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ABSTRACT

In this paper, we study the problem of pedestrian relative position-

ingwith respect to their walking direction. Existing approaches are

mainly based on trajectory information or device proximity detec-

tion, and they highly rely on infrastructure or specialized device

support. Importantly, most work does not provide relative position

information with respect to people’s walking direction. To address

the above issues, we propose a direction-aware, audio-based solu-

tion that only uses daily wearable devices. Based on the fact that

pedestrian’s arms often swing back and forth during walking, we

develop the wrist-body model that formally models the distance

change between a user’s wrist and his/her walking mate’s body

when walking together. Based on this model, we design our sys-

tem by attaching the audio sources to a user’s wrists and an au-

dio receiver to the other user’s body. We develop key indicators

that characterize the received audio signal’s Doppler shift induced

by arm swing motions and the differences in signal strength. We

further propose methods such as cycle segmentation and aggrega-

tion to deal with several real-world challenges. The performance

of our approach is studied through extensive experiments. Evalu-

ation conducted using real-world data suggests the prototype sys-

tem achieves 85.9% positioning accuracy, demonstrating its effec-

tiveness.
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1 INTRODUCTION

The relative positions of pedestrians walking together are affected

by many factors. For example, a recent study show that people in-

tentionally walk together tend to form a horizontal formation with

respect to their walking direction to facilitate social interactions

[10]. When walking in a crowded environment, the pedestrians

in a group often form a ‘V’- or ‘U’-shaped formation to avoid in-

terfering with other pedestrians out of the group [10]. And when

walking through a narrow bottleneck area, people tend to walk in

a queue due to lack of space [4]. In many cases, people also inten-

tionally maintain their relative positions when walking together,

e.g., matching in a square, protecting a VIP, following the leader,

etc. As a result, by tracking the relative positions of pedestrians

walking together, we can support many applications including but

not limited to formation detection [18], social relation and struc-

ture analysis [3], crowd dynamics studies [10], etc.

In this paper, we study the problem of relative positioning for

pedestrians. More specifically, considering the case that two peo-

ple are walking together, we aim to determine their relative posi-

tion as one person walks on the other one’s front, back, left, or right

with respect to their walking direction. This problem is challenging

mainly due to the following reasons. Walking direction aware-

ness—relative positions such as the front and the back are defined

with respect to the walking direction. So the pedestrians’ walk-

ing direction must be considered when performing relative posi-

tioning. Infrastructure independency—people can walk freely

in different places which may be out of the coverage of devices

deployed in the infrastructure. Hence, a mobile solution is desired.

https://doi.org/10.1145/3144457.3144469
https://doi.org/10.1145/3144457.3144469
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Local processing—it is desirable to process the data locally with-

out constant communication and synchronization between devices

and servers to achieve high efficiency and scalability.

Existing work on this problemmainly falls into two categories—

trajectory- and proximity-based approaches. For trajectory-based

approaches, relative positioning can be done by comparing trajec-

tory data for different pedestrians obtained by GPS [24], WiFi [20],

RFID [7], or audio [23]. However, this approach is limited because

of infrastructure dependency and limited accuracy. For proximity-

based approaches, relative positions can be determined by the dis-

tance measurement between devices using audio [25] or RF [2]

signals. However, this approach is also limited for not providing

relative position information with respect to the pedestrians’ walk-

ing direction. Infrared tags are used in [11] to detect the headings

and relative positions of different users which rely on specialized

device and global information. In [14, 15], the authors propose to

use the Doppler shift of audio pulses for direction finding. How-

ever, they cannot provide continuous relative positioning service

for relying on specialized user motions such as drawing a cycle.

Audio-based direction finding and device tracking is studied in

[5, 6, 23] which uses the Doppler shift of fixed audio anchors as

sources to track the mobile receivers. However, they assume the

audio anchors are stationary so that the local velocity of the mo-

bile receiver represents the velocity of the relative movement be-

tween the source and the receiver [5, 6]. Moreover, since the audio

sources are stationary, they transmit audio signals continuously

without providing any information about the movements of the

sources, which is not applicable in our scenario.

In this paper, we propose a novel direction-aware, audio-based

relative positioning approach that uses COTS wearable devices.

We develop the wrist-body model that formally models the dis-

tance change between a user’s wrist and his/her walking mate’s

bodywhenwalking together.We design our system by using smart-

watch as the audio source and smartphone as the audio receiver.

Key indicators are developed to characterize the patterns of fre-

quency and strength differences of the received audio signal for

different relative positions.We develop the cycle segmentation and

aggregationmethods to address real-world challenges such asweak-

ened signal caused by many reasons. Finally, we regard the posi-

tioning problem as a classification problem and propose a feature-

based positioning approach.We also propose an alternative deploy-

ment strategy that attaches the audio sources to the user’s ankles

to address the issue that arms may not swing during walking. In

summary, this paper makes the following contributions.

(1) We propose a novel approach that uses swing inducedDoppler

shift to perform relative positioning with respect to pedes-

trians walking direction.

(2) A working prototype system is implemented and a series

of studies under different settings are conducted to validate

our theory.

