplast þ ð1� aÞphistory; (4)

where plast denotes the single burst probability of the last
window and phistory denotes the long-term single-burst
probability.

We study the estimation accuracy by tuning the window
size k and the weighting factor a. Fig. 9 shows the results.
We can see that in our experimental settings, k ¼ 4 and
a ¼ 0:8 achieves the highest accuracy (92 percent). For prac-
tical use in different scenarios, we can periodically tune a

and k and find the values that achieve the highest accuracy
using the continuously collected data trace.

It is also worth noting that even the bursts are incorrectly
estimated, ZiXOR is still able to switch to fountain code in
time when it detects there are multiple bursts in the receiving
packet.

Switching. While receiving a packet, a receiver accounts
the number of error bursts using the fine-grained RSSI sam-
ples (similar with Section 4.4) and estimate the burstiness
using the above moving average scheme. If there are

multiple bursts which means ZiXOR.decode might fail, it
turns into fountain decoding mode and invokes the Accu-
mulative Gaussian Elimination [17] module. Then it notifies
the sender to switch to fountain encoding. We call it
“seamingless switch” because the received ZiXOR blocks
can be directly fed into fountain decoders. This is practical
because ZiXOR encoded blocks are specialized combina-
tions of native blocks, which is essentially compatible with
fountain code. When the receiver detects there are long sin-
gle bursts in the received packets, it notifies the sender to
switch back to ZiXOR mode for more efficient transmission.

4.7 System Optimization

Block Size. Intuitively when block size increases, (1) for block
error estimation, the number of FPs decreases and the number
of FNs increases. (2) the redundant bits are likely to increase.
(3) decoding delay is likely to decrease. Therefore, deciding
the block size is to find a good tradeoff between the redun-
dancy and coding efficiency. We use the expected goodput as
the end-to-endmetric for block size optimization.

We denote block size as sb, then the probability of FPs
can be denoted as EfpðsbÞ, redundant bits can be denoted as
RðsbÞ, and decoding delay can be calculated asDdecodeðsbÞ.

Then we can model the throughput using the variable sb
as follows. The throughput is calculated as

T ¼ S

D
; (5)

where S denotes the useful transmission bits (without
redundancy) and D denotes the transmission time. S is cal-
culated as

S ¼ Nheader þNpkt þNcrc; (6)

where Nheader is the packet header (12 bytes) and Ncrc is the
packet footer (2 bytes checksum).

D is calculated as

D ¼ ðDbackoff þ S þRðsbÞ
Rb

þDdecodeðsbÞÞð1þ EfpðsbÞÞ; (7)

whereDbackoff is the backoff time (random between 0�9.8 ms,
4.9 ms expected), R is the redundancy, Rb denotes the trans-
mission bitrate, and EfpðsbÞ is the false positive rate with sb.
Then, we can obtain the optimal block size bymaximizing the
throughput T according to Eqs. (5), (6) , and (7).

Coding Information. In the design of ZiXOR, although the
receiver does not need the random seed for decoding, it
should be aware of the number of redundant blocks and
block size, such that it can obtain the encoding vectors. The
number of redundant blocks can be simultaneously calcu-
lated at both sender and receiver sides (Section 4.2). There-
fore, only block size is required to be transmitted to
the receiver. To avoid extra transmission overhead, we use
the five reserve bits in the Frame Control Field (FCF) in
the packet header to store the block size. With the block size
and redundant block number, the receiver can figure out
which blocks are used for encoding certain redundant
blocks, and further decode the native packet.

Overall, ZiXOR does not introduce any extra bits as com-
pared with original ARQ.

Fig. 9. Estimation accuracy with moving average.
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Link Selection. Since ZiXOR adds upfront redundant
blocks in packet transmissions, the metrics such as packet
reception rate (PRR) and expected number of transmissions
(ETX) may no longer accurately represent the transmission
efficiency.

1) Link selection metrics. Similar with PRR, we can
evaluate the link efficiency using the data delivery
rate (DDR). DDR is calculated as DDR ¼ D

T ¼
n=nþ k, where D is the effective data delivery, T is
the amount of transmitted data, n is the number of
native blocks and k is the number of redundant
blocks. Similar with ETX, we can evaluate the trans-
mission overhead using the expected transmission

for one byte data delivery (ETD) as ETD ¼ T
D ¼

n=nþ k. The metric ETD can be accumulated along
multi-hop paths.