(3) Cycle segmentation and aggregation methods are proposed

to address the real-world issues.

(4) We collect data in real-world settings and evaluate our sys-

tem’s performance using real data.

The rest of the paper is organized as follows. We summarize the

related work in Sec. 2. Sec. 3 presents amotivating example and the

system’s design choices. Prototype implementation is introduced

in Sec. 4, based on which we conduct preliminary studies in Sec.

5. Sec. 6 introduces the design of the data processing pipeline. The

performance of our system is evaluated in Sec. 7. Finally, Sec. 8

concludes the paper.

2 RELATEDWORK

Localization for mobile targets has attracted much research inter-

est recently. In [24], the authors explore large-scale human mo-

bility patterns by GPS, cellular, and ad hoc network data. While

GPS-based approaches are often considered unavailable for indoor

environments and limited in accuracy, RF-based approaches are

studied. A large body of literatures have explored WiFi signals for

localization and positioning [20]. Other systems like Tagoram [21]

explore RFID technologies for tracking. Different from RF-based

approaches, recent studies have used smartphone’s built-in sen-

sors [19, 22], visible light [7], or audio signals [6] for localization

and tracking. Relative positioning is possible if the detailed trajec-

tories of different subjects can be obtained. However, the above

approaches often rely on anchor devices, e.g., WiFi APs [20], RFID

readers [13], light sources [7], or audio anchor nodes [5, 6, 23] to

be present at the environment, limiting their detection coverage.

Also, the locations must be sent to a centralized server for analysis

[9], which leads to high communication overheads.

Different from localization technologies, proximity detection tech-

nologies measure the distance between different objects. Acoustic

ranging (AR) has been widely studied in mobile computing [12, 16,

25] which mainly rely on the signal’s time-of-arrival (TOA). Other

approaches perform proximity detection base on RF signals from

cellular networks [8], Bluetooth radio [2], or sensor networks [1].

While proximity detection technologies can indicate whether two

people are close to each other, they cannot provide relative posi-

tion information with respect to the walking direction.

Some recent work has explored the Doppler shift of audio sig-

nals for direction finding and tracking [5, 6, 14, 15, 23]. In [14, 15],

the authors propose to use the Doppler shift of audio pulses for

direction finding. However, they rely on specialized user motions

such as drawing a cycle. They do not explore the periodic nature of

arm swing motion for signal processing, and cannot provide con-

tinuous relative positioning service since they rely on unnatural,

specialized motions. Moreover, data communication is required in

their approaches to compare the sending and receiving pulse in-

tervals to perform direction finding. Direction finding and device

tracking is studied in [5, 6, 23] which use the Doppler shift of fixed

audio anchors as sources to track the mobile receivers. However,

their approaches are not applicable to our scenario because they

assume the audio anchors are stationary so that the local velocity

of the mobile receiver represents the velocity of the relative move-

ment between the source and the receiver [5, 6]. Moreover, since

the audio sources are stationary in these approaches [5, 6, 23], they

transmit audio signals continuously without providing any infor-

mation about the movements of the sources, which is not applica-

ble in our scenario as discussed above.



Direction-Aware, Audio-Based Pedestrian Relative Positioning Mobi�itous 2017, November 7–10, 2017, Melbourne, VIC, Australia

2.3m

1.8m1.6m 1.5m
1.7m1.7m

1.8m 1.6m

2.3m

O1 O2 O3

walking direction

wrist (foremost)

(b) Left view (relative movement represented by distance change)

wrist (lowest)

swing direction wrist (hindmost)

(a) Front view (setup)

O1

O2

O3

1.5m

1m

shoulder

wrist (lowest)

1m

1m

wrist (foremost)

wrist (hindmost)

45
45

Figure 1: Motivating example.

3 MOTIVATING EXAMPLE AND DESIGN

CHOICES

Our approach is built upon the fact that people’s arms often swing

back and forth when walking. As shown in Fig. 1(a), consider three

observers with fixed relative positions with respect to the user’s

body that are in front of (O1), aligned with (O2) and behind (O3) the

user with 1m apart from each other, a horizontal distance of 1.5m

apart from the body, and the same distance above the ground as the

wrist’s lowest position. We assume the user’s arm is 1m in length

and swings between 45 degrees back and front against the body

when walking. As shown in Fig. 1(b), when the arm swings from

the hindmost point to the foremost point, forO1 in front of the user,

the relative movement between the wrist and O1 causes their dis-

tance to decrease from 2.3m to 1.6m. ForO2 aligned with the user,

the distance first decreases from 1.7m to 1.5m then increases

to 1.7m. ForO3 behind the user, the distance increases from 1.6m

to 2.3m. This observation suggests that we can perform direction-

aware, relative positioning for the observers from the patterns of

relative movement represented by distance change.

Motivated by this example, relative positioning for the observer

can be done by finding the patterns of relative movement between

the user’s wrist and the observer which leads to two design options.