2) ZiXOR nodes reaction to the link selection process.
Since beacons are too short for burstiness measure-
ment, the nodes are unaware of the burstiness on
corresponding links when they are not selected and
activated by upper layer protocols. Therefore, when
a link is newly selected, ZiXOR needs to determine
two parameters for efficient transmission: the block
size and the number of redundant blocks. These two
parameters are determined according to Sections 4.2
and 4.7, which requires an initial measurement on
the error bursts. As a result, the parameters are first
randomly set after the selection and then adjusted
according to the measurement results. We discuss
the impact as follows. a) When the random redun-
dancy is insufficient for error recovery, more retrans-
missions will be incurred. b) When the redundancy
is more than enough, extra redundancy will be
added to the packets. In either case, the throughput
will be low in the beginning and then increases as
the two parameters are adjusted according to the
continuous measurement.

5 EVALUATION

To evaluate ZiXOR, we first use trace-driven studies to dis-
cover optimized parameters used in ZiXOR, and then con-
duct testbed experiments to study the performance of
ZiXOR. More specifically, we compare ZiXOR with the
state-of-the-arts such as RS-code, Seda [9], DLT [17] and
RAT [12].

5.1 Experimental Methodology

Implementation Issues. We implement ZiXOR on TelosB
nodes with TinyOS 2.1.2. The block size is set to 8 bytes for
fair comparison with other approaches. The redundancy is
calculated using Eq. (2), and the block error rate (BLER) is
calculated using moving average. We vary the weighing
parameter of the moving average, and choose the value of
0.8 because it achieves the most accurate BLER estimation
in our experiments. Namely, intermediate BLER is weighed
0.8 and the historical BLER is weighed 0.2. For block error
estimation, we use the minimum RSSI value as the RSSI
base, and sum up all the error probabilities according to the
RSSI distances to the base. When the sum exceeds 1, the
block is estimated erroneous.

Evaluation for Each Building Block. We first conduct sepa-
rate experiments to study the impacts of each building
blocks of ZiXOR, i.e., block error estimation and redun-
dancy estimation. After that, we also study the impact of
varying block sizes. For block error estimation, we mainly
study the relationship between estimation accuracy and
various parameters such as bit error rate, RSSI threshold
and block size. For redundancy estimation, we define an
accurate estimation as the case where the number of redun-
dant blocks is the same with (or larger by 1) the number of
block errors. Then, we study the redundancy estimation
accuracy, and evaluate the extra overhead when the redun-
dancy is over/under estimated. For block size, we fix other
parameters and tune block size to study its impact. We will
also discuss the further design spaces regarding the block
size adaptation in Section 5.2.

Testbed Experiments. ZiXOR can be generally used in
many network layer protocols [18], [31], [32], [33] We incor-
porate ZiXOR into the collection tree protocol (CTP) and
conduct experiments with our 8 � 10 TelosB nodes testbed
(as shown in Fig. 10). The radio power is set to �32.5 dBm
to enable a five-hop network. The channel is set to 26 to min-
imize the impact of Wi-Fi interference, since it overlaps the
least with Wi-Fi communication channels [11] (It can still be
interfered by Wi-Fi). Fig. 11 shows the cumulative distribu-
tion function of link qualities of neighboring nodes in the
testbed. We can see that when there is no Wi-Fi interference,
almost all links are good links (with link qualities 	90 per-
cent). When Wi-Fi interference presents, about 30 percent
turn into intermediate links (with link qualities in (40�90
percent)). This confirms that the dominating interference for
indoor WSNs like ours is Wi-Fi interference. We also per-
form different laptop actions to study different interference
patterns, i.e., web browsing, video streaming and mixed.

We change CTP’s routing metric expected number of
transmissions into expected number of block transmissions
(EBTX), such that the most effective relay nodes can be
selected in the context of blocked transmission. The

Fig. 10. The 8 � 10 TelosB motes testbed.

Fig. 11. The link quality of the testbed.

2526 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 16, NO. 9, SEPTEMBER 2017

Authorized licensed use limited to: RMIT University Library. Downloaded on January 11,2021 at 13:34:05 UTC from IEEE Xplore.  Restrictions apply. 



calculation of EBTX is as follows:

Epþ1 ¼ Ep þ N

1� eb
; (8)

where Epþ1 is EBTX from the node with hopcount pþ 1 to

the sink, and N
1�eb

is the EBTX from the node at hop pþ 1 to

its parent at hop p (eb is the block error rate and N is the
number of blocks). We compare the end-to-end performan-
ces (e.g., latency, data yield, and transmissions) of the
revised CTP using different approaches.

5.2 Evaluating the Building Blocks

5.2.1 ZiXOR Coding

Table 2 shows the coding efficiencies of different coding
approaches in terms of delay performance with different
MCUs. RAT selectively employs BCH code orHamming code
according to the interference, thus the decoding time is large.
DLT uses fountain codes and requires Gaussian elimination
(GE) for decoding. Though the decoding delay is reduced by
paralleling the block receiving and GE, the decoding is still
considerable when used for typical ZigBee communications
(250 Kbps with CC2420 radios). Comparatively, ZiXOR enco-
des only the redundant blocks, and its decoding requires only
simple XOR operations. As a result, we can see that ZiXOR
indeed achieves the most lightweight encoding/decoding on
MSP430/Cortex-M0+/Cortex-M3.

We also notice that the improvement becomes very small
as the MCU becomes more powerful (Cortex-M4/Cortex-
M7). On the other hand, we should notice that the energy
consumption of Cortex-M4 and Cortex-M7 (with run mode
power of 38 and 208 mA, respectively) is much higher than
that of MSP430 (with run mode power 1.8 mA). Therefore,
when used for low power networks without dense compu-
tational tasks, ZiXOR can achieve improvement in terms of
coding delay.

5.2.2 Block Error Estimation

As described in Section 4.4, ZiXOR uses the IRS-based block
error estimation. This approach reduces the transmission
overhead whereas possibly increases the retransmission
overhead when the estimation is inaccurate.

We first recall the impact of FPs and FNs before presenting
the results. When FPs happen (an erroneous block is esti-
mated correct), the further recovery requires extra

negotiations and calculations. When FNs happen (an correct
block is estimated erroneous), the packet can still pass the
packet level CRC check and the block that is estimated errone-
ous will not incur any extra overhead. When both FPs and
FNs happenwithin a packet, the retransmitted blocks will not
match the erroneous blocks and retransmissions are inevita-
ble. The approach of summing up all probabilities has an
inherent bias on FN, thusmost errors are likely to be FNs.

Fig. 12a shows the estimation accuracy with different
BERs. The corresponding packet reception rates are denoted
in the brackets. we observe that, when BER increases, the esti-
mation error rate decreases. The reason is that when BER
increases, there are more corrupted packets and less correct
packets. Then the fractions of FNs decrease and the fractions
of FPs increase. As the probability of FPs is inherently smaller
than that of FNs (Section 4.4), the overall error rate decreases.

Fig. 12b shows the accuracy with different block sizes.
When block size increases, the probability of FNs first
decreases and then increases. The reason is that when block
size rises, more bytes can be used for error estimation, and
the estimation accuracy would increase. However, when
the block size continues to increase, more small error rates
would be summed up, and there will be more FNs. Simi-
larly, since FPs happen only when all byte errors are esti-
mated correct, the probability of FPs will decrease when
more bytes are included in a block.

5.2.3 Redundancy Estimation

We use moving average for redundancy estimation. The
weight of instant redundancy sample (expected number of
erroneous blocks) a (0�1) is the key for accurate estimation
(the weight of history is 1 � a). We change a and conduct
separate redundancy estimations. The results are shown in

TABLE 2
Coding Efficiency on Different Platforms

Delay(ms)
Platform

BCH
(15,1)

BCH
(15,5)

BCH
(15,7)

Hamming
(12,8)

Hamming
(7,4)

Hamming
(16,11)

RS
(15,13)

RS
(15,7)

RS
(15,3)