For the first option, we can track the detailed relative movement

by constantly measuring the distance between the user’s wrist and

the observer. However, precise distance measurement down to the

centimeter level is technically challenging [16] and unnecessary in

our case since we only need the direction of relative movement to

find the patterns. As a result, we propose the second option which

is based on the Doppler shift of the received signal’s frequency

caused by relative movement between a signal source and the ob-

server which can be written as:

f = (1 +
∆v

c
)f0 (1)

where f is the received frequency from the observer, f0 is the

emitted frequency from the source, c is the velocity of the signal

wave, and ∆v is the velocity of the observer moving relatively to

the source, with ∆v > 0 if the observer is moving towards the

source.

Following this idea, if we attach a signal source to the user’s

wrist emitting a signal wave at fixed frequency f0 when the wrist

swings from the hindmost point to the foremost point and a re-

ceiver to the observer, the relative movement between the source

and the receiver will result in distinctive patterns in the received

signal’s frequency f caused by the Doppler shift according to the

receiver’s relative positions. Specifically, we can expect: 1) f > f0
for O1; 2) f > f0 first and f < f0 later for O2; and 3) f < f0 for

O3. Note that it is important to restrict the signal transmission pe-

riod to the period when the wrist swings from the hindmost point

to the foremost point. If the signal source is in continuous trans-

mission mode [5, 6, 23], the pattern received at the observer will

be f > f0 and f < f0 appear alternatively regardless its position.

Relative positioning is then impossible unless the source provides

additional information on the period and start time of the swing

motion, which leads to intensive data communication and reduces

the system’s efficiency. In this case, such communication can be

avoided if we attach the audio source to the observer and the re-

ceiver to the wrist. However, as we will show next, this design op-

tion leads to another form of intensive data communication when

discriminating left from right.

So far we can only identify three relative positions, i.e., front

(O1), back (O3), and align (O2). It is still difficult to discriminate left

from right since they have the same frequency changing pattern as

align. We present a simple solution in this work to have two audio

sources attached to the users left and right wrists, respectively. Due

to the users body blockage, when the observer is on the user’s left,

the audio signal from user’s left wrist will be stronger than that

from the right wrist and vise versa. As discussed above, another

design option is to attach the audio source to the observer and the

receivers to the wrists. However, if we need to compare the signal

strength between the left and right wrists to discriminate left from

right, data communication between the receivers is constantly re-

quired. Instead, if we follow our original design, we only need to

separate the signal from the left and right wrists by transmitting

at different frequencies. Computation can then be done locally at

the receiver without additional communication.

In summary, by using the patterns described above, it is theo-

retically possible to discriminate different relative positions using

the received audio signal. The advantages of this approach include:

1) walking direction information is naturally contained in the fre-

quency changing patterns; 2) no infrastructure support is needed;

3) once the emission frequency is established between the sender

and receiver, the received signal can be processed locally at the

receiver without any further communication. While all kinds of

signals travel in wave forms can be used, we focus on audio sig-

nal instead of RF signal for its slow propagation speed and device

simplicity.
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4 PROTOTYPE IMPLEMENTATION

We now introduce our prototype implementation following the

above system design.

4.1 Hardware

There are two types of hardware used to build our system—the

audio source and the receiver. For the audio source, we use the

Cross Country Smartwatch1 equipped with a speaker and multiple

onboard sensors including a gyroscope. It has a dual-core 1.5GHz

CPU and 1GB RAM. It runs the Android 4.2 OS and can be easily

programmed using existing Android SDK. For the audio receiver,

we use the Nexus 5 Smartphone2 powered by a 2.26GHz quad-core

CPU, 2GB RAM, and the Android 4.4 OS. The built-in microphone

has a maximum sampling rate of 44.1kHz, capable of sensing audio

signals up to 22kHz in frequency.

We ask one user to put on two smartwatches, one for each wrist.

We then ask the other user to carry the smartphone on the body

in a pocket.

4.2 Smartwatch-side System

As introduced above, the smartwatch functions as the audio source

that emits a signal on frequency f0 when the wrist swings from the

hindmost point to the foremost point. To determine the periods of

wrist swinging forward and backward, we use the smartwatch’s

gyroscope readings. When worn on the left wrist, the smartwatch

is doing clockwise and counterclockwise rotations along its z axis

when the wrist is swinging forward and backward, respectively.

When worn on the right wrist, the case is opposite. For the smart-

watch used in our system, the gyroscope readings are positivewhen

doing clockwise rotation and negative in the case of counterclock-

wise rotation. As a result, it is straightforward to determine the

periods of wrist swinging forward as the gyroscope readings on

the z axis is positive for the left wrist (negative for the right wrist).

Small vibrations are eliminated by filtering out readings with small

rotation values below 5% of the maximum value in history. On de-

tecting the user’s wrist is swinging forward, we trigger the smart-

watch’s speaker to play a previously synthesized audio file which

only contains a tone at frequency f0. We stop signal transmission

on detecting the user’s wrist starts to swing backward. Experiment

result suggests gyroscope is sufficiently accurate and agile to de-

tect swing direction changes, and outperforms the accelerometer.