DLT ZiXOR

MSP430 Encoding 0.70 0.30 0.20 0.20 0.40 3.10 23.30 25.10 29.70 0.20 0:10
Decoding 83.90 74.80 54.70 4.30 3.90 3.90 31.20 101.90 142.30 4.40 0.50

cortex-M0+ Encoding 0.34 0.16 0.10 0.11 0.22 1.60 13.54 14.69 16.66 0.10 0.06
Decoding 41.81 42.34 27.62 2.30 2.24 2.17 16.58 53.87 69.42 2.20 0.26

cortex-M3 Encoding 0.15 0.06 0.05 0.05 0.08 0.70 5.89 6.34 7.89 0.05 0:02
Decoding 20.48 16.48 10.66 1.13 1.08 1.01 6.29 21.88 27.99 1.05 0.11

cortex-M4 Encoding 0.02 0.01 0.01 0.01 0.01 0.10 0.42 0.75 1.20 0.01 <0:01
Decoding 3.26 2.15 0.83 0.13 0.15 0.09 0.65 3.11 3.51 0.07 0.02

cortex-M7 Encoding <0:01 <0:01 <0:01 <0:01 <0:01 0.01 0.04 0.08 0.13 <0:01 <0:01
Decoding 0.11 0.14 0.04 0.01 <0:01 0.01 0.02 0.13 0.28 <0:01 <0:01

Fig. 12. Block error estimation.
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Fig. 13a. We can see that, in our experiment, a ¼ 0:8
achieves the most accurate estimation, which means the net-
work condition is bursty and instant samples should be
weighed more. We can also see that the retransmission
probability is always much smaller than the estimation
error probability. The reason is that, retransmissions hap-
pen only when the redundancy is under-estimated. From
Fig. 12, we can see that most errors of block error estimation
are FNs, thus the redundancy is more likely to be over-esti-
mated, with which retransmissions are not necessary.

We then compare the actually transmitted redundancies of
ZiXOR with other approaches under different interference
levels in Fig. 13b. Similar to [11], we use Iperf [34] to explicitly
control the Wi-Fi transmission rates, so as to tune the interfer-
ence conditions. We can see that under different interference
conditions, ZiXOR achieves the least number of redundancy.
The reason is two-fold: first, due to the bursty corruptions, bit
errors are likely clustered in several consecutive blocks; Sec-
ond, XOR coding based approach recovers errors at the block
level granularity, i.e., one block error can be recovered by one
redundant block nomatter howmany bits are incorrect in the
block. DLT also recover errors in block level. However, its
redundancy depends on the linearity of the coefficients of the
received blocks. E.g., an eight-blockDLTpacket can be expect-
edly recovered using 10 blocks.

We further study the retransmission rounds, which will
be necessary when the redundancy is under-estimated. It is
worth noting that we always use optimal parameters for
RS/BCH code in the experiment, such that the bit errors can
never exceed its recovery ability. Fig. 13c shows the retrans-
mission rounds. We can see that the optimal RS code
achieves the least number of retransmission rounds when
the Wi-Fi throughput is under 6 Mbps. The reason is that RS
code can recover in-consecutive corruptions (about 13 per-
cent in our measurement) as long as the errors do not

exceed the recovery ability. We can also see that ZiXOR out-
performs all other approaches except RS/RAT, the reason is
that ZiXOR distributes errors to different blocks, and can
thus recover one block error using one redundant block.

5.3 Testbed Results

Recall that we incorporate different coding schemes into
CTP to compare the performance. We compare three end-
to-end important metrics: throughput, transmission count,
and data yield. Throughput is the per-second number of
bytes delivered from the source node to the sink node.
Transmission count is the number of transmissions used for
successfully delivering one packet to the sink node.

Fig. 14a compares the throughput of CTP using Seda, DLT,
RAT, RS and ZiXOR under different interferences. We can see
that (1) ZiXOR achieves the highest throughput under differ-
ent scenarios. The reason is that the decoding of ZiXOR has a
1� time relation with the number of block errors, while RAT/
RS’s adds 2� redundancy and DLT adds 
 1:25� redun-
dancy for block errors. (2) The improvement of ZiXOR over
RAT and Seda increases along with the interference. The rea-
son is that when there are fewer block errors, RS/RAT can
select more lightweight coding schemes (e.g., RS(15,13) and
Hamming (7,4)). (3) The improvement over DLT also
increases. The reason is that ZiXOR coding can benefit more
from more bursty errors in packets, while DLT cannot benefit
from the burstiness. As a result, although both throughput
decreases, the improvement of ZiXOR overDLT increases.