To discriminate the sources, we set different f0 for the smart-

watches worn on the left and right wrists. Specifically, in our proto-

type system, we set f0l = 17kHz for the left wrist, and f0r = 16kHz

for the right wrist. We keep the two frequencies 1kHz apart so that

the frequency shift cause by the Doppler effect will not affect our

judgment on the source of the signal. Also, we choose to use fre-

quencies higher than 16kHz so that they are mainly inaudible for

people.

4.3 Smartphone-side System

The smartphone-side system implements the data processing pipeline

which can perform online relative positioning which we introduce

in detail in Sec. 6.

1https://www.youtube.com/watch?v=IpkVNnNl8Ds
2https://www.google.com/nexus/5/
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Figure 2: Spectrogram.

5 PRELIMINARY STUDIES

In this section, we conduct a series of preliminary studies using our

prototype system to study its effectiveness under different condi-

tions.

5.1 Controlled Indoor Environment

This study is conducted in a controlled lab environment. A subject

wears the smartwatches on both wrists and walks in place with

his arms swinging naturally. The smartphone, as the receiver, is

placed 1.3m above the ground on a shelf, 1.5m apart from the sub-

ject. Audio data are collected from the four positions with respect

to the subject’s facing.

5.1.1 Observations. Fig. 2 plots the signal’s spectrogram over

time in one swing cycle (left wrist swings from the hindmost point

to the foremost point and back to the hindmost point). As shown

by the figure, clear patterns matching our theory can be observed.

When the smartphone is in front of the subject, the frequency of

the received signal is generally higher than the emitted signal (17kHz

for the left wrist and 16kHz for the right wrist). Opposite obser-

vations can be made when the smartphone is placed in the back.

When the smartphone is aligned with the subject (to the left or the

right), the received signal frequency first raises above then drops

below the emitted signal frequencies.

5.1.2 Key Indicators. From the above observations, we derive

the following two key indicators to characterize the signal.

High-to-LowRatio (HLR).With respect to the emitted frequency

f0 (f0l =17kHz and f0r =16kHz for the left and right wrist, respec-

tively), HLR is the ratio of aggregated amplitude of frequency com-

ponents above f0 over those below f0 over time during a swing

cycle. Specifically, HLR is computed by:

HLR(ts , te ) =
SUMhiдh (ts , te ) − SUMlow (ts , te )

SUMhiдh (ts , te ) + SUMlow (ts , te )
· scale (2)

where ts and te are the time when the current swing cycle starts

and ends, respectively, scale is a positive real number that scales

theHLR valuewithin range [−scale,+scale],SUMhiдh and SUMlow

are two functions that accumulate the amplitudes across frequen-

cies above and below f0 over time period [ts , te ], which are com-

puted as:

SUMhiдh (ts , te ) =

te∑

t=ts



f0l
+∆f∑

f =f0l

ampf ,t +

f0r +∆f∑

f =f0r

ampf ,t



(3)
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SUMlow (ts , te ) =

te∑

t=ts



f0l∑

f =f0l
−∆f

ampf ,t +

f0r∑

f =f0r −∆f

ampf ,t



(4)

where∆f is the single-side frequency range for aggregation,ampf ,t
is the amplitude of signal’s component at frequency f at time t ,

we take the discrete form in the above equations because we ob-

tain ampf ,t using the Fast Fourier Transform (FFT) over the data

frame obtained by a short sliding window starting at time t .

Le�-to-Right Ratio (LRR). LRR is the ratio of the aggregated

signal amplitude over time that is from the left audio source over

that is from the right audio source. Specifically, LRR is computed

by:

LRR(ts , te ) =
SUMle f t (ts , te ) − SUMr iдht (ts , te )

SUMle f t (ts , te ) + SUMr iдht (ts , te )
· scale (5)

where ts , te , and scale are the same as defined in Eq. (2), SUMlef t

andSUMlef t accumulate the amplitudes for the left and right sources

which are computed as:

SUMle f t (ts , te ) =

te∑

t=ts

f0l
+∆f∑

f =f0l
−∆f

ampf ,t (6)

SUMr iдht (ts , te ) =

te∑

t=ts

f0r +∆f∑

f =f0r −∆f

ampf ,t (7)

all the notations used are the same as defined above.

Given the above two key indicators, we plot the instances (with

each one representing a swing cycle) obtained from the simulation

data in Fig. 3. We manually determine the time period for each

swing cycle, and set scale = 10, ∆f = 200Hz, and a sliding win-

dow length of 0.1s when computing HLR and LRR. From this fig-

ure, it is clear that we can discriminate the four relative positions

from the two indicators. While the HLR for the left and the right

positions are close to zero, they are well separated by the LRR as

expected. The front and the back positions are separated by both

the HLR and the LRR. The LRR for the front (back) is above (below)

zero because of the orientations of speakers on different wrists as

explained above.

5.1.3 KL Divergence Used for Analysis. To quantify the distri-

bution of instances for different relative positions in the HLR-LRR

plane as shown in Fig. 3, we model each position’s data as a 2D

Normal Distribution and use the pair-wise KL Divergence (KLD)

as the indicator. KLD evaluates the dissimilarity between two dis-

tributions and has shown to be an effective indicator for discrimi-

native power [17]. Since KLD is asymmetric, computation is done

between every pair of positions as shown in Fig. 4.

To understand how KLD is related to discriminative power, we

conduct a simple classification test using the above instances. We

use a C4.5 decision tree as the classifier and perform a ten-fold

cross-validation. Fig. 5 plots the confusion matrix and the overall

classification accuracy is 96.9%. By comparing the results shown in

Fig. 4 and Fig. 5, it is clear that miss classifications occur between

positions that have low KLD. For example, the pair back-right, and

the pair back-left.

In summary, the overall accuracy of 96.9% suggests the proposed

approach is effective to discriminate different relative positions

from the received audio signal. However, in real-life, there aremany

factors that may affect the performance of our system. Next, we

conduct a series of experiments to study the effect of different fac-

tors on the performance of our approach.

5.2 Under Different Conditions

In this section, we present the results of studies under different

conditions. Since KLD has shown to be an effective indicator for

discriminative power, we use the average KLD for analysis. The

same settings as the simulation study are used when computing

the indicators.

5.2.1 Source-receiver Distance. In real-life, two people walking

together are often close to each other. However, there is no bound

on the distance between two pedestrians. In this experiment, we

aim to find out how distance affects the quality of the received

audio signal and the performance of the proposed approach. To

eliminate the effect of other factors, we repeat the simulation study

and only change the distance between the source and the receiver.

Fig. 6(a) plots the average pair-wise KLD computed using data

collectedwith the distance increasing from 0.5m to 5.5m. As shown

in the figure, the discriminative power decreases as the distance

increases. This is probably caused by the reduced signal strength

after traveling for a longer distance. Theoretically, universal reduc-

tion in signal strength has no impact on the computation for the

indicators. In practice, however, due to the microphone’s limited

sensibility, the weakened signal can only be identified partially in

one cycle. The incomplete and unstable signal received causesHLR

and LRR to vary from cycle to cycle even for the same position, re-

sulting in decreased discriminative power.

5.2.2 Swing Frequency. People may walk in different speeds

that result in different arm swing frequencies. This will influence

the velocity of the receiver moving relatively to the source and af-

fect the frequency shift of the received audio signal. In this exper-

iment, we study the performance of our approach under different

swing frequencies.
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Figure 6: Average KLD affected by different factors.

Fig. 6(b) plots the average pair-wise KLD with different swing

frequencies represented by swing cycle length. The data are the

most discriminative when swing cycle length is 1.5s. The discrim-

inative power drops when cycle length further increases. This is

because the slower the arm swings, the velocity of relative move-

ment between the signal source and the receiver also decreases,

which will result in a less significant Doppler shift. However, it is

surprising to find that further decrease in swing cycle length also

reduces the discriminative power. Further study reveals that be-

cause we use a non-overlapping sliding window of 0.1s to segment

the audio stream, a shorter cycle increases the cost of imprecise cy-

cle segmentation. For a cycle length of 0.5s, a 0.1s mistake in cycle

segmentation will affect 20% of the data, causing large variances in

computed indicators and reducing the discriminative power simi-

lar to the weakened signal does. A higher time resolution is not a

solution because it reduces the frequency resolution which is crit-

ical in our system.

This result suggests swing frequency affects the system’s perfor-

mance by two reasons: a) imprecise segmentation; b) less signifi-

cant Doppler shift. By comparing the results of swing cycle length

larger and less than 1.5s, it is clear that the former does more harm

to the discriminative power.

5.2.3 Smartphone Placement. In daily life, smartphone may be

placement in different positions during walking, e.g., in a pocket

or a bag. When placed in a pocket or a bag, the sound is muffled,

which may affect the quality of the received audio signal. In this

study, we evaluate how smartphone placement affects our system’s

performance.

Fig. 6(c) plots the average pair-wise KLD when the smartphone

is placed in different objects. It suggests the discriminative power

drops when the sound is muffled, especially when placed in a bag.

Similar to the condition of large source-receiver distance, the sig-

nal is weakened when placed in an object, resulting in unstable

HLR and LRR among cycles, which leads to a lower discriminative

power.

5.2.4 Human Body Blockage. In real-life, it is possible that mul-

tiple pedestrians are walking together and human body may block

the signal. Fig. 6(d) plots the average KLD when blocked by dif-

ferent number of human bodies. Comparing to the case of no hu-

man blockage (line-of-sight), the discriminative power drops when

blocked by human bodies. Similar to the above cases with large

source-receiver distance and smartphone placed in objects, human

blockage will reduce the received signal strength and make it un-

stable. Human body blockage is expected and useful to us because

we use this feature to discriminate left from right as introduced

above.
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5.2.5 Summary. The above studies suggest that the performance

of the proposed approach can be affected by many factors. The

main reason behind the decreased discriminative power is the drop

of signal strength resulting in incomplete and unstable signal re-

ceived in each cycle which causes the indicators to vary largely

from cycle to cycle. A possible solution is to strengthen and sta-

bilise the signal as shown next.