Next, we take a step further to study why ZiXOR outper-
forms other approaches. Fig. 14b shows the transmission
rounds for delivering one packet. We can see that, (1) FEC
approaches (ZiXOR, DLT, RAT) have much fewer transmis-
sion rounds. More specifically, ZiXOR has the least number
of transmission rounds. The reason is two fold: a) it adap-
tively adds redundancy according to the recent block error

Fig. 13. Redundancy estimation.

Fig. 14. Evaluation with CTP.
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rates, and tends to cover the possible block errors. b) More-
over, when decoding failures happen, the already received
blocks are still useful, which is likely to reduce further
retransmissions. (2) In ZiXOR, there are also some fractions
(about 19 percent) of packets that have two or more trans-
mission rounds. The reason is that not all corruptions are
consecutive, where retransmissions are needed. (3) Though
RAT has fewer transmission rounds than ZiXOR, its decod-
ing time is much larger than ZiXOR, thus the overall
throughput of RAT is worse than ZiXOR.

Fig. 14c shows the five-hop data delivery latency of ZiXOR
and other approaches. We can see that when the Wi-Fi inter-
ference becomes severe, the latencies of all approaches
increase. Specifically, when Wi-Fi is off, ZiXOR has similar
latency performance with other approaches. When there is
Wi-Fi interference, ZiXOR’s latency is smaller than others.
The reason is that ZiXOR’s encoding/decoding is muchmore
lightweight than other approaches (as in Table 2).

Fig. 15 shows the performance improvement of ZiXOR
compared to RAT, with different channels. We can see that
1) Channels 15, 20, 25, 26 achieve higher throughput than
other channels. 2) The improvement of ZiXOR to RAT on
these channels is smaller than those in other channels. The
reason is two-fold: First, the PRRs on these channels are
higher than those in other channels, leaving less room for
improvement. Second, these channels have smaller fraction
of single-burst packets than other channels.

5.4 Comparison with Interleaving
RS code assumes the use of symbol level interleaving to dis-
tribute the errors to the whole packet and then recover any
k random errors with RS code for each block. Differently,
ZiXORs modulo-k coding can directly distribute the bursty
errors into different redundant blocks and recover the
errors using simple XOR code. ZiXOR is more computation-
ally lightweight. Besides, the difference between ZiXOR
and interleaving-based RS code is listed as follows.

1) RS code allows for random error distribution and
can be used in both bursty and non-bursty scenarios
while ZiXOR can be mainly used in bursty scenarios.

2) The recovery ability is different. RS(15,7) can recover
up to four bit errors using eight redundant bits. Two
bits are required to recover one bit error. Interleaving
is used to avoid too many errors clustered in one
block, such that RS code can be applied. Differently,
ZiXOR recovers errors in block level. Eight redun-
dant bits can recover up to eight bit errors. Com-
pared to RS code, one bit is able to recover one bit
error, which allows us to greatly reduce the amount
of redundancy.

3) Interleaving-based RS code requires the whole pay-
load to be buffered before transmission while ZiXOR
transmits native payload with encoded blocks, and
do not require the whole payload to be buffered.
This could be a potential advantage for scenarios
with dense network traffic demands.

6 CONCLUSION

In this paper, we study the problem of ZigBee error recovery
under Wi-Fi interference. Motivated by the bursty nature of
Wi-Fi interfered corruptions, we propose a novel forward
error recovery scheme for improving ZigBee communication
performance under Wi-Fi interference. While bringing the
ability of FEC with extremely low decoding overhead using
only XOR operations, we also eliminate all control overhead
by using the in-packet RSSI sampling technique. Overall,
ZiXOR is lightweight in terms of both transmission and cod-
ing, and can indeed improve ZigBee performance under Wi-
Fi interference. We implement ZiXOR with TelosB/TinyOS,
and the evaluation results show that ZiXOR greatly outper-
forms state-of-the-art works.
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