We also test the system’s performance under different environ-

mental noise levels. The result suggests that environmental noises

do not have an significant impact on the quality of data. All kinds of

noise in the audible range, involving talking, tyre and wind noises

caused by running vehicles will not affect our signal in the inaudi-

ble range.

5.3 Impact of Different Environments

While the above studies are conducted in a controlled lab environ-

ment, in this experiment, we evaluate our system’s performance

in real walking scenarios. Two subjects are involved with one sub-

ject (subject A) wearing the smartwatches while the other subject

(subject B) carrying the smartphone in the clothes’ pocket. Data

are collected in three different environments: a) in a corridor in

the lab building; b) on a road on the campus with people and cars

occasionally passing by; and c) beside a busy avenue with lots of

vehicles.

Fig. 7 shows the average KLD of data collected when walking

in different environments. Surprisingly, the data collected in the

quiet indoor corridor have the lowest discriminative power while

the data collected in outdoor environments still seem to have good

quality. Detailed analysis is as follows.

During the experiment, the smartphone is always in subject B’s

right clothes pocket. Complex effects involving human body block-

age and muffling significantly reduce the received audio signal’s

strength, especially when subject B is walking on subjectA’s right.

This combined weakening effect is applicable to all environments,

and makes the indicators to vary among cycles as we discussed

above.We also find in real-world,HLR seems to bemore harmed by



Direction-Aware, Audio-Based Pedestrian Relative Positioning Mobi�itous 2017, November 7–10, 2017, Melbourne, VIC, Australia

(a) Average KLD (b) Classification Accuracy

0

50

100

1 2 3 4 5

A
v
er

a
g
e 

K
L

 

D
iv

er
g
en

ce

Number of Cycles for Aggregation

Distance 5.5m Cycle length 0.5s

70%

80%

90%

100%

1 2 3 4 5

A
cc

u
ra

cy

Number of Cycles for Aggregation

Distance 5.5m Cycle length 0.5s

Figure 8: Effect of cycle aggregation.

the weakened signal than LRR. LRR which characterizes the block-

age effect caused by subject A’s own body, is less affected by the

weakening effects above. This explains why the data still yield rel-

atively good discriminative power in the outdoor environments.

However, when walking in the narrow (1.7m) corridor in the lab

building, the walls on both sides will reflect the emitted audio sig-

nal. For example, when subject B with the smartphone is walking

on the right of subject A, the audio signal emitted by subject A’s

left wrist, which is supposed to be partially blocked byA’s body, is

reflected by the walls and transmits into the microphone following

multiple paths. As a result, the discriminative power of LRR also

drops in this case.

Another observation from the data is that environmental noises

do not affect the quality of our data as significantly as expected.

All kinds of noise in the audible range, involving talking, tyre and

wind noises caused by running vehicles will not affect our signal

mainly in the inaudible range. Currently, the only observed type of

noise that may affect our signal is the clothes friction noise from

subject B when his arms are also swinging when walking. How-

ever, the friction noise is similar to a short-term white noise across

all frequencies, causing a roughly equal effect on the received sig-

nal’s high and low frequency components in a very short duration.

5.4 Cycle Aggregation

As discussed above, a major threat to the performance of the pro-

posed approach is the incomplete and unstable signal received caused

by many reasons.

The cycle aggregation method is designed to strengthen and sta-

bilise the signal by the periodic nature of arm swinging. To achieve

this, we aggregate the current cycle’s data with the data obtained

in previous cycles. More specifically, given the current cycle’s start

and end time tsc and tec , HLR and LRR with cycle aggregation are

computed as:

HLR(tsc , tec , n)

=

c∑
i=c−n

[SUMhiдh (tsi , tei ) − SUMlow (tsi , tei )]

c∑
i=c−n

[SUMhiдh (tsi , tei ) + SUMlow (tsi , tei )]

· scale
(8)

LRR(tsc , tec , n)

=

c∑
i=c−n

[SUMle f t (tsi , tei ) − SUMr iдht (tsi , tei )]

c∑
i=c−n

[SUMle f t (tsi , tei ) + SUMr iдht (tsi , tei )]

· scale
(9)

where n is the number of cycles for aggregation, tsi and tei are the

start and end time of the i-th cycle, other notations are the same

as defined in Sec. 5.1.2.

To study the effectiveness of the cycle aggregation method, we

evaluate its performance using data from cases with average KLD
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Figure 9: Signal repeats over time.

below 20.More specifically, we choose the traces collectedwith dis-

tance 5.5m in Sec. 5.2.1 and swing cycle length of 0.5s in Sec. 5.2.2.

We also evaluate the discrimination accuracy using a C4.5 decision

treemodel. Fig. 8 plots the average KLD and classification accuracy

changed by aggregating the signal with different number of cycles.

The result suggests the cycle aggregation method is efficient in in-

creasing the discriminative power.

6 DATA PROCESSING PIPELINE

We have shown the effectiveness of our stage one prototype sys-

tem in the above studies. However, manual efforts such as cycle

segmentation are involved. In this section, we move on to stage

two of system design and implementation for a fully automated

data processing pipeline for the smartphone. The pipeline mainly

involves four steps: sliding window-based segmentation, FFT, cy-

cle segmentation and aggregation, and positioning. While sliding

window-based segmentation and FFT are routine procedures for

data preprocessing, we mainly focus on the automated cycle seg-

mentation and feature-based positioning methods, in this section.

6.1 Data Preprocessing

On receiving the audio stream from the smartphone’s microphone,

we first apply a 0.1s non-overlapping sliding window to segment

the stream into frames. For each frame, we apply FFT to obtain

the amplitudes of the signal’s different frequency components. The

sampling rate of the smartphone’smicrophone is 44.1kHz, and there

are 4410 samples in each frame. We perform an 8192 point FFT to

obtain a fine-grained spectrogram with each frequency bin sized

5.4Hz.

The above data preprocessing steps generate a series of frequency

representations of frames, which we use as input for the following

steps.

6.2 Automated Cycle Segmentation

After obtaining the series of frames, we perform cycle segmenta-

tion to determine the start and end time of each cycle so that indi-

cators like HLR and LRR can be computed.

Cycle segmentation is done based on the fact that the received

audio signal periodically repeats itself over time, with a period

equal to the cycle length. Fig. 9 shows the audio signal received

over time which includes four cycles. It is clear that the signal is pe-

riodic with a period of approximately 1.5s. By definition, a discrete

time signal is periodic if for anyn, we have x[n] = x[n+N0], where

N0 > 0 is the minimum value that satisfies the equation called
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the period. Following this definition, on receiving the frequency

representation of a newly obtained frame, we first compute its Eu-

clidean Distance against the previously obtained frames using the

signal’s amplitudes around the emitted frequencies. More specif-

ically, given the current frame f ramen and the previous frames

f ramen−1, f ramen−2, ..., we compute their distance with a time

gap Nд as follows.

dist (n, Nд ) =

√
dist 2

l
(n, Nд ) + dist

2
r (n, Nд ) (10)

where dist2
l
(n,Nд) and dist2r (n,Nд) are the squared distance for

the left and right signal sources of f ramen with time gapNд which

are computed as follows.

dist 2l (n, Nд ) =

f0l
+∆f∑

f =f0l
−∆f

(ampf ,n − ampf ,n−Nд )
2 (11)

dist 2r (n, Nд ) =

f0r +∆f∑

f =f0r −∆f

(ampf ,n − ampf ,n−Nд )
2 (12)

where ampf ,n is the amplitude of f ramen ’s signal’s component

at frequency f after FFT, notations such as f0l , f0r , and ∆f are the

same as used in Sec. 5.1.2.

After obtaining the distances for a series of frames (N frames),

we search for the minimum time gap N0 that minimizes the aver-

age distances. More specifically, we compute N0 as follows.

N0 = argmin
Nд

1

N
·

n∑

n=n−N

dist (n, Nд ), Nд ∈ [1,max (Nд )] (13)

Fig. 10 plots the distance matrix of frames corresponding to the

signal shown in Fig. 9. Given the sliding window size of 0.1s, we

set the maximum Nд=20 and N = 20. From Fig. 10, it is clear that

the minimum average distance is obtained around Nд = 15 so we

have N0 = 15. This means the period of the signal, i.e., the cycle

length, is around 1.5s. This result well matches the signal plotted

in Fig. 9, suggesting the proposed cycle segmentation method is ef-

fective. By comparing Fig. 9 and Fig. 10, we can also notice that the

vertical bars with the highest aggregated distance in Fig. 10 highly

correspond to the start time for each cycle in Fig. 9. It is caused

by a short gap between two adjunct cycles due to the vibration

elimination technique presented in Sec. 4.2, which can be clearly

seen in Fig. 9, especially near 1.5s. Based on this observation, we

find the start time of a cycle ts by finding the frame with the local

maximum of aggregated distance.3

3In the above case, the local maximum of aggregated distance always corresponds to
the start time of the left wrist’s signal. However, in other cases, this may correspond to
the start time of the right wrist’s signal or both wrists’ signal. As a result, we combine

So far, we have found the start time ts and cycle length l =

N0/10 (0.1s for each frame) for the current cycle. The period of the

current cycle are then determined as [ts , ts + l]. The cycle segmen-

tation method segments the audio stream into individual cycles

which can be used to perform cycle aggregation (Sec. 5.4) and fea-

ture extraction for the final positioning method.

6.3 Feature-based Positioning

After the previous processing steps, our final goal is to determine

the relative position of the receiver with respect to the walking

direction. We model this problem as a classification problem and

propose a feature-based positioning approach.

For each cycle, we extract both frequency and time domain fea-

tures. For frequency domain features, we use the HLR and LRR in-

troduced in Sec. 5.1.2 to characterize the signal. To characterize

how signal changes over time, we compute the ratio of aggregated

amplitude in the first half of the cycle against the latter half for

each wrist. We further enrich our feature set by computing HLR

and LRR for the left and right wrists independently, and using the

normalized signal amplitudes of different frequency components

as features. For each swing cycle, we extract the above features

and represent it as an instance in the feature space.

Positioning is done using a Support Vector Machine (SVM) clas-

sifierwith radial basis function kernel. SVMhas shown to be promis-

ing in previous work to be a light-weight and efficient classifier

that scales well to the number of features and training data [17].

Besides the four relative positions considered above, i.e., front,

back, left, and right, in real-life, it is possible that the system is

working with people not walking together. We add the unknown

position to represent all cases other than the above four relative

positions.

7 EVALUATION

In this section, we conduct experiments to evaluate the perfor-

mance of the proposed approach.

7.1 Data Collection and Methodology

Data are collected by randomly choosing pairs of students in our

department and asking them to walk naturally at different places,

including both indoor and outdoor environments. No further in-

structions other than how to correctly wear the devices are given

so the students can walk freely with the smartphone placed with

their own choices. A total number of 24 traces are collected involv-

ing all the directions with each trace lasts for approximately five

minutes.

We perform leave-one-trace-out evaluation to evaluate our sys-

tem’s performance. The discrimination accuracy is computed by

the time slice accuracy as follows.

accuracy =
correctly classif ied duration

total trace duration

We evaluate the time slice accuracy using different number of

cycles for aggregation. We also evaluate our system’s power and

the local maximum and the period to determine the start time ts . And our system is
not sensitive to whether ts is the start time of the left or right wrist’s signal. We omit
the details in this paper due to page limits.
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Figure 11: System performance using leave-one-trace-out evaluation.

time costs, and evaluate the system’s performance when the audio

sources are attached to the user’s ankles.

7.2 Positioning Accuracy

In this section, we report the system’s positioning accuracy. Fig.

11(a) plots the overall time slice accuracy obtained by leave-one-

trace-out evaluation under different number of cycles used for ag-

gregation. As shown in the figure, our system achieves an accuracy

of over 80%. The strongest discriminative power is obtained when

using three cycles for aggregation, which is 85.9% in accuracy. It

is interesting to find that the accuracy drops when using more

cycles for aggregation. A possible explanation is that the noise

contained in each cycle may also be amplified during aggregation

which starts to affect the system’s performance. This requires us to

carefully choose the number of cycles for aggregation to achieve a

balance between amplified signal and noise. Noise reduction tech-

nologies may be helpful to further increase the system’s perfor-

mance which we leave for our future work.

We further report the detailed performance when three cycles

are used for aggregation. Fig. 11(b) shows the breakdown of ac-

curacy for different traces. Nine out of twenty-two traces achieve

over 90% accuracy with the highest accuracy of 97.4%. A possible

way to further increase accuracy is to dynamically change the num-

ber of cycles for aggregation according to the quality of the data

in different traces. Fig. 11(c) shows the confusion matrix of the po-

sitioning results. Most errors are made with the unknown position

which does not have a clear pattern by definition. More errors are

made between the right and back positions than other pairs of po-

sitions. As shown earlier in Fig. 3, right and back are close to each

other in data distribution. This is possibly caused by different per-

formance or orientations of the smartwatches’ speakers. A possible

solution is to perform data calibration. We leave the exploration of

possible solutions to further increase our system’s performance for

our future work.

7.3 Power and Time Costs

We evaluate the battery and time performance of our system in this

experiment. We use PowerTutor4 to monitor the power consump-

tion of our program running on smartwatch and smartphone. First,

our swing detection and audio transmission programs on smart-

watch introduces an additional power consumption of 53mW. The

time cost of the smartwatch-side program is omitted because no

complex computation is involved. Second, the audio receiving and

relative positioning program’s power consumption on smartphone

4http://ziyang.eecs.umich.edu/projects/powertutor/

is 65mW. It takes our program less than 5 seconds to analyze 10 sec-

onds of data. The results suggest our system does not introduce a

high power overhead. Also, the system is fast enough to perform

online analysis. We can further reduce the power overhead of our

system by turning into sleep when the user is not walking or the

relative position does not change frequently, which we leave for

our future system implementation work.

7.4 Attaching to Ankles

In some cases, people walks without arm swinging. To address this

issue, we can attach the audio sources to user’s ankles. We collect

five traces of data in this setup and perform leave-one-trace-out

evaluation. The result shows our system achieves an overall time

slice accuracy of 88.7%, slightly better and still comparative to the

wrist data. This result suggests attaching the audio sources to an-

kles is an effective option when user walks without arms swinging.

8 CONCLUSION

In this paper, we study the problem of direction-aware relative po-

sitioning for pedestrians walking together. Built on the fact that

people’s arms often swing back and forth during walking, we de-

velop the wrist-body model that models the distance change be-

tween the user’s wrists and his/her walking mate’s body when

walking together. An audio-based relative positioning approach

is proposed based on the theoretical results which discriminates

different relative positions with respect to the walking direction

using the Doppler shift of the received audio signal. The cycle

segmentation and aggregation methods are proposed to tackle the

real-world issues. We build a prototype system using COTS wear-

able devices including smartwatches and smartphones. Experiments

conducted under real-world conditions show that our system can

perform relative positioning accurately and efficiently.We also show

our system can still effectively perform relative positioning if the

user walks without arms swinging by attaching the audio sources

to the ankles.
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